linux/drivers/spi/spi-ppc4xx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * SPI_PPC4XX SPI controller driver.
   4 *
   5 * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
   6 * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
   7 * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
   8 *
   9 * Based in part on drivers/spi/spi_s3c24xx.c
  10 *
  11 * Copyright (c) 2006 Ben Dooks
  12 * Copyright (c) 2006 Simtec Electronics
  13 *      Ben Dooks <ben@simtec.co.uk>
  14 */
  15
  16/*
  17 * The PPC4xx SPI controller has no FIFO so each sent/received byte will
  18 * generate an interrupt to the CPU. This can cause high CPU utilization.
  19 * This driver allows platforms to reduce the interrupt load on the CPU
  20 * during SPI transfers by setting max_speed_hz via the device tree.
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/sched.h>
  25#include <linux/slab.h>
  26#include <linux/errno.h>
  27#include <linux/wait.h>
  28#include <linux/of_address.h>
  29#include <linux/of_irq.h>
  30#include <linux/of_platform.h>
  31#include <linux/interrupt.h>
  32#include <linux/delay.h>
  33
  34#include <linux/spi/spi.h>
  35#include <linux/spi/spi_bitbang.h>
  36
  37#include <linux/io.h>
  38#include <asm/dcr.h>
  39#include <asm/dcr-regs.h>
  40
  41/* bits in mode register - bit 0 is MSb */
  42
  43/*
  44 * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
  45 * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
  46 * Note: This is the inverse of CPHA.
  47 */
  48#define SPI_PPC4XX_MODE_SCP     (0x80 >> 3)
  49
  50/* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
  51#define SPI_PPC4XX_MODE_SPE     (0x80 >> 4)
  52
  53/*
  54 * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
  55 * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
  56 * Note: This is identical to SPI_LSB_FIRST.
  57 */
  58#define SPI_PPC4XX_MODE_RD      (0x80 >> 5)
  59
  60/*
  61 * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
  62 * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
  63 * Note: This is identical to CPOL.
  64 */
  65#define SPI_PPC4XX_MODE_CI      (0x80 >> 6)
  66
  67/*
  68 * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
  69 * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
  70 */
  71#define SPI_PPC4XX_MODE_IL      (0x80 >> 7)
  72
  73/* bits in control register */
  74/* starts a transfer when set */
  75#define SPI_PPC4XX_CR_STR       (0x80 >> 7)
  76
  77/* bits in status register */
  78/* port is busy with a transfer */
  79#define SPI_PPC4XX_SR_BSY       (0x80 >> 6)
  80/* RxD ready */
  81#define SPI_PPC4XX_SR_RBR       (0x80 >> 7)
  82
  83/* clock settings (SCP and CI) for various SPI modes */
  84#define SPI_CLK_MODE0   (SPI_PPC4XX_MODE_SCP | 0)
  85#define SPI_CLK_MODE1   (0 | 0)
  86#define SPI_CLK_MODE2   (SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
  87#define SPI_CLK_MODE3   (0 | SPI_PPC4XX_MODE_CI)
  88
  89#define DRIVER_NAME     "spi_ppc4xx_of"
  90
  91struct spi_ppc4xx_regs {
  92        u8 mode;
  93        u8 rxd;
  94        u8 txd;
  95        u8 cr;
  96        u8 sr;
  97        u8 dummy;
  98        /*
  99         * Clock divisor modulus register
 100         * This uses the following formula:
 101         *    SCPClkOut = OPBCLK/(4(CDM + 1))
 102         * or
 103         *    CDM = (OPBCLK/4*SCPClkOut) - 1
 104         * bit 0 is the MSb!
