linux/drivers/spi/spi-fsl-dspi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// Copyright 2013 Freescale Semiconductor, Inc.
   4// Copyright 2020 NXP
   5//
   6// Freescale DSPI driver
   7// This file contains a driver for the Freescale DSPI
   8
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/of_device.h>
  17#include <linux/pinctrl/consumer.h>
  18#include <linux/regmap.h>
  19#include <linux/spi/spi.h>
  20#include <linux/spi/spi-fsl-dspi.h>
  21
  22#define DRIVER_NAME                     "fsl-dspi"
  23
  24#define SPI_MCR                         0x00
  25#define SPI_MCR_MASTER                  BIT(31)
  26#define SPI_MCR_PCSIS(x)                ((x) << 16)
  27#define SPI_MCR_CLR_TXF                 BIT(11)
  28#define SPI_MCR_CLR_RXF                 BIT(10)
  29#define SPI_MCR_XSPI                    BIT(3)
  30#define SPI_MCR_DIS_TXF                 BIT(13)
  31#define SPI_MCR_DIS_RXF                 BIT(12)
  32#define SPI_MCR_HALT                    BIT(0)
  33
  34#define SPI_TCR                         0x08
  35#define SPI_TCR_GET_TCNT(x)             (((x) & GENMASK(31, 16)) >> 16)
  36
  37#define SPI_CTAR(x)                     (0x0c + (((x) & GENMASK(1, 0)) * 4))
  38#define SPI_CTAR_FMSZ(x)                (((x) << 27) & GENMASK(30, 27))
  39#define SPI_CTAR_CPOL                   BIT(26)
  40#define SPI_CTAR_CPHA                   BIT(25)
  41#define SPI_CTAR_LSBFE                  BIT(24)
  42#define SPI_CTAR_PCSSCK(x)              (((x) << 22) & GENMASK(23, 22))
  43#define SPI_CTAR_PASC(x)                (((x) << 20) & GENMASK(21, 20))
  44#define SPI_CTAR_PDT(x)                 (((x) << 18) & GENMASK(19, 18))
  45#define SPI_CTAR_PBR(x)                 (((x) << 16) & GENMASK(17, 16))
  46#define SPI_CTAR_CSSCK(x)               (((x) << 12) & GENMASK(15, 12))
  47#define SPI_CTAR_ASC(x)                 (((x) << 8) & GENMASK(11, 8))
  48#define SPI_CTAR_DT(x)                  (((x) << 4) & GENMASK(7, 4))
  49#define SPI_CTAR_BR(x)                  ((x) & GENMASK(3, 0))
  50#define SPI_CTAR_SCALE_BITS             0xf
  51
  52#define SPI_CTAR0_SLAVE                 0x0c
  53
  54#define SPI_SR                          0x2c
  55#define SPI_SR_TCFQF                    BIT(31)
  56#define SPI_SR_TFUF                     BIT(27)
  57#define SPI_SR_TFFF                     BIT(25)
  58#define SPI_SR_CMDTCF                   BIT(23)
  59#define SPI_SR_SPEF                     BIT(21)
  60#define SPI_SR_RFOF                     BIT(19)
  61#define SPI_SR_TFIWF                    BIT(18)
  62#define SPI_SR_RFDF                     BIT(17)
  63#define SPI_SR_CMDFFF                   BIT(16)
  64#define SPI_SR_CLEAR                    (SPI_SR_TCFQF | \
  65                                        SPI_SR_TFUF | SPI_SR_TFFF | \
  66                                        SPI_SR_CMDTCF | SPI_SR_SPEF | \
  67                                        SPI_SR_RFOF | SPI_SR_TFIWF | \
  68                                        SPI_SR_RFDF | SPI_SR_CMDFFF)
  69
  70#define SPI_RSER_TFFFE                  BIT(25)
  71#define SPI_RSER_TFFFD                  BIT(24)
  72#define SPI_RSER_RFDFE                  BIT(17)
  73#define SPI_RSER_RFDFD                  BIT(16)
  74
  75#define SPI_RSER                        0x30
  76#define SPI_RSER_TCFQE                  BIT(31)
  77#define SPI_RSER_CMDTCFE                BIT(23)
  78
  79#define SPI_PUSHR                       0x34
  80#define SPI_PUSHR_CMD_CONT              BIT(15)
  81#define SPI_PUSHR_CMD_CTAS(x)           (((x) << 12 & GENMASK(14, 12)))
  82#define SPI_PUSHR_CMD_EOQ               BIT(11)
  83#define SPI_PUSHR_CMD_CTCNT             BIT(10)
  84#define SPI_PUSHR_CMD_PCS(x)            (BIT(x) & GENMASK(5, 0))
  85
  86#define SPI_PUSHR_SLAVE                 0x34
  87
  88#define SPI_POPR                        0x38
  89
  90#define SPI_TXFR0                       0x3c
  91#define SPI_TXFR1                       0x40
  92#define SPI_TXFR2                       0x44
  93#define SPI_TXFR3                       0x48
  94#define SPI_RXFR0                       0x7c
  95#define SPI_RXFR1                       0x80
  96#define SPI_RXFR2                       0x84
  97#define SPI_RXFR3                       0x88
  98
  99#define SPI_CTARE(x)                    (0x11c + (((x) & GENMASK(1, 0)) * 4))
 100#define SPI_CTARE_FMSZE(x)              (((x) & 0x1) << 16)
 101#define SPI_CTARE_DTCP(x)               ((x) & 0x7ff)
 102
 103#define SPI_SREX                        0x13c
 104
 105#define SPI_FRAME_BITS(bits)            SPI_CTAR_FMSZ((bits) - 1)
 106#define SPI_FRAME_EBITS(bits)           SPI_CTARE_FMSZE(((bits) - 1) >> 4)
 107
 108#define DMA_COMPLETION_TIMEOUT          msecs_to_jiffies(3000)
 109
 110struct chip_data {
 111        u32                     ctar_val;
 112};
 113
 114enum dspi_trans_mode {
 115        DSPI_XSPI_MODE,
 116        DSPI_DMA_MODE,
 117};
 118
 119struct fsl_dspi_devtype_data {
 120        enum dspi_trans_mode    trans_mode;
 121        u8                      max_clock_factor;
 122        int                     fifo_size;
 123};
 124
 125enum {
 126        LS1021A,
 127        LS1012A,
 128        LS1028A,
 129        LS1043A,
 130        LS1046A,
 131        LS2080A,
 132        LS2085A,
 133        LX2160A,
 134        MCF5441X,
 135        VF610,
 136};
 137
 138static const struct fsl_dspi_devtype_data devtype_data[] = {
 139        [VF610] = {
 140                .trans_mode             = DSPI_DMA_MODE,
 141                .max_clock_factor       = 2,
 142                .fifo_size              = 4,
 143        },
 144        [LS1021A] = {
 145                /* Has A-011218 DMA erratum */
 146                .trans_mode             = DSPI_XSPI_MODE,
 147                .max_clock_factor       = 8,
 148                .fifo_size              = 4,
 149        },
 150        [LS1012A] = {
 151                /* Has A-011218 DMA erratum */
 152                .trans_mode             = DSPI_XSPI_MODE,
 153                .max_clock_factor       = 8,
 154                .fifo_size              = 16,
 155        },
 156        [LS1028A] = {
 157                .trans_mode             = DSPI_XSPI_MODE,
 158                .max_clock_factor       = 8,
 159                .fifo_size              = 4,
 160        },
 161        [LS1043A] = {
 162                /* Has A-011218 DMA erratum */
 163                .trans_mode             = DSPI_XSPI_MODE,
 164                .max_clock_factor       = 8,
