linux/drivers/spi/spi-pxa2xx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   4 * Copyright (C) 2013, 2021 Intel Corporation
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/bitops.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/err.h>
  14#include <linux/errno.h>
  15#include <linux/gpio/consumer.h>
  16#include <linux/gpio.h>
  17#include <linux/init.h>
  18#include <linux/interrupt.h>
  19#include <linux/ioport.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/mod_devicetable.h>
  23#include <linux/of.h>
  24#include <linux/pci.h>
  25#include <linux/platform_device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/property.h>
  28#include <linux/slab.h>
  29
  30#include <linux/spi/pxa2xx_spi.h>
  31#include <linux/spi/spi.h>
  32
  33#include "spi-pxa2xx.h"
  34
  35MODULE_AUTHOR("Stephen Street");
  36MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  37MODULE_LICENSE("GPL");
  38MODULE_ALIAS("platform:pxa2xx-spi");
  39
  40#define TIMOUT_DFLT             1000
  41
  42/*
  43 * For testing SSCR1 changes that require SSP restart, basically
  44 * everything except the service and interrupt enables, the PXA270 developer
  45 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  46 * list, but the PXA255 developer manual says all bits without really meaning
  47 * the service and interrupt enables.
  48 */
  49#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  50                                | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  51                                | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  52                                | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  53                                | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  54                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  55
  56#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF   \
  57                                | QUARK_X1000_SSCR1_EFWR        \
  58                                | QUARK_X1000_SSCR1_RFT         \
  59                                | QUARK_X1000_SSCR1_TFT         \
  60                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  61
  62#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  63                                | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  64                                | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  65                                | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  66                                | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
  67                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  68
  69#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE   BIT(24)
  70#define LPSS_CS_CONTROL_SW_MODE                 BIT(0)
  71#define LPSS_CS_CONTROL_CS_HIGH                 BIT(1)
  72#define LPSS_CAPS_CS_EN_SHIFT                   9
  73#define LPSS_CAPS_CS_EN_MASK                    (0xf << LPSS_CAPS_CS_EN_SHIFT)
  74
  75#define LPSS_PRIV_CLOCK_GATE 0x38
  76#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
  77#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
  78
  79struct lpss_config {
  80        /* LPSS offset from drv_data->ioaddr */
  81        unsigned offset;
  82        /* Register offsets from drv_data->lpss_base or -1 */
  83        int reg_general;
  84        int reg_ssp;
  85        int reg_cs_ctrl;
  86        int reg_capabilities;
  87        /* FIFO thresholds */
  88        u32 rx_threshold;
  89        u32 tx_threshold_lo;
  90        u32 tx_threshold_hi;
  91        /* Chip select control */
  92        unsigned cs_sel_shift;
  93        unsigned cs_sel_mask;
  94        unsigned cs_num;
  95        /* Quirks */
  96        unsigned cs_clk_stays_gated : 1;
  97};
  98
  99/* Keep these sorted with enum pxa_ssp_type */
 100static const struct lpss_config lpss_platforms[] = {
 101        {       /* LPSS_LPT_SSP */
 102                .offset = 0x800,
 103                .reg_general = 0x08,
 104                .reg_ssp = 0x0c,
 105                .reg_cs_ctrl = 0x18,
 106                .reg_capabilities = -1,
 107                .rx_threshold = 64,
 108                .tx_threshold_lo = 160,
 109                .tx_threshold_hi = 224,
 110        },
 111        {       /* LPSS_BYT_SSP */
 112                .offset = 0x400,
 113                .reg_general = 0x08,
 114                .reg_ssp = 0x0c,
 115                .reg_cs_ctrl = 0x18,
 116                .reg_capabilities = -1,
 117                .rx_threshold = 64,
 118                .tx_threshold_lo = 160,
 119                .tx_threshold_hi = 224,
 120        },
 121        {       /* LPSS_BSW_SSP */
 122                .offset = 0x400,
 123                .reg_general = 0x08,
 124                .reg_ssp = 0x0c,
 125                .reg_cs_ctrl = 0x18,
 126                .reg_capabilities = -1,
 127                .rx_threshold = 64,
 128                .tx_threshold_lo = 160,
 129                .tx_threshold_hi = 224,
 130                .cs_sel_shift = 2,
 131                .cs_sel_mask = 1 << 2,
 132                .cs_num = 2,
 133        },
 134        {       /* LPSS_SPT_SSP */
 135                .offset = 0x200,
 136                .reg_general = -1,
 137                .reg_ssp = 0x20,
 138                .reg_cs_ctrl = 0x24,
 139                .reg_capabilities = -1,
 140                .rx_threshold = 1,
 141                .tx_threshold_lo = 32,
 142                .tx_threshold_hi = 56,
 143        },
 144        {       /* LPSS_BXT_SSP */
 145                .offset = 0x200,
 146                .reg_general = -1,
 147                .reg_ssp = 0x20,
 148                .reg_cs_ctrl = 0x24,
 149                .reg_capabilities = 0xfc,
 150                .rx_threshold = 1,
 151                .tx_threshold_lo = 16,
 152                .tx_threshold_hi = 48,
 153                .cs_sel_shift = 8,
 154                .cs_sel_mask = 3 << 8,
 155                .cs_clk_stays_gated = true,
 156        },
 157        {       /* LPSS_CNL_SSP */
 158                .offset = 0x200,
 159                .reg_general = -1,
 160                .reg_ssp = 0x20,
 161                .reg_cs_ctrl = 0x24,
 162                .reg_capabilities = 0xfc,
 163                .rx_threshold = 1,
 164                .tx_threshold_lo = 32,
 165                .tx_threshold_hi = 56,
 166                .cs_sel_shift = 8,
 167                .cs_sel_mask = 3 << 8,
 168                .cs_clk_stays_gated = true,
 169        },
 170};
 171
 172static inline const struct lpss_config
 173*lpss_get_config(const struct driver_data *drv_data)
 174{
 175        return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 176}
 177
 178static bool is_lpss_ssp(const struct driver_data *drv_data)
 179{
 180        switch (drv_data->ssp_type) {
 181        case LPSS_LPT_SSP:
 182        case LPSS_BYT_SSP:
 183        case LPSS_BSW_SSP:
 184        case LPSS_SPT_SSP:
 185        case LPSS_BXT_SSP:
 186        case LPSS_CNL_SSP:
 187                return true;
 188        default:
 189                return false;
 190        }
 191}
 192
 193static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 194{
 195        return drv_data->ssp_type == QUARK_X1000_SSP;
 196}
 197
 198static bool is_mmp2_ssp(const struct driver_data *drv_data)
 199{
 200        return drv_data->ssp_type == MMP2_SSP;
 201}
 202
 203static bool is_mrfld_ssp(const struct driver_data *drv_data)
 204{
 205        return drv_data->ssp_type == MRFLD_SSP;
 206}
 207
 208static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
 209{
 210        if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
 211                pxa2xx_spi_write(drv_data, reg, value & mask);
 212}
 213
 214static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 215{
 216        switch (drv_data->ssp_type) {
 217        case QUARK_X1000_SSP:
 218                return QUARK_X1000_SSCR1_CHANGE_MASK;
 219        case CE4100_SSP:
 220                return CE4100_SSCR1_CHANGE_MASK;
 221        default:
 222                return SSCR1_CHANGE_MASK;
 223        }
 224}
 225
 226static u32
 227pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 228{
 229        switch (drv_data->ssp_type) {
 230        case QUARK_X1000_SSP:
 231                return RX_THRESH_QUARK_X1000_DFLT;
 232        case CE4100_SSP:
 233                return RX_THRESH_CE4100_DFLT;
 234        default:
 235                return RX_THRESH_DFLT;
 236        }
 237}
 238
 239static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 240{
 241        u32 mask;
 242
 243        switch (drv_data->ssp_type) {
 244        case QUARK_X1000_SSP:
 245                mask = QUARK_X1000_SSSR_TFL_MASK;
 246                break;
 247        case CE4100_SSP:
 248                mask = CE4100_SSSR_TFL_MASK;
 249                break;
 250        default:
 251                mask = SSSR_TFL_MASK;
 252                break;
 253        }
 254
 255        return read_SSSR_bits(drv_data, mask) == mask;
 256}
 257
 258static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 259                                     u32 *sccr1_reg)
 260{
 261        u32 mask;
 262
 263        switch (drv_data->ssp_type) {
 264        case QUARK_X1000_SSP:
 265                mask = QUARK_X1000_SSCR1_RFT;
 266                break;
 267        case CE4100_SSP:
 268                mask = CE4100_SSCR1_RFT;
 269                break;
 270        default:
 271                mask = SSCR1_RFT;
 272                break;
 273        }
 274        *sccr1_reg &= ~mask;
 275}
 276
 277static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 278                                   u32 *sccr1_reg, u32 threshold)
 279{
 280        switch (drv_data->ssp_type) {
 281        case QUARK_X1000_SSP:
 282                *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 283                break;
 284        case CE4100_SSP:
 285                *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
 286                break;
 287        default:
 288                *sccr1_reg |= SSCR1_RxTresh(threshold);
 289                break;
 290        }
 291}
 292
 293static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 294                                  u32 clk_div, u8 bits)
 295{
 296        switch (drv_data->ssp_type) {
 297        case QUARK_X1000_SSP:
 298                return clk_div
 299                        | QUARK_X1000_SSCR0_Motorola
 300                        | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
 301        default:
 302                return clk_div
 303                        | SSCR0_Motorola
 304                        | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 305                        | (bits > 16 ? SSCR0_EDSS : 0);
 306        }
 307}
 308
 309/*
 310 * Read and write LPSS SSP private registers. Caller must first check that
 311 * is_lpss_ssp() returns true before these can be called.
