linux/drivers/spi/spi-stm32.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// STMicroelectronics STM32 SPI Controller driver (master mode only)
   4//
   5// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   6// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
   7
   8#include <linux/bitfield.h>
   9#include <linux/debugfs.h>
  10#include <linux/clk.h>
  11#include <linux/delay.h>
  12#include <linux/dmaengine.h>
  13#include <linux/interrupt.h>
  14#include <linux/iopoll.h>
  15#include <linux/module.h>
  16#include <linux/of_platform.h>
  17#include <linux/pinctrl/consumer.h>
  18#include <linux/pm_runtime.h>
  19#include <linux/reset.h>
  20#include <linux/spi/spi.h>
  21
  22#define DRIVER_NAME "spi_stm32"
  23
  24/* STM32F4 SPI registers */
  25#define STM32F4_SPI_CR1                 0x00
  26#define STM32F4_SPI_CR2                 0x04
  27#define STM32F4_SPI_SR                  0x08
  28#define STM32F4_SPI_DR                  0x0C
  29#define STM32F4_SPI_I2SCFGR             0x1C
  30
  31/* STM32F4_SPI_CR1 bit fields */
  32#define STM32F4_SPI_CR1_CPHA            BIT(0)
  33#define STM32F4_SPI_CR1_CPOL            BIT(1)
  34#define STM32F4_SPI_CR1_MSTR            BIT(2)
  35#define STM32F4_SPI_CR1_BR_SHIFT        3
  36#define STM32F4_SPI_CR1_BR              GENMASK(5, 3)
  37#define STM32F4_SPI_CR1_SPE             BIT(6)
  38#define STM32F4_SPI_CR1_LSBFRST         BIT(7)
  39#define STM32F4_SPI_CR1_SSI             BIT(8)
  40#define STM32F4_SPI_CR1_SSM             BIT(9)
  41#define STM32F4_SPI_CR1_RXONLY          BIT(10)
  42#define STM32F4_SPI_CR1_DFF             BIT(11)
  43#define STM32F4_SPI_CR1_CRCNEXT         BIT(12)
  44#define STM32F4_SPI_CR1_CRCEN           BIT(13)
  45#define STM32F4_SPI_CR1_BIDIOE          BIT(14)
  46#define STM32F4_SPI_CR1_BIDIMODE        BIT(15)
  47#define STM32F4_SPI_CR1_BR_MIN          0
  48#define STM32F4_SPI_CR1_BR_MAX          (GENMASK(5, 3) >> 3)
  49
  50/* STM32F4_SPI_CR2 bit fields */
  51#define STM32F4_SPI_CR2_RXDMAEN         BIT(0)
  52#define STM32F4_SPI_CR2_TXDMAEN         BIT(1)
  53#define STM32F4_SPI_CR2_SSOE            BIT(2)
  54#define STM32F4_SPI_CR2_FRF             BIT(4)
  55#define STM32F4_SPI_CR2_ERRIE           BIT(5)
  56#define STM32F4_SPI_CR2_RXNEIE          BIT(6)
  57#define STM32F4_SPI_CR2_TXEIE           BIT(7)
  58
  59/* STM32F4_SPI_SR bit fields */
  60#define STM32F4_SPI_SR_RXNE             BIT(0)
  61#define STM32F4_SPI_SR_TXE              BIT(1)
  62#define STM32F4_SPI_SR_CHSIDE           BIT(2)
  63#define STM32F4_SPI_SR_UDR              BIT(3)
  64#define STM32F4_SPI_SR_CRCERR           BIT(4)
  65#define STM32F4_SPI_SR_MODF             BIT(5)
  66#define STM32F4_SPI_SR_OVR              BIT(6)
  67#define STM32F4_SPI_SR_BSY              BIT(7)
  68#define STM32F4_SPI_SR_FRE              BIT(8)
  69
  70/* STM32F4_SPI_I2SCFGR bit fields */
  71#define STM32F4_SPI_I2SCFGR_I2SMOD      BIT(11)
  72
  73/* STM32F4 SPI Baud Rate min/max divisor */
  74#define STM32F4_SPI_BR_DIV_MIN          (2 << STM32F4_SPI_CR1_BR_MIN)
  75#define STM32F4_SPI_BR_DIV_MAX          (2 << STM32F4_SPI_CR1_BR_MAX)
  76
  77/* STM32H7 SPI registers */
  78#define STM32H7_SPI_CR1                 0x00
  79#define STM32H7_SPI_CR2                 0x04
  80#define STM32H7_SPI_CFG1                0x08
  81#define STM32H7_SPI_CFG2                0x0C
  82#define STM32H7_SPI_IER                 0x10
  83#define STM32H7_SPI_SR                  0x14
  84#define STM32H7_SPI_IFCR                0x18
  85#define STM32H7_SPI_TXDR                0x20
  86#define STM32H7_SPI_RXDR                0x30
  87#define STM32H7_SPI_I2SCFGR             0x50
  88
  89/* STM32H7_SPI_CR1 bit fields */
  90#define STM32H7_SPI_CR1_SPE             BIT(0)
  91#define STM32H7_SPI_CR1_MASRX           BIT(8)
  92#define STM32H7_SPI_CR1_CSTART          BIT(9)
  93#define STM32H7_SPI_CR1_CSUSP           BIT(10)
  94#define STM32H7_SPI_CR1_HDDIR           BIT(11)
  95#define STM32H7_SPI_CR1_SSI             BIT(12)
  96
  97/* STM32H7_SPI_CR2 bit fields */
  98#define STM32H7_SPI_CR2_TSIZE           GENMASK(15, 0)
  99#define STM32H7_SPI_TSIZE_MAX           GENMASK(15, 0)
 100
 101/* STM32H7_SPI_CFG1 bit fields */
 102#define STM32H7_SPI_CFG1_DSIZE          GENMASK(4, 0)
 103#define STM32H7_SPI_CFG1_FTHLV          GENMASK(8, 5)
 104#define STM32H7_SPI_CFG1_RXDMAEN        BIT(14)
 105#define STM32H7_SPI_CFG1_TXDMAEN        BIT(15)
 106#define STM32H7_SPI_CFG1_MBR            GENMASK(30, 28)
 107#define STM32H7_SPI_CFG1_MBR_SHIFT      28
 108#define STM32H7_SPI_CFG1_MBR_MIN        0
 109#define STM32H7_SPI_CFG1_MBR_MAX        (GENMASK(30, 28) >> 28)
 110
 111/* STM32H7_SPI_CFG2 bit fields */
 112#define STM32H7_SPI_CFG2_MIDI           GENMASK(7, 4)
 113#define STM32H7_SPI_CFG2_COMM           GENMASK(18, 17)
 114#define STM32H7_SPI_CFG2_SP             GENMASK(21, 19)
 115#define STM32H7_SPI_CFG2_MASTER         BIT(22)
 116#define STM32H7_SPI_CFG2_LSBFRST        BIT(23)
 117#define STM32H7_SPI_CFG2_CPHA           BIT(24)
 118#define STM32H7_SPI_CFG2_CPOL           BIT(25)
 119#define STM32H7_SPI_CFG2_SSM            BIT(26)
 120#define STM32H7_SPI_CFG2_AFCNTR         BIT(31)
 121
 122/* STM32H7_SPI_IER bit fields */
 123#define STM32H7_SPI_IER_RXPIE           BIT(0)
 124#define STM32H7_SPI_IER_TXPIE           BIT(1)
 125#define STM32H7_SPI_IER_DXPIE           BIT(2)
 126#define STM32H7_SPI_IER_EOTIE           BIT(3)
 127#define STM32H7_SPI_IER_TXTFIE          BIT(4)
 128#define STM32H7_SPI_IER_OVRIE           BIT(6)
 129#define STM32H7_SPI_IER_MODFIE          BIT(9)
 130#define STM32H7_SPI_IER_ALL             GENMASK(10, 0)
 131
 132/* STM32H7_SPI_SR bit fields */
 133#define STM32H7_SPI_SR_RXP              BIT(0)
 134#define STM32H7_SPI_SR_TXP              BIT(1)
 135#define STM32H7_SPI_SR_EOT              BIT(3)
 136#define STM32H7_SPI_SR_OVR              BIT(6)
 137#define STM32H7_SPI_SR_MODF             BIT(9)
 138#define STM32H7_SPI_SR_SUSP             BIT(11)
 139#define STM32H7_SPI_SR_RXPLVL           GENMASK(14, 13)
 140#define STM32H7_SPI_SR_RXWNE            BIT(15)
 141
 142/* STM32H7_SPI_IFCR bit fields */
 143#define STM32H7_SPI_IFCR_ALL            GENMASK(11, 3)
 144
 145/* STM32H7_SPI_I2SCFGR bit fields */
 146#define STM32H7_SPI_I2SCFGR_I2SMOD      BIT(0)
 147
 148/* STM32H7 SPI Master Baud Rate min/max divisor */
 149#define STM32H7_SPI_MBR_DIV_MIN         (2 << STM32H7_SPI_CFG1_MBR_MIN)
 150#define STM32H7_SPI_MBR_DIV_MAX         (2 << STM32H7_SPI_CFG1_MBR_MAX)
 151
 152/* STM32H7 SPI Communication mode */
 153#define STM32H7_SPI_FULL_DUPLEX         0
 154#define STM32H7_SPI_SIMPLEX_TX          1
 155#define STM32H7_SPI_SIMPLEX_RX          2
 156#define STM32H7_SPI_HALF_DUPLEX         3
 157
 158/* SPI Communication type */
 159#define SPI_FULL_DUPLEX         0
 160#define SPI_SIMPLEX_TX          1
 161#define SPI_SIMPLEX_RX          2
 162#define SPI_3WIRE_TX            3
 163#define SPI_3WIRE_RX            4
 164
 165#define STM32_SPI_AUTOSUSPEND_DELAY             1       /* 1 ms */
 166
 167/*
 168 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
 169 * without fifo buffers.
