linux/drivers/soc/ti/knav_qmss_queue.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Keystone Queue Manager subsystem driver
   4 *
   5 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
   6 * Authors:     Sandeep Nair <sandeep_n@ti.com>
   7 *              Cyril Chemparathy <cyril@ti.com>
   8 *              Santosh Shilimkar <santosh.shilimkar@ti.com>
   9 */
  10
  11#include <linux/debugfs.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/firmware.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/module.h>
  17#include <linux/of_address.h>
  18#include <linux/of_device.h>
  19#include <linux/of_irq.h>
  20#include <linux/pm_runtime.h>
  21#include <linux/slab.h>
  22#include <linux/soc/ti/knav_qmss.h>
  23
  24#include "knav_qmss.h"
  25
  26static struct knav_device *kdev;
  27static DEFINE_MUTEX(knav_dev_lock);
  28#define knav_dev_lock_held() \
  29        lockdep_is_held(&knav_dev_lock)
  30
  31/* Queue manager register indices in DTS */
  32#define KNAV_QUEUE_PEEK_REG_INDEX       0
  33#define KNAV_QUEUE_STATUS_REG_INDEX     1
  34#define KNAV_QUEUE_CONFIG_REG_INDEX     2
  35#define KNAV_QUEUE_REGION_REG_INDEX     3
  36#define KNAV_QUEUE_PUSH_REG_INDEX       4
  37#define KNAV_QUEUE_POP_REG_INDEX        5
  38
  39/* Queue manager register indices in DTS for QMSS in K2G NAVSS.
  40 * There are no status and vbusm push registers on this version
  41 * of QMSS. Push registers are same as pop, So all indices above 1
  42 * are to be re-defined
  43 */
  44#define KNAV_L_QUEUE_CONFIG_REG_INDEX   1
  45#define KNAV_L_QUEUE_REGION_REG_INDEX   2
  46#define KNAV_L_QUEUE_PUSH_REG_INDEX     3
  47
  48/* PDSP register indices in DTS */
  49#define KNAV_QUEUE_PDSP_IRAM_REG_INDEX  0
  50#define KNAV_QUEUE_PDSP_REGS_REG_INDEX  1
  51#define KNAV_QUEUE_PDSP_INTD_REG_INDEX  2
  52#define KNAV_QUEUE_PDSP_CMD_REG_INDEX   3
  53
  54#define knav_queue_idx_to_inst(kdev, idx)                       \
  55        (kdev->instances + (idx << kdev->inst_shift))
  56
  57#define for_each_handle_rcu(qh, inst)                           \
  58        list_for_each_entry_rcu(qh, &inst->handles, list,       \
  59                                knav_dev_lock_held())
  60
  61#define for_each_instance(idx, inst, kdev)              \
  62        for (idx = 0, inst = kdev->instances;           \
  63             idx < (kdev)->num_queues_in_use;                   \
  64             idx++, inst = knav_queue_idx_to_inst(kdev, idx))
  65
  66/* All firmware file names end up here. List the firmware file names below.
  67 * Newest followed by older ones. Search is done from start of the array
  68 * until a firmware file is found.
  69 */
  70const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
  71
  72static bool device_ready;
  73bool knav_qmss_device_ready(void)
  74{
  75        return device_ready;
  76}
  77EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
  78
  79/**
  80 * knav_queue_notify: qmss queue notfier call
  81 *
  82 * @inst:               - qmss queue instance like accumulator
  83 */
  84void knav_queue_notify(struct knav_queue_inst *inst)
  85{
  86        struct knav_queue *qh;
  87
  88        if (!inst)
  89                return;
  90
  91        rcu_read_lock();
  92        for_each_handle_rcu(qh, inst) {
  93                if (atomic_read(&qh->notifier_enabled) <= 0)
  94                        continue;
  95                if (WARN_ON(!qh->notifier_fn))
  96                        continue;
  97                this_cpu_inc(qh->stats->notifies);
  98                qh->notifier_fn(qh->notifier_fn_arg);
  99        }
 100        rcu_read_unlock();
 101}
 102EXPORT_SYMBOL_GPL(knav_queue_notify);
 103
 104static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
 105{
 106        struct knav_queue_inst *inst = _instdata;
 107
 108        knav_queue_notify(inst);
 109        return IRQ_HANDLED;
 110}
 111
 112static int knav_queue_setup_irq(struct knav_range_info *range,
 113                          struct knav_queue_inst *inst)
 114{
 115        unsigned queue = inst->id - range->queue_base;
 116        int ret = 0, irq;
 117
 118        if (range->flags & RANGE_HAS_IRQ) {
 119                irq = range->irqs[queue].irq;
 120                ret = request_irq(irq, knav_queue_int_handler, 0,
 121                                        inst->irq_name, inst);
 122                if (ret)
 123                        return ret;
 124                disable_irq(irq);
 125                if (range->irqs[queue].cpu_mask) {
 126                        ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
 127                        if (ret) {
 128                                dev_warn(range->kdev->dev,
 129                                         "Failed to set IRQ affinity\n");
 130                                return ret;
 131                        }
 132                }
 133        }
 134        return ret;
 135}
 136
 137static void knav_queue_free_irq(struct knav_queue_inst *inst)
 138{
 139        struct knav_range_info *range = inst->range;
 140        unsigned queue = inst->id - inst->range->queue_base;
 141        int irq;
 142
 143        if (range->flags & RANGE_HAS_IRQ) {
 144                irq = range->irqs[queue].irq;
 145                irq_set_affinity_hint(irq, NULL);
 146                free_irq(irq, inst);
 147        }
 148}
 149
 150static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
 151{
 152        return !list_empty(&inst->handles);
 153}
 154
 155static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
 156{
 157        return inst->range->flags & RANGE_RESERVED;
 158}
 159
 160static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
 161{
 162        struct knav_queue *tmp;
 163
 164        rcu_read_lock();
 165        for_each_handle_rcu(tmp, inst) {
 166                if (tmp->flags & KNAV_QUEUE_SHARED) {
 167                        rcu_read_unlock();
 168                        return true;
 169                }
 170        }
 171        rcu_read_unlock();
 172        return false;
 173}
 174
 175static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
 176                                                unsigned type)
 177{
 178        if ((type == KNAV_QUEUE_QPEND) &&
 179            (inst->range->flags & RANGE_HAS_IRQ)) {
 180                return true;
 181        } else if ((type == KNAV_QUEUE_ACC) &&
 182                (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
 183                return true;
 184        } else if ((type == KNAV_QUEUE_GP) &&
 185                !(inst->range->flags &
 186                        (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
 187                return true;
 188        }
 189        return false;
 190}
 191
 192static inline struct knav_queue_inst *
 193knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
 194{
 195        struct knav_queue_inst *inst;
 196        int idx;
 197
 198        for_each_instance(idx, inst, kdev) {
 199                if (inst->id == id)
 200                        return inst;
 201        }
 202        return NULL;
 203}
 204
 205static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
 206{
 207        if (kdev->base_id <= id &&
 208            kdev->base_id + kdev->num_queues > id) {
 209                id -= kdev->base_id;
 210                return knav_queue_match_id_to_inst(kdev, id);
 211        }
 212        return NULL;
 213}
 214
 215static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
 216                                      const char *name, unsigned flags)
 217{
 218        struct knav_queue *qh;
 219        unsigned id;
 220        int ret = 0;
 221
 222        qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
 223        if (!qh)
 224                return ERR_PTR(-ENOMEM);
 225
 226        qh->stats = alloc_percpu(struct knav_queue_stats);
 227        if (!qh->stats) {
 228                ret = -ENOMEM;
 229                goto err;
 230        }
 231
 232        qh->flags = flags;
 233        qh->inst = inst;
 234        id = inst->id - inst->qmgr->start_queue;
 235        qh->reg_push = &inst->qmgr->reg_push[id];
 236        qh->reg_pop = &inst->qmgr->reg_pop[id];
 237        qh->reg_peek = &inst->qmgr->reg_peek[id];
 238
 239        /* first opener? */
 240        if (!knav_queue_is_busy(inst)) {
 241                struct knav_range_info *range = inst->range;
 242
 243                inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
 244                if (range->ops && range->ops->open_queue)
 245                        ret = range->ops->open_queue(range, inst, flags);
 246
 247                if (ret)
 248                        goto err;
 249        }
 250        list_add_tail_rcu(&qh->list, &inst->handles);
 251        return qh;
 252
 253err:
 254        if (qh->stats)
 255                free_percpu(qh->stats);