 312 */
 313static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 314{
 315        WARN_ON(!drv_data->lpss_base);
 316        return readl(drv_data->lpss_base + offset);
 317}
 318
 319static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 320                                  unsigned offset, u32 value)
 321{
 322        WARN_ON(!drv_data->lpss_base);
 323        writel(value, drv_data->lpss_base + offset);
 324}
 325
 326/*
 327 * lpss_ssp_setup - perform LPSS SSP specific setup
 328 * @drv_data: pointer to the driver private data
 329 *
 330 * Perform LPSS SSP specific setup. This function must be called first if
 331 * one is going to use LPSS SSP private registers.
 332 */
 333static void lpss_ssp_setup(struct driver_data *drv_data)
 334{
 335        const struct lpss_config *config;
 336        u32 value;
 337
 338        config = lpss_get_config(drv_data);
 339        drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
 340
 341        /* Enable software chip select control */
 342        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 343        value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 344        value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 345        __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 346
 347        /* Enable multiblock DMA transfers */
 348        if (drv_data->controller_info->enable_dma) {
 349                __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 350
 351                if (config->reg_general >= 0) {
 352                        value = __lpss_ssp_read_priv(drv_data,
 353                                                     config->reg_general);
 354                        value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 355                        __lpss_ssp_write_priv(drv_data,
 356                                              config->reg_general, value);
 357                }
 358        }
 359}
 360
 361static void lpss_ssp_select_cs(struct spi_device *spi,
 362                               const struct lpss_config *config)
 363{
 364        struct driver_data *drv_data =
 365                spi_controller_get_devdata(spi->controller);
 366        u32 value, cs;
 367
 368        if (!config->cs_sel_mask)
 369                return;
 370
 371        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 372
 373        cs = spi->chip_select;
 374        cs <<= config->cs_sel_shift;
 375        if (cs != (value & config->cs_sel_mask)) {
 376                /*
 377                 * When switching another chip select output active the
 378                 * output must be selected first and wait 2 ssp_clk cycles
 379                 * before changing state to active. Otherwise a short
 380                 * glitch will occur on the previous chip select since
 381                 * output select is latched but state control is not.
 382                 */
 383                value &= ~config->cs_sel_mask;
 384                value |= cs;
 385                __lpss_ssp_write_priv(drv_data,
 386                                      config->reg_cs_ctrl, value);
 387                ndelay(1000000000 /
 388                       (drv_data->controller->max_speed_hz / 2));
 389        }
 390}
 391
 392static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
 393{
 394        struct driver_data *drv_data =
 395                spi_controller_get_devdata(spi->controller);
 396        const struct lpss_config *config;
 397        u32 value;
 398
 399        config = lpss_get_config(drv_data);
 400
 401        if (enable)
 402                lpss_ssp_select_cs(spi, config);
 403
 404        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 405        if (enable)
 406                value &= ~LPSS_CS_CONTROL_CS_HIGH;
 407        else
 408                value |= LPSS_CS_CONTROL_CS_HIGH;
 409        __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 410        if (config->cs_clk_stays_gated) {
 411                u32 clkgate;
 412
 413                /*
 414                 * Changing CS alone when dynamic clock gating is on won't
 415                 * actually flip CS at that time. This ruins SPI transfers
 416                 * that specify delays, or have no data. Toggle the clock mode
 417                 * to force on briefly to poke the CS pin to move.
 418                 */
 419                clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
 420                value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
 421                        LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
 422
 423                __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
 424                __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
 425        }
 426}
 427
 428static void cs_assert(struct spi_device *spi)
 429{
 430        struct chip_data *chip = spi_get_ctldata(spi);
 431        struct driver_data *drv_data =
 432                spi_controller_get_devdata(spi->controller);
 433
 434        if (drv_data->ssp_type == CE4100_SSP) {
 435                pxa2xx_spi_write(drv_data, SSSR, spi->chip_select);
 436                return;
 437        }
 438
 439        if (chip->cs_control) {
 440                chip->cs_control(PXA2XX_CS_ASSERT);
 441                return;
 442        }
 443
 444        if (is_lpss_ssp(drv_data))
 445                lpss_ssp_cs_control(spi, true);
 446}
 447
 448static void cs_deassert(struct spi_device *spi)
 449{
 450        struct chip_data *chip = spi_get_ctldata(spi);
 451        struct driver_data *drv_data =
 452                spi_controller_get_devdata(spi->controller);
 453        unsigned long timeout;
 454
 455        if (drv_data->ssp_type == CE4100_SSP)
 456                return;
 457
 458        /* Wait until SSP becomes idle before deasserting the CS */
 459        timeout = jiffies + msecs_to_jiffies(10);
 460        while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 461               !time_after(jiffies, timeout))
 462                cpu_relax();
 463
 464        if (chip->cs_control) {
 465                chip->cs_control(PXA2XX_CS_DEASSERT);
 466                return;
 467        }
 468
 469        if (is_lpss_ssp(drv_data))
 470                lpss_ssp_cs_control(spi, false);
 471}
 472
 473static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
 474{
 475        if (level)
 476                cs_deassert(spi);
 477        else
 478                cs_assert(spi);
 479}
 480
 481int pxa2xx_spi_flush(struct driver_data *drv_data)
 482{
 483        unsigned long limit = loops_per_jiffy << 1;
 484
 485        do {
 486                while (read_SSSR_bits(drv_data, SSSR_RNE))
 487                        pxa2xx_spi_read(drv_data, SSDR);
 488        } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 489        write_SSSR_CS(drv_data, SSSR_ROR);
 490
 491        return limit;
 492}
 493
 494static void pxa2xx_spi_off(struct driver_data *drv_data)
 495{
 496        /* On MMP, disabling SSE seems to corrupt the Rx FIFO */
 497        if (is_mmp2_ssp(drv_data))
 498                return;
 499
 500        pxa_ssp_disable(drv_data->ssp);
 501}
 502
 503static int null_writer(struct driver_data *drv_data)
 504{
 505        u8 n_bytes = drv_data->n_bytes;
 506
 507        if (pxa2xx_spi_txfifo_full(drv_data)
 508                || (drv_data->tx == drv_data->tx_end))
 509                return 0;
 510
 511        pxa2xx_spi_write(drv_data, SSDR, 0);
 512        drv_data->tx += n_bytes;
 513
 514        return 1;
 515}
 516
 517static int null_reader(struct driver_data *drv_data)
 518{
 519        u8 n_bytes = drv_data->n_bytes;
 520
 521        while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 522                pxa2xx_spi_read(drv_data, SSDR);
 523                drv_data->rx += n_bytes;
 524        }
 525
 526        return drv_data->rx == drv_data->rx_end;
 527}
 528
 529static int u8_writer(struct driver_data *drv_data)
 530{
 531        if (pxa2xx_spi_txfifo_full(drv_data)
 532                || (drv_data->tx == drv_data->tx_end))
 533                return 0;
 534
 535        pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 536        ++drv_data->tx;
 537
 538        return 1;
 539}
 540
 541static int u8_reader(struct driver_data *drv_data)
 542{
 543        while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 544                *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 545                ++drv_data->rx;
