linux/drivers/spi/spi-dw-dma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Special handling for DW DMA core
   4 *
   5 * Copyright (c) 2009, 2014 Intel Corporation.
   6 */
   7
   8#include <linux/completion.h>
   9#include <linux/dma-mapping.h>
  10#include <linux/dmaengine.h>
  11#include <linux/irqreturn.h>
  12#include <linux/jiffies.h>
  13#include <linux/pci.h>
  14#include <linux/platform_data/dma-dw.h>
  15#include <linux/spi/spi.h>
  16#include <linux/types.h>
  17
  18#include "spi-dw.h"
  19
  20#define RX_BUSY         0
  21#define RX_BURST_LEVEL  16
  22#define TX_BUSY         1
  23#define TX_BURST_LEVEL  16
  24
  25static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
  26{
  27        struct dw_dma_slave *s = param;
  28
  29        if (s->dma_dev != chan->device->dev)
  30                return false;
  31
  32        chan->private = s;
  33        return true;
  34}
  35
  36static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
  37{
  38        struct dma_slave_caps caps;
  39        u32 max_burst, def_burst;
  40        int ret;
  41
  42        def_burst = dws->fifo_len / 2;
  43
  44        ret = dma_get_slave_caps(dws->rxchan, &caps);
  45        if (!ret && caps.max_burst)
  46                max_burst = caps.max_burst;
  47        else
  48                max_burst = RX_BURST_LEVEL;
  49
  50        dws->rxburst = min(max_burst, def_burst);
  51        dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
  52
  53        ret = dma_get_slave_caps(dws->txchan, &caps);
  54        if (!ret && caps.max_burst)
  55                max_burst = caps.max_burst;
  56        else
  57                max_burst = TX_BURST_LEVEL;
  58
  59        /*
  60         * Having a Rx DMA channel serviced with higher priority than a Tx DMA
  61         * channel might not be enough to provide a well balanced DMA-based
  62         * SPI transfer interface. There might still be moments when the Tx DMA
  63         * channel is occasionally handled faster than the Rx DMA channel.
  64         * That in its turn will eventually cause the SPI Rx FIFO overflow if
  65         * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
  66         * cleared by the Rx DMA channel. In order to fix the problem the Tx
  67         * DMA activity is intentionally slowed down by limiting the SPI Tx
  68         * FIFO depth with a value twice bigger than the Tx burst length.
  69         */
  70        dws->txburst = min(max_burst, def_burst);
  71        dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
  72}
  73
  74static void dw_spi_dma_sg_burst_init(struct dw_spi *dws)
  75{
  76        struct dma_slave_caps tx = {0}, rx = {0};
  77
  78        dma_get_slave_caps(dws->txchan, &tx);
  79        dma_get_slave_caps(dws->rxchan, &rx);
  80
  81        if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
  82                dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
  83        else if (tx.max_sg_burst > 0)
  84                dws->dma_sg_burst = tx.max_sg_burst;
  85        else if (rx.max_sg_burst > 0)
  86                dws->dma_sg_burst = rx.max_sg_burst;
  87        else
  88                dws->dma_sg_burst = 0;
  89}
  90
  91static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
  92{
  93        struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
  94        struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
  95        struct pci_dev *dma_dev;
  96        dma_cap_mask_t mask;
  97
  98        /*
  99         * Get pci device for DMA controller, currently it could only
 100         * be the DMA controller of Medfield
 101         */
 102        dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
 103        if (!dma_dev)
 104                return -ENODEV;
 105
 106        dma_cap_zero(mask);
 107        dma_cap_set(DMA_SLAVE, mask);
 108
 109        /* 1. Init rx channel */
 110        rx->dma_dev = &dma_dev->dev;
 111        dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
 112        if (!dws->rxchan)
 113                goto err_exit;
 114
 115        /* 2. Init tx channel */
 116        tx->dma_dev = &dma_dev->dev;