 256        devm_kfree(inst->kdev->dev, qh);
 257        return ERR_PTR(ret);
 258}
 259
 260static struct knav_queue *
 261knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
 262{
 263        struct knav_queue_inst *inst;
 264        struct knav_queue *qh;
 265
 266        mutex_lock(&knav_dev_lock);
 267
 268        qh = ERR_PTR(-ENODEV);
 269        inst = knav_queue_find_by_id(id);
 270        if (!inst)
 271                goto unlock_ret;
 272
 273        qh = ERR_PTR(-EEXIST);
 274        if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
 275                goto unlock_ret;
 276
 277        qh = ERR_PTR(-EBUSY);
 278        if ((flags & KNAV_QUEUE_SHARED) &&
 279            (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
 280                goto unlock_ret;
 281
 282        qh = __knav_queue_open(inst, name, flags);
 283
 284unlock_ret:
 285        mutex_unlock(&knav_dev_lock);
 286
 287        return qh;
 288}
 289
 290static struct knav_queue *knav_queue_open_by_type(const char *name,
 291                                                unsigned type, unsigned flags)
 292{
 293        struct knav_queue_inst *inst;
 294        struct knav_queue *qh = ERR_PTR(-EINVAL);
 295        int idx;
 296
 297        mutex_lock(&knav_dev_lock);
 298
 299        for_each_instance(idx, inst, kdev) {
 300                if (knav_queue_is_reserved(inst))
 301                        continue;
 302                if (!knav_queue_match_type(inst, type))
 303                        continue;
 304                if (knav_queue_is_busy(inst))
 305                        continue;
 306                qh = __knav_queue_open(inst, name, flags);
 307                goto unlock_ret;
 308        }
 309
 310unlock_ret:
 311        mutex_unlock(&knav_dev_lock);
 312        return qh;
 313}
 314
 315static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
 316{
 317        struct knav_range_info *range = inst->range;
 318
 319        if (range->ops && range->ops->set_notify)
 320                range->ops->set_notify(range, inst, enabled);
 321}
 322
 323static int knav_queue_enable_notifier(struct knav_queue *qh)
 324{
 325        struct knav_queue_inst *inst = qh->inst;
 326        bool first;
 327
 328        if (WARN_ON(!qh->notifier_fn))
 329                return -EINVAL;
 330
 331        /* Adjust the per handle notifier count */
 332        first = (atomic_inc_return(&qh->notifier_enabled) == 1);
 333        if (!first)
 334                return 0; /* nothing to do */
 335
 336        /* Now adjust the per instance notifier count */
 337        first = (atomic_inc_return(&inst->num_notifiers) == 1);
 338        if (first)
 339                knav_queue_set_notify(inst, true);
 340
 341        return 0;
 342}
 343
 344static int knav_queue_disable_notifier(struct knav_queue *qh)
 345{
 346        struct knav_queue_inst *inst = qh->inst;
 347        bool last;
 348
 349        last = (atomic_dec_return(&qh->notifier_enabled) == 0);
 350        if (!last)
 351                return 0; /* nothing to do */
 352
 353        last = (atomic_dec_return(&inst->num_notifiers) == 0);
 354        if (last)
 355                knav_queue_set_notify(inst, false);
 356
 357        return 0;
 358}
 359
 360static int knav_queue_set_notifier(struct knav_queue *qh,
 361                                struct knav_queue_notify_config *cfg)
 362{
 363        knav_queue_notify_fn old_fn = qh->notifier_fn;
 364
 365        if (!cfg)
 366                return -EINVAL;
 367
 368        if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
 369                return -ENOTSUPP;
 370
 371        if (!cfg->fn && old_fn)
 372                knav_queue_disable_notifier(qh);
 373
 374        qh->notifier_fn = cfg->fn;
 375        qh->notifier_fn_arg = cfg->fn_arg;
 376
 377        if (cfg->fn && !old_fn)
 378                knav_queue_enable_notifier(qh);
 379
 380        return 0;
 381}
 382
 383static int knav_gp_set_notify(struct knav_range_info *range,
 384                               struct knav_queue_inst *inst,
 385                               bool enabled)
 386{
 387        unsigned queue;
 388
 389        if (range->flags & RANGE_HAS_IRQ) {
 390                queue = inst->id - range->queue_base;
 391                if (enabled)
 392                        enable_irq(range->irqs[queue].irq);
 393                else
 394                        disable_irq_nosync(range->irqs[queue].irq);
 395        }
 396        return 0;
 397}
 398
 399static int knav_gp_open_queue(struct knav_range_info *range,
 400                                struct knav_queue_inst *inst, unsigned flags)
 401{
 402        return knav_queue_setup_irq(range, inst);
 403}
 404
 405static int knav_gp_close_queue(struct knav_range_info *range,
 406                                struct knav_queue_inst *inst)
 407{
 408        knav_queue_free_irq(inst);
 409        return 0;
 410}
 411
 412static struct knav_range_ops knav_gp_range_ops = {
 413        .set_notify     = knav_gp_set_notify,
 414        .open_queue     = knav_gp_open_queue,
 415        .close_queue    = knav_gp_close_queue,
 416};
 417
 418
 419static int knav_queue_get_count(void *qhandle)
 420{
 421        struct knav_queue *qh = qhandle;
 422        struct knav_queue_inst *inst = qh->inst;
 423
 424        return readl_relaxed(&qh->reg_peek[0].entry_count) +
 425                atomic_read(&inst->desc_count);
 426}
 427
 428static void knav_queue_debug_show_instance(struct seq_file *s,
 429                                        struct knav_queue_inst *inst)
 430{
 431        struct knav_device *kdev = inst->kdev;
 432        struct knav_queue *qh;
 433        int cpu = 0;
 434        int pushes = 0;
 435        int pops = 0;
 436        int push_errors = 0;
 437        int pop_errors = 0;
 438        int notifies = 0;
 439
 440        if (!knav_queue_is_busy(inst))
 441                return;
 442
 443        seq_printf(s, "\tqueue id %d (%s)\n",
 444                   kdev->base_id + inst->id, inst->name);
 445        for_each_handle_rcu(qh, inst) {
 446                for_each_possible_cpu(cpu) {
 447                        pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
 448                        pops += per_cpu_ptr(qh->stats, cpu)->pops;
 449                        push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
 450                        pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
 451                        notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
 452                }
 453
 454                seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
 455                                qh,
 456                                pushes,
 457                                pops,
 458                                knav_queue_get_count(qh),
 459                                notifies,
 460                                push_errors,
 461                                pop_errors);
 462        }
 463}
 464
 465static int knav_queue_debug_show(struct seq_file *s, void *v)
 466{
 467        struct knav_queue_inst *inst;
 468        int idx;
 469
 470        mutex_lock(&knav_dev_lock);
 471        seq_printf(s, "%s: %u-%u\n",
 472                   dev_name(kdev->dev), kdev->base_id,
 473                   kdev->base_id + kdev->num_queues - 1);
 474        for_each_instance(idx, inst, kdev)
 475                knav_queue_debug_show_instance(s, inst);
 476        mutex_unlock(&knav_dev_lock);
 477
 478        return 0;
 479}
 480
 481DEFINE_SHOW_ATTRIBUTE(knav_queue_debug);
 482
 483static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
 484                                        u32 flags)
 485{
 486        unsigned long end;
 487        u32 val = 0;
 488
 489        end = jiffies + msecs_to_jiffies(timeout);
 490        while (time_after(end, jiffies)) {
 491                val = readl_relaxed(addr);
 492                if (flags)
 493                        val &= flags;
 494                if (!val)
 495                        break;
 496                cpu_relax();
 497        }
 498        return val ? -ETIMEDOUT : 0;
 499}
 500
 501
 502static int knav_queue_flush(struct knav_queue *qh)
 503{
 504        struct knav_queue_inst *inst = qh->inst;
 505        unsigned id = inst->id - inst->qmgr->start_queue;
 506
 507        atomic_set(&inst->desc_count, 0);
 508        writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
 509        return 0;
 510}
 511
 512/**
 513 * knav_queue_open()    - open a hardware queue
 514 * @name:               - name to give the queue handle
 515 * @id:                 - desired queue number if any or specifes the type
 516 *                        of queue
 517 * @flags:              - the following flags are applicable to queues:
 518 *      KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
 519 *                           exclusive by default.
