linux/drivers/spi/spi-pl022.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
   4 *
   5 * Copyright (C) 2008-2012 ST-Ericsson AB
   6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
   7 *
   8 * Author: Linus Walleij <linus.walleij@stericsson.com>
   9 *
  10 * Initial version inspired by:
  11 *      linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  12 * Initial adoption to PL022 by:
  13 *      Sachin Verma <sachin.verma@st.com>
  14 */
  15
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/device.h>
  19#include <linux/ioport.h>
  20#include <linux/errno.h>
  21#include <linux/interrupt.h>
  22#include <linux/spi/spi.h>
  23#include <linux/delay.h>
  24#include <linux/clk.h>
  25#include <linux/err.h>
  26#include <linux/amba/bus.h>
  27#include <linux/amba/pl022.h>
  28#include <linux/io.h>
  29#include <linux/slab.h>
  30#include <linux/dmaengine.h>
  31#include <linux/dma-mapping.h>
  32#include <linux/scatterlist.h>
  33#include <linux/pm_runtime.h>
  34#include <linux/of.h>
  35#include <linux/pinctrl/consumer.h>
  36
  37/*
  38 * This macro is used to define some register default values.
  39 * reg is masked with mask, the OR:ed with an (again masked)
  40 * val shifted sb steps to the left.
  41 */
  42#define SSP_WRITE_BITS(reg, val, mask, sb) \
  43 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  44
  45/*
  46 * This macro is also used to define some default values.
  47 * It will just shift val by sb steps to the left and mask
  48 * the result with mask.
  49 */
  50#define GEN_MASK_BITS(val, mask, sb) \
  51 (((val)<<(sb)) & (mask))
  52
  53#define DRIVE_TX                0
  54#define DO_NOT_DRIVE_TX         1
  55
  56#define DO_NOT_QUEUE_DMA        0
  57#define QUEUE_DMA               1
  58
  59#define RX_TRANSFER             1
  60#define TX_TRANSFER             2
  61
  62/*
  63 * Macros to access SSP Registers with their offsets
  64 */
  65#define SSP_CR0(r)      (r + 0x000)
  66#define SSP_CR1(r)      (r + 0x004)
  67#define SSP_DR(r)       (r + 0x008)
  68#define SSP_SR(r)       (r + 0x00C)
  69#define SSP_CPSR(r)     (r + 0x010)
  70#define SSP_IMSC(r)     (r + 0x014)
  71#define SSP_RIS(r)      (r + 0x018)
  72#define SSP_MIS(r)      (r + 0x01C)
  73#define SSP_ICR(r)      (r + 0x020)
  74#define SSP_DMACR(r)    (r + 0x024)
  75#define SSP_CSR(r)      (r + 0x030) /* vendor extension */
  76#define SSP_ITCR(r)     (r + 0x080)
  77#define SSP_ITIP(r)     (r + 0x084)
  78#define SSP_ITOP(r)     (r + 0x088)
  79#define SSP_TDR(r)      (r + 0x08C)
  80
  81#define SSP_PID0(r)     (r + 0xFE0)
  82#define SSP_PID1(r)     (r + 0xFE4)
  83#define SSP_PID2(r)     (r + 0xFE8)
  84#define SSP_PID3(r)     (r + 0xFEC)
  85
  86#define SSP_CID0(r)     (r + 0xFF0)
  87#define SSP_CID1(r)     (r + 0xFF4)
  88#define SSP_CID2(r)     (r + 0xFF8)
  89#define SSP_CID3(r)     (r + 0xFFC)
  90
  91/*
  92 * SSP Control Register 0  - SSP_CR0
  93 */
  94#define SSP_CR0_MASK_DSS        (0x0FUL << 0)
  95#define SSP_CR0_MASK_FRF        (0x3UL << 4)
  96#define SSP_CR0_MASK_SPO        (0x1UL << 6)
  97#define SSP_CR0_MASK_SPH        (0x1UL << 7)
  98#define SSP_CR0_MASK_SCR        (0xFFUL << 8)
  99
 100/*
 101 * The ST version of this block moves som bits
 102 * in SSP_CR0 and extends it to 32 bits
 103 */
 104#define SSP_CR0_MASK_DSS_ST     (0x1FUL << 0)
 105#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
 106#define SSP_CR0_MASK_CSS_ST     (0x1FUL << 16)
 107#define SSP_CR0_MASK_FRF_ST     (0x3UL << 21)
 108
 109/*
 110 * SSP Control Register 0  - SSP_CR1
 111 */
 112#define SSP_CR1_MASK_LBM        (0x1UL << 0)
 113#define SSP_CR1_MASK_SSE        (0x1UL << 1)
 114#define SSP_CR1_MASK_MS         (0x1UL << 2)
 115#define SSP_CR1_MASK_SOD        (0x1UL << 3)
 116
 117/*
 118 * The ST version of this block adds some bits
 119 * in SSP_CR1
 120 */
 121#define SSP_CR1_MASK_RENDN_ST   (0x1UL << 4)
 122#define SSP_CR1_MASK_TENDN_ST   (0x1UL << 5)
 123#define SSP_CR1_MASK_MWAIT_ST   (0x1UL << 6)
 124#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
 125#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
 126/* This one is only in the PL023 variant */
 127#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
 128
 129/*
 130 * SSP Status Register - SSP_SR
 131 */
 132#define SSP_SR_MASK_TFE         (0x1UL << 0) /* Transmit FIFO empty */
 133#define SSP_SR_MASK_TNF         (0x1UL << 1) /* Transmit FIFO not full */
 134#define SSP_SR_MASK_RNE         (0x1UL << 2) /* Receive FIFO not empty */
 135#define SSP_SR_MASK_RFF         (0x1UL << 3) /* Receive FIFO full */
 136#define SSP_SR_MASK_BSY         (0x1UL << 4) /* Busy Flag */
 137
 138/*
 139 * SSP Clock Prescale Register  - SSP_CPSR
 140 */
 141#define SSP_CPSR_MASK_CPSDVSR   (0xFFUL << 0)
 142
 143/*
 144 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 145 */
 146#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
 147#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
 148#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
 149#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
 150
 151/*
 152 * SSP Raw Interrupt Status Register - SSP_RIS
 153 */
 154/* Receive Overrun Raw Interrupt status */
 155#define SSP_RIS_MASK_RORRIS             (0x1UL << 0)
 156/* Receive Timeout Raw Interrupt status */
 157#define SSP_RIS_MASK_RTRIS              (0x1UL << 1)
 158/* Receive FIFO Raw Interrupt status */
 159#define SSP_RIS_MASK_RXRIS              (0x1UL << 2)
 160/* Transmit FIFO Raw Interrupt status */
 161#define SSP_RIS_MASK_TXRIS              (0x1UL << 3)
 162
 163/*
 164 * SSP Masked Interrupt Status Register - SSP_MIS
 165 */
 166/* Receive Overrun Masked Interrupt status */
 167#define SSP_MIS_MASK_RORMIS             (0x1UL << 0)
 168/* Receive Timeout Masked Interrupt status */
 169#define SSP_MIS_MASK_RTMIS              (0x1UL << 1)
 170/* Receive FIFO Masked Interrupt status */
 171#define SSP_MIS_MASK_RXMIS              (0x1UL << 2)
 172/* Transmit FIFO Masked Interrupt status */
 173#define SSP_MIS_MASK_TXMIS              (0x1UL << 3)
 174
 175/*
 176 * SSP Interrupt Clear Register - SSP_ICR
 177 */
 178/* Receive Overrun Raw Clear Interrupt bit */
 179#define SSP_ICR_MASK_RORIC              (0x1UL << 0)
 180/* Receive Timeout Clear Interrupt bit */
 181#define SSP_ICR_MASK_RTIC               (0x1UL << 1)
 182
 183/*
 184 * SSP DMA Control Register - SSP_DMACR
 185 */
 186/* Receive DMA Enable bit */
 187#define SSP_DMACR_MASK_RXDMAE           (0x1UL << 0)
 188/* Transmit DMA Enable bit */
 189#define SSP_DMACR_MASK_TXDMAE           (0x1UL << 1)
 190
 191/*
 192 * SSP Chip Select Control Register - SSP_CSR
 193 * (vendor extension)
 194 */
 195#define SSP_CSR_CSVALUE_MASK            (0x1FUL << 0)
 196
 197/*
 198 * SSP Integration Test control Register - SSP_ITCR
 199 */
 200#define SSP_ITCR_MASK_ITEN              (0x1UL << 0)
 201#define SSP_ITCR_MASK_TESTFIFO          (0x1UL << 1)
 202
 203/*
 204 * SSP Integration Test Input Register - SSP_ITIP
 205 */
 206#define ITIP_MASK_SSPRXD                 (0x1UL << 0)
 207#define ITIP_MASK_SSPFSSIN               (0x1UL << 1)
 208#define ITIP_MASK_SSPCLKIN               (0x1UL << 2)
 209#define ITIP_MASK_RXDMAC                 (0x1UL << 3)
 210#define ITIP_MASK_TXDMAC                 (0x1UL << 4)
 211#define ITIP_MASK_SSPTXDIN               (0x1UL << 5)
 212
 213/*
 214 * SSP Integration Test output Register - SSP_ITOP
 215 */
 216#define ITOP_MASK_SSPTXD                 (0x1UL << 0)
 217#define ITOP_MASK_SSPFSSOUT              (0x1UL << 1)
 218#define ITOP_MASK_SSPCLKOUT              (0x1UL << 2)
 219#define ITOP_MASK_SSPOEn                 (0x1UL << 3)
 220#define ITOP_MASK_SSPCTLOEn              (0x1UL << 4)
 221#define ITOP_MASK_RORINTR                (0x1UL << 5)
 222#define ITOP_MASK_RTINTR                 (0x1UL << 6)
 223#define ITOP_MASK_RXINTR                 (0x1UL << 7)
 224#define ITOP_MASK_TXINTR                 (0x1UL << 8)
 225#define ITOP_MASK_INTR                   (0x1UL << 9)
 226#define ITOP_MASK_RXDMABREQ              (0x1UL << 10)
 227#define ITOP_MASK_RXDMASREQ              (0x1UL << 11)
 228#define ITOP_MASK_TXDMABREQ              (0x1UL << 12)
 229#define ITOP_MASK_TXDMASREQ              (0x1UL << 13)
 230
 231/*
 232 * SSP Test Data Register - SSP_TDR
 233 */
 234#define TDR_MASK_TESTDATA               (0xFFFFFFFF)
 235
 236/*
 237 * Message State
 238 * we use the spi_message.state (void *) pointer to
 239 * hold a single state value, that's why all this
 240 * (void *) casting is done here.