 117        dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
 118        if (!dws->txchan)
 119                goto free_rxchan;
 120
 121        dws->master->dma_rx = dws->rxchan;
 122        dws->master->dma_tx = dws->txchan;
 123
 124        init_completion(&dws->dma_completion);
 125
 126        dw_spi_dma_maxburst_init(dws);
 127
 128        dw_spi_dma_sg_burst_init(dws);
 129
 130        return 0;
 131
 132free_rxchan:
 133        dma_release_channel(dws->rxchan);
 134        dws->rxchan = NULL;
 135err_exit:
 136        return -EBUSY;
 137}
 138
 139static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
 140{
 141        dws->rxchan = dma_request_slave_channel(dev, "rx");
 142        if (!dws->rxchan)
 143                return -ENODEV;
 144
 145        dws->txchan = dma_request_slave_channel(dev, "tx");
 146        if (!dws->txchan) {
 147                dma_release_channel(dws->rxchan);
 148                dws->rxchan = NULL;
 149                return -ENODEV;
 150        }
 151
 152        dws->master->dma_rx = dws->rxchan;
 153        dws->master->dma_tx = dws->txchan;
 154
 155        init_completion(&dws->dma_completion);
 156
 157        dw_spi_dma_maxburst_init(dws);
 158
 159        dw_spi_dma_sg_burst_init(dws);
 160
 161        return 0;
 162}
 163
 164static void dw_spi_dma_exit(struct dw_spi *dws)
 165{
 166        if (dws->txchan) {
 167                dmaengine_terminate_sync(dws->txchan);
 168                dma_release_channel(dws->txchan);
 169        }
 170
 171        if (dws->rxchan) {
 172                dmaengine_terminate_sync(dws->rxchan);
 173                dma_release_channel(dws->rxchan);
 174        }
 175}
 176
 177static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
 178{
 179        dw_spi_check_status(dws, false);
 180
 181        complete(&dws->dma_completion);
 182
 183        return IRQ_HANDLED;
 184}
 185
 186static bool dw_spi_can_dma(struct spi_controller *master,
 187                           struct spi_device *spi, struct spi_transfer *xfer)
 188{
 189        struct dw_spi *dws = spi_controller_get_devdata(master);
 190
 191        return xfer->len > dws->fifo_len;
 192}
 193
 194static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
 195{
 196        if (n_bytes == 1)
 197                return DMA_SLAVE_BUSWIDTH_1_BYTE;
 198        else if (n_bytes == 2)
 199                return DMA_SLAVE_BUSWIDTH_2_BYTES;
 200
 201        return DMA_SLAVE_BUSWIDTH_UNDEFINED;
 202}
 203
 204static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
 205{
 206        unsigned long long ms;
 207
 208        ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
 209        do_div(ms, speed);
 210        ms += ms + 200;
 211
 212        if (ms > UINT_MAX)
 213                ms = UINT_MAX;
 214
 215        ms = wait_for_completion_timeout(&dws->dma_completion,
 216                                         msecs_to_jiffies(ms));
 217
 218        if (ms == 0) {
 219                dev_err(&dws->master->cur_msg->spi->dev,
 220                        "DMA transaction timed out\n");
 221                return -ETIMEDOUT;
 222        }
 223
 224        return 0;
 225}
 226
 227static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
 228{
 229        return !(dw_readl(dws, DW_SPI_SR) & SR_TF_EMPT);
 230}
 231
 232static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
 233                                   struct spi_transfer *xfer)
 234{
 235        int retry = SPI_WAIT_RETRIES;
 236        struct spi_delay delay;
 237        u32 nents;
 238
 239        nents = dw_readl(dws, DW_SPI_TXFLR);
 240        delay.unit = SPI_DELAY_UNIT_SCK;
 241        delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
 242
 243        while (dw_spi_dma_tx_busy(dws) && retry--)
 244                spi_delay_exec(&delay, xfer);
 245
 246        if (retry < 0) {
 247                dev_err(&dws->master->dev, "Tx hanged up\n");
 248                return -EIO;
 249        }
 250
 251        return 0;
 252}
 253
 254/*
 255 * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
 256 * channel will clear a corresponding bit.