 170 */
 171#define SPI_DMA_MIN_BYTES       16
 172
 173/**
 174 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
 175 * @reg:                register offset
 176 * @mask:               bitfield mask
 177 * @shift:              left shift
 178 */
 179struct stm32_spi_reg {
 180        int reg;
 181        int mask;
 182        int shift;
 183};
 184
 185/**
 186 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
 187 * @en: enable register and SPI enable bit
 188 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
 189 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
 190 * @cpol: clock polarity register and polarity bit
 191 * @cpha: clock phase register and phase bit
 192 * @lsb_first: LSB transmitted first register and bit
 193 * @br: baud rate register and bitfields
 194 * @rx: SPI RX data register
 195 * @tx: SPI TX data register
 196 */
 197struct stm32_spi_regspec {
 198        const struct stm32_spi_reg en;
 199        const struct stm32_spi_reg dma_rx_en;
 200        const struct stm32_spi_reg dma_tx_en;
 201        const struct stm32_spi_reg cpol;
 202        const struct stm32_spi_reg cpha;
 203        const struct stm32_spi_reg lsb_first;
 204        const struct stm32_spi_reg br;
 205        const struct stm32_spi_reg rx;
 206        const struct stm32_spi_reg tx;
 207};
 208
 209struct stm32_spi;
 210
 211/**
 212 * struct stm32_spi_cfg - stm32 compatible configuration data
 213 * @regs: registers descriptions
 214 * @get_fifo_size: routine to get fifo size
 215 * @get_bpw_mask: routine to get bits per word mask
 216 * @disable: routine to disable controller
 217 * @config: routine to configure controller as SPI Master
 218 * @set_bpw: routine to configure registers to for bits per word
 219 * @set_mode: routine to configure registers to desired mode
 220 * @set_data_idleness: optional routine to configure registers to desired idle
 221 * time between frames (if driver has this functionality)
 222 * @set_number_of_data: optional routine to configure registers to desired
 223 * number of data (if driver has this functionality)
 224 * @can_dma: routine to determine if the transfer is eligible for DMA use
 225 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
 226 * using DMA
 227 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
 228 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
 229 * @transfer_one_irq: routine to configure interrupts for driver
 230 * @irq_handler_event: Interrupt handler for SPI controller events
 231 * @irq_handler_thread: thread of interrupt handler for SPI controller
 232 * @baud_rate_div_min: minimum baud rate divisor
 233 * @baud_rate_div_max: maximum baud rate divisor
 234 * @has_fifo: boolean to know if fifo is used for driver
 235 * @has_startbit: boolean to know if start bit is used to start transfer
 236 */
 237struct stm32_spi_cfg {
 238        const struct stm32_spi_regspec *regs;
 239        int (*get_fifo_size)(struct stm32_spi *spi);
 240        int (*get_bpw_mask)(struct stm32_spi *spi);
 241        void (*disable)(struct stm32_spi *spi);
 242        int (*config)(struct stm32_spi *spi);
 243        void (*set_bpw)(struct stm32_spi *spi);
 244        int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
 245        void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
 246        int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
 247        void (*transfer_one_dma_start)(struct stm32_spi *spi);
 248        void (*dma_rx_cb)(void *data);
 249        void (*dma_tx_cb)(void *data);
 250        int (*transfer_one_irq)(struct stm32_spi *spi);
 251        irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
 252        irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
 253        unsigned int baud_rate_div_min;
 254        unsigned int baud_rate_div_max;
 255        bool has_fifo;
 256};
 257
 258/**
 259 * struct stm32_spi - private data of the SPI controller
 260 * @dev: driver model representation of the controller
 261 * @master: controller master interface
 262 * @cfg: compatible configuration data
 263 * @base: virtual memory area
 264 * @clk: hw kernel clock feeding the SPI clock generator
 265 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
 266 * @lock: prevent I/O concurrent access
 267 * @irq: SPI controller interrupt line
 268 * @fifo_size: size of the embedded fifo in bytes
 269 * @cur_midi: master inter-data idleness in ns
 270 * @cur_speed: speed configured in Hz
 271 * @cur_bpw: number of bits in a single SPI data frame
 272 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
 273 * @cur_comm: SPI communication mode
 274 * @cur_xferlen: current transfer length in bytes
 275 * @cur_usedma: boolean to know if dma is used in current transfer
 276 * @tx_buf: data to be written, or NULL
 277 * @rx_buf: data to be read, or NULL
 278 * @tx_len: number of data to be written in bytes
 279 * @rx_len: number of data to be read in bytes
 280 * @dma_tx: dma channel for TX transfer
 281 * @dma_rx: dma channel for RX transfer
 282 * @phys_addr: SPI registers physical base address
 283 */
 284struct stm32_spi {
 285        struct device *dev;
 286        struct spi_master *master;
 287        const struct stm32_spi_cfg *cfg;
 288        void __iomem *base;
 289        struct clk *clk;
 290        u32 clk_rate;
 291        spinlock_t lock; /* prevent I/O concurrent access */
 292        int irq;
 293        unsigned int fifo_size;
 294
 295        unsigned int cur_midi;
 296        unsigned int cur_speed;
 297        unsigned int cur_bpw;
 298        unsigned int cur_fthlv;
 299        unsigned int cur_comm;
 300        unsigned int cur_xferlen;
 301        bool cur_usedma;
 302
 303        const void *tx_buf;
 304        void *rx_buf;
 305        int tx_len;
 306        int rx_len;
 307        struct dma_chan *dma_tx;
 308        struct dma_chan *dma_rx;
 309        dma_addr_t phys_addr;
 310};
 311
 312static const struct stm32_spi_regspec stm32f4_spi_regspec = {
 313        .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
 314
 315        .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
 316        .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
 317
 318        .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
 319        .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
 320        .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
 321        .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
 322
 323        .rx = { STM32F4_SPI_DR },
 324        .tx = { STM32F4_SPI_DR },
 325};
 326
 327static const struct stm32_spi_regspec stm32h7_spi_regspec = {
 328        /* SPI data transfer is enabled but spi_ker_ck is idle.
 329         * CFG1 and CFG2 registers are write protected when SPE is enabled.