 165                .fifo_size              = 16,
 166        },
 167        [LS1046A] = {
 168                /* Has A-011218 DMA erratum */
 169                .trans_mode             = DSPI_XSPI_MODE,
 170                .max_clock_factor       = 8,
 171                .fifo_size              = 16,
 172        },
 173        [LS2080A] = {
 174                .trans_mode             = DSPI_XSPI_MODE,
 175                .max_clock_factor       = 8,
 176                .fifo_size              = 4,
 177        },
 178        [LS2085A] = {
 179                .trans_mode             = DSPI_XSPI_MODE,
 180                .max_clock_factor       = 8,
 181                .fifo_size              = 4,
 182        },
 183        [LX2160A] = {
 184                .trans_mode             = DSPI_XSPI_MODE,
 185                .max_clock_factor       = 8,
 186                .fifo_size              = 4,
 187        },
 188        [MCF5441X] = {
 189                .trans_mode             = DSPI_DMA_MODE,
 190                .max_clock_factor       = 8,
 191                .fifo_size              = 16,
 192        },
 193};
 194
 195struct fsl_dspi_dma {
 196        u32                                     *tx_dma_buf;
 197        struct dma_chan                         *chan_tx;
 198        dma_addr_t                              tx_dma_phys;
 199        struct completion                       cmd_tx_complete;
 200        struct dma_async_tx_descriptor          *tx_desc;
 201
 202        u32                                     *rx_dma_buf;
 203        struct dma_chan                         *chan_rx;
 204        dma_addr_t                              rx_dma_phys;
 205        struct completion                       cmd_rx_complete;
 206        struct dma_async_tx_descriptor          *rx_desc;
 207};
 208
 209struct fsl_dspi {
 210        struct spi_controller                   *ctlr;
 211        struct platform_device                  *pdev;
 212
 213        struct regmap                           *regmap;
 214        struct regmap                           *regmap_pushr;
 215        int                                     irq;
 216        struct clk                              *clk;
 217
 218        struct spi_transfer                     *cur_transfer;
 219        struct spi_message                      *cur_msg;
 220        struct chip_data                        *cur_chip;
 221        size_t                                  progress;
 222        size_t                                  len;
 223        const void                              *tx;
 224        void                                    *rx;
 225        u16                                     tx_cmd;
 226        const struct fsl_dspi_devtype_data      *devtype_data;
 227
 228        struct completion                       xfer_done;
 229
 230        struct fsl_dspi_dma                     *dma;
 231
 232        int                                     oper_word_size;
 233        int                                     oper_bits_per_word;
 234
 235        int                                     words_in_flight;
 236
 237        /*
 238         * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
 239         * individually (in XSPI mode)
 240         */
 241        int                                     pushr_cmd;
 242        int                                     pushr_tx;
 243
 244        void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
 245        void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
 246};
 247
 248static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 249{
 250        switch (dspi->oper_word_size) {
 251        case 1:
 252                *txdata = *(u8 *)dspi->tx;
 253                break;
 254        case 2:
 255                *txdata = *(u16 *)dspi->tx;
 256                break;
 257        case 4:
 258                *txdata = *(u32 *)dspi->tx;
 259                break;
 260        }
 261        dspi->tx += dspi->oper_word_size;
 262}
 263
 264static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 265{
 266        switch (dspi->oper_word_size) {
 267        case 1:
 268                *(u8 *)dspi->rx = rxdata;
 269                break;
 270        case 2:
 271                *(u16 *)dspi->rx = rxdata;
 272                break;
 273        case 4:
 274                *(u32 *)dspi->rx = rxdata;
 275                break;
 276        }
 277        dspi->rx += dspi->oper_word_size;
 278}
 279
 280static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 281{
 282        *txdata = cpu_to_be32(*(u32 *)dspi->tx);
 283        dspi->tx += sizeof(u32);
 284}
 285
 286static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 287{
 288        *(u32 *)dspi->rx = be32_to_cpu(rxdata);
 289        dspi->rx += sizeof(u32);
 290}
 291
 292static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 293{
 294        *txdata = cpu_to_be16(*(u16 *)dspi->tx);
 295        dspi->tx += sizeof(u16);
 296}
 297
 298static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 299{
 300        *(u16 *)dspi->rx = be16_to_cpu(rxdata);
 301        dspi->rx += sizeof(u16);
 302}
 303
 304static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 305{
 306        u16 hi = *(u16 *)dspi->tx;
 307        u16 lo = *(u16 *)(dspi->tx + 2);
 308
 309        *txdata = (u32)hi << 16 | lo;
 310        dspi->tx += sizeof(u32);
 311}
 312
 313static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 314{
 315        u16 hi = rxdata & 0xffff;
 316        u16 lo = rxdata >> 16;
 317
 318        *(u16 *)dspi->rx = lo;
 319        *(u16 *)(dspi->rx + 2) = hi;
 320        dspi->rx += sizeof(u32);
 321}
 322
 323/*
 324 * Pop one word from the TX buffer for pushing into the
 325 * PUSHR register (TX FIFO)
 326 */
 327static u32 dspi_pop_tx(struct fsl_dspi *dspi)
 328{
 329        u32 txdata = 0;
 330
 331        if (dspi->tx)
 332                dspi->host_to_dev(dspi, &txdata);
 333        dspi->len -= dspi->oper_word_size;
 334        return txdata;
 335}
 336
 337/* Prepare one TX FIFO entry (txdata plus cmd) */
 338static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
 339{
 340        u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
 341
 342        if (spi_controller_is_slave(dspi->ctlr))
 343                return data;
 344
 345        if (dspi->len > 0)
 346                cmd |= SPI_PUSHR_CMD_CONT;
 347        return cmd << 16 | data;
 348}
 349
 350/* Push one word to the RX buffer from the POPR register (RX FIFO) */