 241 */
 242#define STATE_START                     ((void *) 0)
 243#define STATE_RUNNING                   ((void *) 1)
 244#define STATE_DONE                      ((void *) 2)
 245#define STATE_ERROR                     ((void *) -1)
 246#define STATE_TIMEOUT                   ((void *) -2)
 247
 248/*
 249 * SSP State - Whether Enabled or Disabled
 250 */
 251#define SSP_DISABLED                    (0)
 252#define SSP_ENABLED                     (1)
 253
 254/*
 255 * SSP DMA State - Whether DMA Enabled or Disabled
 256 */
 257#define SSP_DMA_DISABLED                (0)
 258#define SSP_DMA_ENABLED                 (1)
 259
 260/*
 261 * SSP Clock Defaults
 262 */
 263#define SSP_DEFAULT_CLKRATE 0x2
 264#define SSP_DEFAULT_PRESCALE 0x40
 265
 266/*
 267 * SSP Clock Parameter ranges
 268 */
 269#define CPSDVR_MIN 0x02
 270#define CPSDVR_MAX 0xFE
 271#define SCR_MIN 0x00
 272#define SCR_MAX 0xFF
 273
 274/*
 275 * SSP Interrupt related Macros
 276 */
 277#define DEFAULT_SSP_REG_IMSC  0x0UL
 278#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
 279#define ENABLE_ALL_INTERRUPTS ( \
 280        SSP_IMSC_MASK_RORIM | \
 281        SSP_IMSC_MASK_RTIM | \
 282        SSP_IMSC_MASK_RXIM | \
 283        SSP_IMSC_MASK_TXIM \
 284)
 285
 286#define CLEAR_ALL_INTERRUPTS  0x3
 287
 288#define SPI_POLLING_TIMEOUT 1000
 289
 290/*
 291 * The type of reading going on this chip
 292 */
 293enum ssp_reading {
 294        READING_NULL,
 295        READING_U8,
 296        READING_U16,
 297        READING_U32
 298};
 299
 300/*
 301 * The type of writing going on this chip
 302 */
 303enum ssp_writing {
 304        WRITING_NULL,
 305        WRITING_U8,
 306        WRITING_U16,
 307        WRITING_U32
 308};
 309
 310/**
 311 * struct vendor_data - vendor-specific config parameters
 312 * for PL022 derivates
 313 * @fifodepth: depth of FIFOs (both)
 314 * @max_bpw: maximum number of bits per word
 315 * @unidir: supports unidirection transfers
 316 * @extended_cr: 32 bit wide control register 0 with extra
 317 * features and extra features in CR1 as found in the ST variants
 318 * @pl023: supports a subset of the ST extensions called "PL023"
 319 * @loopback: supports loopback mode
 320 * @internal_cs_ctrl: supports chip select control register
 321 */
 322struct vendor_data {
 323        int fifodepth;
 324        int max_bpw;
 325        bool unidir;
 326        bool extended_cr;
 327        bool pl023;
 328        bool loopback;
 329        bool internal_cs_ctrl;
 330};
 331
 332/**
 333 * struct pl022 - This is the private SSP driver data structure
 334 * @adev: AMBA device model hookup
 335 * @vendor: vendor data for the IP block
 336 * @phybase: the physical memory where the SSP device resides
 337 * @virtbase: the virtual memory where the SSP is mapped
 338 * @clk: outgoing clock "SPICLK" for the SPI bus
 339 * @master: SPI framework hookup
 340 * @master_info: controller-specific data from machine setup
 341 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 342 * @cur_msg: Pointer to current spi_message being processed
 343 * @cur_transfer: Pointer to current spi_transfer
 344 * @cur_chip: pointer to current clients chip(assigned from controller_state)
 345 * @next_msg_cs_active: the next message in the queue has been examined
 346 *  and it was found that it uses the same chip select as the previous
 347 *  message, so we left it active after the previous transfer, and it's
 348 *  active already.
 349 * @tx: current position in TX buffer to be read
 350 * @tx_end: end position in TX buffer to be read
 351 * @rx: current position in RX buffer to be written
 352 * @rx_end: end position in RX buffer to be written
 353 * @read: the type of read currently going on
 354 * @write: the type of write currently going on
 355 * @exp_fifo_level: expected FIFO level
 356 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
 357 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
 358 * @dma_rx_channel: optional channel for RX DMA
 359 * @dma_tx_channel: optional channel for TX DMA
 360 * @sgt_rx: scattertable for the RX transfer
 361 * @sgt_tx: scattertable for the TX transfer
 362 * @dummypage: a dummy page used for driving data on the bus with DMA
 363 * @dma_running: indicates whether DMA is in operation
 364 * @cur_cs: current chip select index
 365 * @cur_gpiod: current chip select GPIO descriptor
 366 */
 367struct pl022 {
 368        struct amba_device              *adev;
 369        struct vendor_data              *vendor;
 370        resource_size_t                 phybase;
 371        void __iomem                    *virtbase;
 372        struct clk                      *clk;
 373        struct spi_master               *master;
 374        struct pl022_ssp_controller     *master_info;
 375        /* Message per-transfer pump */
 376        struct tasklet_struct           pump_transfers;
 377        struct spi_message              *cur_msg;
 378        struct spi_transfer             *cur_transfer;
 379        struct chip_data                *cur_chip;
 380        bool                            next_msg_cs_active;
 381        void                            *tx;
 382        void                            *tx_end;
 383        void                            *rx;
 384        void                            *rx_end;
 385        enum ssp_reading                read;
 386        enum ssp_writing                write;
 387        u32                             exp_fifo_level;
 388        enum ssp_rx_level_trig          rx_lev_trig;
 389        enum ssp_tx_level_trig          tx_lev_trig;
 390        /* DMA settings */
 391#ifdef CONFIG_DMA_ENGINE
 392        struct dma_chan                 *dma_rx_channel;
 393        struct dma_chan                 *dma_tx_channel;
 394        struct sg_table                 sgt_rx;
 395        struct sg_table                 sgt_tx;
 396        char                            *dummypage;
 397        bool                            dma_running;
 398#endif
 399        int cur_cs;
 400        struct gpio_desc *cur_gpiod;
 401};
 402
 403/**
 404 * struct chip_data - To maintain runtime state of SSP for each client chip
 405 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 406 *       register is 32 bits wide rather than just 16
 407 * @cr1: Value of control register CR1 of SSP
 408 * @dmacr: Value of DMA control Register of SSP
 409 * @cpsr: Value of Clock prescale register
 410 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 411 * @enable_dma: Whether to enable DMA or not
 412 * @read: function ptr to be used to read when doing xfer for this chip
 413 * @write: function ptr to be used to write when doing xfer for this chip
 414 * @xfer_type: polling/interrupt/DMA
 415 *
 416 * Runtime state of the SSP controller, maintained per chip,
 417 * This would be set according to the current message that would be served
 418 */
 419struct chip_data {
 420        u32 cr0;
 421        u16 cr1;
 422        u16 dmacr;
 423        u16 cpsr;
 424        u8 n_bytes;
 425        bool enable_dma;
 426        enum ssp_reading read;
 427        enum ssp_writing write;
 428        int xfer_type;
 429};
 430
 431/**
 432 * internal_cs_control - Control chip select signals via SSP_CSR.
 433 * @pl022: SSP driver private data structure
 434 * @command: select/delect the chip
 435 *
 436 * Used on controller with internal chip select control via SSP_CSR register
 437 * (vendor extension). Each of the 5 LSB in the register controls one chip
 438 * select signal.
 439 */
 440static void internal_cs_control(struct pl022 *pl022, u32 command)
 441{
 442        u32 tmp;
 443
 444        tmp = readw(SSP_CSR(pl022->virtbase));
 445        if (command == SSP_CHIP_SELECT)
 446                tmp &= ~BIT(pl022->cur_cs);
 447        else
 448                tmp |= BIT(pl022->cur_cs);
 449        writew(tmp, SSP_CSR(pl022->virtbase));
 450}
 451
 452static void pl022_cs_control(struct pl022 *pl022, u32 command)
 453{
 454        if (pl022->vendor->internal_cs_ctrl)
 455                internal_cs_control(pl022, command);
 456        else if (pl022->cur_gpiod)
 457                /*
 458                 * This needs to be inverted since with GPIOLIB in
 459                 * control, the inversion will be handled by
 460                 * GPIOLIB's active low handling. The "command"
 461                 * passed into this function will be SSP_CHIP_SELECT
 462                 * which is enum:ed to 0, so we need the inverse
 463                 * (1) to activate chip select.
 464                 */
 465                gpiod_set_value(pl022->cur_gpiod, !command);
 466}
 467
 468/**
 469 * giveback - current spi_message is over, schedule next message and call
 470 * callback of this message. Assumes that caller already
 471 * set message->status; dma and pio irqs are blocked
 472 * @pl022: SSP driver private data structure
 473 */
 474static void giveback(struct pl022 *pl022)
 475{
 476        struct spi_transfer *last_transfer;
 477        pl022->next_msg_cs_active = false;
 478
 479        last_transfer = list_last_entry(&pl022->cur_msg->transfers,
 480                                        struct spi_transfer, transfer_list);
 481
 482        /* Delay if requested before any change in chip select */
 483        /*
 484         * FIXME: This runs in interrupt context.
 485         * Is this really smart?
 486         */
 487        spi_transfer_delay_exec(last_transfer);
 488
 489        if (!last_transfer->cs_change) {
 490                struct spi_message *next_msg;
 491
 492                /*
 493                 * cs_change was not set. We can keep the chip select
 494                 * enabled if there is message in the queue and it is
 495                 * for the same spi device.
 496                 *
 497                 * We cannot postpone this until pump_messages, because
 498                 * after calling msg->complete (below) the driver that
 499                 * sent the current message could be unloaded, which
 500                 * could invalidate the cs_control() callback...
 501                 */
 502                /* get a pointer to the next message, if any */
 503                next_msg = spi_get_next_queued_message(pl022->master);
 504
 505                /*
 506                 * see if the next and current messages point
 507                 * to the same spi device.