 330         */
 331        .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
 332
 333        .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
 334        .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
 335
 336        .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
 337        .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
 338        .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
 339        .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
 340                STM32H7_SPI_CFG1_MBR_SHIFT },
 341
 342        .rx = { STM32H7_SPI_RXDR },
 343        .tx = { STM32H7_SPI_TXDR },
 344};
 345
 346static inline void stm32_spi_set_bits(struct stm32_spi *spi,
 347                                      u32 offset, u32 bits)
 348{
 349        writel_relaxed(readl_relaxed(spi->base + offset) | bits,
 350                       spi->base + offset);
 351}
 352
 353static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
 354                                      u32 offset, u32 bits)
 355{
 356        writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
 357                       spi->base + offset);
 358}
 359
 360/**
 361 * stm32h7_spi_get_fifo_size - Return fifo size
 362 * @spi: pointer to the spi controller data structure
 363 */
 364static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
 365{
 366        unsigned long flags;
 367        u32 count = 0;
 368
 369        spin_lock_irqsave(&spi->lock, flags);
 370
 371        stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 372
 373        while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
 374                writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
 375
 376        stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 377
 378        spin_unlock_irqrestore(&spi->lock, flags);
 379
 380        dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
 381
 382        return count;
 383}
 384
 385/**
 386 * stm32f4_spi_get_bpw_mask - Return bits per word mask
 387 * @spi: pointer to the spi controller data structure
 388 */
 389static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
 390{
 391        dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
 392        return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
 393}
 394
 395/**
 396 * stm32h7_spi_get_bpw_mask - Return bits per word mask
 397 * @spi: pointer to the spi controller data structure
 398 */
 399static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
 400{
 401        unsigned long flags;
 402        u32 cfg1, max_bpw;
 403
 404        spin_lock_irqsave(&spi->lock, flags);
 405
 406        /*
 407         * The most significant bit at DSIZE bit field is reserved when the
 408         * maximum data size of periperal instances is limited to 16-bit
 409         */
 410        stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
 411
 412        cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
 413        max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
 414
 415        spin_unlock_irqrestore(&spi->lock, flags);
 416
 417        dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
 418
 419        return SPI_BPW_RANGE_MASK(4, max_bpw);
 420}
 421
 422/**
 423 * stm32_spi_prepare_mbr - Determine baud rate divisor value
 424 * @spi: pointer to the spi controller data structure
 425 * @speed_hz: requested speed
 426 * @min_div: minimum baud rate divisor
 427 * @max_div: maximum baud rate divisor
 428 *
 429 * Return baud rate divisor value in case of success or -EINVAL
 430 */
 431static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
 432                                 u32 min_div, u32 max_div)
 433{
 434        u32 div, mbrdiv;
 435
 436        /* Ensure spi->clk_rate is even */
 437        div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
 438
 439        /*
 440         * SPI framework set xfer->speed_hz to master->max_speed_hz if
 441         * xfer->speed_hz is greater than master->max_speed_hz, and it returns
 442         * an error when xfer->speed_hz is lower than master->min_speed_hz, so
 443         * no need to check it there.
 444         * However, we need to ensure the following calculations.
 445         */
 446        if ((div < min_div) || (div > max_div))
 447                return -EINVAL;
 448
 449        /* Determine the first power of 2 greater than or equal to div */
 450        if (div & (div - 1))
 451                mbrdiv = fls(div);
 452        else
 453                mbrdiv = fls(div) - 1;
 454
 455        spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
 456
 457        return mbrdiv - 1;
 458}
 459
 460/**
 461 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
 462 * @spi: pointer to the spi controller data structure
 463 * @xfer_len: length of the message to be transferred
 464 */
 465static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
 466{
 467        u32 packet, bpw;
 468
 469        /* data packet should not exceed 1/2 of fifo space */
 470        packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
 471
 472        /* align packet size with data registers access */
 473        bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
 474        return DIV_ROUND_UP(packet, bpw);
 475}
 476
 477/**
 478 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
 479 * @spi: pointer to the spi controller data structure
 480 *
 481 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 482 * tx_buf end.
 483 */
 484static void stm32f4_spi_write_tx(struct stm32_spi *spi)
 485{
 486        if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
 487                                  STM32F4_SPI_SR_TXE)) {
 488                u32 offs = spi->cur_xferlen - spi->tx_len;
 489
 490                if (spi->cur_bpw == 16) {
 491                        const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 492
 493                        writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
 494                        spi->tx_len -= sizeof(u16);
 495                } else {
 496                        const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 497
 498                        writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
 499                        spi->tx_len -= sizeof(u8);
 500                }
 501        }
 502
 503        dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 504}
 505
 506/**
 507 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
 508 * @spi: pointer to the spi controller data structure
 509 *
 510 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 511 * tx_buf end.
 512 */
 513static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
 514{
 515        while ((spi->tx_len > 0) &&
 516                       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
 517                        STM32H7_SPI_SR_TXP)) {
 518                u32 offs = spi->cur_xferlen - spi->tx_len;
 519
 520                if (spi->tx_len >= sizeof(u32)) {
 521                        const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
 522
 523                        writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
 524                        spi->tx_len -= sizeof(u32);
 525                } else if (spi->tx_len >= sizeof(u16)) {
 526                        const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 527
 528                        writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
 529                        spi->tx_len -= sizeof(u16);
 530                } else {
 531                        const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 532
 533                        writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
 534                        spi->tx_len -= sizeof(u8);
 535                }
 536        }
 537
 538        dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 539}
 540
 541/**
 542 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
 543 * @spi: pointer to the spi controller data structure
 544 *
 545 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 546 * rx_buf end.
 547 */
 548static void stm32f4_spi_read_rx(struct stm32_spi *spi)
 549{
 550        if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
 551                                  STM32F4_SPI_SR_RXNE)) {
 552                u32 offs = spi->cur_xferlen - spi->rx_len;
 553
 554                if (spi->cur_bpw == 16) {
 555                        u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 556
 557                        *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
 558                        spi->rx_len -= sizeof(u16);
 559                } else {
 560                        u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 561
 562                        *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
 563                        spi->rx_len -= sizeof(u8);
 564                }
 565        }
 566
 567        dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
 568}
 569
 570/**
 571 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
 572 * @spi: pointer to the spi controller data structure
 573 *
 574 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 575 * rx_buf end.
 576 */
 577static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi)
 578{
 579        u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 580        u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
 581
 582        while ((spi->rx_len > 0) &&
 583               ((sr & STM32H7_SPI_SR_RXP) ||
 584                ((sr & STM32H7_SPI_SR_EOT) &&
 585                 ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
 586                u32 offs = spi->cur_xferlen - spi->rx_len;
 587
 588                if ((spi->rx_len >= sizeof(u32)) ||
 589                    (sr & STM32H7_SPI_SR_RXWNE)) {
 590                        u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
 591
 592                        *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
 593                        spi->rx_len -= sizeof(u32);
 594                } else if ((spi->rx_len >= sizeof(u16)) ||
 595                           (!(sr & STM32H7_SPI_SR_RXWNE) &&
 596                            (rxplvl >= 2 || spi->cur_bpw > 8))) {
 597                        u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 598
 599                        *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
 600                        spi->rx_len -= sizeof(u16);
 601                } else {
 602                        u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 603
 604                        *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
 605                        spi->rx_len -= sizeof(u8);
 606                }
 607
 608                sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 609                rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
 610        }
 611
 612        dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
 613                __func__, spi->rx_len, sr);
 614}
 615
 616/**
 617 * stm32_spi_enable - Enable SPI controller
 618 * @spi: pointer to the spi controller data structure
 619 */
 620static void stm32_spi_enable(struct stm32_spi *spi)
 621{
 622        dev_dbg(spi->dev, "enable controller\n");
 623
 624        stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
 625                           spi->cfg->regs->en.mask);
 626}
 627
 628/**
 629 * stm32f4_spi_disable - Disable SPI controller
 630 * @spi: pointer to the spi controller data structure
 631 */
 632static void stm32f4_spi_disable(struct stm32_spi *spi)
 633{
 634        unsigned long flags;
 635        u32 sr;
 636
 637        dev_dbg(spi->dev, "disable controller\n");
 638
 639        spin_lock_irqsave(&spi->lock, flags);
 640
 641        if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
 642              STM32F4_SPI_CR1_SPE)) {
 643                spin_unlock_irqrestore(&spi->lock, flags);
 644                return;
 645        }
 646
 647        /* Disable interrupts */
 648        stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
 649                                                 STM32F4_SPI_CR2_RXNEIE |
 650                                                 STM32F4_SPI_CR2_ERRIE);
 651
 652        /* Wait until BSY = 0 */
 653        if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
 654                                              sr, !(sr & STM32F4_SPI_SR_BSY),
 655                                              10, 100000) < 0) {
 656                dev_warn(spi->dev, "disabling condition timeout\n");
 657        }
 658
 659        if (spi->cur_usedma && spi->dma_tx)
 660                dmaengine_terminate_all(spi->dma_tx);
 661        if (spi->cur_usedma && spi->dma_rx)
 662                dmaengine_terminate_all(spi->dma_rx);
 663
 664        stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
 665
 666        stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
 667                                                 STM32F4_SPI_CR2_RXDMAEN);
 668
 669        /* Sequence to clear OVR flag */
 670        readl_relaxed(spi->base + STM32F4_SPI_DR);
 671        readl_relaxed(spi->base + STM32F4_SPI_SR);
 672
 673        spin_unlock_irqrestore(&spi->lock, flags);
 674}
 675
 676/**
 677 * stm32h7_spi_disable - Disable SPI controller
 678 * @spi: pointer to the spi controller data structure
 679 *
 680 * RX-Fifo is flushed when SPI controller is disabled.