 351static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
 352{
 353        if (!dspi->rx)
 354                return;
 355        dspi->dev_to_host(dspi, rxdata);
 356}
 357
 358static void dspi_tx_dma_callback(void *arg)
 359{
 360        struct fsl_dspi *dspi = arg;
 361        struct fsl_dspi_dma *dma = dspi->dma;
 362
 363        complete(&dma->cmd_tx_complete);
 364}
 365
 366static void dspi_rx_dma_callback(void *arg)
 367{
 368        struct fsl_dspi *dspi = arg;
 369        struct fsl_dspi_dma *dma = dspi->dma;
 370        int i;
 371
 372        if (dspi->rx) {
 373                for (i = 0; i < dspi->words_in_flight; i++)
 374                        dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
 375        }
 376
 377        complete(&dma->cmd_rx_complete);
 378}
 379
 380static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
 381{
 382        struct device *dev = &dspi->pdev->dev;
 383        struct fsl_dspi_dma *dma = dspi->dma;
 384        int time_left;
 385        int i;
 386
 387        for (i = 0; i < dspi->words_in_flight; i++)
 388                dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
 389
 390        dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
 391                                        dma->tx_dma_phys,
 392                                        dspi->words_in_flight *
 393                                        DMA_SLAVE_BUSWIDTH_4_BYTES,
 394                                        DMA_MEM_TO_DEV,
 395                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 396        if (!dma->tx_desc) {
 397                dev_err(dev, "Not able to get desc for DMA xfer\n");
 398                return -EIO;
 399        }
 400
 401        dma->tx_desc->callback = dspi_tx_dma_callback;
 402        dma->tx_desc->callback_param = dspi;
 403        if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
 404                dev_err(dev, "DMA submit failed\n");
 405                return -EINVAL;
 406        }
 407
 408        dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
 409                                        dma->rx_dma_phys,
 410                                        dspi->words_in_flight *
 411                                        DMA_SLAVE_BUSWIDTH_4_BYTES,
 412                                        DMA_DEV_TO_MEM,
 413                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 414        if (!dma->rx_desc) {
 415                dev_err(dev, "Not able to get desc for DMA xfer\n");
 416                return -EIO;
 417        }
 418
 419        dma->rx_desc->callback = dspi_rx_dma_callback;
 420        dma->rx_desc->callback_param = dspi;
 421        if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
 422                dev_err(dev, "DMA submit failed\n");
 423                return -EINVAL;
 424        }
 425
 426        reinit_completion(&dspi->dma->cmd_rx_complete);
 427        reinit_completion(&dspi->dma->cmd_tx_complete);
 428
 429        dma_async_issue_pending(dma->chan_rx);
 430        dma_async_issue_pending(dma->chan_tx);
 431
 432        if (spi_controller_is_slave(dspi->ctlr)) {
 433                wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
 434                return 0;
 435        }
 436
 437        time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
 438                                                DMA_COMPLETION_TIMEOUT);
 439        if (time_left == 0) {
 440                dev_err(dev, "DMA tx timeout\n");
 441                dmaengine_terminate_all(dma->chan_tx);
 442                dmaengine_terminate_all(dma->chan_rx);
 443                return -ETIMEDOUT;
 444        }
 445
 446        time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
 447                                                DMA_COMPLETION_TIMEOUT);
 448        if (time_left == 0) {
 449                dev_err(dev, "DMA rx timeout\n");
 450                dmaengine_terminate_all(dma->chan_tx);
 451                dmaengine_terminate_all(dma->chan_rx);
 452                return -ETIMEDOUT;
 453        }
 454
 455        return 0;
 456}
 457
 458static void dspi_setup_accel(struct fsl_dspi *dspi);
 459
 460static int dspi_dma_xfer(struct fsl_dspi *dspi)
 461{
 462        struct spi_message *message = dspi->cur_msg;
 463        struct device *dev = &dspi->pdev->dev;
 464        int ret = 0;
 465
 466        /*
 467         * dspi->len gets decremented by dspi_pop_tx_pushr in
 468         * dspi_next_xfer_dma_submit
 469         */
 470        while (dspi->len) {
 471                /* Figure out operational bits-per-word for this chunk */
 472                dspi_setup_accel(dspi);
 473
 474                dspi->words_in_flight = dspi->len / dspi->oper_word_size;
 475                if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
 476                        dspi->words_in_flight = dspi->devtype_data->fifo_size;
 477
 478                message->actual_length += dspi->words_in_flight *
 479                                          dspi->oper_word_size;
 480
 481                ret = dspi_next_xfer_dma_submit(dspi);
 482                if (ret) {
 483                        dev_err(dev, "DMA transfer failed\n");
 484                        break;
 485                }
 486        }
 487
 488        return ret;
 489}
 490
 491static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
 492{
 493        int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 494        struct device *dev = &dspi->pdev->dev;
 495        struct dma_slave_config cfg;
 496        struct fsl_dspi_dma *dma;
 497        int ret;
 498
 499        dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
 500        if (!dma)
 501                return -ENOMEM;
 502
 503        dma->chan_rx = dma_request_chan(dev, "rx");
 504        if (IS_ERR(dma->chan_rx)) {
 505                dev_err(dev, "rx dma channel not available\n");
 506                ret = PTR_ERR(dma->chan_rx);
 507                return ret;
 508        }
 509
 510        dma->chan_tx = dma_request_chan(dev, "tx");
 511        if (IS_ERR(dma->chan_tx)) {
 512                dev_err(dev, "tx dma channel not available\n");
 513                ret = PTR_ERR(dma->chan_tx);
 514                goto err_tx_channel;
 515        }
 516
 517        dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
 518                                             dma_bufsize, &dma->tx_dma_phys,
 519                                             GFP_KERNEL);