 546        }
 547
 548        return drv_data->rx == drv_data->rx_end;
 549}
 550
 551static int u16_writer(struct driver_data *drv_data)
 552{
 553        if (pxa2xx_spi_txfifo_full(drv_data)
 554                || (drv_data->tx == drv_data->tx_end))
 555                return 0;
 556
 557        pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 558        drv_data->tx += 2;
 559
 560        return 1;
 561}
 562
 563static int u16_reader(struct driver_data *drv_data)
 564{
 565        while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 566                *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 567                drv_data->rx += 2;
 568        }
 569
 570        return drv_data->rx == drv_data->rx_end;
 571}
 572
 573static int u32_writer(struct driver_data *drv_data)
 574{
 575        if (pxa2xx_spi_txfifo_full(drv_data)
 576                || (drv_data->tx == drv_data->tx_end))
 577                return 0;
 578
 579        pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 580        drv_data->tx += 4;
 581
 582        return 1;
 583}
 584
 585static int u32_reader(struct driver_data *drv_data)
 586{
 587        while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 588                *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 589                drv_data->rx += 4;
 590        }
 591
 592        return drv_data->rx == drv_data->rx_end;
 593}
 594
 595static void reset_sccr1(struct driver_data *drv_data)
 596{
 597        u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
 598        struct chip_data *chip;
 599
 600        if (drv_data->controller->cur_msg) {
 601                chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
 602                threshold = chip->threshold;
 603        } else {
 604                threshold = 0;
 605        }
 606
 607        switch (drv_data->ssp_type) {
 608        case QUARK_X1000_SSP:
 609                mask |= QUARK_X1000_SSCR1_RFT;
 610                break;
 611        case CE4100_SSP:
 612                mask |= CE4100_SSCR1_RFT;
 613                break;
 614        default:
 615                mask |= SSCR1_RFT;
 616                break;
 617        }
 618
 619        pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
 620}
 621
 622static void int_stop_and_reset(struct driver_data *drv_data)
 623{
 624        /* Clear and disable interrupts */
 625        write_SSSR_CS(drv_data, drv_data->clear_sr);
 626        reset_sccr1(drv_data);
 627        if (pxa25x_ssp_comp(drv_data))
 628                return;
 629
 630        pxa2xx_spi_write(drv_data, SSTO, 0);
 631}
 632
 633static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
 634{
 635        int_stop_and_reset(drv_data);
 636        pxa2xx_spi_flush(drv_data);
 637        pxa2xx_spi_off(drv_data);
 638
 639        dev_err(drv_data->ssp->dev, "%s\n", msg);
 640
 641        drv_data->controller->cur_msg->status = err;
 642        spi_finalize_current_transfer(drv_data->controller);
 643}
 644
 645static void int_transfer_complete(struct driver_data *drv_data)
 646{
 647        int_stop_and_reset(drv_data);
 648
 649        spi_finalize_current_transfer(drv_data->controller);
 650}
 651
 652static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 653{
 654        u32 irq_status;
 655
 656        irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
 657        if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
 658                irq_status &= ~SSSR_TFS;
 659
 660        if (irq_status & SSSR_ROR) {
 661                int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
 662                return IRQ_HANDLED;
 663        }
 664
 665        if (irq_status & SSSR_TUR) {
 666                int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
 667                return IRQ_HANDLED;
 668        }
 669
 670        if (irq_status & SSSR_TINT) {
 671                pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 672                if (drv_data->read(drv_data)) {
 673                        int_transfer_complete(drv_data);
 674                        return IRQ_HANDLED;
 675                }
 676        }
 677
 678        /* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
 679        do {
 680                if (drv_data->read(drv_data)) {
 681                        int_transfer_complete(drv_data);
 682                        return IRQ_HANDLED;
 683                }
 684        } while (drv_data->write(drv_data));
 685
 686        if (drv_data->read(drv_data)) {
 687                int_transfer_complete(drv_data);
 688                return IRQ_HANDLED;
 689        }
 690
 691        if (drv_data->tx == drv_data->tx_end) {
 692                u32 bytes_left;
 693                u32 sccr1_reg;
 694
 695                sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 696                sccr1_reg &= ~SSCR1_TIE;
 697
 698                /*
 699                 * PXA25x_SSP has no timeout, set up Rx threshold for
 700                 * the remaining Rx bytes.
 701                 */
 702                if (pxa25x_ssp_comp(drv_data)) {
 703                        u32 rx_thre;
 704
 705                        pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 706
 707                        bytes_left = drv_data->rx_end - drv_data->rx;
 708                        switch (drv_data->n_bytes) {
 709                        case 4:
 710                                bytes_left >>= 2;
 711                                break;
 712                        case 2:
 713                                bytes_left >>= 1;
 714                                break;
 715                        }
 716
 717                        rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 718                        if (rx_thre > bytes_left)
 719                                rx_thre = bytes_left;
 720
 721                        pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 722                }
 723                pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 724        }
 725
 726        /* We did something */
 727        return IRQ_HANDLED;
 728}
 729
 730static void handle_bad_msg(struct driver_data *drv_data)
 731{
 732        int_stop_and_reset(drv_data);
 733        pxa2xx_spi_off(drv_data);
 734
 735        dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
 736}
 737
 738static irqreturn_t ssp_int(int irq, void *dev_id)
 739{
 740        struct driver_data *drv_data = dev_id;
 741        u32 sccr1_reg;
 742        u32 mask = drv_data->mask_sr;
 743        u32 status;
 744
 745        /*
 746         * The IRQ might be shared with other peripherals so we must first
 747         * check that are we RPM suspended or not. If we are we assume that
 748         * the IRQ was not for us (we shouldn't be RPM suspended when the
 749         * interrupt is enabled).
 750         */
 751        if (pm_runtime_suspended(drv_data->ssp->dev))
 752                return IRQ_NONE;
 753
 754        /*
 755         * If the device is not yet in RPM suspended state and we get an
 756         * interrupt that is meant for another device, check if status bits
 757         * are all set to one. That means that the device is already
 758         * powered off.
 759         */
 760        status = pxa2xx_spi_read(drv_data, SSSR);
 761        if (status == ~0)
 762                return IRQ_NONE;
 763
 764        sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 765
 766        /* Ignore possible writes if we don't need to write */
 767        if (!(sccr1_reg & SSCR1_TIE))
 768                mask &= ~SSSR_TFS;
 769
 770        /* Ignore RX timeout interrupt if it is disabled */
 771        if (!(sccr1_reg & SSCR1_TINTE))
 772                mask &= ~SSSR_TINT;
 773
 774        if (!(status & mask))
 775                return IRQ_NONE;
 776
 777        pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
 778        pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 779
 780        if (!drv_data->controller->cur_msg) {
 781                handle_bad_msg(drv_data);
 782                /* Never fail */
 783                return IRQ_HANDLED;
 784        }
 785
 786        return drv_data->transfer_handler(drv_data);
 787}
 788
 789/*
 790 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 791 * input frequency by fractions of 2^24. It also has a divider by 5.