 681 */
 682static void stm32h7_spi_disable(struct stm32_spi *spi)
 683{
 684        unsigned long flags;
 685        u32 cr1;
 686
 687        dev_dbg(spi->dev, "disable controller\n");
 688
 689        spin_lock_irqsave(&spi->lock, flags);
 690
 691        cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
 692
 693        if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
 694                spin_unlock_irqrestore(&spi->lock, flags);
 695                return;
 696        }
 697
 698        if (spi->cur_usedma && spi->dma_tx)
 699                dmaengine_terminate_all(spi->dma_tx);
 700        if (spi->cur_usedma && spi->dma_rx)
 701                dmaengine_terminate_all(spi->dma_rx);
 702
 703        stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 704
 705        stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
 706                                                STM32H7_SPI_CFG1_RXDMAEN);
 707
 708        /* Disable interrupts and clear status flags */
 709        writel_relaxed(0, spi->base + STM32H7_SPI_IER);
 710        writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
 711
 712        spin_unlock_irqrestore(&spi->lock, flags);
 713}
 714
 715/**
 716 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
 717 * @master: controller master interface
 718 * @spi_dev: pointer to the spi device
 719 * @transfer: pointer to spi transfer
 720 *
 721 * If driver has fifo and the current transfer size is greater than fifo size,
 722 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
 723 */
 724static bool stm32_spi_can_dma(struct spi_master *master,
 725                              struct spi_device *spi_dev,
 726                              struct spi_transfer *transfer)
 727{
 728        unsigned int dma_size;
 729        struct stm32_spi *spi = spi_master_get_devdata(master);
 730
 731        if (spi->cfg->has_fifo)
 732                dma_size = spi->fifo_size;
 733        else
 734                dma_size = SPI_DMA_MIN_BYTES;
 735
 736        dev_dbg(spi->dev, "%s: %s\n", __func__,
 737                (transfer->len > dma_size) ? "true" : "false");
 738
 739        return (transfer->len > dma_size);
 740}
 741
 742/**
 743 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
 744 * @irq: interrupt line
 745 * @dev_id: SPI controller master interface
 746 */
 747static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
 748{
 749        struct spi_master *master = dev_id;
 750        struct stm32_spi *spi = spi_master_get_devdata(master);
 751        u32 sr, mask = 0;
 752        bool end = false;
 753
 754        spin_lock(&spi->lock);
 755
 756        sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
 757        /*
 758         * BSY flag is not handled in interrupt but it is normal behavior when
 759         * this flag is set.
 760         */
 761        sr &= ~STM32F4_SPI_SR_BSY;
 762
 763        if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
 764                                 spi->cur_comm == SPI_3WIRE_TX)) {
 765                /* OVR flag shouldn't be handled for TX only mode */
 766                sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
 767                mask |= STM32F4_SPI_SR_TXE;
 768        }
 769
 770        if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
 771                                spi->cur_comm == SPI_SIMPLEX_RX ||
 772                                spi->cur_comm == SPI_3WIRE_RX)) {
 773                /* TXE flag is set and is handled when RXNE flag occurs */
 774                sr &= ~STM32F4_SPI_SR_TXE;
 775                mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
 776        }
 777
 778        if (!(sr & mask)) {
 779                dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
 780                spin_unlock(&spi->lock);
 781                return IRQ_NONE;
 782        }
 783
 784        if (sr & STM32F4_SPI_SR_OVR) {
 785                dev_warn(spi->dev, "Overrun: received value discarded\n");
 786
 787                /* Sequence to clear OVR flag */
 788                readl_relaxed(spi->base + STM32F4_SPI_DR);
 789                readl_relaxed(spi->base + STM32F4_SPI_SR);
 790
 791                /*
 792                 * If overrun is detected, it means that something went wrong,
 793                 * so stop the current transfer. Transfer can wait for next
 794                 * RXNE but DR is already read and end never happens.
 795                 */
 796                end = true;
 797                goto end_irq;
 798        }
 799
 800        if (sr & STM32F4_SPI_SR_TXE) {
 801                if (spi->tx_buf)
 802                        stm32f4_spi_write_tx(spi);
 803                if (spi->tx_len == 0)
 804                        end = true;
 805        }
 806
 807        if (sr & STM32F4_SPI_SR_RXNE) {
 808                stm32f4_spi_read_rx(spi);
 809                if (spi->rx_len == 0)
 810                        end = true;
 811                else if (spi->tx_buf)/* Load data for discontinuous mode */
 812                        stm32f4_spi_write_tx(spi);
 813        }
 814
 815end_irq:
 816        if (end) {
 817                /* Immediately disable interrupts to do not generate new one */
 818                stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
 819                                        STM32F4_SPI_CR2_TXEIE |
 820                                        STM32F4_SPI_CR2_RXNEIE |
 821                                        STM32F4_SPI_CR2_ERRIE);
 822                spin_unlock(&spi->lock);
 823                return IRQ_WAKE_THREAD;
 824        }
 825
 826        spin_unlock(&spi->lock);
 827        return IRQ_HANDLED;
 828}
 829
 830/**
 831 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
 832 * @irq: interrupt line
 833 * @dev_id: SPI controller master interface
 834 */
 835static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
 836{
 837        struct spi_master *master = dev_id;
 838        struct stm32_spi *spi = spi_master_get_devdata(master);
 839
 840        spi_finalize_current_transfer(master);
 841        stm32f4_spi_disable(spi);
 842
 843        return IRQ_HANDLED;
 844}
 845
 846/**
 847 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
 848 * @irq: interrupt line
 849 * @dev_id: SPI controller master interface
 850 */
 851static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
 852{
 853        struct spi_master *master = dev_id;
 854        struct stm32_spi *spi = spi_master_get_devdata(master);
 855        u32 sr, ier, mask;
 856        unsigned long flags;
 857        bool end = false;
 858
 859        spin_lock_irqsave(&spi->lock, flags);
 860
 861        sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 862        ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
 863
 864        mask = ier;
 865        /*
 866         * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
 867         * SUSP to acknowledge it later. TXC is automatically cleared
 868         */
 869
 870        mask |= STM32H7_SPI_SR_SUSP;
 871        /*
 872         * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
 873         * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
 874         */
 875        if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
 876                mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
 877
 878        if (!(sr & mask)) {
 879                dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
 880                         sr, ier);
 881                spin_unlock_irqrestore(&spi->lock, flags);
 882                return IRQ_NONE;
 883        }
 884
 885        if (sr & STM32H7_SPI_SR_SUSP) {
 886                static DEFINE_RATELIMIT_STATE(rs,
 887                                              DEFAULT_RATELIMIT_INTERVAL * 10,
 888                                              1);
 889                if (__ratelimit(&rs))
 890                        dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
 891                if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 892                        stm32h7_spi_read_rxfifo(spi);
 893                /*
 894                 * If communication is suspended while using DMA, it means
 895                 * that something went wrong, so stop the current transfer
 896                 */
 897                if (spi->cur_usedma)
 898                        end = true;
 899        }
 900
 901        if (sr & STM32H7_SPI_SR_MODF) {
 902                dev_warn(spi->dev, "Mode fault: transfer aborted\n");
 903                end = true;
 904        }
 905
 906        if (sr & STM32H7_SPI_SR_OVR) {
 907                dev_err(spi->dev, "Overrun: RX data lost\n");
 908                end = true;
 909        }
 910
 911        if (sr & STM32H7_SPI_SR_EOT) {
 912                if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 913                        stm32h7_spi_read_rxfifo(spi);
 914                if (!spi->cur_usedma ||
 915                    (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX))
 916                        end = true;
 917        }
 918
 919        if (sr & STM32H7_SPI_SR_TXP)
 920                if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
 921                        stm32h7_spi_write_txfifo(spi);
 922
 923        if (sr & STM32H7_SPI_SR_RXP)
 924                if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 925                        stm32h7_spi_read_rxfifo(spi);
 926
 927        writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
 928
 929        spin_unlock_irqrestore(&spi->lock, flags);
 930
 931        if (end) {
 932                stm32h7_spi_disable(spi);
 933                spi_finalize_current_transfer(master);
 934        }
 935
 936        return IRQ_HANDLED;
 937}
 938
 939/**
 940 * stm32_spi_prepare_msg - set up the controller to transfer a single message
 941 * @master: controller master interface
 942 * @msg: pointer to spi message
 943 */
 944static int stm32_spi_prepare_msg(struct spi_master *master,
 945                                 struct spi_message *msg)
 946{
 947        struct stm32_spi *spi = spi_master_get_devdata(master);
 948        struct spi_device *spi_dev = msg->spi;
 949        struct device_node *np = spi_dev->dev.of_node;
 950        unsigned long flags;
 951        u32 clrb = 0, setb = 0;
 952
 953        /* SPI slave device may need time between data frames */
 954        spi->cur_midi = 0;
 955        if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
 956                dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
 957
 958        if (spi_dev->mode & SPI_CPOL)
 959                setb |= spi->cfg->regs->cpol.mask;
 960        else
 961                clrb |= spi->cfg->regs->cpol.mask;
 962
 963        if (spi_dev->mode & SPI_CPHA)
 964                setb |= spi->cfg->regs->cpha.mask;
 965        else
 966                clrb |= spi->cfg->regs->cpha.mask;
 967
 968        if (spi_dev->mode & SPI_LSB_FIRST)
 969                setb |= spi->cfg->regs->lsb_first.mask;
 970        else
 971                clrb |= spi->cfg->regs->lsb_first.mask;
 972
 973        dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
 974                !!(spi_dev->mode & SPI_CPOL),
 975                !!(spi_dev->mode & SPI_CPHA),
 976                !!(spi_dev->mode & SPI_LSB_FIRST),
 977                !!(spi_dev->mode & SPI_CS_HIGH));
 978
 979        /* On STM32H7, messages should not exceed a maximum size setted
 980         * afterward via the set_number_of_data function. In order to
 981         * ensure that, split large messages into several messages
 982         */
 983        if (spi->cfg->set_number_of_data) {
 984                int ret;
 985
 986                ret = spi_split_transfers_maxsize(master, msg,
 987                                                  STM32H7_SPI_TSIZE_MAX,
 988                                                  GFP_KERNEL | GFP_DMA);
 989                if (ret)
 990                        return ret;
 991        }
 992
 993        spin_lock_irqsave(&spi->lock, flags);
 994
 995        /* CPOL, CPHA and LSB FIRST bits have common register */
 996        if (clrb || setb)
 997                writel_relaxed(
 998                        (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
 999                         ~clrb) | setb,
1000                        spi->base + spi->cfg->regs->cpol.reg);
1001
1002        spin_unlock_irqrestore(&spi->lock, flags);
1003
1004        return 0;
1005}
1006
1007/**
1008 * stm32f4_spi_dma_tx_cb - dma callback
1009 * @data: pointer to the spi controller data structure
1010 *
1011 * DMA callback is called when the transfer is complete for DMA TX channel.