 520        if (!dma->tx_dma_buf) {
 521                ret = -ENOMEM;
 522                goto err_tx_dma_buf;
 523        }
 524
 525        dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
 526                                             dma_bufsize, &dma->rx_dma_phys,
 527                                             GFP_KERNEL);
 528        if (!dma->rx_dma_buf) {
 529                ret = -ENOMEM;
 530                goto err_rx_dma_buf;
 531        }
 532
 533        memset(&cfg, 0, sizeof(cfg));
 534        cfg.src_addr = phy_addr + SPI_POPR;
 535        cfg.dst_addr = phy_addr + SPI_PUSHR;
 536        cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 537        cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 538        cfg.src_maxburst = 1;
 539        cfg.dst_maxburst = 1;
 540
 541        cfg.direction = DMA_DEV_TO_MEM;
 542        ret = dmaengine_slave_config(dma->chan_rx, &cfg);
 543        if (ret) {
 544                dev_err(dev, "can't configure rx dma channel\n");
 545                ret = -EINVAL;
 546                goto err_slave_config;
 547        }
 548
 549        cfg.direction = DMA_MEM_TO_DEV;
 550        ret = dmaengine_slave_config(dma->chan_tx, &cfg);
 551        if (ret) {
 552                dev_err(dev, "can't configure tx dma channel\n");
 553                ret = -EINVAL;
 554                goto err_slave_config;
 555        }
 556
 557        dspi->dma = dma;
 558        init_completion(&dma->cmd_tx_complete);
 559        init_completion(&dma->cmd_rx_complete);
 560
 561        return 0;
 562
 563err_slave_config:
 564        dma_free_coherent(dma->chan_rx->device->dev,
 565                          dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
 566err_rx_dma_buf:
 567        dma_free_coherent(dma->chan_tx->device->dev,
 568                          dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
 569err_tx_dma_buf:
 570        dma_release_channel(dma->chan_tx);
 571err_tx_channel:
 572        dma_release_channel(dma->chan_rx);
 573
 574        devm_kfree(dev, dma);
 575        dspi->dma = NULL;
 576
 577        return ret;
 578}
 579
 580static void dspi_release_dma(struct fsl_dspi *dspi)
 581{
 582        int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 583        struct fsl_dspi_dma *dma = dspi->dma;
 584
 585        if (!dma)
 586                return;
 587
 588        if (dma->chan_tx) {
 589                dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
 590                                  dma->tx_dma_buf, dma->tx_dma_phys);
 591                dma_release_channel(dma->chan_tx);
 592        }
 593
 594        if (dma->chan_rx) {
 595                dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
 596                                  dma->rx_dma_buf, dma->rx_dma_phys);
 597                dma_release_channel(dma->chan_rx);
 598        }
 599}
 600
 601static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
 602                           unsigned long clkrate)
 603{
 604        /* Valid baud rate pre-scaler values */
 605        int pbr_tbl[4] = {2, 3, 5, 7};
 606        int brs[16] = { 2,      4,      6,      8,
 607                        16,     32,     64,     128,
 608                        256,    512,    1024,   2048,
 609                        4096,   8192,   16384,  32768 };
 610        int scale_needed, scale, minscale = INT_MAX;
 611        int i, j;
 612
 613        scale_needed = clkrate / speed_hz;
 614        if (clkrate % speed_hz)
 615                scale_needed++;
 616
 617        for (i = 0; i < ARRAY_SIZE(brs); i++)
 618                for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
 619                        scale = brs[i] * pbr_tbl[j];
 620                        if (scale >= scale_needed) {
 621                                if (scale < minscale) {
 622                                        minscale = scale;
 623                                        *br = i;
 624                                        *pbr = j;
 625                                }
 626                                break;
 627                        }
 628                }
 629
 630        if (minscale == INT_MAX) {
 631                pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
 632                        speed_hz, clkrate);
 633                *pbr = ARRAY_SIZE(pbr_tbl) - 1;
 634                *br =  ARRAY_SIZE(brs) - 1;
 635        }
 636}
 637
 638static void ns_delay_scale(char *psc, char *sc, int delay_ns,
 639                           unsigned long clkrate)
 640{
 641        int scale_needed, scale, minscale = INT_MAX;
 642        int pscale_tbl[4] = {1, 3, 5, 7};
 643        u32 remainder;
 644        int i, j;
 645
 646        scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
 647                                   &remainder);
 648        if (remainder)
 649                scale_needed++;
 650
 651        for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
 652                for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
 653                        scale = pscale_tbl[i] * (2 << j);
 654                        if (scale >= scale_needed) {
 655                                if (scale < minscale) {
 656                                        minscale = scale;
 657                                        *psc = i;
 658                                        *sc = j;
 659                                }
 660                                break;
 661                        }
 662                }
 663
 664        if (minscale == INT_MAX) {
 665                pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
 666                        delay_ns, clkrate);
 667                *psc = ARRAY_SIZE(pscale_tbl) - 1;
 668                *sc = SPI_CTAR_SCALE_BITS;
 669        }
 670}
 671
 672static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
 673{
 674        /*
 675         * The only time when the PCS doesn't need continuation after this word
 676         * is when it's last. We need to look ahead, because we actually call
 677         * dspi_pop_tx (the function that decrements dspi->len) _after_
 678         * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
 679         * word is enough. If there's more to transmit than that,
 680         * dspi_xspi_write will know to split the FIFO writes in 2, and
 681         * generate a new PUSHR command with the final word that will have PCS
 682         * deasserted (not continued) here.