 792 *
 793 * There are formulas to get baud rate value for given input frequency and
 794 * divider parameters, such as DDS_CLK_RATE and SCR:
 795 *
 796 * Fsys = 200MHz
 797 *
 798 * Fssp = Fsys * DDS_CLK_RATE / 2^24                    (1)
 799 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))           (2)
 800 *
 801 * DDS_CLK_RATE either 2^n or 2^n / 5.
 802 * SCR is in range 0 .. 255
 803 *
 804 * Divisor = 5^i * 2^j * 2 * k
 805 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 806 *       j = [0, 23]     j = 0 iff i = 1
 807 *       k = [1, 256]
 808 * Special case: j = 0, i = 1: Divisor = 2 / 5
 809 *
 810 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 811 * are:
 812 *      Case 1:         2^n, n = [0, 23]
 813 *      Case 2:         2^24 * 2 / 5 (0x666666)
 814 *      Case 3:         less than or equal to 2^24 / 5 / 16 (0x33333)
 815 *
 816 * In all cases the lowest possible value is better.
 817 *
 818 * The function calculates parameters for all cases and chooses the one closest
 819 * to the asked baud rate.
 820 */
 821static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 822{
 823        unsigned long xtal = 200000000;
 824        unsigned long fref = xtal / 2;          /* mandatory division by 2,
 825                                                   see (2) */
 826                                                /* case 3 */
 827        unsigned long fref1 = fref / 2;         /* case 1 */
 828        unsigned long fref2 = fref * 2 / 5;     /* case 2 */
 829        unsigned long scale;
 830        unsigned long q, q1, q2;
 831        long r, r1, r2;
 832        u32 mul;
 833
 834        /* Case 1 */
 835
 836        /* Set initial value for DDS_CLK_RATE */
 837        mul = (1 << 24) >> 1;
 838
 839        /* Calculate initial quot */
 840        q1 = DIV_ROUND_UP(fref1, rate);
 841
 842        /* Scale q1 if it's too big */
 843        if (q1 > 256) {
 844                /* Scale q1 to range [1, 512] */
 845                scale = fls_long(q1 - 1);
 846                if (scale > 9) {
 847                        q1 >>= scale - 9;
 848                        mul >>= scale - 9;
 849                }
 850
 851                /* Round the result if we have a remainder */
 852                q1 += q1 & 1;
 853        }
 854
 855        /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 856        scale = __ffs(q1);
 857        q1 >>= scale;
 858        mul >>= scale;
 859
 860        /* Get the remainder */
 861        r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 862
 863        /* Case 2 */
 864
 865        q2 = DIV_ROUND_UP(fref2, rate);
 866        r2 = abs(fref2 / q2 - rate);
 867
 868        /*
 869         * Choose the best between two: less remainder we have the better. We
 870         * can't go case 2 if q2 is greater than 256 since SCR register can
 871         * hold only values 0 .. 255.
 872         */
 873        if (r2 >= r1 || q2 > 256) {
 874                /* case 1 is better */
 875                r = r1;
 876                q = q1;
 877        } else {
 878                /* case 2 is better */
 879                r = r2;
 880                q = q2;
 881                mul = (1 << 24) * 2 / 5;
 882        }
 883
 884        /* Check case 3 only if the divisor is big enough */
 885        if (fref / rate >= 80) {
 886                u64 fssp;
 887                u32 m;
 888
 889                /* Calculate initial quot */
 890                q1 = DIV_ROUND_UP(fref, rate);
 891                m = (1 << 24) / q1;
 892
 893                /* Get the remainder */
 894                fssp = (u64)fref * m;
 895                do_div(fssp, 1 << 24);
 896                r1 = abs(fssp - rate);
 897
 898                /* Choose this one if it suits better */
 899                if (r1 < r) {
 900                        /* case 3 is better */
 901                        q = 1;
 902                        mul = m;
 903                }
 904        }
 905
 906        *dds = mul;
 907        return q - 1;
 908}
 909
 910static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 911{
 912        unsigned long ssp_clk = drv_data->controller->max_speed_hz;
 913        const struct ssp_device *ssp = drv_data->ssp;
 914
 915        rate = min_t(int, ssp_clk, rate);
 916
 917        /*
 918         * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
 919         * that the SSP transmission rate can be greater than the device rate.
 920         */
 921        if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 922                return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
 923        else
 924                return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
 925}
 926
 927static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 928                                           int rate)
 929{
 930        struct chip_data *chip =
 931                spi_get_ctldata(drv_data->controller->cur_msg->spi);
 932        unsigned int clk_div;
 933
 934        switch (drv_data->ssp_type) {
 935        case QUARK_X1000_SSP:
 936                clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 937                break;
 938        default:
 939                clk_div = ssp_get_clk_div(drv_data, rate);
 940                break;
 941        }
 942        return clk_div << 8;
 943}
 944
 945static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
 946                               struct spi_device *spi,
 947                               struct spi_transfer *xfer)
 948{
 949        struct chip_data *chip = spi_get_ctldata(spi);
 950
 951        return chip->enable_dma &&
 952               xfer->len <= MAX_DMA_LEN &&
 953               xfer->len >= chip->dma_burst_size;
 954}
 955
 956static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
 957                                   struct spi_device *spi,
 958                                   struct spi_transfer *transfer)
 959{
 960        struct driver_data *drv_data = spi_controller_get_devdata(controller);
 961        struct spi_message *message = controller->cur_msg;
 962        struct chip_data *chip = spi_get_ctldata(spi);
 963        u32 dma_thresh = chip->dma_threshold;
 964        u32 dma_burst = chip->dma_burst_size;
 965        u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 966        u32 clk_div;
 967        u8 bits;
 968        u32 speed;
 969        u32 cr0;
 970        u32 cr1;
 971        int err;
 972        int dma_mapped;
 973
 974        /* Check if we can DMA this transfer */
 975        if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 976
 977                /* Reject already-mapped transfers; PIO won't always work */
 978                if (message->is_dma_mapped
 979                                || transfer->rx_dma || transfer->tx_dma) {
 980                        dev_err(&spi->dev,
 981                                "Mapped transfer length of %u is greater than %d\n",
 982                                transfer->len, MAX_DMA_LEN);
 983                        return -EINVAL;
 984                }
 985
 986                /* Warn ... we force this to PIO mode */
 987                dev_warn_ratelimited(&spi->dev,
 988                                     "DMA disabled for transfer length %u greater than %d\n",
 989                                     transfer->len, MAX_DMA_LEN);
 990        }
 991
 992        /* Setup the transfer state based on the type of transfer */
 993        if (pxa2xx_spi_flush(drv_data) == 0) {
 994                dev_err(&spi->dev, "Flush failed\n");
 995                return -EIO;
 996        }
 997        drv_data->n_bytes = chip->n_bytes;
 998        drv_data->tx = (void *)transfer->tx_buf;
 999        drv_data->tx_end = drv_data->tx + transfer->len;
1000        drv_data->rx = transfer->rx_buf;
1001        drv_data->rx_end = drv_data->rx + transfer->len;
1002        drv_data->write = drv_data->tx ? chip->write : null_writer;
1003        drv_data->read = drv_data->rx ? chip->read : null_reader;
1004
1005        /* Change speed and bit per word on a per transfer */
1006        bits = transfer->bits_per_word;
1007        speed = transfer->speed_hz;
1008
1009        clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1010
1011        if (bits <= 8) {
1012                drv_data->n_bytes = 1;
1013                drv_data->read = drv_data->read != null_reader ?
1014                                        u8_reader : null_reader;
1015                drv_data->write = drv_data->write != null_writer ?
1016                                        u8_writer : null_writer;
1017        } else if (bits <= 16) {
1018                drv_data->n_bytes = 2;
1019                drv_data->read = drv_data->read != null_reader ?