 257 */
 258static void dw_spi_dma_tx_done(void *arg)
 259{
 260        struct dw_spi *dws = arg;
 261
 262        clear_bit(TX_BUSY, &dws->dma_chan_busy);
 263        if (test_bit(RX_BUSY, &dws->dma_chan_busy))
 264                return;
 265
 266        complete(&dws->dma_completion);
 267}
 268
 269static int dw_spi_dma_config_tx(struct dw_spi *dws)
 270{
 271        struct dma_slave_config txconf;
 272
 273        memset(&txconf, 0, sizeof(txconf));
 274        txconf.direction = DMA_MEM_TO_DEV;
 275        txconf.dst_addr = dws->dma_addr;
 276        txconf.dst_maxburst = dws->txburst;
 277        txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 278        txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
 279        txconf.device_fc = false;
 280
 281        return dmaengine_slave_config(dws->txchan, &txconf);
 282}
 283
 284static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
 285                                unsigned int nents)
 286{
 287        struct dma_async_tx_descriptor *txdesc;
 288        dma_cookie_t cookie;
 289        int ret;
 290
 291        txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
 292                                         DMA_MEM_TO_DEV,
 293                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 294        if (!txdesc)
 295                return -ENOMEM;
 296
 297        txdesc->callback = dw_spi_dma_tx_done;
 298        txdesc->callback_param = dws;
 299
 300        cookie = dmaengine_submit(txdesc);
 301        ret = dma_submit_error(cookie);
 302        if (ret) {
 303                dmaengine_terminate_sync(dws->txchan);
 304                return ret;
 305        }
 306
 307        set_bit(TX_BUSY, &dws->dma_chan_busy);
 308
 309        return 0;
 310}
 311
 312static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
 313{
 314        return !!(dw_readl(dws, DW_SPI_SR) & SR_RF_NOT_EMPT);
 315}
 316
 317static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
 318{
 319        int retry = SPI_WAIT_RETRIES;
 320        struct spi_delay delay;
 321        unsigned long ns, us;
 322        u32 nents;
 323
 324        /*
 325         * It's unlikely that DMA engine is still doing the data fetching, but
 326         * if it's let's give it some reasonable time. The timeout calculation
 327         * is based on the synchronous APB/SSI reference clock rate, on a
 328         * number of data entries left in the Rx FIFO, times a number of clock
 329         * periods normally needed for a single APB read/write transaction
 330         * without PREADY signal utilized (which is true for the DW APB SSI
 331         * controller).
 332         */
 333        nents = dw_readl(dws, DW_SPI_RXFLR);
 334        ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
 335        if (ns <= NSEC_PER_USEC) {
 336                delay.unit = SPI_DELAY_UNIT_NSECS;
 337                delay.value = ns;
 338        } else {
 339                us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
 340                delay.unit = SPI_DELAY_UNIT_USECS;
 341                delay.value = clamp_val(us, 0, USHRT_MAX);
 342        }
 343
 344        while (dw_spi_dma_rx_busy(dws) && retry--)
 345                spi_delay_exec(&delay, NULL);
 346
 347        if (retry < 0) {
 348                dev_err(&dws->master->dev, "Rx hanged up\n");
 349                return -EIO;
 350        }
 351
 352        return 0;
 353}
 354
 355/*
 356 * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
 357 * channel will clear a corresponding bit.
 358 */
 359static void dw_spi_dma_rx_done(void *arg)
 360{
 361        struct dw_spi *dws = arg;
 362
 363        clear_bit(RX_BUSY, &dws->dma_chan_busy);
 364        if (test_bit(TX_BUSY, &dws->dma_chan_busy))
 365                return;
 366
 367        complete(&dws->dma_completion);
 368}
 369
 370static int dw_spi_dma_config_rx(struct dw_spi *dws)
 371{
 372        struct dma_slave_config rxconf;
 373
 374        memset(&rxconf, 0, sizeof(rxconf));
 375        rxconf.direction = DMA_DEV_TO_MEM;
 376        rxconf.src_addr = dws->dma_addr;
 377        rxconf.src_maxburst = dws->rxburst;
 378        rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 379        rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
 380        rxconf.device_fc = false;
 381
 382        return dmaengine_slave_config(dws->rxchan, &rxconf);
 383}
 384
 385static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
 386                                unsigned int nents)
 387{
 388        struct dma_async_tx_descriptor *rxdesc;
 389        dma_cookie_t cookie;