 683         */
 684        if (dspi->len > dspi->oper_word_size)
 685                cmd |= SPI_PUSHR_CMD_CONT;
 686        regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
 687}
 688
 689static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
 690{
 691        regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
 692}
 693
 694static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
 695{
 696        int num_bytes = num_words * dspi->oper_word_size;
 697        u16 tx_cmd = dspi->tx_cmd;
 698
 699        /*
 700         * If the PCS needs to de-assert (i.e. we're at the end of the buffer
 701         * and cs_change does not want the PCS to stay on), then we need a new
 702         * PUSHR command, since this one (for the body of the buffer)
 703         * necessarily has the CONT bit set.
 704         * So send one word less during this go, to force a split and a command
 705         * with a single word next time, when CONT will be unset.
 706         */
 707        if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
 708                tx_cmd |= SPI_PUSHR_CMD_EOQ;
 709
 710        /* Update CTARE */
 711        regmap_write(dspi->regmap, SPI_CTARE(0),
 712                     SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
 713                     SPI_CTARE_DTCP(num_words));
 714
 715        /*
 716         * Write the CMD FIFO entry first, and then the two
 717         * corresponding TX FIFO entries (or one...).
 718         */
 719        dspi_pushr_cmd_write(dspi, tx_cmd);
 720
 721        /* Fill TX FIFO with as many transfers as possible */
 722        while (num_words--) {
 723                u32 data = dspi_pop_tx(dspi);
 724
 725                dspi_pushr_txdata_write(dspi, data & 0xFFFF);
 726                if (dspi->oper_bits_per_word > 16)
 727                        dspi_pushr_txdata_write(dspi, data >> 16);
 728        }
 729}
 730
 731static u32 dspi_popr_read(struct fsl_dspi *dspi)
 732{
 733        u32 rxdata = 0;
 734
 735        regmap_read(dspi->regmap, SPI_POPR, &rxdata);
 736        return rxdata;
 737}
 738
 739static void dspi_fifo_read(struct fsl_dspi *dspi)
 740{
 741        int num_fifo_entries = dspi->words_in_flight;
 742
 743        /* Read one FIFO entry and push to rx buffer */
 744        while (num_fifo_entries--)
 745                dspi_push_rx(dspi, dspi_popr_read(dspi));
 746}
 747
 748static void dspi_setup_accel(struct fsl_dspi *dspi)
 749{
 750        struct spi_transfer *xfer = dspi->cur_transfer;
 751        bool odd = !!(dspi->len & 1);
 752
 753        /* No accel for frames not multiple of 8 bits at the moment */
 754        if (xfer->bits_per_word % 8)
 755                goto no_accel;
 756
 757        if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
 758                dspi->oper_bits_per_word = 16;
 759        } else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
 760                dspi->oper_bits_per_word = 8;
 761        } else {
 762                /* Start off with maximum supported by hardware */
 763                if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
 764                        dspi->oper_bits_per_word = 32;
 765                else
 766                        dspi->oper_bits_per_word = 16;
 767
 768                /*
 769                 * And go down only if the buffer can't be sent with
 770                 * words this big
 771                 */
 772                do {
 773                        if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
 774                                break;
 775
 776                        dspi->oper_bits_per_word /= 2;
 777                } while (dspi->oper_bits_per_word > 8);
 778        }
 779
 780        if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
 781                dspi->dev_to_host = dspi_8on32_dev_to_host;
 782                dspi->host_to_dev = dspi_8on32_host_to_dev;
 783        } else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
 784                dspi->dev_to_host = dspi_8on16_dev_to_host;
 785                dspi->host_to_dev = dspi_8on16_host_to_dev;
 786        } else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
 787                dspi->dev_to_host = dspi_16on32_dev_to_host;
 788                dspi->host_to_dev = dspi_16on32_host_to_dev;
 789        } else {
 790no_accel:
 791                dspi->dev_to_host = dspi_native_dev_to_host;
 792                dspi->host_to_dev = dspi_native_host_to_dev;
 793                dspi->oper_bits_per_word = xfer->bits_per_word;
 794        }
 795
 796        dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
 797
 798        /*
 799         * Update CTAR here (code is common for XSPI and DMA modes).
 800         * We will update CTARE in the portion specific to XSPI, when we
 801         * also know the preload value (DTCP).
 802         */
 803        regmap_write(dspi->regmap, SPI_CTAR(0),
 804                     dspi->cur_chip->ctar_val |
 805                     SPI_FRAME_BITS(dspi->oper_bits_per_word));
 806}
 807
 808static void dspi_fifo_write(struct fsl_dspi *dspi)
 809{
 810        int num_fifo_entries = dspi->devtype_data->fifo_size;
 811        struct spi_transfer *xfer = dspi->cur_transfer;
 812        struct spi_message *msg = dspi->cur_msg;
 813        int num_words, num_bytes;
 814
 815        dspi_setup_accel(dspi);
 816
 817        /* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
 818        if (dspi->oper_word_size == 4)
 819                num_fifo_entries /= 2;
 820
 821        /*
 822         * Integer division intentionally trims off odd (or non-multiple of 4)
 823         * numbers of bytes at the end of the buffer, which will be sent next
 824         * time using a smaller oper_word_size.
 825         */
 826        num_words = dspi->len / dspi->oper_word_size;
 827        if (num_words > num_fifo_entries)
 828                num_words = num_fifo_entries;
 829
 830        /* Update total number of bytes that were transferred */
 831        num_bytes = num_words * dspi->oper_word_size;
 832        msg->actual_length += num_bytes;
 833        dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
 834
 835        /*
 836         * Update shared variable for use in the next interrupt (both in
 837         * dspi_fifo_read and in dspi_fifo_write).
 838         */
 839        dspi->words_in_flight = num_words;
 840
 841        spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
 842
 843        dspi_xspi_fifo_write(dspi, num_words);
 844        /*
 845         * Everything after this point is in a potential race with the next
 846         * interrupt, so we must never use dspi->words_in_flight again since it
 847         * might already be modified by the next dspi_fifo_write.