 508                 */
 509                if (next_msg && next_msg->spi != pl022->cur_msg->spi)
 510                        next_msg = NULL;
 511                if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
 512                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 513                else
 514                        pl022->next_msg_cs_active = true;
 515
 516        }
 517
 518        pl022->cur_msg = NULL;
 519        pl022->cur_transfer = NULL;
 520        pl022->cur_chip = NULL;
 521
 522        /* disable the SPI/SSP operation */
 523        writew((readw(SSP_CR1(pl022->virtbase)) &
 524                (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
 525
 526        spi_finalize_current_message(pl022->master);
 527}
 528
 529/**
 530 * flush - flush the FIFO to reach a clean state
 531 * @pl022: SSP driver private data structure
 532 */
 533static int flush(struct pl022 *pl022)
 534{
 535        unsigned long limit = loops_per_jiffy << 1;
 536
 537        dev_dbg(&pl022->adev->dev, "flush\n");
 538        do {
 539                while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 540                        readw(SSP_DR(pl022->virtbase));
 541        } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
 542
 543        pl022->exp_fifo_level = 0;
 544
 545        return limit;
 546}
 547
 548/**
 549 * restore_state - Load configuration of current chip
 550 * @pl022: SSP driver private data structure
 551 */
 552static void restore_state(struct pl022 *pl022)
 553{
 554        struct chip_data *chip = pl022->cur_chip;
 555
 556        if (pl022->vendor->extended_cr)
 557                writel(chip->cr0, SSP_CR0(pl022->virtbase));
 558        else
 559                writew(chip->cr0, SSP_CR0(pl022->virtbase));
 560        writew(chip->cr1, SSP_CR1(pl022->virtbase));
 561        writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
 562        writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
 563        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 564        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 565}
 566
 567/*
 568 * Default SSP Register Values
 569 */
 570#define DEFAULT_SSP_REG_CR0 ( \
 571        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)    | \
 572        GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
 573        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 574        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 575        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 576)
 577
 578/* ST versions have slightly different bit layout */
 579#define DEFAULT_SSP_REG_CR0_ST ( \
 580        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
 581        GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
 582        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 583        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 584        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
 585        GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)      | \
 586        GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
 587)
 588
 589/* The PL023 version is slightly different again */
 590#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
 591        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
 592        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 593        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 594        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 595)
 596
 597#define DEFAULT_SSP_REG_CR1 ( \
 598        GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
 599        GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 600        GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 601        GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
 602)
 603
 604/* ST versions extend this register to use all 16 bits */
 605#define DEFAULT_SSP_REG_CR1_ST ( \
 606        DEFAULT_SSP_REG_CR1 | \
 607        GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 608        GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 609        GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
 610        GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 611        GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
 612)
 613
 614/*
 615 * The PL023 variant has further differences: no loopback mode, no microwire
 616 * support, and a new clock feedback delay setting.
 617 */
 618#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
 619        GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 620        GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 621        GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
 622        GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 623        GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 624        GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 625        GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
 626        GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
 627)
 628
 629#define DEFAULT_SSP_REG_CPSR ( \
 630        GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
 631)
 632
 633#define DEFAULT_SSP_REG_DMACR (\
 634        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
 635        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
 636)
 637
 638/**
 639 * load_ssp_default_config - Load default configuration for SSP
 640 * @pl022: SSP driver private data structure
 641 */
 642static void load_ssp_default_config(struct pl022 *pl022)
 643{
 644        if (pl022->vendor->pl023) {
 645                writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
 646                writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
 647        } else if (pl022->vendor->extended_cr) {
 648                writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
 649                writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
 650        } else {
 651                writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
 652                writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
 653        }
 654        writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
 655        writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
 656        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 657        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 658}
 659
 660/*
 661 * This will write to TX and read from RX according to the parameters
 662 * set in pl022.
 663 */
 664static void readwriter(struct pl022 *pl022)
 665{
 666
 667        /*
 668         * The FIFO depth is different between primecell variants.
 669         * I believe filling in too much in the FIFO might cause
 670         * errons in 8bit wide transfers on ARM variants (just 8 words
 671         * FIFO, means only 8x8 = 64 bits in FIFO) at least.
 672         *
 673         * To prevent this issue, the TX FIFO is only filled to the
 674         * unused RX FIFO fill length, regardless of what the TX
 675         * FIFO status flag indicates.
 676         */
 677        dev_dbg(&pl022->adev->dev,
 678                "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
 679                __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
 680
 681        /* Read as much as you can */
 682        while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 683               && (pl022->rx < pl022->rx_end)) {
 684                switch (pl022->read) {
 685                case READING_NULL:
 686                        readw(SSP_DR(pl022->virtbase));
 687                        break;
 688                case READING_U8:
 689                        *(u8 *) (pl022->rx) =
 690                                readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 691                        break;
 692                case READING_U16:
 693                        *(u16 *) (pl022->rx) =
 694                                (u16) readw(SSP_DR(pl022->virtbase));
 695                        break;
 696                case READING_U32:
 697                        *(u32 *) (pl022->rx) =
 698                                readl(SSP_DR(pl022->virtbase));
 699                        break;
 700                }
 701                pl022->rx += (pl022->cur_chip->n_bytes);
 702                pl022->exp_fifo_level--;
 703        }
 704        /*
 705         * Write as much as possible up to the RX FIFO size
 706         */
 707        while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
 708               && (pl022->tx < pl022->tx_end)) {
 709                switch (pl022->write) {
 710                case WRITING_NULL:
 711                        writew(0x0, SSP_DR(pl022->virtbase));
 712                        break;
 713                case WRITING_U8:
 714                        writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
 715                        break;
 716                case WRITING_U16:
 717                        writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
 718                        break;
 719                case WRITING_U32:
 720                        writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
 721                        break;
 722                }
 723                pl022->tx += (pl022->cur_chip->n_bytes);
 724                pl022->exp_fifo_level++;
 725                /*
 726                 * This inner reader takes care of things appearing in the RX
 727                 * FIFO as we're transmitting. This will happen a lot since the
 728                 * clock starts running when you put things into the TX FIFO,
 729                 * and then things are continuously clocked into the RX FIFO.
 730                 */
 731                while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 732                       && (pl022->rx < pl022->rx_end)) {
 733                        switch (pl022->read) {
 734                        case READING_NULL:
 735                                readw(SSP_DR(pl022->virtbase));
 736                                break;
 737                        case READING_U8:
 738                                *(u8 *) (pl022->rx) =
 739                                        readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 740                                break;
 741                        case READING_U16:
 742                                *(u16 *) (pl022->rx) =
 743                                        (u16) readw(SSP_DR(pl022->virtbase));
 744                                break;
 745                        case READING_U32:
 746                                *(u32 *) (pl022->rx) =
 747                                        readl(SSP_DR(pl022->virtbase));
 748                                break;
 749                        }
 750                        pl022->rx += (pl022->cur_chip->n_bytes);
 751                        pl022->exp_fifo_level--;
 752                }
 753        }
 754        /*
 755         * When we exit here the TX FIFO should be full and the RX FIFO
 756         * should be empty
 757         */
 758}
 759
 760/**
 761 * next_transfer - Move to the Next transfer in the current spi message
 762 * @pl022: SSP driver private data structure
 763 *
 764 * This function moves though the linked list of spi transfers in the
 765 * current spi message and returns with the state of current spi
 766 * message i.e whether its last transfer is done(STATE_DONE) or
 767 * Next transfer is ready(STATE_RUNNING)
 768 */
 769static void *next_transfer(struct pl022 *pl022)
 770{
 771        struct spi_message *msg = pl022->cur_msg;
 772        struct spi_transfer *trans = pl022->cur_transfer;
 773
 774        /* Move to next transfer */
 775        if (trans->transfer_list.next != &msg->transfers) {
 776                pl022->cur_transfer =
 777                    list_entry(trans->transfer_list.next,
 778                               struct spi_transfer, transfer_list);
 779                return STATE_RUNNING;
 780        }
 781        return STATE_DONE;
 782}
 783
 784/*
 785 * This DMA functionality is only compiled in if we have
 786 * access to the generic DMA devices/DMA engine.
 787 */
 788#ifdef CONFIG_DMA_ENGINE
 789static void unmap_free_dma_scatter(struct pl022 *pl022)
 790{
 791        /* Unmap and free the SG tables */
 792        dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
 793                     pl022->sgt_tx.nents, DMA_TO_DEVICE);
 794        dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
 795                     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 796        sg_free_table(&pl022->sgt_rx);
 797        sg_free_table(&pl022->sgt_tx);
 798}
 799
 800static void dma_callback(void *data)
 801{
 802        struct pl022 *pl022 = data;
 803        struct spi_message *msg = pl022->cur_msg;
 804
 805        BUG_ON(!pl022->sgt_rx.sgl);
 806
 807#ifdef VERBOSE_DEBUG
 808        /*
 809         * Optionally dump out buffers to inspect contents, this is
 810         * good if you want to convince yourself that the loopback
 811         * read/write contents are the same, when adopting to a new
 812         * DMA engine.
 813         */
 814        {
 815                struct scatterlist *sg;
 816                unsigned int i;
 817
 818                dma_sync_sg_for_cpu(&pl022->adev->dev,
 819                                    pl022->sgt_rx.sgl,
 820                                    pl022->sgt_rx.nents,
 821                                    DMA_FROM_DEVICE);
 822
 823                for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
 824                        dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
 825                        print_hex_dump(KERN_ERR, "SPI RX: ",
 826                                       DUMP_PREFIX_OFFSET,
 827                                       16,
 828                                       1,
 829                                       sg_virt(sg),
 830                                       sg_dma_len(sg),
 831                                       1);
 832                }
 833                for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
 834                        dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
 835                        print_hex_dump(KERN_ERR, "SPI TX: ",
 836                                       DUMP_PREFIX_OFFSET,
 837                                       16,
 838                                       1,
 839                                       sg_virt(sg),
 840                                       sg_dma_len(sg),
 841                                       1);
 842                }
 843        }
 844#endif
 845
 846        unmap_free_dma_scatter(pl022);
 847
 848        /* Update total bytes transferred */
 849        msg->actual_length += pl022->cur_transfer->len;
 850        /* Move to next transfer */
 851        msg->state = next_transfer(pl022);
 852        if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
 853                pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 854        tasklet_schedule(&pl022->pump_transfers);
 855}
 856
 857static void setup_dma_scatter(struct pl022 *pl022,
 858                              void *buffer,
 859                              unsigned int length,
 860                              struct sg_table *sgtab)
 861{
 862        struct scatterlist *sg;
 863        int bytesleft = length;
 864        void *bufp = buffer;
 865        int mapbytes;
 866        int i;
 867
 868        if (buffer) {
 869                for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 870                        /*
 871                         * If there are less bytes left than what fits
 872                         * in the current page (plus page alignment offset)
 873                         * we just feed in this, else we stuff in as much
 874                         * as we can.