 105         */
 106        u8 cdm;
 107};
 108
 109/* SPI Controller driver's private data. */
 110struct ppc4xx_spi {
 111        /* bitbang has to be first */
 112        struct spi_bitbang bitbang;
 113        struct completion done;
 114
 115        u64 mapbase;
 116        u64 mapsize;
 117        int irqnum;
 118        /* need this to set the SPI clock */
 119        unsigned int opb_freq;
 120
 121        /* for transfers */
 122        int len;
 123        int count;
 124        /* data buffers */
 125        const unsigned char *tx;
 126        unsigned char *rx;
 127
 128        struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
 129        struct spi_master *master;
 130        struct device *dev;
 131};
 132
 133/* need this so we can set the clock in the chipselect routine */
 134struct spi_ppc4xx_cs {
 135        u8 mode;
 136};
 137
 138static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
 139{
 140        struct ppc4xx_spi *hw;
 141        u8 data;
 142
 143        dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
 144                t->tx_buf, t->rx_buf, t->len);
 145
 146        hw = spi_master_get_devdata(spi->master);
 147
 148        hw->tx = t->tx_buf;
 149        hw->rx = t->rx_buf;
 150        hw->len = t->len;
 151        hw->count = 0;
 152
 153        /* send the first byte */
 154        data = hw->tx ? hw->tx[0] : 0;
 155        out_8(&hw->regs->txd, data);
 156        out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
 157        wait_for_completion(&hw->done);
 158
 159        return hw->count;
 160}
 161
 162static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
 163{
 164        struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
 165        struct spi_ppc4xx_cs *cs = spi->controller_state;
 166        int scr;
 167        u8 cdm = 0;
 168        u32 speed;
 169        u8 bits_per_word;
 170
 171        /* Start with the generic configuration for this device. */
 172        bits_per_word = spi->bits_per_word;
 173        speed = spi->max_speed_hz;
 174
 175        /*
 176         * Modify the configuration if the transfer overrides it.  Do not allow
 177         * the transfer to overwrite the generic configuration with zeros.
 178         */
 179        if (t) {
 180                if (t->bits_per_word)
 181                        bits_per_word = t->bits_per_word;
 182
 183                if (t->speed_hz)
 184                        speed = min(t->speed_hz, spi->max_speed_hz);
 185        }
 186
 187        if (!speed || (speed > spi->max_speed_hz)) {
 188                dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
 189                return -EINVAL;
 190        }
 191
 192        /* Write new configuration */
 193        out_8(&hw->regs->mode, cs->mode);
 194
 195        /* Set the clock */
 196        /* opb_freq was already divided by 4 */
 197        scr = (hw->opb_freq / speed) - 1;
 198        if (scr > 0)
 199                cdm = min(scr, 0xff);
 200
 201        dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
 202
 203        if (in_8(&hw->regs->cdm) != cdm)
 204                out_8(&hw->regs->cdm, cdm);
 205
 206        mutex_lock(&hw->bitbang.lock);
 207        if (!hw->bitbang.busy) {
 208                hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
 209                /* Need to ndelay here? */
 210        }
 211        mutex_unlock(&hw->bitbang.lock);
 212
 213        return 0;
 214}
 215
 216static int spi_ppc4xx_setup(struct spi_device *spi)
 217{
 218        struct spi_ppc4xx_cs *cs = spi->controller_state;
 219
 220        if (!spi->max_speed_hz) {
 221                dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
 222                return -EINVAL;
 223        }
 224
 225        if (cs == NULL) {
 226                cs = kzalloc(sizeof(*cs), GFP_KERNEL);
 227                if (!cs)
 228                        return -ENOMEM;
 229                spi->controller_state = cs;
 230        }
 231
 232        /*
 233         * We set all bits of the SPI0_MODE register, so,
 234         * no need to read-modify-write
 235         */
 236        cs->mode = SPI_PPC4XX_MODE_SPE;
 237
 238        switch (spi->mode & SPI_MODE_X_MASK) {
 239        case SPI_MODE_0:
 240                cs->mode |= SPI_CLK_MODE0;
 241                break;
 242        case SPI_MODE_1:
 243                cs->mode |= SPI_CLK_MODE1;
 244                break;
 245        case SPI_MODE_2:
 246                cs->mode |= SPI_CLK_MODE2;
 247                break;
 248        case SPI_MODE_3:
 249                cs->mode |= SPI_CLK_MODE3;
 250                break;
 251        }
 252
 253        if (spi->mode & SPI_LSB_FIRST)
 254                cs->mode |= SPI_PPC4XX_MODE_RD;
 255
 256        return 0;
 257}
 258
 259static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
 260{
 261        struct ppc4xx_spi *hw;
 262        u8 status;
 263        u8 data;
 264        unsigned int count;
 265
 266        hw = (struct ppc4xx_spi *)dev_id;
 267
 268        status = in_8(&hw->regs->sr);
 269        if (!status)
 270                return IRQ_NONE;
 271
 272        /*
 273         * BSY de-asserts one cycle after the transfer is complete.  The
 274         * interrupt is asserted after the transfer is complete.  The exact
 275         * relationship is not documented, hence this code.