 520 *                           Subsequent attempts to open a shared queue should
 521 *                           also have this flag.
 522 *
 523 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
 524 * to check the returned value for error codes.
 525 */
 526void *knav_queue_open(const char *name, unsigned id,
 527                                        unsigned flags)
 528{
 529        struct knav_queue *qh = ERR_PTR(-EINVAL);
 530
 531        switch (id) {
 532        case KNAV_QUEUE_QPEND:
 533        case KNAV_QUEUE_ACC:
 534        case KNAV_QUEUE_GP:
 535                qh = knav_queue_open_by_type(name, id, flags);
 536                break;
 537
 538        default:
 539                qh = knav_queue_open_by_id(name, id, flags);
 540                break;
 541        }
 542        return qh;
 543}
 544EXPORT_SYMBOL_GPL(knav_queue_open);
 545
 546/**
 547 * knav_queue_close()   - close a hardware queue handle
 548 * @qhandle:            - handle to close
 549 */
 550void knav_queue_close(void *qhandle)
 551{
 552        struct knav_queue *qh = qhandle;
 553        struct knav_queue_inst *inst = qh->inst;
 554
 555        while (atomic_read(&qh->notifier_enabled) > 0)
 556                knav_queue_disable_notifier(qh);
 557
 558        mutex_lock(&knav_dev_lock);
 559        list_del_rcu(&qh->list);
 560        mutex_unlock(&knav_dev_lock);
 561        synchronize_rcu();
 562        if (!knav_queue_is_busy(inst)) {
 563                struct knav_range_info *range = inst->range;
 564
 565                if (range->ops && range->ops->close_queue)
 566                        range->ops->close_queue(range, inst);
 567        }
 568        free_percpu(qh->stats);
 569        devm_kfree(inst->kdev->dev, qh);
 570}
 571EXPORT_SYMBOL_GPL(knav_queue_close);
 572
 573/**
 574 * knav_queue_device_control()  - Perform control operations on a queue
 575 * @qhandle:                    - queue handle
 576 * @cmd:                        - control commands
 577 * @arg:                        - command argument
 578 *
 579 * Returns 0 on success, errno otherwise.
 580 */
 581int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
 582                                unsigned long arg)
 583{
 584        struct knav_queue *qh = qhandle;
 585        struct knav_queue_notify_config *cfg;
 586        int ret;
 587
 588        switch ((int)cmd) {
 589        case KNAV_QUEUE_GET_ID:
 590                ret = qh->inst->kdev->base_id + qh->inst->id;
 591                break;
 592
 593        case KNAV_QUEUE_FLUSH:
 594                ret = knav_queue_flush(qh);
 595                break;
 596
 597        case KNAV_QUEUE_SET_NOTIFIER:
 598                cfg = (void *)arg;
 599                ret = knav_queue_set_notifier(qh, cfg);
 600                break;
 601
 602        case KNAV_QUEUE_ENABLE_NOTIFY:
 603                ret = knav_queue_enable_notifier(qh);
 604                break;
 605
 606        case KNAV_QUEUE_DISABLE_NOTIFY:
 607                ret = knav_queue_disable_notifier(qh);
 608                break;
 609
 610        case KNAV_QUEUE_GET_COUNT:
 611                ret = knav_queue_get_count(qh);
 612                break;
 613
 614        default:
 615                ret = -ENOTSUPP;
 616                break;
 617        }
 618        return ret;
 619}
 620EXPORT_SYMBOL_GPL(knav_queue_device_control);
 621
 622
 623
 624/**
 625 * knav_queue_push()    - push data (or descriptor) to the tail of a queue
 626 * @qhandle:            - hardware queue handle
 627 * @dma:                - DMA data to push
 628 * @size:               - size of data to push
 629 * @flags:              - can be used to pass additional information
 630 *
 631 * Returns 0 on success, errno otherwise.
 632 */
 633int knav_queue_push(void *qhandle, dma_addr_t dma,
 634                                        unsigned size, unsigned flags)
 635{
 636        struct knav_queue *qh = qhandle;
 637        u32 val;
 638
 639        val = (u32)dma | ((size / 16) - 1);
 640        writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
 641
 642        this_cpu_inc(qh->stats->pushes);
 643        return 0;
 644}
 645EXPORT_SYMBOL_GPL(knav_queue_push);
 646
 647/**
 648 * knav_queue_pop()     - pop data (or descriptor) from the head of a queue
 649 * @qhandle:            - hardware queue handle
 650 * @size:               - (optional) size of the data pop'ed.
 651 *
 652 * Returns a DMA address on success, 0 on failure.
 653 */
 654dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
 655{
 656        struct knav_queue *qh = qhandle;
 657        struct knav_queue_inst *inst = qh->inst;
 658        dma_addr_t dma;
 659        u32 val, idx;
 660
 661        /* are we accumulated? */
 662        if (inst->descs) {
 663                if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
 664                        atomic_inc(&inst->desc_count);
 665                        return 0;
 666                }
 667                idx  = atomic_inc_return(&inst->desc_head);
 668                idx &= ACC_DESCS_MASK;
 669                val = inst->descs[idx];
 670        } else {
 671                val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
 672                if (unlikely(!val))
 673                        return 0;
 674        }
 675
 676        dma = val & DESC_PTR_MASK;
 677        if (size)
 678                *size = ((val & DESC_SIZE_MASK) + 1) * 16;
 679
 680        this_cpu_inc(qh->stats->pops);
 681        return dma;
 682}
 683EXPORT_SYMBOL_GPL(knav_queue_pop);
 684
 685/* carve out descriptors and push into queue */
 686static void kdesc_fill_pool(struct knav_pool *pool)
 687{
 688        struct knav_region *region;
 689        int i;
 690
 691        region = pool->region;
 692        pool->desc_size = region->desc_size;
 693        for (i = 0; i < pool->num_desc; i++) {
 694                int index = pool->region_offset + i;
 695                dma_addr_t dma_addr;
 696                unsigned dma_size;
 697                dma_addr = region->dma_start + (region->desc_size * index);
 698                dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
 699                dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
 700                                           DMA_TO_DEVICE);
 701                knav_queue_push(pool->queue, dma_addr, dma_size, 0);
 702        }
 703}
 704
 705/* pop out descriptors and close the queue */
 706static void kdesc_empty_pool(struct knav_pool *pool)
 707{
 708        dma_addr_t dma;
 709        unsigned size;
 710        void *desc;
 711        int i;
 712
 713        if (!pool->queue)
 714                return;
 715
 716        for (i = 0;; i++) {
 717                dma = knav_queue_pop(pool->queue, &size);
 718                if (!dma)
 719                        break;
 720                desc = knav_pool_desc_dma_to_virt(pool, dma);
 721                if (!desc) {
 722                        dev_dbg(pool->kdev->dev,
 723                                "couldn't unmap desc, continuing\n");
 724                        continue;
 725                }
 726        }
 727        WARN_ON(i != pool->num_desc);
 728        knav_queue_close(pool->queue);
 729}
 730
 731
 732/* Get the DMA address of a descriptor */
 733dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
 734{
 735        struct knav_pool *pool = ph;
 736        return pool->region->dma_start + (virt - pool->region->virt_start);
 737}
 738EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
 739
 740void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
 741{
 742        struct knav_pool *pool = ph;
 743        return pool->region->virt_start + (dma - pool->region->dma_start);
 744}
 745EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
 746
 747/**
 748 * knav_pool_create()   - Create a pool of descriptors
 749 * @name:               - name to give the pool handle
 750 * @num_desc:           - numbers of descriptors in the pool
 751 * @region_id:          - QMSS region id from which the descriptors are to be
 752 *                        allocated.