 875                         */
 876                        if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
 877                                mapbytes = bytesleft;
 878                        else
 879                                mapbytes = PAGE_SIZE - offset_in_page(bufp);
 880                        sg_set_page(sg, virt_to_page(bufp),
 881                                    mapbytes, offset_in_page(bufp));
 882                        bufp += mapbytes;
 883                        bytesleft -= mapbytes;
 884                        dev_dbg(&pl022->adev->dev,
 885                                "set RX/TX target page @ %p, %d bytes, %d left\n",
 886                                bufp, mapbytes, bytesleft);
 887                }
 888        } else {
 889                /* Map the dummy buffer on every page */
 890                for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 891                        if (bytesleft < PAGE_SIZE)
 892                                mapbytes = bytesleft;
 893                        else
 894                                mapbytes = PAGE_SIZE;
 895                        sg_set_page(sg, virt_to_page(pl022->dummypage),
 896                                    mapbytes, 0);
 897                        bytesleft -= mapbytes;
 898                        dev_dbg(&pl022->adev->dev,
 899                                "set RX/TX to dummy page %d bytes, %d left\n",
 900                                mapbytes, bytesleft);
 901
 902                }
 903        }
 904        BUG_ON(bytesleft);
 905}
 906
 907/**
 908 * configure_dma - configures the channels for the next transfer
 909 * @pl022: SSP driver's private data structure
 910 */
 911static int configure_dma(struct pl022 *pl022)
 912{
 913        struct dma_slave_config rx_conf = {
 914                .src_addr = SSP_DR(pl022->phybase),
 915                .direction = DMA_DEV_TO_MEM,
 916                .device_fc = false,
 917        };
 918        struct dma_slave_config tx_conf = {
 919                .dst_addr = SSP_DR(pl022->phybase),
 920                .direction = DMA_MEM_TO_DEV,
 921                .device_fc = false,
 922        };
 923        unsigned int pages;
 924        int ret;
 925        int rx_sglen, tx_sglen;
 926        struct dma_chan *rxchan = pl022->dma_rx_channel;
 927        struct dma_chan *txchan = pl022->dma_tx_channel;
 928        struct dma_async_tx_descriptor *rxdesc;
 929        struct dma_async_tx_descriptor *txdesc;
 930
 931        /* Check that the channels are available */
 932        if (!rxchan || !txchan)
 933                return -ENODEV;
 934
 935        /*
 936         * If supplied, the DMA burstsize should equal the FIFO trigger level.
 937         * Notice that the DMA engine uses one-to-one mapping. Since we can
 938         * not trigger on 2 elements this needs explicit mapping rather than
 939         * calculation.
 940         */
 941        switch (pl022->rx_lev_trig) {
 942        case SSP_RX_1_OR_MORE_ELEM:
 943                rx_conf.src_maxburst = 1;
 944                break;
 945        case SSP_RX_4_OR_MORE_ELEM:
 946                rx_conf.src_maxburst = 4;
 947                break;
 948        case SSP_RX_8_OR_MORE_ELEM:
 949                rx_conf.src_maxburst = 8;
 950                break;
 951        case SSP_RX_16_OR_MORE_ELEM:
 952                rx_conf.src_maxburst = 16;
 953                break;
 954        case SSP_RX_32_OR_MORE_ELEM:
 955                rx_conf.src_maxburst = 32;
 956                break;
 957        default:
 958                rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
 959                break;
 960        }
 961
 962        switch (pl022->tx_lev_trig) {
 963        case SSP_TX_1_OR_MORE_EMPTY_LOC:
 964                tx_conf.dst_maxburst = 1;
 965                break;
 966        case SSP_TX_4_OR_MORE_EMPTY_LOC:
 967                tx_conf.dst_maxburst = 4;
 968                break;
 969        case SSP_TX_8_OR_MORE_EMPTY_LOC:
 970                tx_conf.dst_maxburst = 8;
 971                break;
 972        case SSP_TX_16_OR_MORE_EMPTY_LOC:
 973                tx_conf.dst_maxburst = 16;
 974                break;
 975        case SSP_TX_32_OR_MORE_EMPTY_LOC:
 976                tx_conf.dst_maxburst = 32;
 977                break;
 978        default:
 979                tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
 980                break;
 981        }
 982
 983        switch (pl022->read) {
 984        case READING_NULL:
 985                /* Use the same as for writing */
 986                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 987                break;
 988        case READING_U8:
 989                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 990                break;
 991        case READING_U16:
 992                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 993                break;
 994        case READING_U32:
 995                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 996                break;
 997        }
 998
 999        switch (pl022->write) {
1000        case WRITING_NULL:
1001                /* Use the same as for reading */
1002                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1003                break;
1004        case WRITING_U8:
1005                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1006                break;
1007        case WRITING_U16:
1008                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1009                break;
1010        case WRITING_U32:
1011                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1012                break;
1013        }
1014
1015        /* SPI pecularity: we need to read and write the same width */
1016        if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1017                rx_conf.src_addr_width = tx_conf.dst_addr_width;
1018        if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1019                tx_conf.dst_addr_width = rx_conf.src_addr_width;
1020        BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1021
1022        dmaengine_slave_config(rxchan, &rx_conf);
1023        dmaengine_slave_config(txchan, &tx_conf);
1024
1025        /* Create sglists for the transfers */
1026        pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1027        dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1028
1029        ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1030        if (ret)
1031                goto err_alloc_rx_sg;
1032
1033        ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1034        if (ret)
1035                goto err_alloc_tx_sg;
1036
1037        /* Fill in the scatterlists for the RX+TX buffers */
1038        setup_dma_scatter(pl022, pl022->rx,
1039                          pl022->cur_transfer->len, &pl022->sgt_rx);
1040        setup_dma_scatter(pl022, pl022->tx,
1041                          pl022->cur_transfer->len, &pl022->sgt_tx);
1042
1043        /* Map DMA buffers */
1044        rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1045                           pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1046        if (!rx_sglen)
1047                goto err_rx_sgmap;
1048
1049        tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1050                           pl022->sgt_tx.nents, DMA_TO_DEVICE);
1051        if (!tx_sglen)
1052                goto err_tx_sgmap;
1053
1054        /* Send both scatterlists */
1055        rxdesc = dmaengine_prep_slave_sg(rxchan,
1056                                      pl022->sgt_rx.sgl,
1057                                      rx_sglen,
1058                                      DMA_DEV_TO_MEM,
1059                                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1060        if (!rxdesc)
1061                goto err_rxdesc;
1062
1063        txdesc = dmaengine_prep_slave_sg(txchan,
1064                                      pl022->sgt_tx.sgl,
1065                                      tx_sglen,
1066                                      DMA_MEM_TO_DEV,
1067                                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1068        if (!txdesc)
1069                goto err_txdesc;
1070
1071        /* Put the callback on the RX transfer only, that should finish last */
1072        rxdesc->callback = dma_callback;
1073        rxdesc->callback_param = pl022;
1074
1075        /* Submit and fire RX and TX with TX last so we're ready to read! */
1076        dmaengine_submit(rxdesc);
1077        dmaengine_submit(txdesc);
1078        dma_async_issue_pending(rxchan);
1079        dma_async_issue_pending(txchan);
1080        pl022->dma_running = true;
1081
1082        return 0;
1083
1084err_txdesc:
1085        dmaengine_terminate_all(txchan);
1086err_rxdesc:
1087        dmaengine_terminate_all(rxchan);
1088        dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1089                     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1090err_tx_sgmap:
1091        dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1092                     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1093err_rx_sgmap:
1094        sg_free_table(&pl022->sgt_tx);
1095err_alloc_tx_sg:
1096        sg_free_table(&pl022->sgt_rx);
1097err_alloc_rx_sg:
1098        return -ENOMEM;
1099}
1100
1101static int pl022_dma_probe(struct pl022 *pl022)
1102{
1103        dma_cap_mask_t mask;
1104
1105        /* Try to acquire a generic DMA engine slave channel */
1106        dma_cap_zero(mask);
1107        dma_cap_set(DMA_SLAVE, mask);
1108        /*
1109         * We need both RX and TX channels to do DMA, else do none
1110         * of them.
1111         */
1112        pl022->dma_rx_channel = dma_request_channel(mask,
1113                                            pl022->master_info->dma_filter,
1114                                            pl022->master_info->dma_rx_param);
1115        if (!pl022->dma_rx_channel) {
1116                dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1117                goto err_no_rxchan;
1118        }
1119
1120        pl022->dma_tx_channel = dma_request_channel(mask,
1121                                            pl022->master_info->dma_filter,
1122                                            pl022->master_info->dma_tx_param);
1123        if (!pl022->dma_tx_channel) {
1124                dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1125                goto err_no_txchan;
1126        }
1127
1128        pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1129        if (!pl022->dummypage)
1130                goto err_no_dummypage;
1131
1132        dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1133                 dma_chan_name(pl022->dma_rx_channel),
1134                 dma_chan_name(pl022->dma_tx_channel));
1135
1136        return 0;
1137
1138err_no_dummypage:
1139        dma_release_channel(pl022->dma_tx_channel);
1140err_no_txchan:
1141        dma_release_channel(pl022->dma_rx_channel);
1142        pl022->dma_rx_channel = NULL;
1143err_no_rxchan:
1144        dev_err(&pl022->adev->dev,
1145                        "Failed to work in dma mode, work without dma!\n");
1146        return -ENODEV;
1147}
1148
1149static int pl022_dma_autoprobe(struct pl022 *pl022)
1150{
1151        struct device *dev = &pl022->adev->dev;
1152        struct dma_chan *chan;
1153        int err;
1154
1155        /* automatically configure DMA channels from platform, normally using DT */
1156        chan = dma_request_chan(dev, "rx");
1157        if (IS_ERR(chan)) {
1158                err = PTR_ERR(chan);
1159                goto err_no_rxchan;
1160        }
1161
1162        pl022->dma_rx_channel = chan;
1163
1164        chan = dma_request_chan(dev, "tx");
1165        if (IS_ERR(chan)) {
1166                err = PTR_ERR(chan);
1167                goto err_no_txchan;
1168        }
1169
1170        pl022->dma_tx_channel = chan;
1171
1172        pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1173        if (!pl022->dummypage) {
1174                err = -ENOMEM;
1175                goto err_no_dummypage;
1176        }
1177
1178        return 0;
1179
1180err_no_dummypage:
1181        dma_release_channel(pl022->dma_tx_channel);
1182        pl022->dma_tx_channel = NULL;
1183err_no_txchan:
1184        dma_release_channel(pl022->dma_rx_channel);
1185        pl022->dma_rx_channel = NULL;
1186err_no_rxchan:
1187        return err;
1188}
1189
1190static void terminate_dma(struct pl022 *pl022)
1191{
1192        struct dma_chan *rxchan = pl022->dma_rx_channel;
1193        struct dma_chan *txchan = pl022->dma_tx_channel;
1194
1195        dmaengine_terminate_all(rxchan);
1196        dmaengine_terminate_all(txchan);
1197        unmap_free_dma_scatter(pl022);
1198        pl022->dma_running = false;
1199}
1200
1201static void pl022_dma_remove(struct pl022 *pl022)
1202{
1203        if (pl022->dma_running)
1204                terminate_dma(pl022);
1205        if (pl022->dma_tx_channel)
1206                dma_release_channel(pl022->dma_tx_channel);
1207        if (pl022->dma_rx_channel)
1208                dma_release_channel(pl022->dma_rx_channel);
1209        kfree(pl022->dummypage);
1210}
1211
1212#else
1213static inline int configure_dma(struct pl022 *pl022)
1214{
1215        return -ENODEV;
1216}
1217
1218static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1219{
1220        return 0;
1221}
1222
1223static inline int pl022_dma_probe(struct pl022 *pl022)
1224{
1225        return 0;
1226}
1227
1228static inline void pl022_dma_remove(struct pl022 *pl022)
1229{
1230}
1231#endif
1232
1233/**
1234 * pl022_interrupt_handler - Interrupt handler for SSP controller
1235 * @irq: IRQ number
1236 * @dev_id: Local device data
1237 *
1238 * This function handles interrupts generated for an interrupt based transfer.