 390        int ret;
 391
 392        rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
 393                                         DMA_DEV_TO_MEM,
 394                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 395        if (!rxdesc)
 396                return -ENOMEM;
 397
 398        rxdesc->callback = dw_spi_dma_rx_done;
 399        rxdesc->callback_param = dws;
 400
 401        cookie = dmaengine_submit(rxdesc);
 402        ret = dma_submit_error(cookie);
 403        if (ret) {
 404                dmaengine_terminate_sync(dws->rxchan);
 405                return ret;
 406        }
 407
 408        set_bit(RX_BUSY, &dws->dma_chan_busy);
 409
 410        return 0;
 411}
 412
 413static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
 414{
 415        u16 imr, dma_ctrl;
 416        int ret;
 417
 418        if (!xfer->tx_buf)
 419                return -EINVAL;
 420
 421        /* Setup DMA channels */
 422        ret = dw_spi_dma_config_tx(dws);
 423        if (ret)
 424                return ret;
 425
 426        if (xfer->rx_buf) {
 427                ret = dw_spi_dma_config_rx(dws);
 428                if (ret)
 429                        return ret;
 430        }
 431
 432        /* Set the DMA handshaking interface */
 433        dma_ctrl = SPI_DMA_TDMAE;
 434        if (xfer->rx_buf)
 435                dma_ctrl |= SPI_DMA_RDMAE;
 436        dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
 437
 438        /* Set the interrupt mask */
 439        imr = SPI_INT_TXOI;
 440        if (xfer->rx_buf)
 441                imr |= SPI_INT_RXUI | SPI_INT_RXOI;
 442        spi_umask_intr(dws, imr);
 443
 444        reinit_completion(&dws->dma_completion);
 445
 446        dws->transfer_handler = dw_spi_dma_transfer_handler;
 447
 448        return 0;
 449}
 450
 451static int dw_spi_dma_transfer_all(struct dw_spi *dws,
 452                                   struct spi_transfer *xfer)
 453{
 454        int ret;
 455
 456        /* Submit the DMA Tx transfer */
 457        ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
 458        if (ret)
 459                goto err_clear_dmac;
 460
 461        /* Submit the DMA Rx transfer if required */
 462        if (xfer->rx_buf) {
 463                ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
 464                                           xfer->rx_sg.nents);
 465                if (ret)
 466                        goto err_clear_dmac;
 467
 468                /* rx must be started before tx due to spi instinct */
 469                dma_async_issue_pending(dws->rxchan);
 470        }
 471
 472        dma_async_issue_pending(dws->txchan);
 473
 474        ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);
 475
 476err_clear_dmac:
 477        dw_writel(dws, DW_SPI_DMACR, 0);
 478
 479        return ret;
 480}
 481
 482/*
 483 * In case if at least one of the requested DMA channels doesn't support the
 484 * hardware accelerated SG list entries traverse, the DMA driver will most
 485 * likely work that around by performing the IRQ-based SG list entries
 486 * resubmission. That might and will cause a problem if the DMA Tx channel is
 487 * recharged and re-executed before the Rx DMA channel. Due to
 488 * non-deterministic IRQ-handler execution latency the DMA Tx channel will
 489 * start pushing data to the SPI bus before the Rx DMA channel is even
 490 * reinitialized with the next inbound SG list entry. By doing so the DMA Tx
 491 * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
 492 * the DMA Rx channel being recharged and re-executed will eventually be
 493 * overflown.
 494 *
 495 * In order to solve the problem we have to feed the DMA engine with SG list
 496 * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
 497 * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
 498 * and rx_sg lists may have different number of entries of different lengths
 499 * (though total length should match) let's virtually split the SG-lists to the
 500 * set of DMA transfers, which length is a minimum of the ordered SG-entries
 501 * lengths. An ASCII-sketch of the implemented algo is following:
 502 *                  xfer->len
 503 *                |___________|
 504 * tx_sg list:    |___|____|__|
 505 * rx_sg list:    |_|____|____|
 506 * DMA transfers: |_|_|__|_|__|
 507 *
 508 * Note in order to have this workaround solving the denoted problem the DMA
 509 * engine driver should properly initialize the max_sg_burst capability and set
 510 * the DMA device max segment size parameter with maximum data block size the
 511 * DMA engine supports.