1020                                        u16_reader : null_reader;
1021                drv_data->write = drv_data->write != null_writer ?
1022                                        u16_writer : null_writer;
1023        } else if (bits <= 32) {
1024                drv_data->n_bytes = 4;
1025                drv_data->read = drv_data->read != null_reader ?
1026                                        u32_reader : null_reader;
1027                drv_data->write = drv_data->write != null_writer ?
1028                                        u32_writer : null_writer;
1029        }
1030        /*
1031         * If bits per word is changed in DMA mode, then must check
1032         * the thresholds and burst also.
1033         */
1034        if (chip->enable_dma) {
1035                if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1036                                                spi,
1037                                                bits, &dma_burst,
1038                                                &dma_thresh))
1039                        dev_warn_ratelimited(&spi->dev,
1040                                             "DMA burst size reduced to match bits_per_word\n");
1041        }
1042
1043        dma_mapped = controller->can_dma &&
1044                     controller->can_dma(controller, spi, transfer) &&
1045                     controller->cur_msg_mapped;
1046        if (dma_mapped) {
1047
1048                /* Ensure we have the correct interrupt handler */
1049                drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1050
1051                err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1052                if (err)
1053                        return err;
1054
1055                /* Clear status and start DMA engine */
1056                cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1057                pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1058
1059                pxa2xx_spi_dma_start(drv_data);
1060        } else {
1061                /* Ensure we have the correct interrupt handler */
1062                drv_data->transfer_handler = interrupt_transfer;
1063
1064                /* Clear status  */
1065                cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1066                write_SSSR_CS(drv_data, drv_data->clear_sr);
1067        }
1068
1069        /* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1070        cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1071        if (!pxa25x_ssp_comp(drv_data))
1072                dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1073                        controller->max_speed_hz
1074                                / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1075                        dma_mapped ? "DMA" : "PIO");
1076        else
1077                dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1078                        controller->max_speed_hz / 2
1079                                / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1080                        dma_mapped ? "DMA" : "PIO");
1081
1082        if (is_lpss_ssp(drv_data)) {
1083                pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1084                pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1085        }
1086
1087        if (is_mrfld_ssp(drv_data)) {
1088                u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1089                u32 thresh = 0;
1090
1091                thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1092                thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1093
1094                pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1095        }
1096
1097        if (is_quark_x1000_ssp(drv_data))
1098                pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1099
1100        /* Stop the SSP */
1101        if (!is_mmp2_ssp(drv_data))
1102                pxa_ssp_disable(drv_data->ssp);
1103
1104        if (!pxa25x_ssp_comp(drv_data))
1105                pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1106
1107        /* First set CR1 without interrupt and service enables */
1108        pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1109
1110        /* See if we need to reload the configuration registers */
1111        pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1112
1113        /* Restart the SSP */
1114        pxa_ssp_enable(drv_data->ssp);
1115
1116        if (is_mmp2_ssp(drv_data)) {
1117                u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1118
1119                if (tx_level) {
1120                        /* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1121                        dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1122                        if (tx_level > transfer->len)
1123                                tx_level = transfer->len;
1124                        drv_data->tx += tx_level;
1125                }
1126        }
1127
1128        if (spi_controller_is_slave(controller)) {
1129                while (drv_data->write(drv_data))
1130                        ;
1131                if (drv_data->gpiod_ready) {
1132                        gpiod_set_value(drv_data->gpiod_ready, 1);
1133                        udelay(1);
1134                        gpiod_set_value(drv_data->gpiod_ready, 0);
1135                }
1136        }
1137
1138        /*
1139         * Release the data by enabling service requests and interrupts,
1140         * without changing any mode bits.
1141         */
1142        pxa2xx_spi_write(drv_data, SSCR1, cr1);
1143
1144        return 1;
1145}
1146
1147static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1148{
1149        struct driver_data *drv_data = spi_controller_get_devdata(controller);
1150
1151        int_error_stop(drv_data, "transfer aborted", -EINTR);
1152
1153        return 0;
1154}
1155
1156static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1157                                 struct spi_message *msg)
1158{
1159        struct driver_data *drv_data = spi_controller_get_devdata(controller);
1160
1161        int_stop_and_reset(drv_data);
1162
1163        /* Disable the SSP */
1164        pxa2xx_spi_off(drv_data);
1165
1166        /*
1167         * Stop the DMA if running. Note DMA callback handler may have unset
1168         * the dma_running already, which is fine as stopping is not needed
1169         * then but we shouldn't rely this flag for anything else than
1170         * stopping. For instance to differentiate between PIO and DMA
1171         * transfers.
1172         */
1173        if (atomic_read(&drv_data->dma_running))
1174                pxa2xx_spi_dma_stop(drv_data);
1175}
1176
1177static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1178{
1179        struct driver_data *drv_data = spi_controller_get_devdata(controller);
1180
1181        /* Disable the SSP now */
1182        pxa2xx_spi_off(drv_data);
1183
1184        return 0;
1185}
1186
1187static void cleanup_cs(struct spi_device *spi)
1188{
1189        if (!gpio_is_valid(spi->cs_gpio))
1190                return;
1191
1192        gpio_free(spi->cs_gpio);
1193        spi->cs_gpio = -ENOENT;
1194}
1195
1196static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1197                    struct pxa2xx_spi_chip *chip_info)
1198{
1199        struct driver_data *drv_data = spi_controller_get_devdata(spi->controller);
1200
1201        if (chip == NULL)
1202                return 0;
1203
1204        if (chip_info == NULL)
1205                return 0;
1206
1207        if (drv_data->ssp_type == CE4100_SSP)
1208                return 0;
1209
1210        /*
1211         * NOTE: setup() can be called multiple times, possibly with
1212         * different chip_info, release previously requested GPIO.
1213         */
1214        cleanup_cs(spi);
1215
1216        /* If ->cs_control() is provided, ignore GPIO chip select */
1217        if (chip_info->cs_control) {
1218                chip->cs_control = chip_info->cs_control;
1219                return 0;
1220        }
1221
1222        if (gpio_is_valid(chip_info->gpio_cs)) {
1223                int gpio = chip_info->gpio_cs;
1224                int err;
1225
1226                err = gpio_request(gpio, "SPI_CS");
1227                if (err) {
1228                        dev_err(&spi->dev, "failed to request chip select GPIO%d\n", gpio);
1229                        return err;
1230                }
1231
1232                err = gpio_direction_output(gpio, !(spi->mode & SPI_CS_HIGH));
1233                if (err) {
1234                        gpio_free(gpio);
1235                        return err;
1236                }
1237
1238                spi->cs_gpio = gpio;
1239        }
1240
1241        return 0;
1242}
1243
1244static int setup(struct spi_device *spi)
1245{
1246        struct pxa2xx_spi_chip *chip_info;
1247        struct chip_data *chip;
1248        const struct lpss_config *config;
1249        struct driver_data *drv_data =
1250                spi_controller_get_devdata(spi->controller);
1251        uint tx_thres, tx_hi_thres, rx_thres;
1252        int err;
1253
1254        switch (drv_data->ssp_type) {
1255        case QUARK_X1000_SSP:
1256                tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1257                tx_hi_thres = 0;
1258                rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1259                break;
1260        case MRFLD_SSP:
1261                tx_thres = TX_THRESH_MRFLD_DFLT;
1262                tx_hi_thres = 0;
1263                rx_thres = RX_THRESH_MRFLD_DFLT;
1264                break;
1265        case CE4100_SSP:
1266                tx_thres = TX_THRESH_CE4100_DFLT;
1267                tx_hi_thres = 0;
1268                rx_thres = RX_THRESH_CE4100_DFLT;
1269                break;
1270        case LPSS_LPT_SSP:
1271        case LPSS_BYT_SSP:
1272        case LPSS_BSW_SSP:
1273        case LPSS_SPT_SSP:
1274        case LPSS_BXT_SSP:
1275        case LPSS_CNL_SSP:
1276                config = lpss_get_config(drv_data);
1277                tx_thres = config->tx_threshold_lo;
1278                tx_hi_thres = config->tx_threshold_hi;
1279                rx_thres = config->rx_threshold;
1280                break;
1281        default:
1282                tx_hi_thres = 0;
1283                if (spi_controller_is_slave(drv_data->controller)) {
1284                        tx_thres = 1;
1285                        rx_thres = 2;
1286                } else {
1287                        tx_thres = TX_THRESH_DFLT;
1288                        rx_thres = RX_THRESH_DFLT;
1289                }
1290                break;
1291        }
1292
1293        /* Only allocate on the first setup */
1294        chip = spi_get_ctldata(spi);
1295        if (!chip) {
1296                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1297                if (!chip)
1298                        return -ENOMEM;
1299
1300                if (drv_data->ssp_type == CE4100_SSP) {
1301                        if (spi->chip_select > 4) {
1302                                dev_err(&spi->dev,
1303                                        "failed setup: cs number must not be > 4.\n");
1304                                kfree(chip);
1305                                return -EINVAL;
1306                        }
1307                }
1308                chip->enable_dma = drv_data->controller_info->enable_dma;
1309                chip->timeout = TIMOUT_DFLT;
1310        }
1311
1312        /*
1313         * Protocol drivers may change the chip settings, so...