 753 *
 754 * Returns a pool handle on success.
 755 * Use IS_ERR_OR_NULL() to identify error values on return.
 756 */
 757void *knav_pool_create(const char *name,
 758                                        int num_desc, int region_id)
 759{
 760        struct knav_region *reg_itr, *region = NULL;
 761        struct knav_pool *pool, *pi;
 762        struct list_head *node;
 763        unsigned last_offset;
 764        bool slot_found;
 765        int ret;
 766
 767        if (!kdev)
 768                return ERR_PTR(-EPROBE_DEFER);
 769
 770        if (!kdev->dev)
 771                return ERR_PTR(-ENODEV);
 772
 773        pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
 774        if (!pool) {
 775                dev_err(kdev->dev, "out of memory allocating pool\n");
 776                return ERR_PTR(-ENOMEM);
 777        }
 778
 779        for_each_region(kdev, reg_itr) {
 780                if (reg_itr->id != region_id)
 781                        continue;
 782                region = reg_itr;
 783                break;
 784        }
 785
 786        if (!region) {
 787                dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
 788                ret = -EINVAL;
 789                goto err;
 790        }
 791
 792        pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
 793        if (IS_ERR_OR_NULL(pool->queue)) {
 794                dev_err(kdev->dev,
 795                        "failed to open queue for pool(%s), error %ld\n",
 796                        name, PTR_ERR(pool->queue));
 797                ret = PTR_ERR(pool->queue);
 798                goto err;
 799        }
 800
 801        pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
 802        pool->kdev = kdev;
 803        pool->dev = kdev->dev;
 804
 805        mutex_lock(&knav_dev_lock);
 806
 807        if (num_desc > (region->num_desc - region->used_desc)) {
 808                dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
 809                        region_id, name);
 810                ret = -ENOMEM;
 811                goto err_unlock;
 812        }
 813
 814        /* Region maintains a sorted (by region offset) list of pools
 815         * use the first free slot which is large enough to accomodate
 816         * the request
 817         */
 818        last_offset = 0;
 819        slot_found = false;
 820        node = &region->pools;
 821        list_for_each_entry(pi, &region->pools, region_inst) {
 822                if ((pi->region_offset - last_offset) >= num_desc) {
 823                        slot_found = true;
 824                        break;
 825                }
 826                last_offset = pi->region_offset + pi->num_desc;
 827        }
 828        node = &pi->region_inst;
 829
 830        if (slot_found) {
 831                pool->region = region;
 832                pool->num_desc = num_desc;
 833                pool->region_offset = last_offset;
 834                region->used_desc += num_desc;
 835                list_add_tail(&pool->list, &kdev->pools);
 836                list_add_tail(&pool->region_inst, node);
 837        } else {
 838                dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
 839                        name, region_id);
 840                ret = -ENOMEM;
 841                goto err_unlock;
 842        }
 843
 844        mutex_unlock(&knav_dev_lock);
 845        kdesc_fill_pool(pool);
 846        return pool;
 847
 848err_unlock:
 849        mutex_unlock(&knav_dev_lock);
 850err:
 851        kfree(pool->name);
 852        devm_kfree(kdev->dev, pool);
 853        return ERR_PTR(ret);
 854}
 855EXPORT_SYMBOL_GPL(knav_pool_create);
 856
 857/**
 858 * knav_pool_destroy()  - Free a pool of descriptors
 859 * @ph:         - pool handle
 860 */
 861void knav_pool_destroy(void *ph)
 862{
 863        struct knav_pool *pool = ph;
 864
 865        if (!pool)
 866                return;
 867
 868        if (!pool->region)
 869                return;
 870
 871        kdesc_empty_pool(pool);
 872        mutex_lock(&knav_dev_lock);
 873
 874        pool->region->used_desc -= pool->num_desc;
 875        list_del(&pool->region_inst);
 876        list_del(&pool->list);
 877
 878        mutex_unlock(&knav_dev_lock);
 879        kfree(pool->name);
 880        devm_kfree(kdev->dev, pool);
 881}
 882EXPORT_SYMBOL_GPL(knav_pool_destroy);
 883
 884
 885/**
 886 * knav_pool_desc_get() - Get a descriptor from the pool
 887 * @ph:         - pool handle
 888 *
 889 * Returns descriptor from the pool.
 890 */
 891void *knav_pool_desc_get(void *ph)
 892{
 893        struct knav_pool *pool = ph;
 894        dma_addr_t dma;
 895        unsigned size;
 896        void *data;
 897
 898        dma = knav_queue_pop(pool->queue, &size);
 899        if (unlikely(!dma))
 900                return ERR_PTR(-ENOMEM);
 901        data = knav_pool_desc_dma_to_virt(pool, dma);
 902        return data;
 903}
 904EXPORT_SYMBOL_GPL(knav_pool_desc_get);
 905
 906/**
 907 * knav_pool_desc_put() - return a descriptor to the pool
 908 * @ph:         - pool handle
 909 * @desc:       - virtual address
 910 */
 911void knav_pool_desc_put(void *ph, void *desc)
 912{
 913        struct knav_pool *pool = ph;
 914        dma_addr_t dma;
 915        dma = knav_pool_desc_virt_to_dma(pool, desc);
 916        knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
 917}
 918EXPORT_SYMBOL_GPL(knav_pool_desc_put);
 919
 920/**
 921 * knav_pool_desc_map() - Map descriptor for DMA transfer
 922 * @ph:                         - pool handle
 923 * @desc:                       - address of descriptor to map
 924 * @size:                       - size of descriptor to map
 925 * @dma:                        - DMA address return pointer
 926 * @dma_sz:                     - adjusted return pointer
 927 *
 928 * Returns 0 on success, errno otherwise.
 929 */
 930int knav_pool_desc_map(void *ph, void *desc, unsigned size,
 931                                        dma_addr_t *dma, unsigned *dma_sz)
 932{
 933        struct knav_pool *pool = ph;
 934        *dma = knav_pool_desc_virt_to_dma(pool, desc);
 935        size = min(size, pool->region->desc_size);
 936        size = ALIGN(size, SMP_CACHE_BYTES);
 937        *dma_sz = size;
 938        dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
 939
 940        /* Ensure the descriptor reaches to the memory */
 941        __iowmb();
 942
 943        return 0;
 944}
 945EXPORT_SYMBOL_GPL(knav_pool_desc_map);
 946
 947/**
 948 * knav_pool_desc_unmap()       - Unmap descriptor after DMA transfer
 949 * @ph:                         - pool handle
 950 * @dma:                        - DMA address of descriptor to unmap
 951 * @dma_sz:                     - size of descriptor to unmap
 952 *
 953 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
 954 * error values on return.
 955 */
 956void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
 957{
 958        struct knav_pool *pool = ph;
 959        unsigned desc_sz;
 960        void *desc;
 961
 962        desc_sz = min(dma_sz, pool->region->desc_size);
 963        desc = knav_pool_desc_dma_to_virt(pool, dma);
 964        dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
 965        prefetch(desc);
 966        return desc;
 967}
 968EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
 969
 970/**
 971 * knav_pool_count()    - Get the number of descriptors in pool.