 512 */
 513
 514static int dw_spi_dma_transfer_one(struct dw_spi *dws,
 515                                   struct spi_transfer *xfer)
 516{
 517        struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
 518        unsigned int tx_len = 0, rx_len = 0;
 519        unsigned int base, len;
 520        int ret;
 521
 522        sg_init_table(&tx_tmp, 1);
 523        sg_init_table(&rx_tmp, 1);
 524
 525        for (base = 0, len = 0; base < xfer->len; base += len) {
 526                /* Fetch next Tx DMA data chunk */
 527                if (!tx_len) {
 528                        tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
 529                        sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
 530                        tx_len = sg_dma_len(tx_sg);
 531                }
 532
 533                /* Fetch next Rx DMA data chunk */
 534                if (!rx_len) {
 535                        rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
 536                        sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
 537                        rx_len = sg_dma_len(rx_sg);
 538                }
 539
 540                len = min(tx_len, rx_len);
 541
 542                sg_dma_len(&tx_tmp) = len;
 543                sg_dma_len(&rx_tmp) = len;
 544
 545                /* Submit DMA Tx transfer */
 546                ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
 547                if (ret)
 548                        break;
 549
 550                /* Submit DMA Rx transfer */
 551                ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
 552                if (ret)
 553                        break;
 554
 555                /* Rx must be started before Tx due to SPI instinct */
 556                dma_async_issue_pending(dws->rxchan);
 557
 558                dma_async_issue_pending(dws->txchan);
 559
 560                /*
 561                 * Here we only need to wait for the DMA transfer to be
 562                 * finished since SPI controller is kept enabled during the
 563                 * procedure this loop implements and there is no risk to lose
 564                 * data left in the Tx/Rx FIFOs.
 565                 */
 566                ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
 567                if (ret)
 568                        break;
 569
 570                reinit_completion(&dws->dma_completion);
 571
 572                sg_dma_address(&tx_tmp) += len;
 573                sg_dma_address(&rx_tmp) += len;
 574                tx_len -= len;
 575                rx_len -= len;
 576        }
 577
 578        dw_writel(dws, DW_SPI_DMACR, 0);
 579
 580        return ret;
 581}
 582
 583static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
 584{
 585        unsigned int nents;
 586        int ret;
 587
 588        nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
 589
 590        /*
 591         * Execute normal DMA-based transfer (which submits the Rx and Tx SG
 592         * lists directly to the DMA engine at once) if either full hardware
 593         * accelerated SG list traverse is supported by both channels, or the
 594         * Tx-only SPI transfer is requested, or the DMA engine is capable to
 595         * handle both SG lists on hardware accelerated basis.
 596         */
 597        if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
 598                ret = dw_spi_dma_transfer_all(dws, xfer);
 599        else
 600                ret = dw_spi_dma_transfer_one(dws, xfer);
 601        if (ret)
 602                return ret;
 603
 604        if (dws->master->cur_msg->status == -EINPROGRESS) {
 605                ret = dw_spi_dma_wait_tx_done(dws, xfer);
 606                if (ret)
 607                        return ret;
 608        }
 609
 610        if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS)
 611                ret = dw_spi_dma_wait_rx_done(dws);
 612
 613        return ret;
 614}
 615
 616static void dw_spi_dma_stop(struct dw_spi *dws)
 617{
 618        if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
 619                dmaengine_terminate_sync(dws->txchan);
 620                clear_bit(TX_BUSY, &dws->dma_chan_busy);
 621        }
 622        if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
 623                dmaengine_terminate_sync(dws->rxchan);
 624                clear_bit(RX_BUSY, &dws->dma_chan_busy);
 625        }
 626}
 627
 628static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
 629        .dma_init       = dw_spi_dma_init_mfld,
 630        .dma_exit       = dw_spi_dma_exit,
 631        .dma_setup      = dw_spi_dma_setup,
 632        .can_dma        = dw_spi_can_dma,
 633        .dma_transfer   = dw_spi_dma_transfer,
 634        .dma_stop       = dw_spi_dma_stop,
 635};
 636
 637void dw_spi_dma_setup_mfld(struct dw_spi *dws)
 638{
 639        dws->dma_ops = &dw_spi_dma_mfld_ops;
 640}
 641EXPORT_SYMBOL_GPL(dw_spi_dma_setup_mfld);
 642
 643static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
 644        .dma_init       = dw_spi_dma_init_generic,
 645        .dma_exit       = dw_spi_dma_exit,
 646        .dma_setup      = dw_spi_dma_setup,
 647        .can_dma        = dw_spi_can_dma,
 648        .dma_transfer   = dw_spi_dma_transfer,
 649        .dma_stop       = dw_spi_dma_stop,
 650};
 651
 652void dw_spi_dma_setup_generic(struct dw_spi *dws)
 653{
 654        dws->dma_ops = &dw_spi_dma_generic_ops;
 655}
 656EXPORT_SYMBOL_GPL(dw_spi_dma_setup_generic);
 657