1314         * if chip_info exists, use it.
1315         */
1316        chip_info = spi->controller_data;
1317
1318        /* chip_info isn't always needed */
1319        chip->cr1 = 0;
1320        if (chip_info) {
1321                if (chip_info->timeout)
1322                        chip->timeout = chip_info->timeout;
1323                if (chip_info->tx_threshold)
1324                        tx_thres = chip_info->tx_threshold;
1325                if (chip_info->tx_hi_threshold)
1326                        tx_hi_thres = chip_info->tx_hi_threshold;
1327                if (chip_info->rx_threshold)
1328                        rx_thres = chip_info->rx_threshold;
1329                chip->dma_threshold = 0;
1330                if (chip_info->enable_loopback)
1331                        chip->cr1 = SSCR1_LBM;
1332        }
1333        if (spi_controller_is_slave(drv_data->controller)) {
1334                chip->cr1 |= SSCR1_SCFR;
1335                chip->cr1 |= SSCR1_SCLKDIR;
1336                chip->cr1 |= SSCR1_SFRMDIR;
1337                chip->cr1 |= SSCR1_SPH;
1338        }
1339
1340        if (is_lpss_ssp(drv_data)) {
1341                chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1342                chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1343                                          SSITF_TxHiThresh(tx_hi_thres);
1344        }
1345
1346        if (is_mrfld_ssp(drv_data)) {
1347                chip->lpss_rx_threshold = rx_thres;
1348                chip->lpss_tx_threshold = tx_thres;
1349        }
1350
1351        /*
1352         * Set DMA burst and threshold outside of chip_info path so that if
1353         * chip_info goes away after setting chip->enable_dma, the burst and
1354         * threshold can still respond to changes in bits_per_word.
1355         */
1356        if (chip->enable_dma) {
1357                /* Set up legal burst and threshold for DMA */
1358                if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1359                                                spi->bits_per_word,
1360                                                &chip->dma_burst_size,
1361                                                &chip->dma_threshold)) {
1362                        dev_warn(&spi->dev,
1363                                 "in setup: DMA burst size reduced to match bits_per_word\n");
1364                }
1365                dev_dbg(&spi->dev,
1366                        "in setup: DMA burst size set to %u\n",
1367                        chip->dma_burst_size);
1368        }
1369
1370        switch (drv_data->ssp_type) {
1371        case QUARK_X1000_SSP:
1372                chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1373                                   & QUARK_X1000_SSCR1_RFT)
1374                                   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1375                                   & QUARK_X1000_SSCR1_TFT);
1376                break;
1377        case CE4100_SSP:
1378                chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1379                        (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1380                break;
1381        default:
1382                chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1383                        (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1384                break;
1385        }
1386
1387        chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1388        chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1389                     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1390
1391        if (spi->mode & SPI_LOOP)
1392                chip->cr1 |= SSCR1_LBM;
1393
1394        if (spi->bits_per_word <= 8) {
1395                chip->n_bytes = 1;
1396                chip->read = u8_reader;
1397                chip->write = u8_writer;
1398        } else if (spi->bits_per_word <= 16) {
1399                chip->n_bytes = 2;
1400                chip->read = u16_reader;
1401                chip->write = u16_writer;
1402        } else if (spi->bits_per_word <= 32) {
1403                chip->n_bytes = 4;
1404                chip->read = u32_reader;
1405                chip->write = u32_writer;
1406        }
1407
1408        spi_set_ctldata(spi, chip);
1409
1410        if (drv_data->ssp_type == CE4100_SSP)
1411                return 0;
1412
1413        err = setup_cs(spi, chip, chip_info);
1414        if (err)
1415                kfree(chip);
1416
1417        return err;
1418}
1419
1420static void cleanup(struct spi_device *spi)
1421{
1422        struct chip_data *chip = spi_get_ctldata(spi);
1423
1424        cleanup_cs(spi);
1425        kfree(chip);
1426}
1427
1428#ifdef CONFIG_ACPI
1429static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1430        { "INT33C0", LPSS_LPT_SSP },
1431        { "INT33C1", LPSS_LPT_SSP },
1432        { "INT3430", LPSS_LPT_SSP },
1433        { "INT3431", LPSS_LPT_SSP },
1434        { "80860F0E", LPSS_BYT_SSP },
1435        { "8086228E", LPSS_BSW_SSP },
1436        { },
1437};
1438MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1439#endif
1440
1441/*
1442 * PCI IDs of compound devices that integrate both host controller and private
1443 * integrated DMA engine. Please note these are not used in module
1444 * autoloading and probing in this module but matching the LPSS SSP type.