1012 */
1013static void stm32f4_spi_dma_tx_cb(void *data)
1014{
1015        struct stm32_spi *spi = data;
1016
1017        if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1018                spi_finalize_current_transfer(spi->master);
1019                stm32f4_spi_disable(spi);
1020        }
1021}
1022
1023/**
1024 * stm32_spi_dma_rx_cb - dma callback
1025 * @data: pointer to the spi controller data structure
1026 *
1027 * DMA callback is called when the transfer is complete for DMA RX channel.
1028 */
1029static void stm32_spi_dma_rx_cb(void *data)
1030{
1031        struct stm32_spi *spi = data;
1032
1033        spi_finalize_current_transfer(spi->master);
1034        spi->cfg->disable(spi);
1035}
1036
1037/**
1038 * stm32_spi_dma_config - configure dma slave channel depending on current
1039 *                        transfer bits_per_word.
1040 * @spi: pointer to the spi controller data structure
1041 * @dma_conf: pointer to the dma_slave_config structure
1042 * @dir: direction of the dma transfer
1043 */
1044static void stm32_spi_dma_config(struct stm32_spi *spi,
1045                                 struct dma_slave_config *dma_conf,
1046                                 enum dma_transfer_direction dir)
1047{
1048        enum dma_slave_buswidth buswidth;
1049        u32 maxburst;
1050
1051        if (spi->cur_bpw <= 8)
1052                buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1053        else if (spi->cur_bpw <= 16)
1054                buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1055        else
1056                buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1057
1058        if (spi->cfg->has_fifo) {
1059                /* Valid for DMA Half or Full Fifo threshold */
1060                if (spi->cur_fthlv == 2)
1061                        maxburst = 1;
1062                else
1063                        maxburst = spi->cur_fthlv;
1064        } else {
1065                maxburst = 1;
1066        }
1067
1068        memset(dma_conf, 0, sizeof(struct dma_slave_config));
1069        dma_conf->direction = dir;
1070        if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1071                dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1072                dma_conf->src_addr_width = buswidth;
1073                dma_conf->src_maxburst = maxburst;
1074
1075                dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1076                        buswidth, maxburst);
1077        } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1078                dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1079                dma_conf->dst_addr_width = buswidth;
1080                dma_conf->dst_maxburst = maxburst;
1081
1082                dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1083                        buswidth, maxburst);
1084        }
1085}
1086
1087/**
1088 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1089 *                                interrupts
1090 * @spi: pointer to the spi controller data structure
1091 *
1092 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1093 * in progress.
1094 */
1095static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1096{
1097        unsigned long flags;
1098        u32 cr2 = 0;
1099
1100        /* Enable the interrupts relative to the current communication mode */
1101        if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1102                cr2 |= STM32F4_SPI_CR2_TXEIE;
1103        } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1104                                spi->cur_comm == SPI_SIMPLEX_RX ||
1105                                spi->cur_comm == SPI_3WIRE_RX) {
1106                /* In transmit-only mode, the OVR flag is set in the SR register
1107                 * since the received data are never read. Therefore set OVR
1108                 * interrupt only when rx buffer is available.
1109                 */
1110                cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1111        } else {
1112                return -EINVAL;
1113        }
1114
1115        spin_lock_irqsave(&spi->lock, flags);
1116
1117        stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1118
1119        stm32_spi_enable(spi);
1120
1121        /* starting data transfer when buffer is loaded */
1122        if (spi->tx_buf)
1123                stm32f4_spi_write_tx(spi);
1124
1125        spin_unlock_irqrestore(&spi->lock, flags);
1126
1127        return 1;
1128}
1129
1130/**
1131 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1132 *                                interrupts
1133 * @spi: pointer to the spi controller data structure
1134 *
1135 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1136 * in progress.
1137 */
1138static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1139{
1140        unsigned long flags;
1141        u32 ier = 0;
1142
1143        /* Enable the interrupts relative to the current communication mode */
1144        if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1145                ier |= STM32H7_SPI_IER_DXPIE;
1146        else if (spi->tx_buf)           /* Half-Duplex TX dir or Simplex TX */
1147                ier |= STM32H7_SPI_IER_TXPIE;
1148        else if (spi->rx_buf)           /* Half-Duplex RX dir or Simplex RX */
1149                ier |= STM32H7_SPI_IER_RXPIE;
1150
1151        /* Enable the interrupts relative to the end of transfer */
1152        ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1153               STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1154
1155        spin_lock_irqsave(&spi->lock, flags);
1156
1157        stm32_spi_enable(spi);
1158
1159        /* Be sure to have data in fifo before starting data transfer */
1160        if (spi->tx_buf)
1161                stm32h7_spi_write_txfifo(spi);
1162
1163        stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1164
1165        writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1166
1167        spin_unlock_irqrestore(&spi->lock, flags);
1168
1169        return 1;
1170}
1171
1172/**
1173 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1174 *                                      transfer using DMA
1175 * @spi: pointer to the spi controller data structure
1176 */
1177static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1178{
1179        /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1180        if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1181            spi->cur_comm == SPI_FULL_DUPLEX) {
1182                /*
1183                 * In transmit-only mode, the OVR flag is set in the SR register
1184                 * since the received data are never read. Therefore set OVR
1185                 * interrupt only when rx buffer is available.
1186                 */
1187                stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1188        }
1189
1190        stm32_spi_enable(spi);
1191}
1192
1193/**
1194 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1195 *                                      transfer using DMA
1196 * @spi: pointer to the spi controller data structure
1197 */
1198static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1199{
1200        uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1201
1202        /* Enable the interrupts */
1203        if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)
1204                ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE;
1205
1206        stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier);
1207
1208        stm32_spi_enable(spi);
1209
1210        stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1211}
1212
1213/**
1214 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1215 * @spi: pointer to the spi controller data structure
1216 * @xfer: pointer to the spi_transfer structure
1217 *
1218 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1219 * in progress.