 276         */
 277
 278        if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
 279                u8 lstatus;
 280                int cnt = 0;
 281
 282                dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
 283                do {
 284                        ndelay(10);
 285                        lstatus = in_8(&hw->regs->sr);
 286                } while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
 287
 288                if (cnt >= 100) {
 289                        dev_err(hw->dev, "busywait: too many loops!\n");
 290                        complete(&hw->done);
 291                        return IRQ_HANDLED;
 292                } else {
 293                        /* status is always 1 (RBR) here */
 294                        status = in_8(&hw->regs->sr);
 295                        dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
 296                }
 297        }
 298
 299        count = hw->count;
 300        hw->count++;
 301
 302        /* RBR triggered this interrupt.  Therefore, data must be ready. */
 303        data = in_8(&hw->regs->rxd);
 304        if (hw->rx)
 305                hw->rx[count] = data;
 306
 307        count++;
 308
 309        if (count < hw->len) {
 310                data = hw->tx ? hw->tx[count] : 0;
 311                out_8(&hw->regs->txd, data);
 312                out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
 313        } else {
 314                complete(&hw->done);
 315        }
 316
 317        return IRQ_HANDLED;
 318}
 319
 320static void spi_ppc4xx_cleanup(struct spi_device *spi)
 321{
 322        kfree(spi->controller_state);
 323}
 324
 325static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
 326{
 327        /*
 328         * On all 4xx PPC's the SPI bus is shared/multiplexed with
 329         * the 2nd I2C bus. We need to enable the SPI bus before
 330         * using it.
 331         */
 332
 333        /* need to clear bit 14 to enable SPC */
 334        dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
 335}
 336
 337/*
 338 * platform_device layer stuff...
 339 */
 340static int spi_ppc4xx_of_probe(struct platform_device *op)
 341{
 342        struct ppc4xx_spi *hw;
 343        struct spi_master *master;
 344        struct spi_bitbang *bbp;
 345        struct resource resource;
 346        struct device_node *np = op->dev.of_node;
 347        struct device *dev = &op->dev;
 348        struct device_node *opbnp;
 349        int ret;
 350        const unsigned int *clk;
 351
 352        master = spi_alloc_master(dev, sizeof(*hw));
 353        if (master == NULL)
 354                return -ENOMEM;
 355        master->dev.of_node = np;
 356        platform_set_drvdata(op, master);
 357        hw = spi_master_get_devdata(master);
 358        hw->master = master;
 359        hw->dev = dev;
 360
 361        init_completion(&hw->done);
 362
 363        /* Setup the state for the bitbang driver */
 364        bbp = &hw->bitbang;
 365        bbp->master = hw->master;
 366        bbp->setup_transfer = spi_ppc4xx_setupxfer;
 367        bbp->txrx_bufs = spi_ppc4xx_txrx;
 368        bbp->use_dma = 0;
 369        bbp->master->setup = spi_ppc4xx_setup;
 370        bbp->master->cleanup = spi_ppc4xx_cleanup;
 371        bbp->master->bits_per_word_mask = SPI_BPW_MASK(8);
 372        bbp->master->use_gpio_descriptors = true;
 373        /*
 374         * The SPI core will count the number of GPIO descriptors to figure
 375         * out the number of chip selects available on the platform.