1445 */
1446static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1447        /* SPT-LP */
1448        { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1449        { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1450        /* SPT-H */
1451        { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1452        { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1453        /* KBL-H */
1454        { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1455        { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1456        /* CML-V */
1457        { PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1458        { PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1459        /* BXT A-Step */
1460        { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1461        { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1462        { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1463        /* BXT B-Step */
1464        { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1465        { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1466        { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1467        /* GLK */
1468        { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1469        { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1470        { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1471        /* ICL-LP */
1472        { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1473        { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1474        { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1475        /* EHL */
1476        { PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1477        { PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1478        { PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1479        /* JSL */
1480        { PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1481        { PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1482        { PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1483        /* TGL-H */
1484        { PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP },
1485        { PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP },
1486        { PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP },
1487        { PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP },
1488        /* ADL-P */
1489        { PCI_VDEVICE(INTEL, 0x51aa), LPSS_CNL_SSP },
1490        { PCI_VDEVICE(INTEL, 0x51ab), LPSS_CNL_SSP },
1491        { PCI_VDEVICE(INTEL, 0x51fb), LPSS_CNL_SSP },
1492        /* ADL-M */
1493        { PCI_VDEVICE(INTEL, 0x54aa), LPSS_CNL_SSP },
1494        { PCI_VDEVICE(INTEL, 0x54ab), LPSS_CNL_SSP },
1495        { PCI_VDEVICE(INTEL, 0x54fb), LPSS_CNL_SSP },
1496        /* APL */
1497        { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1498        { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1499        { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1500        /* ADL-S */
1501        { PCI_VDEVICE(INTEL, 0x7aaa), LPSS_CNL_SSP },
1502        { PCI_VDEVICE(INTEL, 0x7aab), LPSS_CNL_SSP },
1503        { PCI_VDEVICE(INTEL, 0x7af9), LPSS_CNL_SSP },
1504        { PCI_VDEVICE(INTEL, 0x7afb), LPSS_CNL_SSP },
1505        /* CNL-LP */
1506        { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1507        { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1508        { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1509        /* CNL-H */
1510        { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1511        { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1512        { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1513        /* CML-LP */
1514        { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1515        { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1516        { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1517        /* CML-H */
1518        { PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1519        { PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1520        { PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1521        /* TGL-LP */
1522        { PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1523        { PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1524        { PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1525        { PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1526        { PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1527        { PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1528        { PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1529        { },
1530};
1531
1532static const struct of_device_id pxa2xx_spi_of_match[] = {
1533        { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1534        {},
1535};
1536MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1537
1538#ifdef CONFIG_ACPI
1539
1540static int pxa2xx_spi_get_port_id(struct device *dev)
1541{
1542        struct acpi_device *adev;
1543        unsigned int devid;
1544        int port_id = -1;
1545
1546        adev = ACPI_COMPANION(dev);
1547        if (adev && adev->pnp.unique_id &&
1548            !kstrtouint(adev->pnp.unique_id, 0, &devid))
1549                port_id = devid;
1550        return port_id;
1551}
1552
1553#else /* !CONFIG_ACPI */
1554
1555static int pxa2xx_spi_get_port_id(struct device *dev)
1556{
1557        return -1;
1558}
1559
1560#endif /* CONFIG_ACPI */
1561
1562
1563#ifdef CONFIG_PCI
1564
1565static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1566{
1567        return param == chan->device->dev;
1568}
1569
1570#endif /* CONFIG_PCI */
1571
1572static struct pxa2xx_spi_controller *
1573pxa2xx_spi_init_pdata(struct platform_device *pdev)
1574{
1575        struct pxa2xx_spi_controller *pdata;
1576        struct ssp_device *ssp;
1577        struct resource *res;
1578        struct device *parent = pdev->dev.parent;
1579        struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1580        const struct pci_device_id *pcidev_id = NULL;
1581        enum pxa_ssp_type type;
1582        const void *match;
1583
1584        if (pcidev)
1585                pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1586
1587        match = device_get_match_data(&pdev->dev);
1588        if (match)
1589                type = (enum pxa_ssp_type)match;
1590        else if (pcidev_id)
1591                type = (enum pxa_ssp_type)pcidev_id->driver_data;
1592        else
1593                return ERR_PTR(-EINVAL);
1594
1595        pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1596        if (!pdata)
1597                return ERR_PTR(-ENOMEM);
1598
1599        ssp = &pdata->ssp;
1600
1601        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1602        ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1603        if (IS_ERR(ssp->mmio_base))
1604                return ERR_CAST(ssp->mmio_base);
1605
1606        ssp->phys_base = res->start;
1607
1608#ifdef CONFIG_PCI
1609        if (pcidev_id) {
1610                pdata->tx_param = parent;
1611                pdata->rx_param = parent;
1612                pdata->dma_filter = pxa2xx_spi_idma_filter;
1613        }
1614#endif
1615
1616        ssp->clk = devm_clk_get(&pdev->dev, NULL);
1617        if (IS_ERR(ssp->clk))
1618                return ERR_CAST(ssp->clk);
1619
1620        ssp->irq = platform_get_irq(pdev, 0);
1621        if (ssp->irq < 0)
1622                return ERR_PTR(ssp->irq);
1623
1624        ssp->type = type;
1625        ssp->dev = &pdev->dev;
1626        ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1627
1628        pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1629        pdata->num_chipselect = 1;
1630        pdata->enable_dma = true;
1631        pdata->dma_burst_size = 1;
1632
1633        return pdata;
1634}
1635
1636static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1637                                      unsigned int cs)
1638{
1639        struct driver_data *drv_data = spi_controller_get_devdata(controller);
1640
1641        if (has_acpi_companion(drv_data->ssp->dev)) {
1642                switch (drv_data->ssp_type) {
1643                /*
1644                 * For Atoms the ACPI DeviceSelection used by the Windows
1645                 * driver starts from 1 instead of 0 so translate it here
1646                 * to match what Linux expects.
1647                 */
1648                case LPSS_BYT_SSP:
1649                case LPSS_BSW_SSP:
1650                        return cs - 1;
1651
1652                default:
1653                        break;
1654                }
1655        }
1656
1657        return cs;
1658}
1659
1660static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1661{
1662        return MAX_DMA_LEN;
1663}
1664
1665static int pxa2xx_spi_probe(struct platform_device *pdev)
1666{
1667        struct device *dev = &pdev->dev;
1668        struct pxa2xx_spi_controller *platform_info;
1669        struct spi_controller *controller;
1670        struct driver_data *drv_data;
1671        struct ssp_device *ssp;
1672        const struct lpss_config *config;
1673        int status;
1674        u32 tmp;
1675
1676        platform_info = dev_get_platdata(dev);
1677        if (!platform_info) {
1678                platform_info = pxa2xx_spi_init_pdata(pdev);
1679                if (IS_ERR(platform_info)) {
1680                        dev_err(&pdev->dev, "missing platform data\n");
1681                        return PTR_ERR(platform_info);
1682                }
1683        }
1684
1685        ssp = pxa_ssp_request(pdev->id, pdev->name);
1686        if (!ssp)
1687                ssp = &platform_info->ssp;
1688
1689        if (!ssp->mmio_base) {
1690                dev_err(&pdev->dev, "failed to get SSP\n");
1691                return -ENODEV;
1692        }
1693
1694        if (platform_info->is_slave)
1695                controller = devm_spi_alloc_slave(dev, sizeof(*drv_data));
1696        else
1697                controller = devm_spi_alloc_master(dev, sizeof(*drv_data));
1698
1699        if (!controller) {
1700                dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1701                status = -ENOMEM;
1702                goto out_error_controller_alloc;
1703        }
1704        drv_data = spi_controller_get_devdata(controller);
1705        drv_data->controller = controller;
1706        drv_data->controller_info = platform_info;
1707        drv_data->ssp = ssp;
1708
1709        controller->dev.of_node = dev->of_node;
1710        controller->dev.fwnode = dev->fwnode;
1711
1712        /* The spi->mode bits understood by this driver: */
1713        controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1714
1715        controller->bus_num = ssp->port_id;
1716        controller->dma_alignment = DMA_ALIGNMENT;
1717        controller->cleanup = cleanup;
1718        controller->setup = setup;
1719        controller->set_cs = pxa2xx_spi_set_cs;
1720        controller->transfer_one = pxa2xx_spi_transfer_one;
1721        controller->slave_abort = pxa2xx_spi_slave_abort;
1722        controller->handle_err = pxa2xx_spi_handle_err;
1723        controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1724        controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1725        controller->auto_runtime_pm = true;
1726        controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1727
1728        drv_data->ssp_type = ssp->type;
1729
1730        if (pxa25x_ssp_comp(drv_data)) {
1731                switch (drv_data->ssp_type) {
1732                case QUARK_X1000_SSP:
1733                        controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1734                        break;
1735                default:
1736                        controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1737                        break;
1738                }
1739
1740                drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1741                drv_data->dma_cr1 = 0;
1742                drv_data->clear_sr = SSSR_ROR;
1743                drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1744        } else {
1745                controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1746                drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1747                drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1748                drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1749                drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1750                                                | SSSR_ROR | SSSR_TUR;
1751        }
1752
1753        status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1754                        drv_data);
1755        if (status < 0) {
1756                dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1757                goto out_error_controller_alloc;
1758        }
1759
1760        /* Setup DMA if requested */
1761        if (platform_info->enable_dma) {
1762                status = pxa2xx_spi_dma_setup(drv_data);
1763                if (status) {
1764                        dev_warn(dev, "no DMA channels available, using PIO\n");
1765                        platform_info->enable_dma = false;
1766                } else {
1767                        controller->can_dma = pxa2xx_spi_can_dma;
1768                        controller->max_dma_len = MAX_DMA_LEN;
1769                        controller->max_transfer_size =
1770                                pxa2xx_spi_max_dma_transfer_size;
1771                }
1772        }
1773
1774        /* Enable SOC clock */
1775        status = clk_prepare_enable(ssp->clk);
1776        if (status)
1777                goto out_error_dma_irq_alloc;
1778
1779        controller->max_speed_hz = clk_get_rate(ssp->clk);
1780        /*
1781         * Set minimum speed for all other platforms than Intel Quark which is
1782         * able do under 1 Hz transfers.