1239 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1240 * current message's state as STATE_ERROR and schedule the tasklet
1241 * pump_transfers which will do the postprocessing of the current message by
1242 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1243 * more data, and writes data in TX FIFO till it is not full. If we complete
1244 * the transfer we move to the next transfer and schedule the tasklet.
1245 */
1246static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1247{
1248        struct pl022 *pl022 = dev_id;
1249        struct spi_message *msg = pl022->cur_msg;
1250        u16 irq_status = 0;
1251
1252        if (unlikely(!msg)) {
1253                dev_err(&pl022->adev->dev,
1254                        "bad message state in interrupt handler");
1255                /* Never fail */
1256                return IRQ_HANDLED;
1257        }
1258
1259        /* Read the Interrupt Status Register */
1260        irq_status = readw(SSP_MIS(pl022->virtbase));
1261
1262        if (unlikely(!irq_status))
1263                return IRQ_NONE;
1264
1265        /*
1266         * This handles the FIFO interrupts, the timeout
1267         * interrupts are flatly ignored, they cannot be
1268         * trusted.
1269         */
1270        if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1271                /*
1272                 * Overrun interrupt - bail out since our Data has been
1273                 * corrupted
1274                 */
1275                dev_err(&pl022->adev->dev, "FIFO overrun\n");
1276                if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1277                        dev_err(&pl022->adev->dev,
1278                                "RXFIFO is full\n");
1279
1280                /*
1281                 * Disable and clear interrupts, disable SSP,
1282                 * mark message with bad status so it can be
1283                 * retried.
1284                 */
1285                writew(DISABLE_ALL_INTERRUPTS,
1286                       SSP_IMSC(pl022->virtbase));
1287                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1288                writew((readw(SSP_CR1(pl022->virtbase)) &
1289                        (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1290                msg->state = STATE_ERROR;
1291
1292                /* Schedule message queue handler */
1293                tasklet_schedule(&pl022->pump_transfers);
1294                return IRQ_HANDLED;
1295        }
1296
1297        readwriter(pl022);
1298
1299        if (pl022->tx == pl022->tx_end) {
1300                /* Disable Transmit interrupt, enable receive interrupt */
1301                writew((readw(SSP_IMSC(pl022->virtbase)) &
1302                       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1303                       SSP_IMSC(pl022->virtbase));
1304        }
1305
1306        /*
1307         * Since all transactions must write as much as shall be read,
1308         * we can conclude the entire transaction once RX is complete.
1309         * At this point, all TX will always be finished.
1310         */
1311        if (pl022->rx >= pl022->rx_end) {
1312                writew(DISABLE_ALL_INTERRUPTS,
1313                       SSP_IMSC(pl022->virtbase));
1314                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1315                if (unlikely(pl022->rx > pl022->rx_end)) {
1316                        dev_warn(&pl022->adev->dev, "read %u surplus "
1317                                 "bytes (did you request an odd "
1318                                 "number of bytes on a 16bit bus?)\n",
1319                                 (u32) (pl022->rx - pl022->rx_end));
1320                }
1321                /* Update total bytes transferred */
1322                msg->actual_length += pl022->cur_transfer->len;
1323                /* Move to next transfer */
1324                msg->state = next_transfer(pl022);
1325                if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1326                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1327                tasklet_schedule(&pl022->pump_transfers);
1328                return IRQ_HANDLED;
1329        }
1330
1331        return IRQ_HANDLED;
1332}
1333
1334/*
1335 * This sets up the pointers to memory for the next message to
1336 * send out on the SPI bus.
1337 */
1338static int set_up_next_transfer(struct pl022 *pl022,
1339                                struct spi_transfer *transfer)
1340{
1341        int residue;
1342
1343        /* Sanity check the message for this bus width */
1344        residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1345        if (unlikely(residue != 0)) {
1346                dev_err(&pl022->adev->dev,
1347                        "message of %u bytes to transmit but the current "
1348                        "chip bus has a data width of %u bytes!\n",
1349                        pl022->cur_transfer->len,
1350                        pl022->cur_chip->n_bytes);
1351                dev_err(&pl022->adev->dev, "skipping this message\n");
1352                return -EIO;
1353        }
1354        pl022->tx = (void *)transfer->tx_buf;
1355        pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1356        pl022->rx = (void *)transfer->rx_buf;
1357        pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1358        pl022->write =
1359            pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1360        pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1361        return 0;
1362}
1363
1364/**
1365 * pump_transfers - Tasklet function which schedules next transfer
1366 * when running in interrupt or DMA transfer mode.
1367 * @data: SSP driver private data structure
1368 *
1369 */
1370static void pump_transfers(unsigned long data)
1371{
1372        struct pl022 *pl022 = (struct pl022 *) data;
1373        struct spi_message *message = NULL;
1374        struct spi_transfer *transfer = NULL;
1375        struct spi_transfer *previous = NULL;
1376
1377        /* Get current state information */
1378        message = pl022->cur_msg;
1379        transfer = pl022->cur_transfer;
1380
1381        /* Handle for abort */
1382        if (message->state == STATE_ERROR) {
1383                message->status = -EIO;
1384                giveback(pl022);
1385                return;
1386        }
1387
1388        /* Handle end of message */
1389        if (message->state == STATE_DONE) {
1390                message->status = 0;
1391                giveback(pl022);
1392                return;
1393        }
1394
1395        /* Delay if requested at end of transfer before CS change */
1396        if (message->state == STATE_RUNNING) {
1397                previous = list_entry(transfer->transfer_list.prev,
1398                                        struct spi_transfer,
1399                                        transfer_list);
1400                /*
1401                 * FIXME: This runs in interrupt context.
1402                 * Is this really smart?
1403                 */
1404                spi_transfer_delay_exec(previous);
1405
1406                /* Reselect chip select only if cs_change was requested */
1407                if (previous->cs_change)
1408                        pl022_cs_control(pl022, SSP_CHIP_SELECT);
1409        } else {
1410                /* STATE_START */
1411                message->state = STATE_RUNNING;
1412        }
1413
1414        if (set_up_next_transfer(pl022, transfer)) {
1415                message->state = STATE_ERROR;
1416                message->status = -EIO;
1417                giveback(pl022);
1418                return;
1419        }
1420        /* Flush the FIFOs and let's go! */
1421        flush(pl022);
1422
1423        if (pl022->cur_chip->enable_dma) {
1424                if (configure_dma(pl022)) {
1425                        dev_dbg(&pl022->adev->dev,
1426                                "configuration of DMA failed, fall back to interrupt mode\n");
1427                        goto err_config_dma;
1428                }
1429                return;
1430        }
1431
1432err_config_dma:
1433        /* enable all interrupts except RX */
1434        writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1435}
1436
1437static void do_interrupt_dma_transfer(struct pl022 *pl022)
1438{
1439        /*
1440         * Default is to enable all interrupts except RX -
1441         * this will be enabled once TX is complete
1442         */
1443        u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1444
1445        /* Enable target chip, if not already active */
1446        if (!pl022->next_msg_cs_active)
1447                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1448
1449        if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1450                /* Error path */
1451                pl022->cur_msg->state = STATE_ERROR;
1452                pl022->cur_msg->status = -EIO;
1453                giveback(pl022);
1454                return;
1455        }
1456        /* If we're using DMA, set up DMA here */
1457        if (pl022->cur_chip->enable_dma) {
1458                /* Configure DMA transfer */
1459                if (configure_dma(pl022)) {
1460                        dev_dbg(&pl022->adev->dev,
1461                                "configuration of DMA failed, fall back to interrupt mode\n");
1462                        goto err_config_dma;
1463                }
1464                /* Disable interrupts in DMA mode, IRQ from DMA controller */
1465                irqflags = DISABLE_ALL_INTERRUPTS;
1466        }
1467err_config_dma:
1468        /* Enable SSP, turn on interrupts */
1469        writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1470               SSP_CR1(pl022->virtbase));
1471        writew(irqflags, SSP_IMSC(pl022->virtbase));
1472}
1473
1474static void print_current_status(struct pl022 *pl022)
1475{
1476        u32 read_cr0;
1477        u16 read_cr1, read_dmacr, read_sr;
1478
1479        if (pl022->vendor->extended_cr)
1480                read_cr0 = readl(SSP_CR0(pl022->virtbase));
1481        else
1482                read_cr0 = readw(SSP_CR0(pl022->virtbase));
1483        read_cr1 = readw(SSP_CR1(pl022->virtbase));
1484        read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1485        read_sr = readw(SSP_SR(pl022->virtbase));
1486
1487        dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1488        dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1489        dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1490        dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1491        dev_warn(&pl022->adev->dev,
1492                        "spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1493                        pl022->exp_fifo_level,
1494                        pl022->vendor->fifodepth);
1495
1496}
1497
1498static void do_polling_transfer(struct pl022 *pl022)
1499{
1500        struct spi_message *message = NULL;
1501        struct spi_transfer *transfer = NULL;
1502        struct spi_transfer *previous = NULL;
1503        unsigned long time, timeout;
1504
1505        message = pl022->cur_msg;
1506
1507        while (message->state != STATE_DONE) {
1508                /* Handle for abort */
1509                if (message->state == STATE_ERROR)
1510                        break;
1511                transfer = pl022->cur_transfer;
1512
1513                /* Delay if requested at end of transfer */
1514                if (message->state == STATE_RUNNING) {
1515                        previous =
1516                            list_entry(transfer->transfer_list.prev,
1517                                       struct spi_transfer, transfer_list);
1518                        spi_transfer_delay_exec(previous);
1519                        if (previous->cs_change)
1520                                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1521                } else {
1522                        /* STATE_START */
1523                        message->state = STATE_RUNNING;
1524                        if (!pl022->next_msg_cs_active)
1525                                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1526                }
1527
1528                /* Configuration Changing Per Transfer */
1529                if (set_up_next_transfer(pl022, transfer)) {
1530                        /* Error path */