 972 * @ph:                 - pool handle
 973 * Returns number of elements in the pool.
 974 */
 975int knav_pool_count(void *ph)
 976{
 977        struct knav_pool *pool = ph;
 978        return knav_queue_get_count(pool->queue);
 979}
 980EXPORT_SYMBOL_GPL(knav_pool_count);
 981
 982static void knav_queue_setup_region(struct knav_device *kdev,
 983                                        struct knav_region *region)
 984{
 985        unsigned hw_num_desc, hw_desc_size, size;
 986        struct knav_reg_region __iomem  *regs;
 987        struct knav_qmgr_info *qmgr;
 988        struct knav_pool *pool;
 989        int id = region->id;
 990        struct page *page;
 991
 992        /* unused region? */
 993        if (!region->num_desc) {
 994                dev_warn(kdev->dev, "unused region %s\n", region->name);
 995                return;
 996        }
 997
 998        /* get hardware descriptor value */
 999        hw_num_desc = ilog2(region->num_desc - 1) + 1;
1000
1001        /* did we force fit ourselves into nothingness? */
1002        if (region->num_desc < 32) {
1003                region->num_desc = 0;
1004                dev_warn(kdev->dev, "too few descriptors in region %s\n",
1005                         region->name);
1006                return;
1007        }
1008
1009        size = region->num_desc * region->desc_size;
1010        region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1011                                                GFP_DMA32);
1012        if (!region->virt_start) {
1013                region->num_desc = 0;
1014                dev_err(kdev->dev, "memory alloc failed for region %s\n",
1015                        region->name);
1016                return;
1017        }
1018        region->virt_end = region->virt_start + size;
1019        page = virt_to_page(region->virt_start);
1020
1021        region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1022                                         DMA_BIDIRECTIONAL);
1023        if (dma_mapping_error(kdev->dev, region->dma_start)) {
1024                dev_err(kdev->dev, "dma map failed for region %s\n",
1025                        region->name);
1026                goto fail;
1027        }
1028        region->dma_end = region->dma_start + size;
1029
1030        pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1031        if (!pool) {
1032                dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1033                goto fail;
1034        }
1035        pool->num_desc = 0;
1036        pool->region_offset = region->num_desc;
1037        list_add(&pool->region_inst, &region->pools);
1038
1039        dev_dbg(kdev->dev,
1040                "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1041                region->name, id, region->desc_size, region->num_desc,
1042                region->link_index, &region->dma_start, &region->dma_end,
1043                region->virt_start, region->virt_end);
1044
1045        hw_desc_size = (region->desc_size / 16) - 1;
1046        hw_num_desc -= 5;
1047
1048        for_each_qmgr(kdev, qmgr) {
1049                regs = qmgr->reg_region + id;
1050                writel_relaxed((u32)region->dma_start, &regs->base);
1051                writel_relaxed(region->link_index, &regs->start_index);
1052                writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1053                               &regs->size_count);
1054        }
1055        return;
1056
1057fail:
1058        if (region->dma_start)
1059                dma_unmap_page(kdev->dev, region->dma_start, size,
1060                                DMA_BIDIRECTIONAL);
1061        if (region->virt_start)
1062                free_pages_exact(region->virt_start, size);
1063        region->num_desc = 0;
1064        return;
1065}
1066
1067static const char *knav_queue_find_name(struct device_node *node)
1068{
1069        const char *name;
1070
1071        if (of_property_read_string(node, "label", &name) < 0)
1072                name = node->name;
1073        if (!name)
1074                name = "unknown";
1075        return name;
1076}
1077
1078static int knav_queue_setup_regions(struct knav_device *kdev,
1079                                        struct device_node *regions)
1080{
1081        struct device *dev = kdev->dev;
1082        struct knav_region *region;
1083        struct device_node *child;
1084        u32 temp[2];
1085        int ret;
1086
1087        for_each_child_of_node(regions, child) {
1088                region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1089                if (!region) {
1090                        of_node_put(child);
1091                        dev_err(dev, "out of memory allocating region\n");
1092                        return -ENOMEM;
1093                }
1094
1095                region->name = knav_queue_find_name(child);
1096                of_property_read_u32(child, "id", &region->id);
1097                ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1098                if (!ret) {
1099                        region->num_desc  = temp[0];
1100                        region->desc_size = temp[1];
1101                } else {
1102                        dev_err(dev, "invalid region info %s\n", region->name);
1103                        devm_kfree(dev, region);
1104                        continue;
1105                }
1106
1107                if (!of_get_property(child, "link-index", NULL)) {
1108                        dev_err(dev, "No link info for %s\n", region->name);
1109                        devm_kfree(dev, region);
1110                        continue;
1111                }
1112                ret = of_property_read_u32(child, "link-index",
1113                                           &region->link_index);
1114                if (ret) {
1115                        dev_err(dev, "link index not found for %s\n",
1116                                region->name);
1117                        devm_kfree(dev, region);
1118                        continue;
1119                }
1120
1121                INIT_LIST_HEAD(&region->pools);
1122                list_add_tail(&region->list, &kdev->regions);
1123        }
1124        if (list_empty(&kdev->regions)) {
1125                dev_err(dev, "no valid region information found\n");
1126                return -ENODEV;
1127        }
1128
1129        /* Next, we run through the regions and set things up */
1130        for_each_region(kdev, region)
1131                knav_queue_setup_region(kdev, region);
1132
1133        return 0;
1134}
1135
1136static int knav_get_link_ram(struct knav_device *kdev,
1137                                       const char *name,
1138                                       struct knav_link_ram_block *block)
1139{
1140        struct platform_device *pdev = to_platform_device(kdev->dev);
1141        struct device_node *node = pdev->dev.of_node;
1142        u32 temp[2];
1143
1144        /*
1145         * Note: link ram resources are specified in "entry" sized units. In
1146         * reality, although entries are ~40bits in hardware, we treat them as
1147         * 64-bit entities here.
1148         *
1149         * For example, to specify the internal link ram for Keystone-I class
1150         * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1151         *
1152         * This gets a bit weird when other link rams are used.  For example,
1153         * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1154         * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1155         * which accounts for 64-bits per entry, for 16K entries.