 848         */
 849
 850        spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
 851                                dspi->progress, !dspi->irq);
 852}
 853
 854static int dspi_rxtx(struct fsl_dspi *dspi)
 855{
 856        dspi_fifo_read(dspi);
 857
 858        if (!dspi->len)
 859                /* Success! */
 860                return 0;
 861
 862        dspi_fifo_write(dspi);
 863
 864        return -EINPROGRESS;
 865}
 866
 867static int dspi_poll(struct fsl_dspi *dspi)
 868{
 869        int tries = 1000;
 870        u32 spi_sr;
 871
 872        do {
 873                regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 874                regmap_write(dspi->regmap, SPI_SR, spi_sr);
 875
 876                if (spi_sr & SPI_SR_CMDTCF)
 877                        break;
 878        } while (--tries);
 879
 880        if (!tries)
 881                return -ETIMEDOUT;
 882
 883        return dspi_rxtx(dspi);
 884}
 885
 886static irqreturn_t dspi_interrupt(int irq, void *dev_id)
 887{
 888        struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
 889        u32 spi_sr;
 890
 891        regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 892        regmap_write(dspi->regmap, SPI_SR, spi_sr);
 893
 894        if (!(spi_sr & SPI_SR_CMDTCF))
 895                return IRQ_NONE;
 896
 897        if (dspi_rxtx(dspi) == 0)
 898                complete(&dspi->xfer_done);
 899
 900        return IRQ_HANDLED;
 901}
 902
 903static int dspi_transfer_one_message(struct spi_controller *ctlr,
 904                                     struct spi_message *message)
 905{
 906        struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
 907        struct spi_device *spi = message->spi;
 908        struct spi_transfer *transfer;
 909        int status = 0;
 910
 911        message->actual_length = 0;
 912
 913        list_for_each_entry(transfer, &message->transfers, transfer_list) {
 914                dspi->cur_transfer = transfer;
 915                dspi->cur_msg = message;
 916                dspi->cur_chip = spi_get_ctldata(spi);
 917                /* Prepare command word for CMD FIFO */
 918                dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
 919                               SPI_PUSHR_CMD_PCS(spi->chip_select);
 920                if (list_is_last(&dspi->cur_transfer->transfer_list,
 921                                 &dspi->cur_msg->transfers)) {
 922                        /* Leave PCS activated after last transfer when
 923                         * cs_change is set.
 924                         */
 925                        if (transfer->cs_change)
 926                                dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 927                } else {
 928                        /* Keep PCS active between transfers in same message
 929                         * when cs_change is not set, and de-activate PCS
 930                         * between transfers in the same message when
 931                         * cs_change is set.
 932                         */
 933                        if (!transfer->cs_change)
 934                                dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 935                }
 936
 937                dspi->tx = transfer->tx_buf;
 938                dspi->rx = transfer->rx_buf;
 939                dspi->len = transfer->len;
 940                dspi->progress = 0;
 941
 942                regmap_update_bits(dspi->regmap, SPI_MCR,
 943                                   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
 944                                   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
 945
 946                spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
 947                                       dspi->progress, !dspi->irq);
 948
 949                if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
 950                        status = dspi_dma_xfer(dspi);
 951                } else {
 952                        dspi_fifo_write(dspi);
 953
 954                        if (dspi->irq) {
 955                                wait_for_completion(&dspi->xfer_done);
 956                                reinit_completion(&dspi->xfer_done);
 957                        } else {
 958                                do {
 959                                        status = dspi_poll(dspi);
 960                                } while (status == -EINPROGRESS);
 961                        }
 962                }
 963                if (status)
 964                        break;
 965
 966                spi_transfer_delay_exec(transfer);
 967        }
 968
 969        message->status = status;
 970        spi_finalize_current_message(ctlr);
 971
 972        return status;
 973}
 974
 975static int dspi_setup(struct spi_device *spi)
 976{
 977        struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
 978        unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
 979        u32 cs_sck_delay = 0, sck_cs_delay = 0;
 980        struct fsl_dspi_platform_data *pdata;
 981        unsigned char pasc = 0, asc = 0;
 982        struct chip_data *chip;
 983        unsigned long clkrate;
 984
 985        /* Only alloc on first setup */
 986        chip = spi_get_ctldata(spi);
 987        if (chip == NULL) {
 988                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
 989                if (!chip)
 990                        return -ENOMEM;
 991        }
 992
 993        pdata = dev_get_platdata(&dspi->pdev->dev);
 994
 995        if (!pdata) {
 996                of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
 997                                     &cs_sck_delay);
 998
 999                of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
1000                                     &sck_cs_delay);
1001        } else {
1002                cs_sck_delay = pdata->cs_sck_delay;
1003                sck_cs_delay = pdata->sck_cs_delay;
1004        }
1005
1006        clkrate = clk_get_rate(dspi->clk);
1007        hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1008
1009        /* Set PCS to SCK delay scale values */
1010        ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1011
1012        /* Set After SCK delay scale values */
1013        ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1014
1015        chip->ctar_val = 0;
1016        if (spi->mode & SPI_CPOL)
1017                chip->ctar_val |= SPI_CTAR_CPOL;
1018        if (spi->mode & SPI_CPHA)