1531                        message->state = STATE_ERROR;
1532                        break;
1533                }
1534                /* Flush FIFOs and enable SSP */
1535                flush(pl022);
1536                writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1537                       SSP_CR1(pl022->virtbase));
1538
1539                dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1540
1541                timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1542                while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1543                        time = jiffies;
1544                        readwriter(pl022);
1545                        if (time_after(time, timeout)) {
1546                                dev_warn(&pl022->adev->dev,
1547                                "%s: timeout!\n", __func__);
1548                                message->state = STATE_TIMEOUT;
1549                                print_current_status(pl022);
1550                                goto out;
1551                        }
1552                        cpu_relax();
1553                }
1554
1555                /* Update total byte transferred */
1556                message->actual_length += pl022->cur_transfer->len;
1557                /* Move to next transfer */
1558                message->state = next_transfer(pl022);
1559                if (message->state != STATE_DONE
1560                    && pl022->cur_transfer->cs_change)
1561                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1562        }
1563out:
1564        /* Handle end of message */
1565        if (message->state == STATE_DONE)
1566                message->status = 0;
1567        else if (message->state == STATE_TIMEOUT)
1568                message->status = -EAGAIN;
1569        else
1570                message->status = -EIO;
1571
1572        giveback(pl022);
1573        return;
1574}
1575
1576static int pl022_transfer_one_message(struct spi_master *master,
1577                                      struct spi_message *msg)
1578{
1579        struct pl022 *pl022 = spi_master_get_devdata(master);
1580
1581        /* Initial message state */
1582        pl022->cur_msg = msg;
1583        msg->state = STATE_START;
1584
1585        pl022->cur_transfer = list_entry(msg->transfers.next,
1586                                         struct spi_transfer, transfer_list);
1587
1588        /* Setup the SPI using the per chip configuration */
1589        pl022->cur_chip = spi_get_ctldata(msg->spi);
1590        pl022->cur_cs = msg->spi->chip_select;
1591        /* This is always available but may be set to -ENOENT */
1592        pl022->cur_gpiod = msg->spi->cs_gpiod;
1593
1594        restore_state(pl022);
1595        flush(pl022);
1596
1597        if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1598                do_polling_transfer(pl022);
1599        else
1600                do_interrupt_dma_transfer(pl022);
1601
1602        return 0;
1603}
1604
1605static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1606{
1607        struct pl022 *pl022 = spi_master_get_devdata(master);
1608
1609        /* nothing more to do - disable spi/ssp and power off */
1610        writew((readw(SSP_CR1(pl022->virtbase)) &
1611                (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1612
1613        return 0;
1614}
1615
1616static int verify_controller_parameters(struct pl022 *pl022,
1617                                struct pl022_config_chip const *chip_info)
1618{
1619        if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1620            || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1621                dev_err(&pl022->adev->dev,
1622                        "interface is configured incorrectly\n");
1623                return -EINVAL;
1624        }
1625        if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1626            (!pl022->vendor->unidir)) {
1627                dev_err(&pl022->adev->dev,
1628                        "unidirectional mode not supported in this "
1629                        "hardware version\n");
1630                return -EINVAL;
1631        }
1632        if ((chip_info->hierarchy != SSP_MASTER)
1633            && (chip_info->hierarchy != SSP_SLAVE)) {
1634                dev_err(&pl022->adev->dev,
1635                        "hierarchy is configured incorrectly\n");
1636                return -EINVAL;
1637        }
1638        if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1639            && (chip_info->com_mode != DMA_TRANSFER)
1640            && (chip_info->com_mode != POLLING_TRANSFER)) {
1641                dev_err(&pl022->adev->dev,
1642                        "Communication mode is configured incorrectly\n");
1643                return -EINVAL;
1644        }
1645        switch (chip_info->rx_lev_trig) {
1646        case SSP_RX_1_OR_MORE_ELEM:
1647        case SSP_RX_4_OR_MORE_ELEM:
1648        case SSP_RX_8_OR_MORE_ELEM:
1649                /* These are always OK, all variants can handle this */
1650                break;
1651        case SSP_RX_16_OR_MORE_ELEM:
1652                if (pl022->vendor->fifodepth < 16) {
1653                        dev_err(&pl022->adev->dev,
1654                        "RX FIFO Trigger Level is configured incorrectly\n");
1655                        return -EINVAL;
1656                }
1657                break;
1658        case SSP_RX_32_OR_MORE_ELEM:
1659                if (pl022->vendor->fifodepth < 32) {
1660                        dev_err(&pl022->adev->dev,
1661                        "RX FIFO Trigger Level is configured incorrectly\n");
1662                        return -EINVAL;
1663                }
1664                break;
1665        default:
1666                dev_err(&pl022->adev->dev,
1667                        "RX FIFO Trigger Level is configured incorrectly\n");
1668                return -EINVAL;
1669        }
1670        switch (chip_info->tx_lev_trig) {
1671        case SSP_TX_1_OR_MORE_EMPTY_LOC:
1672        case SSP_TX_4_OR_MORE_EMPTY_LOC:
1673        case SSP_TX_8_OR_MORE_EMPTY_LOC:
1674                /* These are always OK, all variants can handle this */
1675                break;
1676        case SSP_TX_16_OR_MORE_EMPTY_LOC:
1677                if (pl022->vendor->fifodepth < 16) {
1678                        dev_err(&pl022->adev->dev,
1679                        "TX FIFO Trigger Level is configured incorrectly\n");
1680                        return -EINVAL;
1681                }
1682                break;
1683        case SSP_TX_32_OR_MORE_EMPTY_LOC:
1684                if (pl022->vendor->fifodepth < 32) {
1685                        dev_err(&pl022->adev->dev,
1686                        "TX FIFO Trigger Level is configured incorrectly\n");
1687                        return -EINVAL;
1688                }
1689                break;
1690        default:
1691                dev_err(&pl022->adev->dev,
1692                        "TX FIFO Trigger Level is configured incorrectly\n");
1693                return -EINVAL;
1694        }
1695        if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1696                if ((chip_info->ctrl_len < SSP_BITS_4)
1697                    || (chip_info->ctrl_len > SSP_BITS_32)) {
1698                        dev_err(&pl022->adev->dev,
1699                                "CTRL LEN is configured incorrectly\n");
1700                        return -EINVAL;
1701                }
1702                if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1703                    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1704                        dev_err(&pl022->adev->dev,
1705                                "Wait State is configured incorrectly\n");
1706                        return -EINVAL;
1707                }
1708                /* Half duplex is only available in the ST Micro version */
1709                if (pl022->vendor->extended_cr) {
1710                        if ((chip_info->duplex !=
1711                             SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1712                            && (chip_info->duplex !=
1713                                SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1714                                dev_err(&pl022->adev->dev,
1715                                        "Microwire duplex mode is configured incorrectly\n");
1716                                return -EINVAL;
1717                        }
1718                } else {
1719                        if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) {
1720                                dev_err(&pl022->adev->dev,
1721                                        "Microwire half duplex mode requested,"
1722                                        " but this is only available in the"
1723                                        " ST version of PL022\n");
1724                                return -EINVAL;
1725                        }
1726                }
1727        }
1728        return 0;
1729}
1730
1731static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1732{
1733        return rate / (cpsdvsr * (1 + scr));
1734}
1735
1736static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1737                                    ssp_clock_params * clk_freq)
1738{
1739        /* Lets calculate the frequency parameters */
1740        u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1741        u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1742                best_scr = 0, tmp, found = 0;
1743
1744        rate = clk_get_rate(pl022->clk);
1745        /* cpsdvscr = 2 & scr 0 */
1746        max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1747        /* cpsdvsr = 254 & scr = 255 */
1748        min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1749
1750        if (freq > max_tclk)
1751                dev_warn(&pl022->adev->dev,
1752                        "Max speed that can be programmed is %d Hz, you requested %d\n",
1753                        max_tclk, freq);
1754
1755        if (freq < min_tclk) {
1756                dev_err(&pl022->adev->dev,
1757                        "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1758                        freq, min_tclk);
1759                return -EINVAL;
1760        }
1761
1762        /*
1763         * best_freq will give closest possible available rate (<= requested
1764         * freq) for all values of scr & cpsdvsr.
1765         */
1766        while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1767                while (scr <= SCR_MAX) {
1768                        tmp = spi_rate(rate, cpsdvsr, scr);
1769
1770                        if (tmp > freq) {
1771                                /* we need lower freq */
1772                                scr++;
1773                                continue;
1774                        }
1775
1776                        /*
1777                         * If found exact value, mark found and break.
1778                         * If found more closer value, update and break.
1779                         */
1780                        if (tmp > best_freq) {
1781                                best_freq = tmp;
1782                                best_cpsdvsr = cpsdvsr;
1783                                best_scr = scr;
1784
1785                                if (tmp == freq)
1786                                        found = 1;
1787                        }
1788                        /*
1789                         * increased scr will give lower rates, which are not
1790                         * required
1791                         */
1792                        break;
1793                }
1794                cpsdvsr += 2;
1795                scr = SCR_MIN;
1796        }
1797
1798        WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1799                        freq);
1800
1801        clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1802        clk_freq->scr = (u8) (best_scr & 0xFF);
1803        dev_dbg(&pl022->adev->dev,
1804                "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1805                freq, best_freq);
1806        dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1807                clk_freq->cpsdvsr, clk_freq->scr);
1808
1809        return 0;
1810}
1811
1812/*
1813 * A piece of default chip info unless the platform
1814 * supplies it.