1156         */
1157        if (!of_property_read_u32_array(node, name , temp, 2)) {
1158                if (temp[0]) {
1159                        /*
1160                         * queue_base specified => using internal or onchip
1161                         * link ram WARNING - we do not "reserve" this block
1162                         */
1163                        block->dma = (dma_addr_t)temp[0];
1164                        block->virt = NULL;
1165                        block->size = temp[1];
1166                } else {
1167                        block->size = temp[1];
1168                        /* queue_base not specific => allocate requested size */
1169                        block->virt = dmam_alloc_coherent(kdev->dev,
1170                                                  8 * block->size, &block->dma,
1171                                                  GFP_KERNEL);
1172                        if (!block->virt) {
1173                                dev_err(kdev->dev, "failed to alloc linkram\n");
1174                                return -ENOMEM;
1175                        }
1176                }
1177        } else {
1178                return -ENODEV;
1179        }
1180        return 0;
1181}
1182
1183static int knav_queue_setup_link_ram(struct knav_device *kdev)
1184{
1185        struct knav_link_ram_block *block;
1186        struct knav_qmgr_info *qmgr;
1187
1188        for_each_qmgr(kdev, qmgr) {
1189                block = &kdev->link_rams[0];
1190                dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1191                        &block->dma, block->virt, block->size);
1192                writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1193                if (kdev->version == QMSS_66AK2G)
1194                        writel_relaxed(block->size,
1195                                       &qmgr->reg_config->link_ram_size0);
1196                else
1197                        writel_relaxed(block->size - 1,
1198                                       &qmgr->reg_config->link_ram_size0);
1199                block++;
1200                if (!block->size)
1201                        continue;
1202
1203                dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1204                        &block->dma, block->virt, block->size);
1205                writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1206        }
1207
1208        return 0;
1209}
1210
1211static int knav_setup_queue_range(struct knav_device *kdev,
1212                                        struct device_node *node)
1213{
1214        struct device *dev = kdev->dev;
1215        struct knav_range_info *range;
1216        struct knav_qmgr_info *qmgr;
1217        u32 temp[2], start, end, id, index;
1218        int ret, i;
1219
1220        range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1221        if (!range) {
1222                dev_err(dev, "out of memory allocating range\n");
1223                return -ENOMEM;
1224        }
1225
1226        range->kdev = kdev;
1227        range->name = knav_queue_find_name(node);
1228        ret = of_property_read_u32_array(node, "qrange", temp, 2);
1229        if (!ret) {
1230                range->queue_base = temp[0] - kdev->base_id;
1231                range->num_queues = temp[1];
1232        } else {
1233                dev_err(dev, "invalid queue range %s\n", range->name);
1234                devm_kfree(dev, range);
1235                return -EINVAL;
1236        }
1237
1238        for (i = 0; i < RANGE_MAX_IRQS; i++) {
1239                struct of_phandle_args oirq;
1240
1241                if (of_irq_parse_one(node, i, &oirq))
1242                        break;
1243
1244                range->irqs[i].irq = irq_create_of_mapping(&oirq);
1245                if (range->irqs[i].irq == IRQ_NONE)
1246                        break;
1247
1248                range->num_irqs++;
1249
1250                if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1251                        unsigned long mask;
1252                        int bit;
1253
1254                        range->irqs[i].cpu_mask = devm_kzalloc(dev,
1255                                                               cpumask_size(), GFP_KERNEL);
1256                        if (!range->irqs[i].cpu_mask)
1257                                return -ENOMEM;
1258
1259                        mask = (oirq.args[2] & 0x0000ff00) >> 8;
1260                        for_each_set_bit(bit, &mask, BITS_PER_LONG)
1261                                cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1262                }
1263        }
1264
1265        range->num_irqs = min(range->num_irqs, range->num_queues);
1266        if (range->num_irqs)
1267                range->flags |= RANGE_HAS_IRQ;
1268
1269        if (of_get_property(node, "qalloc-by-id", NULL))
1270                range->flags |= RANGE_RESERVED;
1271
1272        if (of_get_property(node, "accumulator", NULL)) {
1273                ret = knav_init_acc_range(kdev, node, range);
1274                if (ret < 0) {
1275                        devm_kfree(dev, range);
1276                        return ret;
1277                }
1278        } else {
1279                range->ops = &knav_gp_range_ops;
1280        }
1281
1282        /* set threshold to 1, and flush out the queues */
1283        for_each_qmgr(kdev, qmgr) {
1284                start = max(qmgr->start_queue, range->queue_base);
1285                end   = min(qmgr->start_queue + qmgr->num_queues,
1286                            range->queue_base + range->num_queues);
1287                for (id = start; id < end; id++) {
1288                        index = id - qmgr->start_queue;
1289                        writel_relaxed(THRESH_GTE | 1,
1290                                       &qmgr->reg_peek[index].ptr_size_thresh);
1291                        writel_relaxed(0,
1292                                       &qmgr->reg_push[index].ptr_size_thresh);
1293                }
1294        }
1295
1296        list_add_tail(&range->list, &kdev->queue_ranges);
1297        dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1298                range->name, range->queue_base,
1299                range->queue_base + range->num_queues - 1,
1300                range->num_irqs,
1301                (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1302                (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1303                (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1304        kdev->num_queues_in_use += range->num_queues;
1305        return 0;
1306}
1307
1308static int knav_setup_queue_pools(struct knav_device *kdev,
1309                                   struct device_node *queue_pools)
1310{
1311        struct device_node *type, *range;
1312
1313        for_each_child_of_node(queue_pools, type) {
1314                for_each_child_of_node(type, range) {
1315                        /* return value ignored, we init the rest... */
1316                        knav_setup_queue_range(kdev, range);
1317                }
1318        }
1319
1320        /* ... and barf if they all failed! */
1321        if (list_empty(&kdev->queue_ranges)) {
1322                dev_err(kdev->dev, "no valid queue range found\n");
1323                return -ENODEV;
1324        }
1325        return 0;
1326}
1327
1328static void knav_free_queue_range(struct knav_device *kdev,
1329                                  struct knav_range_info *range)
1330{
1331        if (range->ops && range->ops->free_range)
1332                range->ops->free_range(range);
1333        list_del(&range->list);
1334        devm_kfree(kdev->dev, range);
1335}
1336
1337static void knav_free_queue_ranges(struct knav_device *kdev)
1338{
1339        struct knav_range_info *range;
1340
1341        for (;;) {
1342                range = first_queue_range(kdev);
1343                if (!range)
1344                        break;
1345                knav_free_queue_range(kdev, range);
1346        }
1347}
1348
1349static void knav_queue_free_regions(struct knav_device *kdev)
1350{
1351        struct knav_region *region;
1352        struct knav_pool *pool, *tmp;
1353        unsigned size;
1354
1355        for (;;) {
1356                region = first_region(kdev);
1357                if (!region)
1358                        break;
1359                list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1360                        knav_pool_destroy(pool);
1361
1362                size = region->virt_end - region->virt_start;
1363                if (size)
1364                        free_pages_exact(region->virt_start, size);
1365                list_del(&region->list);
1366                devm_kfree(kdev->dev, region);
1367        }
1368}
1369
1370static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1371                                        struct device_node *node, int index)
1372{
1373        struct resource res;
1374        void __iomem *regs;
1375        int ret;
1376
1377        ret = of_address_to_resource(node, index, &res);
1378        if (ret) {
1379                dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1380                        node, index);
1381                return ERR_PTR(ret);
1382        }
1383
1384        regs = devm_ioremap_resource(kdev->dev, &res);
1385        if (IS_ERR(regs))
1386                dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1387                        index, node);
1388        return regs;
1389}
1390
1391static int knav_queue_init_qmgrs(struct knav_device *kdev,
1392                                        struct device_node *qmgrs)
1393{
1394        struct device *dev = kdev->dev;
1395        struct knav_qmgr_info *qmgr;
1396        struct device_node *child;
1397        u32 temp[2];
1398        int ret;
1399
1400        for_each_child_of_node(qmgrs, child) {
1401                qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1402                if (!qmgr) {
1403                        of_node_put(child);
1404                        dev_err(dev, "out of memory allocating qmgr\n");
1405                        return -ENOMEM;
1406                }
1407
1408                ret = of_property_read_u32_array(child, "managed-queues",
1409                                                 temp, 2);
1410                if (!ret) {
1411                        qmgr->start_queue = temp[0];
1412                        qmgr->num_queues = temp[1];
1413                } else {
1414                        dev_err(dev, "invalid qmgr queue range\n");
1415                        devm_kfree(dev, qmgr);
1416                        continue;
1417                }
1418
1419                dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1420                         qmgr->start_queue, qmgr->num_queues);
1421
1422                qmgr->reg_peek =
1423                        knav_queue_map_reg(kdev, child,
1424                                           KNAV_QUEUE_PEEK_REG_INDEX);
1425
1426                if (kdev->version == QMSS) {
1427                        qmgr->reg_status =
1428                                knav_queue_map_reg(kdev, child,
1429                                                   KNAV_QUEUE_STATUS_REG_INDEX);
1430                }
1431
1432                qmgr->reg_config =
1433                        knav_queue_map_reg(kdev, child,
1434                                           (kdev->version == QMSS_66AK2G) ?
1435                                           KNAV_L_QUEUE_CONFIG_REG_INDEX :
1436                                           KNAV_QUEUE_CONFIG_REG_INDEX);
1437                qmgr->reg_region =
1438                        knav_queue_map_reg(kdev, child,
1439                                           (kdev->version == QMSS_66AK2G) ?