1220 */
1221static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1222                                      struct spi_transfer *xfer)
1223{
1224        struct dma_slave_config tx_dma_conf, rx_dma_conf;
1225        struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1226        unsigned long flags;
1227
1228        spin_lock_irqsave(&spi->lock, flags);
1229
1230        rx_dma_desc = NULL;
1231        if (spi->rx_buf && spi->dma_rx) {
1232                stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1233                dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1234
1235                /* Enable Rx DMA request */
1236                stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1237                                   spi->cfg->regs->dma_rx_en.mask);
1238
1239                rx_dma_desc = dmaengine_prep_slave_sg(
1240                                        spi->dma_rx, xfer->rx_sg.sgl,
1241                                        xfer->rx_sg.nents,
1242                                        rx_dma_conf.direction,
1243                                        DMA_PREP_INTERRUPT);
1244        }
1245
1246        tx_dma_desc = NULL;
1247        if (spi->tx_buf && spi->dma_tx) {
1248                stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1249                dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1250
1251                tx_dma_desc = dmaengine_prep_slave_sg(
1252                                        spi->dma_tx, xfer->tx_sg.sgl,
1253                                        xfer->tx_sg.nents,
1254                                        tx_dma_conf.direction,
1255                                        DMA_PREP_INTERRUPT);
1256        }
1257
1258        if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1259            (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1260                goto dma_desc_error;
1261
1262        if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1263                goto dma_desc_error;
1264
1265        if (rx_dma_desc) {
1266                rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1267                rx_dma_desc->callback_param = spi;
1268
1269                if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1270                        dev_err(spi->dev, "Rx DMA submit failed\n");
1271                        goto dma_desc_error;
1272                }
1273                /* Enable Rx DMA channel */
1274                dma_async_issue_pending(spi->dma_rx);
1275        }
1276
1277        if (tx_dma_desc) {
1278                if (spi->cur_comm == SPI_SIMPLEX_TX ||
1279                    spi->cur_comm == SPI_3WIRE_TX) {
1280                        tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1281                        tx_dma_desc->callback_param = spi;
1282                }
1283
1284                if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1285                        dev_err(spi->dev, "Tx DMA submit failed\n");
1286                        goto dma_submit_error;
1287                }
1288                /* Enable Tx DMA channel */
1289                dma_async_issue_pending(spi->dma_tx);
1290
1291                /* Enable Tx DMA request */
1292                stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1293                                   spi->cfg->regs->dma_tx_en.mask);
1294        }
1295
1296        spi->cfg->transfer_one_dma_start(spi);
1297
1298        spin_unlock_irqrestore(&spi->lock, flags);
1299
1300        return 1;
1301
1302dma_submit_error:
1303        if (spi->dma_rx)
1304                dmaengine_terminate_all(spi->dma_rx);
1305
1306dma_desc_error:
1307        stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1308                           spi->cfg->regs->dma_rx_en.mask);
1309
1310        spin_unlock_irqrestore(&spi->lock, flags);
1311
1312        dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1313
1314        spi->cur_usedma = false;
1315        return spi->cfg->transfer_one_irq(spi);
1316}
1317
1318/**
1319 * stm32f4_spi_set_bpw - Configure bits per word
1320 * @spi: pointer to the spi controller data structure
1321 */
1322static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1323{
1324        if (spi->cur_bpw == 16)
1325                stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1326        else
1327                stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1328}
1329
1330/**
1331 * stm32h7_spi_set_bpw - configure bits per word
1332 * @spi: pointer to the spi controller data structure
1333 */
1334static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1335{
1336        u32 bpw, fthlv;
1337        u32 cfg1_clrb = 0, cfg1_setb = 0;
1338
1339        bpw = spi->cur_bpw - 1;
1340
1341        cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1342        cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
1343
1344        spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1345        fthlv = spi->cur_fthlv - 1;
1346
1347        cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1348        cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
1349
1350        writel_relaxed(
1351                (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1352                 ~cfg1_clrb) | cfg1_setb,
1353                spi->base + STM32H7_SPI_CFG1);
1354}
1355
1356/**
1357 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1358 * @spi: pointer to the spi controller data structure
1359 * @mbrdiv: baud rate divisor value
1360 */
1361static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1362{
1363        u32 clrb = 0, setb = 0;
1364
1365        clrb |= spi->cfg->regs->br.mask;
1366        setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1367
1368        writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1369                        ~clrb) | setb,
1370                       spi->base + spi->cfg->regs->br.reg);
1371}
1372
1373/**
1374 * stm32_spi_communication_type - return transfer communication type
1375 * @spi_dev: pointer to the spi device
1376 * @transfer: pointer to spi transfer
1377 */
1378static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1379                                                 struct spi_transfer *transfer)
1380{
1381        unsigned int type = SPI_FULL_DUPLEX;
1382
1383        if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1384                /*
1385                 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1386                 * is forbidden and unvalidated by SPI subsystem so depending
1387                 * on the valid buffer, we can determine the direction of the
1388                 * transfer.
1389                 */
1390                if (!transfer->tx_buf)
1391                        type = SPI_3WIRE_RX;
1392                else
1393                        type = SPI_3WIRE_TX;
1394        } else {
1395                if (!transfer->tx_buf)
1396                        type = SPI_SIMPLEX_RX;
1397                else if (!transfer->rx_buf)
1398                        type = SPI_SIMPLEX_TX;
1399        }
1400
1401        return type;
1402}
1403
1404/**
1405 * stm32f4_spi_set_mode - configure communication mode
1406 * @spi: pointer to the spi controller data structure
1407 * @comm_type: type of communication to configure
1408 */
1409static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1410{
1411        if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1412                stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1413                                        STM32F4_SPI_CR1_BIDIMODE |
1414                                        STM32F4_SPI_CR1_BIDIOE);
1415        } else if (comm_type == SPI_FULL_DUPLEX ||
1416                                comm_type == SPI_SIMPLEX_RX) {
1417                stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1418                                        STM32F4_SPI_CR1_BIDIMODE |
1419                                        STM32F4_SPI_CR1_BIDIOE);
1420        } else if (comm_type == SPI_3WIRE_RX) {
1421                stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1422                                        STM32F4_SPI_CR1_BIDIMODE);
1423                stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1424                                        STM32F4_SPI_CR1_BIDIOE);
1425        } else {
1426                return -EINVAL;
1427        }
1428
1429        return 0;
1430}
1431
1432/**
1433 * stm32h7_spi_set_mode - configure communication mode
1434 * @spi: pointer to the spi controller data structure
1435 * @comm_type: type of communication to configure
1436 */
1437static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1438{
1439        u32 mode;
1440        u32 cfg2_clrb = 0, cfg2_setb = 0;
1441
1442        if (comm_type == SPI_3WIRE_RX) {
1443                mode = STM32H7_SPI_HALF_DUPLEX;
1444                stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1445        } else if (comm_type == SPI_3WIRE_TX) {
1446                mode = STM32H7_SPI_HALF_DUPLEX;
1447                stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1448        } else if (comm_type == SPI_SIMPLEX_RX) {
1449                mode = STM32H7_SPI_SIMPLEX_RX;
1450        } else if (comm_type == SPI_SIMPLEX_TX) {
1451                mode = STM32H7_SPI_SIMPLEX_TX;
1452        } else {
1453                mode = STM32H7_SPI_FULL_DUPLEX;
1454        }
1455
1456        cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1457        cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1458
1459        writel_relaxed(
1460                (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1461                 ~cfg2_clrb) | cfg2_setb,
1462                spi->base + STM32H7_SPI_CFG2);
1463
1464        return 0;
1465}
1466
1467/**
1468 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1469 *                             consecutive data frames in master mode
1470 * @spi: pointer to the spi controller data structure
1471 * @len: transfer len
1472 */
1473static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1474{
1475        u32 cfg2_clrb = 0, cfg2_setb = 0;
1476
1477        cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1478        if ((len > 1) && (spi->cur_midi > 0)) {
1479                u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1480                u32 midi = min_t(u32,
1481                                 DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1482                                 FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1483                                 STM32H7_SPI_CFG2_MIDI));
1484
1485
1486                dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1487                        sck_period_ns, midi, midi * sck_period_ns);
1488                cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1489        }
1490
1491        writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1492                        ~cfg2_clrb) | cfg2_setb,
1493                       spi->base + STM32H7_SPI_CFG2);
1494}
1495
1496/**
1497 * stm32h7_spi_number_of_data - configure number of data at current transfer
1498 * @spi: pointer to the spi controller data structure
1499 * @nb_words: transfer length (in words)
1500 */
1501static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1502{
1503        if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
1504                writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1505                               spi->base + STM32H7_SPI_CR2);
1506        } else {
1507                return -EMSGSIZE;
1508        }
1509
1510        return 0;
1511}
1512
1513/**
1514 * stm32_spi_transfer_one_setup - common setup to transfer a single
1515 *                                spi_transfer either using DMA or
1516 *                                interrupts.