1019                chip->ctar_val |= SPI_CTAR_CPHA;
1020
1021        if (!spi_controller_is_slave(dspi->ctlr)) {
1022                chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1023                                  SPI_CTAR_CSSCK(cssck) |
1024                                  SPI_CTAR_PASC(pasc) |
1025                                  SPI_CTAR_ASC(asc) |
1026                                  SPI_CTAR_PBR(pbr) |
1027                                  SPI_CTAR_BR(br);
1028
1029                if (spi->mode & SPI_LSB_FIRST)
1030                        chip->ctar_val |= SPI_CTAR_LSBFE;
1031        }
1032
1033        spi_set_ctldata(spi, chip);
1034
1035        return 0;
1036}
1037
1038static void dspi_cleanup(struct spi_device *spi)
1039{
1040        struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
1041
1042        dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1043                spi->controller->bus_num, spi->chip_select);
1044
1045        kfree(chip);
1046}
1047
1048static const struct of_device_id fsl_dspi_dt_ids[] = {
1049        {
1050                .compatible = "fsl,vf610-dspi",
1051                .data = &devtype_data[VF610],
1052        }, {
1053                .compatible = "fsl,ls1021a-v1.0-dspi",
1054                .data = &devtype_data[LS1021A],
1055        }, {
1056                .compatible = "fsl,ls1012a-dspi",
1057                .data = &devtype_data[LS1012A],
1058        }, {
1059                .compatible = "fsl,ls1028a-dspi",
1060                .data = &devtype_data[LS1028A],
1061        }, {
1062                .compatible = "fsl,ls1043a-dspi",
1063                .data = &devtype_data[LS1043A],
1064        }, {
1065                .compatible = "fsl,ls1046a-dspi",
1066                .data = &devtype_data[LS1046A],
1067        }, {
1068                .compatible = "fsl,ls2080a-dspi",
1069                .data = &devtype_data[LS2080A],
1070        }, {
1071                .compatible = "fsl,ls2085a-dspi",
1072                .data = &devtype_data[LS2085A],
1073        }, {
1074                .compatible = "fsl,lx2160a-dspi",
1075                .data = &devtype_data[LX2160A],
1076        },
1077        { /* sentinel */ }
1078};
1079MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1080
1081#ifdef CONFIG_PM_SLEEP
1082static int dspi_suspend(struct device *dev)
1083{
1084        struct fsl_dspi *dspi = dev_get_drvdata(dev);
1085
1086        if (dspi->irq)
1087                disable_irq(dspi->irq);
1088        spi_controller_suspend(dspi->ctlr);
1089        clk_disable_unprepare(dspi->clk);
1090
1091        pinctrl_pm_select_sleep_state(dev);
1092
1093        return 0;
1094}
1095
1096static int dspi_resume(struct device *dev)
1097{
1098        struct fsl_dspi *dspi = dev_get_drvdata(dev);
1099        int ret;
1100
1101        pinctrl_pm_select_default_state(dev);
1102
1103        ret = clk_prepare_enable(dspi->clk);
1104        if (ret)
1105                return ret;
1106        spi_controller_resume(dspi->ctlr);
1107        if (dspi->irq)
1108                enable_irq(dspi->irq);
1109
1110        return 0;
1111}
1112#endif /* CONFIG_PM_SLEEP */
1113
1114static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1115
1116static const struct regmap_range dspi_volatile_ranges[] = {
1117        regmap_reg_range(SPI_MCR, SPI_TCR),
1118        regmap_reg_range(SPI_SR, SPI_SR),
1119        regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1120};
1121
1122static const struct regmap_access_table dspi_volatile_table = {
1123        .yes_ranges     = dspi_volatile_ranges,
1124        .n_yes_ranges   = ARRAY_SIZE(dspi_volatile_ranges),
1125};
1126
1127static const struct regmap_config dspi_regmap_config = {
1128        .reg_bits       = 32,
1129        .val_bits       = 32,
1130        .reg_stride     = 4,
1131        .max_register   = 0x88,
1132        .volatile_table = &dspi_volatile_table,
1133};
1134
1135static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1136        regmap_reg_range(SPI_MCR, SPI_TCR),
1137        regmap_reg_range(SPI_SR, SPI_SR),
1138        regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1139        regmap_reg_range(SPI_SREX, SPI_SREX),
1140};
1141
1142static const struct regmap_access_table dspi_xspi_volatile_table = {
1143        .yes_ranges     = dspi_xspi_volatile_ranges,
1144        .n_yes_ranges   = ARRAY_SIZE(dspi_xspi_volatile_ranges),
1145};
1146
1147static const struct regmap_config dspi_xspi_regmap_config[] = {
1148        {
1149                .reg_bits       = 32,
1150                .val_bits       = 32,
1151                .reg_stride     = 4,
1152                .max_register   = 0x13c,
1153                .volatile_table = &dspi_xspi_volatile_table,
1154        },
1155        {
1156                .name           = "pushr",
1157                .reg_bits       = 16,
1158                .val_bits       = 16,
1159                .reg_stride     = 2,
1160                .max_register   = 0x2,
1161        },
1162};
1163
1164static int dspi_init(struct fsl_dspi *dspi)
1165{
1166        unsigned int mcr;
1167
1168        /* Set idle states for all chip select signals to high */
1169        mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0));
1170
1171        if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1172                mcr |= SPI_MCR_XSPI;
1173        if (!spi_controller_is_slave(dspi->ctlr))
1174                mcr |= SPI_MCR_MASTER;
1175
1176        regmap_write(dspi->regmap, SPI_MCR, mcr);
1177        regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1178
1179        switch (dspi->devtype_data->trans_mode) {
1180        case DSPI_XSPI_MODE:
1181                regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1182                break;
1183        case DSPI_DMA_MODE:
1184                regmap_write(dspi->regmap, SPI_RSER,
1185                             SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1186                             SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1187                break;
1188        default:
1189                dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1190                        dspi->devtype_data->trans_mode);
1191                return -EINVAL;
1192        }
1193
1194        return 0;
1195}
1196
1197static int dspi_slave_abort(struct spi_master *master)
1198{
1199        struct fsl_dspi *dspi = spi_master_get_devdata(master);
1200
1201        /*
1202         * Terminate all pending DMA transactions for the SPI working
1203         * in SLAVE mode.