1815 */
1816static const struct pl022_config_chip pl022_default_chip_info = {
1817        .com_mode = INTERRUPT_TRANSFER,
1818        .iface = SSP_INTERFACE_MOTOROLA_SPI,
1819        .hierarchy = SSP_MASTER,
1820        .slave_tx_disable = DO_NOT_DRIVE_TX,
1821        .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1822        .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1823        .ctrl_len = SSP_BITS_8,
1824        .wait_state = SSP_MWIRE_WAIT_ZERO,
1825        .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1826};
1827
1828/**
1829 * pl022_setup - setup function registered to SPI master framework
1830 * @spi: spi device which is requesting setup
1831 *
1832 * This function is registered to the SPI framework for this SPI master
1833 * controller. If it is the first time when setup is called by this device,
1834 * this function will initialize the runtime state for this chip and save
1835 * the same in the device structure. Else it will update the runtime info
1836 * with the updated chip info. Nothing is really being written to the
1837 * controller hardware here, that is not done until the actual transfer
1838 * commence.
1839 */
1840static int pl022_setup(struct spi_device *spi)
1841{
1842        struct pl022_config_chip const *chip_info;
1843        struct pl022_config_chip chip_info_dt;
1844        struct chip_data *chip;
1845        struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1846        int status = 0;
1847        struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1848        unsigned int bits = spi->bits_per_word;
1849        u32 tmp;
1850        struct device_node *np = spi->dev.of_node;
1851
1852        if (!spi->max_speed_hz)
1853                return -EINVAL;
1854
1855        /* Get controller_state if one is supplied */
1856        chip = spi_get_ctldata(spi);
1857
1858        if (chip == NULL) {
1859                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1860                if (!chip)
1861                        return -ENOMEM;
1862                dev_dbg(&spi->dev,
1863                        "allocated memory for controller's runtime state\n");
1864        }
1865
1866        /* Get controller data if one is supplied */
1867        chip_info = spi->controller_data;
1868
1869        if (chip_info == NULL) {
1870                if (np) {
1871                        chip_info_dt = pl022_default_chip_info;
1872
1873                        chip_info_dt.hierarchy = SSP_MASTER;
1874                        of_property_read_u32(np, "pl022,interface",
1875                                &chip_info_dt.iface);
1876                        of_property_read_u32(np, "pl022,com-mode",
1877                                &chip_info_dt.com_mode);
1878                        of_property_read_u32(np, "pl022,rx-level-trig",
1879                                &chip_info_dt.rx_lev_trig);
1880                        of_property_read_u32(np, "pl022,tx-level-trig",
1881                                &chip_info_dt.tx_lev_trig);
1882                        of_property_read_u32(np, "pl022,ctrl-len",
1883                                &chip_info_dt.ctrl_len);
1884                        of_property_read_u32(np, "pl022,wait-state",
1885                                &chip_info_dt.wait_state);
1886                        of_property_read_u32(np, "pl022,duplex",
1887                                &chip_info_dt.duplex);
1888
1889                        chip_info = &chip_info_dt;
1890                } else {
1891                        chip_info = &pl022_default_chip_info;
1892                        /* spi_board_info.controller_data not is supplied */
1893                        dev_dbg(&spi->dev,
1894                                "using default controller_data settings\n");
1895                }
1896        } else
1897                dev_dbg(&spi->dev,
1898                        "using user supplied controller_data settings\n");
1899
1900        /*
1901         * We can override with custom divisors, else we use the board
1902         * frequency setting
1903         */
1904        if ((0 == chip_info->clk_freq.cpsdvsr)
1905            && (0 == chip_info->clk_freq.scr)) {
1906                status = calculate_effective_freq(pl022,
1907                                                  spi->max_speed_hz,
1908                                                  &clk_freq);
1909                if (status < 0)
1910                        goto err_config_params;
1911        } else {
1912                memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1913                if ((clk_freq.cpsdvsr % 2) != 0)
1914                        clk_freq.cpsdvsr =
1915                                clk_freq.cpsdvsr - 1;
1916        }
1917        if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1918            || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1919                status = -EINVAL;
1920                dev_err(&spi->dev,
1921                        "cpsdvsr is configured incorrectly\n");
1922                goto err_config_params;
1923        }
1924
1925        status = verify_controller_parameters(pl022, chip_info);
1926        if (status) {
1927                dev_err(&spi->dev, "controller data is incorrect");
1928                goto err_config_params;
1929        }
1930
1931        pl022->rx_lev_trig = chip_info->rx_lev_trig;
1932        pl022->tx_lev_trig = chip_info->tx_lev_trig;
1933
1934        /* Now set controller state based on controller data */
1935        chip->xfer_type = chip_info->com_mode;
1936
1937        /* Check bits per word with vendor specific range */
1938        if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1939                status = -ENOTSUPP;
1940                dev_err(&spi->dev, "illegal data size for this controller!\n");
1941                dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1942                                pl022->vendor->max_bpw);
1943                goto err_config_params;
1944        } else if (bits <= 8) {
1945                dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1946                chip->n_bytes = 1;
1947                chip->read = READING_U8;
1948                chip->write = WRITING_U8;
1949        } else if (bits <= 16) {
1950                dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1951                chip->n_bytes = 2;
1952                chip->read = READING_U16;
1953                chip->write = WRITING_U16;
1954        } else {
1955                dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1956                chip->n_bytes = 4;
1957                chip->read = READING_U32;
1958                chip->write = WRITING_U32;
1959        }
1960
1961        /* Now Initialize all register settings required for this chip */
1962        chip->cr0 = 0;
1963        chip->cr1 = 0;
1964        chip->dmacr = 0;
1965        chip->cpsr = 0;
1966        if ((chip_info->com_mode == DMA_TRANSFER)
1967            && ((pl022->master_info)->enable_dma)) {
1968                chip->enable_dma = true;
1969                dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1970                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1971                               SSP_DMACR_MASK_RXDMAE, 0);
1972                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1973                               SSP_DMACR_MASK_TXDMAE, 1);
1974        } else {
1975                chip->enable_dma = false;
1976                dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1977                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1978                               SSP_DMACR_MASK_RXDMAE, 0);
1979                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1980                               SSP_DMACR_MASK_TXDMAE, 1);
1981        }
1982
1983        chip->cpsr = clk_freq.cpsdvsr;
1984
1985        /* Special setup for the ST micro extended control registers */
1986        if (pl022->vendor->extended_cr) {
1987                u32 etx;
1988
1989                if (pl022->vendor->pl023) {
1990                        /* These bits are only in the PL023 */
1991                        SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1992                                       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1993                } else {
1994                        /* These bits are in the PL022 but not PL023 */
1995                        SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1996                                       SSP_CR0_MASK_HALFDUP_ST, 5);
1997                        SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1998                                       SSP_CR0_MASK_CSS_ST, 16);
1999                        SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2000                                       SSP_CR0_MASK_FRF_ST, 21);
2001                        SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2002                                       SSP_CR1_MASK_MWAIT_ST, 6);
2003                }
2004                SSP_WRITE_BITS(chip->cr0, bits - 1,
2005                               SSP_CR0_MASK_DSS_ST, 0);
2006
2007                if (spi->mode & SPI_LSB_FIRST) {
2008                        tmp = SSP_RX_LSB;
2009                        etx = SSP_TX_LSB;
2010                } else {
2011                        tmp = SSP_RX_MSB;
2012                        etx = SSP_TX_MSB;
2013                }
2014                SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2015                SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2016                SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2017                               SSP_CR1_MASK_RXIFLSEL_ST, 7);
2018                SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2019                               SSP_CR1_MASK_TXIFLSEL_ST, 10);
2020        } else {
2021                SSP_WRITE_BITS(chip->cr0, bits - 1,
2022                               SSP_CR0_MASK_DSS, 0);
2023                SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2024                               SSP_CR0_MASK_FRF, 4);
2025        }
2026
2027        /* Stuff that is common for all versions */
2028        if (spi->mode & SPI_CPOL)
2029                tmp = SSP_CLK_POL_IDLE_HIGH;
2030        else
2031                tmp = SSP_CLK_POL_IDLE_LOW;
2032        SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2033
2034        if (spi->mode & SPI_CPHA)
2035                tmp = SSP_CLK_SECOND_EDGE;
2036        else
2037                tmp = SSP_CLK_FIRST_EDGE;
2038        SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2039
2040        SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2041        /* Loopback is available on all versions except PL023 */
2042        if (pl022->vendor->loopback) {
2043                if (spi->mode & SPI_LOOP)
2044                        tmp = LOOPBACK_ENABLED;
2045                else
2046                        tmp = LOOPBACK_DISABLED;
2047                SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2048        }
2049        SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2050        SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2051        SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2052                3);
2053
2054        /* Save controller_state */
2055        spi_set_ctldata(spi, chip);
2056        return status;
2057 err_config_params:
2058        spi_set_ctldata(spi, NULL);
2059        kfree(chip);
2060        return status;
2061}
2062
2063/**
2064 * pl022_cleanup - cleanup function registered to SPI master framework
2065 * @spi: spi device which is requesting cleanup
2066 *
2067 * This function is registered to the SPI framework for this SPI master
2068 * controller. It will free the runtime state of chip.
2069 */
2070static void pl022_cleanup(struct spi_device *spi)
2071{
2072        struct chip_data *chip = spi_get_ctldata(spi);
2073
2074        spi_set_ctldata(spi, NULL);
2075        kfree(chip);
2076}
2077
2078static struct pl022_ssp_controller *
2079pl022_platform_data_dt_get(struct device *dev)
2080{
2081        struct device_node *np = dev->of_node;
2082        struct pl022_ssp_controller *pd;
2083
2084        if (!np) {
2085                dev_err(dev, "no dt node defined\n");
2086                return NULL;
2087        }
2088
2089        pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2090        if (!pd)
2091                return NULL;
2092
2093        pd->bus_id = -1;
2094        pd->enable_dma = 1;
2095        of_property_read_u32(np, "pl022,autosuspend-delay",
2096                             &pd->autosuspend_delay);
2097        pd->rt = of_property_read_bool(np, "pl022,rt");
2098
2099        return pd;
2100}
2101
2102static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2103{
2104        struct device *dev = &adev->dev;
2105        struct pl022_ssp_controller *platform_info =
2106                        dev_get_platdata(&adev->dev);
2107        struct spi_master *master;
2108        struct pl022 *pl022 = NULL;     /*Data for this driver */
2109        int status = 0;
2110
2111        dev_info(&adev->dev,
2112                 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2113        if (!platform_info && IS_ENABLED(CONFIG_OF))
2114                platform_info = pl022_platform_data_dt_get(dev);
2115
2116        if (!platform_info) {
2117                dev_err(dev, "probe: no platform data defined\n");
2118                return -ENODEV;
2119        }
2120
2121        /* Allocate master with space for data */
2122        master = spi_alloc_master(dev, sizeof(struct pl022));
2123        if (master == NULL) {
2124                dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2125                return -ENOMEM;
2126        }
2127
2128        pl022 = spi_master_get_devdata(master);
2129        pl022->master = master;
2130        pl022->master_info = platform_info;
2131        pl022->adev = adev;
2132        pl022->vendor = id->data;
2133
2134        /*
2135         * Bus Number Which has been Assigned to this SSP controller
2136         * on this board
2137         */
2138        master->bus_num = platform_info->bus_id;
2139        master->cleanup = pl022_cleanup;
2140        master->setup = pl022_setup;
2141        master->auto_runtime_pm = true;
2142        master->transfer_one_message = pl022_transfer_one_message;
2143        master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2144        master->rt = platform_info->rt;
2145        master->dev.of_node = dev->of_node;
2146        master->use_gpio_descriptors = true;
2147
2148        /*
2149         * Supports mode 0-3, loopback, and active low CS. Transfers are
2150         * always MS bit first on the original pl022.