1517 * @spi: pointer to the spi controller data structure
1518 * @spi_dev: pointer to the spi device
1519 * @transfer: pointer to spi transfer
1520 */
1521static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1522                                        struct spi_device *spi_dev,
1523                                        struct spi_transfer *transfer)
1524{
1525        unsigned long flags;
1526        unsigned int comm_type;
1527        int nb_words, ret = 0;
1528        int mbr;
1529
1530        spin_lock_irqsave(&spi->lock, flags);
1531
1532        spi->cur_xferlen = transfer->len;
1533
1534        spi->cur_bpw = transfer->bits_per_word;
1535        spi->cfg->set_bpw(spi);
1536
1537        /* Update spi->cur_speed with real clock speed */
1538        mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1539                                    spi->cfg->baud_rate_div_min,
1540                                    spi->cfg->baud_rate_div_max);
1541        if (mbr < 0) {
1542                ret = mbr;
1543                goto out;
1544        }
1545
1546        transfer->speed_hz = spi->cur_speed;
1547        stm32_spi_set_mbr(spi, mbr);
1548
1549        comm_type = stm32_spi_communication_type(spi_dev, transfer);
1550        ret = spi->cfg->set_mode(spi, comm_type);
1551        if (ret < 0)
1552                goto out;
1553
1554        spi->cur_comm = comm_type;
1555
1556        if (spi->cfg->set_data_idleness)
1557                spi->cfg->set_data_idleness(spi, transfer->len);
1558
1559        if (spi->cur_bpw <= 8)
1560                nb_words = transfer->len;
1561        else if (spi->cur_bpw <= 16)
1562                nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1563        else
1564                nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1565
1566        if (spi->cfg->set_number_of_data) {
1567                ret = spi->cfg->set_number_of_data(spi, nb_words);
1568                if (ret < 0)
1569                        goto out;
1570        }
1571
1572        dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1573                spi->cur_comm);
1574        dev_dbg(spi->dev,
1575                "data frame of %d-bit, data packet of %d data frames\n",
1576                spi->cur_bpw, spi->cur_fthlv);
1577        dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1578        dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1579                spi->cur_xferlen, nb_words);
1580        dev_dbg(spi->dev, "dma %s\n",
1581                (spi->cur_usedma) ? "enabled" : "disabled");
1582
1583out:
1584        spin_unlock_irqrestore(&spi->lock, flags);
1585
1586        return ret;
1587}
1588
1589/**
1590 * stm32_spi_transfer_one - transfer a single spi_transfer
1591 * @master: controller master interface
1592 * @spi_dev: pointer to the spi device
1593 * @transfer: pointer to spi transfer
1594 *
1595 * It must return 0 if the transfer is finished or 1 if the transfer is still
1596 * in progress.
1597 */
1598static int stm32_spi_transfer_one(struct spi_master *master,
1599                                  struct spi_device *spi_dev,
1600                                  struct spi_transfer *transfer)
1601{
1602        struct stm32_spi *spi = spi_master_get_devdata(master);
1603        int ret;
1604
1605        spi->tx_buf = transfer->tx_buf;
1606        spi->rx_buf = transfer->rx_buf;
1607        spi->tx_len = spi->tx_buf ? transfer->len : 0;
1608        spi->rx_len = spi->rx_buf ? transfer->len : 0;
1609
1610        spi->cur_usedma = (master->can_dma &&
1611                           master->can_dma(master, spi_dev, transfer));
1612
1613        ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1614        if (ret) {
1615                dev_err(spi->dev, "SPI transfer setup failed\n");
1616                return ret;
1617        }
1618
1619        if (spi->cur_usedma)
1620                return stm32_spi_transfer_one_dma(spi, transfer);
1621        else
1622                return spi->cfg->transfer_one_irq(spi);
1623}
1624
1625/**
1626 * stm32_spi_unprepare_msg - relax the hardware
1627 * @master: controller master interface
1628 * @msg: pointer to the spi message
1629 */
1630static int stm32_spi_unprepare_msg(struct spi_master *master,
1631                                   struct spi_message *msg)
1632{
1633        struct stm32_spi *spi = spi_master_get_devdata(master);
1634
1635        spi->cfg->disable(spi);
1636
1637        return 0;
1638}
1639
1640/**
1641 * stm32f4_spi_config - Configure SPI controller as SPI master
1642 * @spi: pointer to the spi controller data structure
1643 */
1644static int stm32f4_spi_config(struct stm32_spi *spi)
1645{
1646        unsigned long flags;
1647
1648        spin_lock_irqsave(&spi->lock, flags);
1649
1650        /* Ensure I2SMOD bit is kept cleared */
1651        stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1652                           STM32F4_SPI_I2SCFGR_I2SMOD);
1653
1654        /*
1655         * - SS input value high
1656         * - transmitter half duplex direction
1657         * - Set the master mode (default Motorola mode)
1658         * - Consider 1 master/n slaves configuration and
1659         *   SS input value is determined by the SSI bit
1660         */
1661        stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1662                                                 STM32F4_SPI_CR1_BIDIOE |
1663                                                 STM32F4_SPI_CR1_MSTR |
1664                                                 STM32F4_SPI_CR1_SSM);
1665
1666        spin_unlock_irqrestore(&spi->lock, flags);
1667
1668        return 0;
1669}
1670
1671/**
1672 * stm32h7_spi_config - Configure SPI controller as SPI master
1673 * @spi: pointer to the spi controller data structure
1674 */
1675static int stm32h7_spi_config(struct stm32_spi *spi)
1676{
1677        unsigned long flags;
1678
1679        spin_lock_irqsave(&spi->lock, flags);
1680
1681        /* Ensure I2SMOD bit is kept cleared */
1682        stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1683                           STM32H7_SPI_I2SCFGR_I2SMOD);
1684
1685        /*
1686         * - SS input value high
1687         * - transmitter half duplex direction
1688         * - automatic communication suspend when RX-Fifo is full
1689         */
1690        stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1691                                                 STM32H7_SPI_CR1_HDDIR |
1692                                                 STM32H7_SPI_CR1_MASRX);
1693
1694        /*
1695         * - Set the master mode (default Motorola mode)
1696         * - Consider 1 master/n slaves configuration and
1697         *   SS input value is determined by the SSI bit
1698         * - keep control of all associated GPIOs
1699         */
1700        stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1701                                                  STM32H7_SPI_CFG2_SSM |
1702                                                  STM32H7_SPI_CFG2_AFCNTR);
1703
1704        spin_unlock_irqrestore(&spi->lock, flags);
1705
1706        return 0;
1707}
1708
1709static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1710        .regs = &stm32f4_spi_regspec,
1711        .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1712        .disable = stm32f4_spi_disable,
1713        .config = stm32f4_spi_config,
1714        .set_bpw = stm32f4_spi_set_bpw,
1715        .set_mode = stm32f4_spi_set_mode,
1716        .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1717        .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1718        .dma_rx_cb = stm32_spi_dma_rx_cb,
1719        .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1720        .irq_handler_event = stm32f4_spi_irq_event,
1721        .irq_handler_thread = stm32f4_spi_irq_thread,
1722        .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1723        .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1724        .has_fifo = false,
1725};
1726
1727static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1728        .regs = &stm32h7_spi_regspec,
1729        .get_fifo_size = stm32h7_spi_get_fifo_size,
1730        .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1731        .disable = stm32h7_spi_disable,
1732        .config = stm32h7_spi_config,
1733        .set_bpw = stm32h7_spi_set_bpw,
1734        .set_mode = stm32h7_spi_set_mode,
1735        .set_data_idleness = stm32h7_spi_data_idleness,
1736        .set_number_of_data = stm32h7_spi_number_of_data,
1737        .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1738        .dma_rx_cb = stm32_spi_dma_rx_cb,
1739        /*
1740         * dma_tx_cb is not necessary since in case of TX, dma is followed by
1741         * SPI access hence handling is performed within the SPI interrupt
1742         */
1743        .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1744        .irq_handler_thread = stm32h7_spi_irq_thread,
1745        .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1746        .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1747        .has_fifo = true,
1748};
1749
1750static const struct of_device_id stm32_spi_of_match[] = {
1751        { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1752        { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1753        {},
1754};
1755MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1756
1757static int stm32_spi_probe(struct platform_device *pdev)
1758{
1759        struct spi_master *master;
1760        struct stm32_spi *spi;
1761        struct resource *res;
1762        struct reset_control *rst;
1763        int ret;
1764
1765        master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1766        if (!master) {