 376         */
 377        bbp->master->num_chipselect = 0;
 378
 379        /* the spi->mode bits understood by this driver: */
 380        bbp->master->mode_bits =
 381                SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
 382
 383        /* Get the clock for the OPB */
 384        opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
 385        if (opbnp == NULL) {
 386                dev_err(dev, "OPB: cannot find node\n");
 387                ret = -ENODEV;
 388                goto free_master;
 389        }
 390        /* Get the clock (Hz) for the OPB */
 391        clk = of_get_property(opbnp, "clock-frequency", NULL);
 392        if (clk == NULL) {
 393                dev_err(dev, "OPB: no clock-frequency property set\n");
 394                of_node_put(opbnp);
 395                ret = -ENODEV;
 396                goto free_master;
 397        }
 398        hw->opb_freq = *clk;
 399        hw->opb_freq >>= 2;
 400        of_node_put(opbnp);
 401
 402        ret = of_address_to_resource(np, 0, &resource);
 403        if (ret) {
 404                dev_err(dev, "error while parsing device node resource\n");
 405                goto free_master;
 406        }
 407        hw->mapbase = resource.start;
 408        hw->mapsize = resource_size(&resource);
 409
 410        /* Sanity check */
 411        if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
 412                dev_err(dev, "too small to map registers\n");
 413                ret = -EINVAL;
 414                goto free_master;
 415        }
 416
 417        /* Request IRQ */
 418        hw->irqnum = irq_of_parse_and_map(np, 0);
 419        ret = request_irq(hw->irqnum, spi_ppc4xx_int,
 420                          0, "spi_ppc4xx_of", (void *)hw);
 421        if (ret) {
 422                dev_err(dev, "unable to allocate interrupt\n");
 423                goto free_master;
 424        }
 425
 426        if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
 427                dev_err(dev, "resource unavailable\n");
 428                ret = -EBUSY;
 429                goto request_mem_error;
 430        }
 431
 432        hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
 433
 434        if (!hw->regs) {
 435                dev_err(dev, "unable to memory map registers\n");
 436                ret = -ENXIO;
 437                goto map_io_error;
 438        }
 439
 440        spi_ppc4xx_enable(hw);
 441
 442        /* Finally register our spi controller */
 443        dev->dma_mask = 0;
 444        ret = spi_bitbang_start(bbp);
 445        if (ret) {
 446                dev_err(dev, "failed to register SPI master\n");
 447                goto unmap_regs;
 448        }
 449
 450        dev_info(dev, "driver initialized\n");
 451
 452        return 0;
 453
 454unmap_regs:
 455        iounmap(hw->regs);
 456map_io_error:
 457        release_mem_region(hw->mapbase, hw->mapsize);
 458request_mem_error:
 459        free_irq(hw->irqnum, hw);
 460free_master:
 461        spi_master_put(master);
 462
 463        dev_err(dev, "initialization failed\n");
 464        return ret;
 465}
 466
 467static int spi_ppc4xx_of_remove(struct platform_device *op)
 468{
 469        struct spi_master *master = platform_get_drvdata(op);
 470        struct ppc4xx_spi *hw = spi_master_get_devdata(master);
 471
 472        spi_bitbang_stop(&hw->bitbang);
 473        release_mem_region(hw->mapbase, hw->mapsize);
 474        free_irq(hw->irqnum, hw);
 475        iounmap(hw->regs);
 476        spi_master_put(master);
 477        return 0;
 478}
 479
 480static const struct of_device_id spi_ppc4xx_of_match[] = {
 481        { .compatible = "ibm,ppc4xx-spi", },
 482        {},
 483};
 484
 485MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
 486
 487static struct platform_driver spi_ppc4xx_of_driver = {
 488        .probe = spi_ppc4xx_of_probe,
 489        .remove = spi_ppc4xx_of_remove,
 490        .driver = {
 491                .name = DRIVER_NAME,
 492                .of_match_table = spi_ppc4xx_of_match,
 493        },
 494};
 495module_platform_driver(spi_ppc4xx_of_driver);
 496
 497MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
 498MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
 499MODULE_LICENSE("GPL");
 500