1440                                           KNAV_L_QUEUE_REGION_REG_INDEX :
1441                                           KNAV_QUEUE_REGION_REG_INDEX);
1442
1443                qmgr->reg_push =
1444                        knav_queue_map_reg(kdev, child,
1445                                           (kdev->version == QMSS_66AK2G) ?
1446                                            KNAV_L_QUEUE_PUSH_REG_INDEX :
1447                                            KNAV_QUEUE_PUSH_REG_INDEX);
1448
1449                if (kdev->version == QMSS) {
1450                        qmgr->reg_pop =
1451                                knav_queue_map_reg(kdev, child,
1452                                                   KNAV_QUEUE_POP_REG_INDEX);
1453                }
1454
1455                if (IS_ERR(qmgr->reg_peek) ||
1456                    ((kdev->version == QMSS) &&
1457                    (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1458                    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1459                    IS_ERR(qmgr->reg_push)) {
1460                        dev_err(dev, "failed to map qmgr regs\n");
1461                        if (kdev->version == QMSS) {
1462                                if (!IS_ERR(qmgr->reg_status))
1463                                        devm_iounmap(dev, qmgr->reg_status);
1464                                if (!IS_ERR(qmgr->reg_pop))
1465                                        devm_iounmap(dev, qmgr->reg_pop);
1466                        }
1467                        if (!IS_ERR(qmgr->reg_peek))
1468                                devm_iounmap(dev, qmgr->reg_peek);
1469                        if (!IS_ERR(qmgr->reg_config))
1470                                devm_iounmap(dev, qmgr->reg_config);
1471                        if (!IS_ERR(qmgr->reg_region))
1472                                devm_iounmap(dev, qmgr->reg_region);
1473                        if (!IS_ERR(qmgr->reg_push))
1474                                devm_iounmap(dev, qmgr->reg_push);
1475                        devm_kfree(dev, qmgr);
1476                        continue;
1477                }
1478
1479                /* Use same push register for pop as well */
1480                if (kdev->version == QMSS_66AK2G)
1481                        qmgr->reg_pop = qmgr->reg_push;
1482
1483                list_add_tail(&qmgr->list, &kdev->qmgrs);
1484                dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1485                         qmgr->start_queue, qmgr->num_queues,
1486                         qmgr->reg_peek, qmgr->reg_status,
1487                         qmgr->reg_config, qmgr->reg_region,
1488                         qmgr->reg_push, qmgr->reg_pop);
1489        }
1490        return 0;
1491}
1492
1493static int knav_queue_init_pdsps(struct knav_device *kdev,
1494                                        struct device_node *pdsps)
1495{
1496        struct device *dev = kdev->dev;
1497        struct knav_pdsp_info *pdsp;
1498        struct device_node *child;
1499
1500        for_each_child_of_node(pdsps, child) {
1501                pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1502                if (!pdsp) {
1503                        of_node_put(child);
1504                        dev_err(dev, "out of memory allocating pdsp\n");
1505                        return -ENOMEM;
1506                }
1507                pdsp->name = knav_queue_find_name(child);
1508                pdsp->iram =
1509                        knav_queue_map_reg(kdev, child,
1510                                           KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1511                pdsp->regs =
1512                        knav_queue_map_reg(kdev, child,
1513                                           KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1514                pdsp->intd =
1515                        knav_queue_map_reg(kdev, child,
1516                                           KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1517                pdsp->command =
1518                        knav_queue_map_reg(kdev, child,
1519                                           KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1520
1521                if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1522                    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1523                        dev_err(dev, "failed to map pdsp %s regs\n",
1524                                pdsp->name);
1525                        if (!IS_ERR(pdsp->command))
1526                                devm_iounmap(dev, pdsp->command);
1527                        if (!IS_ERR(pdsp->iram))
1528                                devm_iounmap(dev, pdsp->iram);
1529                        if (!IS_ERR(pdsp->regs))
1530                                devm_iounmap(dev, pdsp->regs);
1531                        if (!IS_ERR(pdsp->intd))
1532                                devm_iounmap(dev, pdsp->intd);
1533                        devm_kfree(dev, pdsp);
1534                        continue;
1535                }
1536                of_property_read_u32(child, "id", &pdsp->id);
1537                list_add_tail(&pdsp->list, &kdev->pdsps);
1538                dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1539                        pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1540                        pdsp->intd);
1541        }
1542        return 0;
1543}
1544
1545static int knav_queue_stop_pdsp(struct knav_device *kdev,
1546                          struct knav_pdsp_info *pdsp)
1547{
1548        u32 val, timeout = 1000;
1549        int ret;
1550
1551        val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1552        writel_relaxed(val, &pdsp->regs->control);
1553        ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1554                                        PDSP_CTRL_RUNNING);
1555        if (ret < 0) {
1556                dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1557                return ret;
1558        }
1559        pdsp->loaded = false;
1560        pdsp->started = false;
1561        return 0;
1562}
1563
1564static int knav_queue_load_pdsp(struct knav_device *kdev,
1565                          struct knav_pdsp_info *pdsp)
1566{
1567        int i, ret, fwlen;
1568        const struct firmware *fw;
1569        bool found = false;
1570        u32 *fwdata;
1571
1572        for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1573                if (knav_acc_firmwares[i]) {
1574                        ret = request_firmware_direct(&fw,
1575                                                      knav_acc_firmwares[i],
1576                                                      kdev->dev);
1577                        if (!ret) {
1578                                found = true;
1579                                break;
1580                        }
1581                }
1582        }
1583
1584        if (!found) {
1585                dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1586                return -ENODEV;
1587        }
1588
1589        dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1590                 knav_acc_firmwares[i]);
1591
1592        writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1593        /* download the firmware */
1594        fwdata = (u32 *)fw->data;
1595        fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1596        for (i = 0; i < fwlen; i++)
1597                writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1598
1599        release_firmware(fw);
1600        return 0;
1601}
1602
1603static int knav_queue_start_pdsp(struct knav_device *kdev,
1604                           struct knav_pdsp_info *pdsp)
1605{
1606        u32 val, timeout = 1000;
1607        int ret;
1608
1609        /* write a command for sync */
1610        writel_relaxed(0xffffffff, pdsp->command);
1611        while (readl_relaxed(pdsp->command) != 0xffffffff)
1612                cpu_relax();
1613
1614        /* soft reset the PDSP */
1615        val  = readl_relaxed(&pdsp->regs->control);
1616        val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1617        writel_relaxed(val, &pdsp->regs->control);
1618
1619        /* enable pdsp */
1620        val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1621        writel_relaxed(val, &pdsp->regs->control);
1622
1623        /* wait for command register to clear */
1624        ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1625        if (ret < 0) {
1626                dev_err(kdev->dev,
1627                        "timed out on pdsp %s command register wait\n",
1628                        pdsp->name);
1629                return ret;
1630        }
1631        return 0;
1632}
1633
1634static void knav_queue_stop_pdsps(struct knav_device *kdev)
1635{
1636        struct knav_pdsp_info *pdsp;
1637
1638        /* disable all pdsps */
1639        for_each_pdsp(kdev, pdsp)
1640                knav_queue_stop_pdsp(kdev, pdsp);
1641}
1642
1643static int knav_queue_start_pdsps(struct knav_device *kdev)
1644{
1645        struct knav_pdsp_info *pdsp;
1646        int ret;
1647
1648        knav_queue_stop_pdsps(kdev);
1649        /* now load them all. We return success even if pdsp
1650         * is not loaded as acc channels are optional on having
1651         * firmware availability in the system. We set the loaded
1652         * and stated flag and when initialize the acc range, check
1653         * it and init the range only if pdsp is started.