1204         */
1205        if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1206                dmaengine_terminate_sync(dspi->dma->chan_rx);
1207                dmaengine_terminate_sync(dspi->dma->chan_tx);
1208        }
1209
1210        /* Clear the internal DSPI RX and TX FIFO buffers */
1211        regmap_update_bits(dspi->regmap, SPI_MCR,
1212                           SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1213                           SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1214
1215        return 0;
1216}
1217
1218static int dspi_probe(struct platform_device *pdev)
1219{
1220        struct device_node *np = pdev->dev.of_node;
1221        const struct regmap_config *regmap_config;
1222        struct fsl_dspi_platform_data *pdata;
1223        struct spi_controller *ctlr;
1224        int ret, cs_num, bus_num = -1;
1225        struct fsl_dspi *dspi;
1226        struct resource *res;
1227        void __iomem *base;
1228        bool big_endian;
1229
1230        dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
1231        if (!dspi)
1232                return -ENOMEM;
1233
1234        ctlr = spi_alloc_master(&pdev->dev, 0);
1235        if (!ctlr)
1236                return -ENOMEM;
1237
1238        spi_controller_set_devdata(ctlr, dspi);
1239        platform_set_drvdata(pdev, dspi);
1240
1241        dspi->pdev = pdev;
1242        dspi->ctlr = ctlr;
1243
1244        ctlr->setup = dspi_setup;
1245        ctlr->transfer_one_message = dspi_transfer_one_message;
1246        ctlr->dev.of_node = pdev->dev.of_node;
1247
1248        ctlr->cleanup = dspi_cleanup;
1249        ctlr->slave_abort = dspi_slave_abort;
1250        ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1251
1252        pdata = dev_get_platdata(&pdev->dev);
1253        if (pdata) {
1254                ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num;
1255                ctlr->bus_num = pdata->bus_num;
1256
1257                /* Only Coldfire uses platform data */
1258                dspi->devtype_data = &devtype_data[MCF5441X];
1259                big_endian = true;
1260        } else {
1261
1262                ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1263                if (ret < 0) {
1264                        dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1265                        goto out_ctlr_put;
1266                }
1267                ctlr->num_chipselect = ctlr->max_native_cs = cs_num;
1268
1269                of_property_read_u32(np, "bus-num", &bus_num);
1270                ctlr->bus_num = bus_num;
1271
1272                if (of_property_read_bool(np, "spi-slave"))
1273                        ctlr->slave = true;
1274
1275                dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1276                if (!dspi->devtype_data) {
1277                        dev_err(&pdev->dev, "can't get devtype_data\n");
1278                        ret = -EFAULT;
1279                        goto out_ctlr_put;
1280                }
1281
1282                big_endian = of_device_is_big_endian(np);
1283        }
1284        if (big_endian) {
1285                dspi->pushr_cmd = 0;
1286                dspi->pushr_tx = 2;
1287        } else {
1288                dspi->pushr_cmd = 2;
1289                dspi->pushr_tx = 0;
1290        }
1291
1292        if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1293                ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1294        else
1295                ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1296
1297        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1298        base = devm_ioremap_resource(&pdev->dev, res);
1299        if (IS_ERR(base)) {
1300                ret = PTR_ERR(base);
1301                goto out_ctlr_put;
1302        }
1303
1304        if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1305                regmap_config = &dspi_xspi_regmap_config[0];
1306        else
1307                regmap_config = &dspi_regmap_config;
1308        dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1309        if (IS_ERR(dspi->regmap)) {
1310                dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1311                                PTR_ERR(dspi->regmap));
1312                ret = PTR_ERR(dspi->regmap);
1313                goto out_ctlr_put;
1314        }
1315
1316        if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1317                dspi->regmap_pushr = devm_regmap_init_mmio(
1318                        &pdev->dev, base + SPI_PUSHR,
1319                        &dspi_xspi_regmap_config[1]);
1320                if (IS_ERR(dspi->regmap_pushr)) {
1321                        dev_err(&pdev->dev,
1322                                "failed to init pushr regmap: %ld\n",
1323                                PTR_ERR(dspi->regmap_pushr));
1324                        ret = PTR_ERR(dspi->regmap_pushr);
1325                        goto out_ctlr_put;
1326                }
1327        }
1328
1329        dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1330        if (IS_ERR(dspi->clk)) {
1331                ret = PTR_ERR(dspi->clk);
1332                dev_err(&pdev->dev, "unable to get clock\n");
1333                goto out_ctlr_put;
1334        }
1335        ret = clk_prepare_enable(dspi->clk);
1336        if (ret)
1337                goto out_ctlr_put;
1338
1339        ret = dspi_init(dspi);
1340        if (ret)
1341                goto out_clk_put;
1342
1343        dspi->irq = platform_get_irq(pdev, 0);
1344        if (dspi->irq <= 0) {
1345                dev_info(&pdev->dev,
1346                         "can't get platform irq, using poll mode\n");
1347                dspi->irq = 0;
1348                goto poll_mode;
1349        }
1350
1351        init_completion(&dspi->xfer_done);
1352
1353        ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1354                                   IRQF_SHARED, pdev->name, dspi);
1355        if (ret < 0) {
1356                dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1357                goto out_clk_put;
1358        }
1359
1360poll_mode:
1361
1362        if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1363                ret = dspi_request_dma(dspi, res->start);
1364                if (ret < 0) {
1365                        dev_err(&pdev->dev, "can't get dma channels\n");
1366                        goto out_free_irq;
1367                }
1368        }
1369
1370        ctlr->max_speed_hz =
1371                clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1372
1373        if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1374                ctlr->ptp_sts_supported = true;
1375
1376        ret = spi_register_controller(ctlr);
1377        if (ret != 0) {
1378                dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1379                goto out_release_dma;
1380        }
1381
1382        return ret;
1383
1384out_release_dma:
1385        dspi_release_dma(dspi);
1386out_free_irq:
1387        if (dspi->irq)
1388                free_irq(dspi->irq, dspi);
1389out_clk_put:
1390        clk_disable_unprepare(dspi->clk);
1391out_ctlr_put:
1392        spi_controller_put(ctlr);
1393
1394        return ret;
1395}
1396
1397static int dspi_remove(struct platform_device *pdev)
1398{
1399        struct fsl_dspi *dspi = platform_get_drvdata(pdev);
1400
1401        /* Disconnect from the SPI framework */
1402        spi_unregister_controller(dspi->ctlr);
1403
1404        /* Disable RX and TX */
1405        regmap_update_bits(dspi->regmap, SPI_MCR,
1406                           SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1407                           SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1408
1409        /* Stop Running */
1410        regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1411
1412        dspi_release_dma(dspi);
1413        if (dspi->irq)
1414                free_irq(dspi->irq, dspi);
1415        clk_disable_unprepare(dspi->clk);
1416
1417        return 0;
1418}
1419
1420static void dspi_shutdown(struct platform_device *pdev)
1421{
1422        dspi_remove(pdev);
1423}
1424
1425static struct platform_driver fsl_dspi_driver = {
1426        .driver.name            = DRIVER_NAME,
1427        .driver.of_match_table  = fsl_dspi_dt_ids,
1428        .driver.owner           = THIS_MODULE,
1429        .driver.pm              = &dspi_pm,
1430        .probe                  = dspi_probe,
1431        .remove                 = dspi_remove,
1432        .shutdown               = dspi_shutdown,
1433};
1434module_platform_driver(fsl_dspi_driver);
1435
1436MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1437MODULE_LICENSE("GPL");
1438MODULE_ALIAS("platform:" DRIVER_NAME);
1439