1767                dev_err(&pdev->dev, "spi master allocation failed\n");
1768                return -ENOMEM;
1769        }
1770        platform_set_drvdata(pdev, master);
1771
1772        spi = spi_master_get_devdata(master);
1773        spi->dev = &pdev->dev;
1774        spi->master = master;
1775        spin_lock_init(&spi->lock);
1776
1777        spi->cfg = (const struct stm32_spi_cfg *)
1778                of_match_device(pdev->dev.driver->of_match_table,
1779                                &pdev->dev)->data;
1780
1781        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1782        spi->base = devm_ioremap_resource(&pdev->dev, res);
1783        if (IS_ERR(spi->base))
1784                return PTR_ERR(spi->base);
1785
1786        spi->phys_addr = (dma_addr_t)res->start;
1787
1788        spi->irq = platform_get_irq(pdev, 0);
1789        if (spi->irq <= 0)
1790                return dev_err_probe(&pdev->dev, spi->irq,
1791                                     "failed to get irq\n");
1792
1793        ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1794                                        spi->cfg->irq_handler_event,
1795                                        spi->cfg->irq_handler_thread,
1796                                        IRQF_ONESHOT, pdev->name, master);
1797        if (ret) {
1798                dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1799                        ret);
1800                return ret;
1801        }
1802
1803        spi->clk = devm_clk_get(&pdev->dev, NULL);
1804        if (IS_ERR(spi->clk)) {
1805                ret = PTR_ERR(spi->clk);
1806                dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1807                return ret;
1808        }
1809
1810        ret = clk_prepare_enable(spi->clk);
1811        if (ret) {
1812                dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1813                return ret;
1814        }
1815        spi->clk_rate = clk_get_rate(spi->clk);
1816        if (!spi->clk_rate) {
1817                dev_err(&pdev->dev, "clk rate = 0\n");
1818                ret = -EINVAL;
1819                goto err_clk_disable;
1820        }
1821
1822        rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1823        if (rst) {
1824                if (IS_ERR(rst)) {
1825                        ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
1826                                            "failed to get reset\n");
1827                        goto err_clk_disable;
1828                }
1829
1830                reset_control_assert(rst);
1831                udelay(2);
1832                reset_control_deassert(rst);
1833        }
1834
1835        if (spi->cfg->has_fifo)
1836                spi->fifo_size = spi->cfg->get_fifo_size(spi);
1837
1838        ret = spi->cfg->config(spi);
1839        if (ret) {
1840                dev_err(&pdev->dev, "controller configuration failed: %d\n",
1841                        ret);
1842                goto err_clk_disable;
1843        }
1844
1845        master->dev.of_node = pdev->dev.of_node;
1846        master->auto_runtime_pm = true;
1847        master->bus_num = pdev->id;
1848        master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1849                            SPI_3WIRE;
1850        master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1851        master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1852        master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1853        master->use_gpio_descriptors = true;
1854        master->prepare_message = stm32_spi_prepare_msg;
1855        master->transfer_one = stm32_spi_transfer_one;
1856        master->unprepare_message = stm32_spi_unprepare_msg;
1857        master->flags = SPI_MASTER_MUST_TX;
1858
1859        spi->dma_tx = dma_request_chan(spi->dev, "tx");
1860        if (IS_ERR(spi->dma_tx)) {
1861                ret = PTR_ERR(spi->dma_tx);
1862                spi->dma_tx = NULL;
1863                if (ret == -EPROBE_DEFER)
1864                        goto err_clk_disable;
1865
1866                dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1867        } else {
1868                master->dma_tx = spi->dma_tx;
1869        }
1870
1871        spi->dma_rx = dma_request_chan(spi->dev, "rx");
1872        if (IS_ERR(spi->dma_rx)) {
1873                ret = PTR_ERR(spi->dma_rx);
1874                spi->dma_rx = NULL;
1875                if (ret == -EPROBE_DEFER)
1876                        goto err_dma_release;
1877
1878                dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1879        } else {
1880                master->dma_rx = spi->dma_rx;
1881        }
1882
1883        if (spi->dma_tx || spi->dma_rx)
1884                master->can_dma = stm32_spi_can_dma;
1885
1886        pm_runtime_set_autosuspend_delay(&pdev->dev,
1887                                         STM32_SPI_AUTOSUSPEND_DELAY);
1888        pm_runtime_use_autosuspend(&pdev->dev);
1889        pm_runtime_set_active(&pdev->dev);
1890        pm_runtime_get_noresume(&pdev->dev);
1891        pm_runtime_enable(&pdev->dev);
1892
1893        ret = spi_register_master(master);
1894        if (ret) {
1895                dev_err(&pdev->dev, "spi master registration failed: %d\n",
1896                        ret);
1897                goto err_pm_disable;
1898        }
1899
1900        pm_runtime_mark_last_busy(&pdev->dev);
1901        pm_runtime_put_autosuspend(&pdev->dev);
1902
1903        dev_info(&pdev->dev, "driver initialized\n");
1904
1905        return 0;
1906
1907err_pm_disable:
1908        pm_runtime_disable(&pdev->dev);
1909        pm_runtime_put_noidle(&pdev->dev);
1910        pm_runtime_set_suspended(&pdev->dev);
1911        pm_runtime_dont_use_autosuspend(&pdev->dev);
1912err_dma_release:
1913        if (spi->dma_tx)
1914                dma_release_channel(spi->dma_tx);
1915        if (spi->dma_rx)
1916                dma_release_channel(spi->dma_rx);
1917err_clk_disable:
1918        clk_disable_unprepare(spi->clk);
1919
1920        return ret;
1921}
1922
1923static int stm32_spi_remove(struct platform_device *pdev)
1924{
1925        struct spi_master *master = platform_get_drvdata(pdev);
1926        struct stm32_spi *spi = spi_master_get_devdata(master);
1927
1928        pm_runtime_get_sync(&pdev->dev);
1929
1930        spi_unregister_master(master);
1931        spi->cfg->disable(spi);
1932
1933        pm_runtime_disable(&pdev->dev);
1934        pm_runtime_put_noidle(&pdev->dev);
1935        pm_runtime_set_suspended(&pdev->dev);
1936        pm_runtime_dont_use_autosuspend(&pdev->dev);
1937
1938        if (master->dma_tx)
1939                dma_release_channel(master->dma_tx);
1940        if (master->dma_rx)
1941                dma_release_channel(master->dma_rx);
1942
1943        clk_disable_unprepare(spi->clk);
1944
1945
1946        pinctrl_pm_select_sleep_state(&pdev->dev);
1947
1948        return 0;
1949}
1950
1951static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
1952{
1953        struct spi_master *master = dev_get_drvdata(dev);
1954        struct stm32_spi *spi = spi_master_get_devdata(master);
1955
1956        clk_disable_unprepare(spi->clk);
1957
1958        return pinctrl_pm_select_sleep_state(dev);
1959}
1960
1961static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
1962{
1963        struct spi_master *master = dev_get_drvdata(dev);
1964        struct stm32_spi *spi = spi_master_get_devdata(master);
1965        int ret;
1966
1967        ret = pinctrl_pm_select_default_state(dev);
1968        if (ret)
1969                return ret;
1970
1971        return clk_prepare_enable(spi->clk);
1972}
1973
1974static int __maybe_unused stm32_spi_suspend(struct device *dev)
1975{
1976        struct spi_master *master = dev_get_drvdata(dev);
1977        int ret;
1978
1979        ret = spi_master_suspend(master);
1980        if (ret)
1981                return ret;
1982
1983        return pm_runtime_force_suspend(dev);
1984}
1985
1986static int __maybe_unused stm32_spi_resume(struct device *dev)
1987{
1988        struct spi_master *master = dev_get_drvdata(dev);
1989        struct stm32_spi *spi = spi_master_get_devdata(master);
1990        int ret;
1991
1992        ret = pm_runtime_force_resume(dev);
1993        if (ret)
1994                return ret;
1995
1996        ret = spi_master_resume(master);
1997        if (ret) {
1998                clk_disable_unprepare(spi->clk);
1999                return ret;
2000        }
2001
2002        ret = pm_runtime_get_sync(dev);
2003        if (ret < 0) {
2004                pm_runtime_put_noidle(dev);
2005                dev_err(dev, "Unable to power device:%d\n", ret);
2006                return ret;
2007        }
2008
2009        spi->cfg->config(spi);
2010
2011        pm_runtime_mark_last_busy(dev);
2012        pm_runtime_put_autosuspend(dev);
2013
2014        return 0;
2015}
2016
2017static const struct dev_pm_ops stm32_spi_pm_ops = {
2018        SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2019        SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2020                           stm32_spi_runtime_resume, NULL)
2021};
2022
2023static struct platform_driver stm32_spi_driver = {
2024        .probe = stm32_spi_probe,
2025        .remove = stm32_spi_remove,
2026        .driver = {
2027                .name = DRIVER_NAME,
2028                .pm = &stm32_spi_pm_ops,
2029                .of_match_table = stm32_spi_of_match,
2030        },
2031};
2032
2033module_platform_driver(stm32_spi_driver);
2034
2035MODULE_ALIAS("platform:" DRIVER_NAME);
2036MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2037MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2038MODULE_LICENSE("GPL v2");
2039