1783         */
1784        if (!pxa25x_ssp_comp(drv_data))
1785                controller->min_speed_hz =
1786                        DIV_ROUND_UP(controller->max_speed_hz, 4096);
1787        else if (!is_quark_x1000_ssp(drv_data))
1788                controller->min_speed_hz =
1789                        DIV_ROUND_UP(controller->max_speed_hz, 512);
1790
1791        pxa_ssp_disable(ssp);
1792
1793        /* Load default SSP configuration */
1794        switch (drv_data->ssp_type) {
1795        case QUARK_X1000_SSP:
1796                tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1797                      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1798                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1799
1800                /* Using the Motorola SPI protocol and use 8 bit frame */
1801                tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1802                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1803                break;
1804        case CE4100_SSP:
1805                tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1806                      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1807                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1808                tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1809                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1810                break;
1811        default:
1812
1813                if (spi_controller_is_slave(controller)) {
1814                        tmp = SSCR1_SCFR |
1815                              SSCR1_SCLKDIR |
1816                              SSCR1_SFRMDIR |
1817                              SSCR1_RxTresh(2) |
1818                              SSCR1_TxTresh(1) |
1819                              SSCR1_SPH;
1820                } else {
1821                        tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1822                              SSCR1_TxTresh(TX_THRESH_DFLT);
1823                }
1824                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1825                tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1826                if (!spi_controller_is_slave(controller))
1827                        tmp |= SSCR0_SCR(2);
1828                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1829                break;
1830        }
1831
1832        if (!pxa25x_ssp_comp(drv_data))
1833                pxa2xx_spi_write(drv_data, SSTO, 0);
1834
1835        if (!is_quark_x1000_ssp(drv_data))
1836                pxa2xx_spi_write(drv_data, SSPSP, 0);
1837
1838        if (is_lpss_ssp(drv_data)) {
1839                lpss_ssp_setup(drv_data);
1840                config = lpss_get_config(drv_data);
1841                if (config->reg_capabilities >= 0) {
1842                        tmp = __lpss_ssp_read_priv(drv_data,
1843                                                   config->reg_capabilities);
1844                        tmp &= LPSS_CAPS_CS_EN_MASK;
1845                        tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1846                        platform_info->num_chipselect = ffz(tmp);
1847                } else if (config->cs_num) {
1848                        platform_info->num_chipselect = config->cs_num;
1849                }
1850        }
1851        controller->num_chipselect = platform_info->num_chipselect;
1852        controller->use_gpio_descriptors = true;
1853
1854        if (platform_info->is_slave) {
1855                drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1856                                                "ready", GPIOD_OUT_LOW);
1857                if (IS_ERR(drv_data->gpiod_ready)) {
1858                        status = PTR_ERR(drv_data->gpiod_ready);
1859                        goto out_error_clock_enabled;
1860                }
1861        }
1862
1863        pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1864        pm_runtime_use_autosuspend(&pdev->dev);
1865        pm_runtime_set_active(&pdev->dev);
1866        pm_runtime_enable(&pdev->dev);
1867
1868        /* Register with the SPI framework */
1869        platform_set_drvdata(pdev, drv_data);
1870        status = spi_register_controller(controller);
1871        if (status) {
1872                dev_err(&pdev->dev, "problem registering SPI controller\n");
1873                goto out_error_pm_runtime_enabled;
1874        }
1875
1876        return status;
1877
1878out_error_pm_runtime_enabled:
1879        pm_runtime_disable(&pdev->dev);
1880
1881out_error_clock_enabled:
1882        clk_disable_unprepare(ssp->clk);
1883
1884out_error_dma_irq_alloc:
1885        pxa2xx_spi_dma_release(drv_data);
1886        free_irq(ssp->irq, drv_data);
1887
1888out_error_controller_alloc:
1889        pxa_ssp_free(ssp);
1890        return status;
1891}
1892
1893static int pxa2xx_spi_remove(struct platform_device *pdev)
1894{
1895        struct driver_data *drv_data = platform_get_drvdata(pdev);
1896        struct ssp_device *ssp = drv_data->ssp;
1897
1898        pm_runtime_get_sync(&pdev->dev);
1899
1900        spi_unregister_controller(drv_data->controller);
1901
1902        /* Disable the SSP at the peripheral and SOC level */
1903        pxa_ssp_disable(ssp);
1904        clk_disable_unprepare(ssp->clk);
1905
1906        /* Release DMA */
1907        if (drv_data->controller_info->enable_dma)
1908                pxa2xx_spi_dma_release(drv_data);
1909
1910        pm_runtime_put_noidle(&pdev->dev);
1911        pm_runtime_disable(&pdev->dev);
1912
1913        /* Release IRQ */
1914        free_irq(ssp->irq, drv_data);
1915
1916        /* Release SSP */
1917        pxa_ssp_free(ssp);
1918
1919        return 0;
1920}
1921
1922#ifdef CONFIG_PM_SLEEP
1923static int pxa2xx_spi_suspend(struct device *dev)
1924{
1925        struct driver_data *drv_data = dev_get_drvdata(dev);
1926        struct ssp_device *ssp = drv_data->ssp;
1927        int status;
1928
1929        status = spi_controller_suspend(drv_data->controller);
1930        if (status)
1931                return status;
1932
1933        pxa_ssp_disable(ssp);
1934
1935        if (!pm_runtime_suspended(dev))
1936                clk_disable_unprepare(ssp->clk);
1937
1938        return 0;
1939}
1940
1941static int pxa2xx_spi_resume(struct device *dev)
1942{
1943        struct driver_data *drv_data = dev_get_drvdata(dev);
1944        struct ssp_device *ssp = drv_data->ssp;
1945        int status;
1946
1947        /* Enable the SSP clock */
1948        if (!pm_runtime_suspended(dev)) {
1949                status = clk_prepare_enable(ssp->clk);
1950                if (status)
1951                        return status;
1952        }
1953
1954        /* Start the queue running */
1955        return spi_controller_resume(drv_data->controller);
1956}
1957#endif
1958
1959#ifdef CONFIG_PM
1960static int pxa2xx_spi_runtime_suspend(struct device *dev)
1961{
1962        struct driver_data *drv_data = dev_get_drvdata(dev);
1963
1964        clk_disable_unprepare(drv_data->ssp->clk);
1965        return 0;
1966}
1967
1968static int pxa2xx_spi_runtime_resume(struct device *dev)
1969{
1970        struct driver_data *drv_data = dev_get_drvdata(dev);
1971        int status;
1972
1973        status = clk_prepare_enable(drv_data->ssp->clk);
1974        return status;
1975}
1976#endif
1977
1978static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1979        SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1980        SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1981                           pxa2xx_spi_runtime_resume, NULL)
1982};
1983
1984static struct platform_driver driver = {
1985        .driver = {
1986                .name   = "pxa2xx-spi",
1987                .pm     = &pxa2xx_spi_pm_ops,
1988                .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1989                .of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1990        },
1991        .probe = pxa2xx_spi_probe,
1992        .remove = pxa2xx_spi_remove,
1993};
1994
1995static int __init pxa2xx_spi_init(void)
1996{
1997        return platform_driver_register(&driver);
1998}
1999subsys_initcall(pxa2xx_spi_init);
2000
2001static void __exit pxa2xx_spi_exit(void)
2002{
2003        platform_driver_unregister(&driver);
2004}
2005module_exit(pxa2xx_spi_exit);
2006
2007MODULE_SOFTDEP("pre: dw_dmac");
2008