1654         */
1655        for_each_pdsp(kdev, pdsp) {
1656                ret = knav_queue_load_pdsp(kdev, pdsp);
1657                if (!ret)
1658                        pdsp->loaded = true;
1659        }
1660
1661        for_each_pdsp(kdev, pdsp) {
1662                if (pdsp->loaded) {
1663                        ret = knav_queue_start_pdsp(kdev, pdsp);
1664                        if (!ret)
1665                                pdsp->started = true;
1666                }
1667        }
1668        return 0;
1669}
1670
1671static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1672{
1673        struct knav_qmgr_info *qmgr;
1674
1675        for_each_qmgr(kdev, qmgr) {
1676                if ((id >= qmgr->start_queue) &&
1677                    (id < qmgr->start_queue + qmgr->num_queues))
1678                        return qmgr;
1679        }
1680        return NULL;
1681}
1682
1683static int knav_queue_init_queue(struct knav_device *kdev,
1684                                        struct knav_range_info *range,
1685                                        struct knav_queue_inst *inst,
1686                                        unsigned id)
1687{
1688        char irq_name[KNAV_NAME_SIZE];
1689        inst->qmgr = knav_find_qmgr(id);
1690        if (!inst->qmgr)
1691                return -1;
1692
1693        INIT_LIST_HEAD(&inst->handles);
1694        inst->kdev = kdev;
1695        inst->range = range;
1696        inst->irq_num = -1;
1697        inst->id = id;
1698        scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1699        inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1700
1701        if (range->ops && range->ops->init_queue)
1702                return range->ops->init_queue(range, inst);
1703        else
1704                return 0;
1705}
1706
1707static int knav_queue_init_queues(struct knav_device *kdev)
1708{
1709        struct knav_range_info *range;
1710        int size, id, base_idx;
1711        int idx = 0, ret = 0;
1712
1713        /* how much do we need for instance data? */
1714        size = sizeof(struct knav_queue_inst);
1715
1716        /* round this up to a power of 2, keep the index to instance
1717         * arithmetic fast.
1718         * */
1719        kdev->inst_shift = order_base_2(size);
1720        size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1721        kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1722        if (!kdev->instances)
1723                return -ENOMEM;
1724
1725        for_each_queue_range(kdev, range) {
1726                if (range->ops && range->ops->init_range)
1727                        range->ops->init_range(range);
1728                base_idx = idx;
1729                for (id = range->queue_base;
1730                     id < range->queue_base + range->num_queues; id++, idx++) {
1731                        ret = knav_queue_init_queue(kdev, range,
1732                                        knav_queue_idx_to_inst(kdev, idx), id);
1733                        if (ret < 0)
1734                                return ret;
1735                }
1736                range->queue_base_inst =
1737                        knav_queue_idx_to_inst(kdev, base_idx);
1738        }
1739        return 0;
1740}
1741
1742/* Match table for of_platform binding */
1743static const struct of_device_id keystone_qmss_of_match[] = {
1744        {
1745                .compatible = "ti,keystone-navigator-qmss",
1746        },
1747        {
1748                .compatible = "ti,66ak2g-navss-qm",
1749                .data   = (void *)QMSS_66AK2G,
1750        },
1751        {},
1752};
1753MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1754
1755static int knav_queue_probe(struct platform_device *pdev)
1756{
1757        struct device_node *node = pdev->dev.of_node;
1758        struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1759        const struct of_device_id *match;
1760        struct device *dev = &pdev->dev;
1761        u32 temp[2];
1762        int ret;
1763
1764        if (!node) {
1765                dev_err(dev, "device tree info unavailable\n");
1766                return -ENODEV;
1767        }
1768
1769        kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1770        if (!kdev) {
1771                dev_err(dev, "memory allocation failed\n");
1772                return -ENOMEM;
1773        }
1774
1775        match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1776        if (match && match->data)
1777                kdev->version = QMSS_66AK2G;
1778
1779        platform_set_drvdata(pdev, kdev);
1780        kdev->dev = dev;
1781        INIT_LIST_HEAD(&kdev->queue_ranges);
1782        INIT_LIST_HEAD(&kdev->qmgrs);
1783        INIT_LIST_HEAD(&kdev->pools);
1784        INIT_LIST_HEAD(&kdev->regions);
1785        INIT_LIST_HEAD(&kdev->pdsps);
1786
1787        pm_runtime_enable(&pdev->dev);
1788        ret = pm_runtime_get_sync(&pdev->dev);
1789        if (ret < 0) {
1790                pm_runtime_put_noidle(&pdev->dev);
1791                dev_err(dev, "Failed to enable QMSS\n");
1792                return ret;
1793        }
1794
1795        if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1796                dev_err(dev, "queue-range not specified\n");
1797                ret = -ENODEV;
1798                goto err;
1799        }
1800        kdev->base_id    = temp[0];
1801        kdev->num_queues = temp[1];
1802
1803        /* Initialize queue managers using device tree configuration */
1804        qmgrs =  of_get_child_by_name(node, "qmgrs");
1805        if (!qmgrs) {
1806                dev_err(dev, "queue manager info not specified\n");
1807                ret = -ENODEV;
1808                goto err;
1809        }
1810        ret = knav_queue_init_qmgrs(kdev, qmgrs);
1811        of_node_put(qmgrs);
1812        if (ret)
1813                goto err;
1814
1815        /* get pdsp configuration values from device tree */
1816        pdsps =  of_get_child_by_name(node, "pdsps");
1817        if (pdsps) {
1818                ret = knav_queue_init_pdsps(kdev, pdsps);
1819                if (ret)
1820                        goto err;
1821
1822                ret = knav_queue_start_pdsps(kdev);
1823                if (ret)
1824                        goto err;
1825        }
1826        of_node_put(pdsps);
1827
1828        /* get usable queue range values from device tree */
1829        queue_pools = of_get_child_by_name(node, "queue-pools");
1830        if (!queue_pools) {
1831                dev_err(dev, "queue-pools not specified\n");
1832                ret = -ENODEV;
1833                goto err;
1834        }
1835        ret = knav_setup_queue_pools(kdev, queue_pools);
1836        of_node_put(queue_pools);
1837        if (ret)
1838                goto err;
1839
1840        ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1841        if (ret) {
1842                dev_err(kdev->dev, "could not setup linking ram\n");
1843                goto err;
1844        }
1845
1846        ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1847        if (ret) {
1848                /*
1849                 * nothing really, we have one linking ram already, so we just
1850                 * live within our means
1851                 */
1852        }
1853
1854        ret = knav_queue_setup_link_ram(kdev);
1855        if (ret)
1856                goto err;
1857
1858        regions = of_get_child_by_name(node, "descriptor-regions");
1859        if (!regions) {
1860                dev_err(dev, "descriptor-regions not specified\n");
1861                ret = -ENODEV;
1862                goto err;
1863        }
1864        ret = knav_queue_setup_regions(kdev, regions);
1865        of_node_put(regions);
1866        if (ret)
1867                goto err;
1868
1869        ret = knav_queue_init_queues(kdev);
1870        if (ret < 0) {
1871                dev_err(dev, "hwqueue initialization failed\n");
1872                goto err;
1873        }
1874
1875        debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1876                            &knav_queue_debug_fops);
1877        device_ready = true;
1878        return 0;
1879
1880err:
1881        knav_queue_stop_pdsps(kdev);
1882        knav_queue_free_regions(kdev);
1883        knav_free_queue_ranges(kdev);
1884        pm_runtime_put_sync(&pdev->dev);
1885        pm_runtime_disable(&pdev->dev);
1886        return ret;
1887}
1888
1889static int knav_queue_remove(struct platform_device *pdev)
1890{
1891        /* TODO: Free resources */
1892        pm_runtime_put_sync(&pdev->dev);
1893        pm_runtime_disable(&pdev->dev);
1894        return 0;
1895}
1896
1897static struct platform_driver keystone_qmss_driver = {
1898        .probe          = knav_queue_probe,
1899        .remove         = knav_queue_remove,
1900        .driver         = {
1901                .name   = "keystone-navigator-qmss",
1902                .of_match_table = keystone_qmss_of_match,
1903        },
1904};
1905module_platform_driver(keystone_qmss_driver);
1906
1907MODULE_LICENSE("GPL v2");
1908MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1909MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1910MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1911