2151         */
2152        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2153        if (pl022->vendor->extended_cr)
2154                master->mode_bits |= SPI_LSB_FIRST;
2155
2156        dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2157
2158        status = amba_request_regions(adev, NULL);
2159        if (status)
2160                goto err_no_ioregion;
2161
2162        pl022->phybase = adev->res.start;
2163        pl022->virtbase = devm_ioremap(dev, adev->res.start,
2164                                       resource_size(&adev->res));
2165        if (pl022->virtbase == NULL) {
2166                status = -ENOMEM;
2167                goto err_no_ioremap;
2168        }
2169        dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2170                &adev->res.start, pl022->virtbase);
2171
2172        pl022->clk = devm_clk_get(&adev->dev, NULL);
2173        if (IS_ERR(pl022->clk)) {
2174                status = PTR_ERR(pl022->clk);
2175                dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2176                goto err_no_clk;
2177        }
2178
2179        status = clk_prepare_enable(pl022->clk);
2180        if (status) {
2181                dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2182                goto err_no_clk_en;
2183        }
2184
2185        /* Initialize transfer pump */
2186        tasklet_init(&pl022->pump_transfers, pump_transfers,
2187                     (unsigned long)pl022);
2188
2189        /* Disable SSP */
2190        writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2191               SSP_CR1(pl022->virtbase));
2192        load_ssp_default_config(pl022);
2193
2194        status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2195                                  0, "pl022", pl022);
2196        if (status < 0) {
2197                dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2198                goto err_no_irq;
2199        }
2200
2201        /* Get DMA channels, try autoconfiguration first */
2202        status = pl022_dma_autoprobe(pl022);
2203        if (status == -EPROBE_DEFER) {
2204                dev_dbg(dev, "deferring probe to get DMA channel\n");
2205                goto err_no_irq;
2206        }
2207
2208        /* If that failed, use channels from platform_info */
2209        if (status == 0)
2210                platform_info->enable_dma = 1;
2211        else if (platform_info->enable_dma) {
2212                status = pl022_dma_probe(pl022);
2213                if (status != 0)
2214                        platform_info->enable_dma = 0;
2215        }
2216
2217        /* Register with the SPI framework */
2218        amba_set_drvdata(adev, pl022);
2219        status = devm_spi_register_master(&adev->dev, master);
2220        if (status != 0) {
2221                dev_err(&adev->dev,
2222                        "probe - problem registering spi master\n");
2223                goto err_spi_register;
2224        }
2225        dev_dbg(dev, "probe succeeded\n");
2226
2227        /* let runtime pm put suspend */
2228        if (platform_info->autosuspend_delay > 0) {
2229                dev_info(&adev->dev,
2230                        "will use autosuspend for runtime pm, delay %dms\n",
2231                        platform_info->autosuspend_delay);
2232                pm_runtime_set_autosuspend_delay(dev,
2233                        platform_info->autosuspend_delay);
2234                pm_runtime_use_autosuspend(dev);
2235        }
2236        pm_runtime_put(dev);
2237
2238        return 0;
2239
2240 err_spi_register:
2241        if (platform_info->enable_dma)
2242                pl022_dma_remove(pl022);
2243 err_no_irq:
2244        clk_disable_unprepare(pl022->clk);
2245 err_no_clk_en:
2246 err_no_clk:
2247 err_no_ioremap:
2248        amba_release_regions(adev);
2249 err_no_ioregion:
2250        spi_master_put(master);
2251        return status;
2252}
2253
2254static void
2255pl022_remove(struct amba_device *adev)
2256{
2257        struct pl022 *pl022 = amba_get_drvdata(adev);
2258
2259        if (!pl022)
2260                return;
2261
2262        /*
2263         * undo pm_runtime_put() in probe.  I assume that we're not
2264         * accessing the primecell here.
2265         */
2266        pm_runtime_get_noresume(&adev->dev);
2267
2268        load_ssp_default_config(pl022);
2269        if (pl022->master_info->enable_dma)
2270                pl022_dma_remove(pl022);
2271
2272        clk_disable_unprepare(pl022->clk);
2273        amba_release_regions(adev);
2274        tasklet_disable(&pl022->pump_transfers);
2275}
2276
2277#ifdef CONFIG_PM_SLEEP
2278static int pl022_suspend(struct device *dev)
2279{
2280        struct pl022 *pl022 = dev_get_drvdata(dev);
2281        int ret;
2282
2283        ret = spi_master_suspend(pl022->master);
2284        if (ret)
2285                return ret;
2286
2287        ret = pm_runtime_force_suspend(dev);
2288        if (ret) {
2289                spi_master_resume(pl022->master);
2290                return ret;
2291        }
2292
2293        pinctrl_pm_select_sleep_state(dev);
2294
2295        dev_dbg(dev, "suspended\n");
2296        return 0;
2297}
2298
2299static int pl022_resume(struct device *dev)
2300{
2301        struct pl022 *pl022 = dev_get_drvdata(dev);
2302        int ret;
2303
2304        ret = pm_runtime_force_resume(dev);
2305        if (ret)
2306                dev_err(dev, "problem resuming\n");
2307
2308        /* Start the queue running */
2309        ret = spi_master_resume(pl022->master);
2310        if (!ret)
2311                dev_dbg(dev, "resumed\n");
2312
2313        return ret;
2314}
2315#endif
2316
2317#ifdef CONFIG_PM
2318static int pl022_runtime_suspend(struct device *dev)
2319{
2320        struct pl022 *pl022 = dev_get_drvdata(dev);
2321
2322        clk_disable_unprepare(pl022->clk);
2323        pinctrl_pm_select_idle_state(dev);
2324
2325        return 0;
2326}
2327
2328static int pl022_runtime_resume(struct device *dev)
2329{
2330        struct pl022 *pl022 = dev_get_drvdata(dev);
2331
2332        pinctrl_pm_select_default_state(dev);
2333        clk_prepare_enable(pl022->clk);
2334
2335        return 0;
2336}
2337#endif
2338
2339static const struct dev_pm_ops pl022_dev_pm_ops = {
2340        SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2341        SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2342};
2343
2344static struct vendor_data vendor_arm = {
2345        .fifodepth = 8,
2346        .max_bpw = 16,
2347        .unidir = false,
2348        .extended_cr = false,
2349        .pl023 = false,
2350        .loopback = true,
2351        .internal_cs_ctrl = false,
2352};
2353
2354static struct vendor_data vendor_st = {
2355        .fifodepth = 32,
2356        .max_bpw = 32,
2357        .unidir = false,
2358        .extended_cr = true,
2359        .pl023 = false,
2360        .loopback = true,
2361        .internal_cs_ctrl = false,
2362};
2363
2364static struct vendor_data vendor_st_pl023 = {
2365        .fifodepth = 32,
2366        .max_bpw = 32,
2367        .unidir = false,
2368        .extended_cr = true,
2369        .pl023 = true,
2370        .loopback = false,
2371        .internal_cs_ctrl = false,
2372};
2373
2374static struct vendor_data vendor_lsi = {
2375        .fifodepth = 8,
2376        .max_bpw = 16,
2377        .unidir = false,
2378        .extended_cr = false,
2379        .pl023 = false,
2380        .loopback = true,
2381        .internal_cs_ctrl = true,
2382};
2383
2384static const struct amba_id pl022_ids[] = {
2385        {
2386                /*
2387                 * ARM PL022 variant, this has a 16bit wide
2388                 * and 8 locations deep TX/RX FIFO
2389                 */
2390                .id     = 0x00041022,
2391                .mask   = 0x000fffff,
2392                .data   = &vendor_arm,
2393        },
2394        {
2395                /*
2396                 * ST Micro derivative, this has 32bit wide
2397                 * and 32 locations deep TX/RX FIFO
2398                 */
2399                .id     = 0x01080022,
2400                .mask   = 0xffffffff,
2401                .data   = &vendor_st,
2402        },
2403        {
2404                /*
2405                 * ST-Ericsson derivative "PL023" (this is not
2406                 * an official ARM number), this is a PL022 SSP block
2407                 * stripped to SPI mode only, it has 32bit wide
2408                 * and 32 locations deep TX/RX FIFO but no extended
2409                 * CR0/CR1 register
2410                 */
2411                .id     = 0x00080023,
2412                .mask   = 0xffffffff,
2413                .data   = &vendor_st_pl023,
2414        },
2415        {
2416                /*
2417                 * PL022 variant that has a chip select control register whih
2418                 * allows control of 5 output signals nCS[0:4].
2419                 */
2420                .id     = 0x000b6022,
2421                .mask   = 0x000fffff,
2422                .data   = &vendor_lsi,
2423        },
2424        { 0, 0 },
2425};
2426
2427MODULE_DEVICE_TABLE(amba, pl022_ids);
2428
2429static struct amba_driver pl022_driver = {
2430        .drv = {
2431                .name   = "ssp-pl022",
2432                .pm     = &pl022_dev_pm_ops,
2433        },
2434        .id_table       = pl022_ids,
2435        .probe          = pl022_probe,
2436        .remove         = pl022_remove,
2437};
2438
2439static int __init pl022_init(void)
2440{
2441        return amba_driver_register(&pl022_driver);
2442}
2443subsys_initcall(pl022_init);
2444
2445static void __exit pl022_exit(void)
2446{
2447        amba_driver_unregister(&pl022_driver);
2448}
2449module_exit(pl022_exit);
2450
2451MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2452MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2453MODULE_LICENSE("GPL");
2454