linux/drivers/target/target_core_transport.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*******************************************************************************
   3 * Filename:  target_core_transport.c
   4 *
   5 * This file contains the Generic Target Engine Core.
   6 *
   7 * (c) Copyright 2002-2013 Datera, Inc.
   8 *
   9 * Nicholas A. Bellinger <nab@kernel.org>
  10 *
  11 ******************************************************************************/
  12
  13#include <linux/net.h>
  14#include <linux/delay.h>
  15#include <linux/string.h>
  16#include <linux/timer.h>
  17#include <linux/slab.h>
  18#include <linux/spinlock.h>
  19#include <linux/kthread.h>
  20#include <linux/in.h>
  21#include <linux/cdrom.h>
  22#include <linux/module.h>
  23#include <linux/ratelimit.h>
  24#include <linux/vmalloc.h>
  25#include <asm/unaligned.h>
  26#include <net/sock.h>
  27#include <net/tcp.h>
  28#include <scsi/scsi_proto.h>
  29#include <scsi/scsi_common.h>
  30
  31#include <target/target_core_base.h>
  32#include <target/target_core_backend.h>
  33#include <target/target_core_fabric.h>
  34
  35#include "target_core_internal.h"
  36#include "target_core_alua.h"
  37#include "target_core_pr.h"
  38#include "target_core_ua.h"
  39
  40#define CREATE_TRACE_POINTS
  41#include <trace/events/target.h>
  42
  43static struct workqueue_struct *target_completion_wq;
  44static struct workqueue_struct *target_submission_wq;
  45static struct kmem_cache *se_sess_cache;
  46struct kmem_cache *se_ua_cache;
  47struct kmem_cache *t10_pr_reg_cache;
  48struct kmem_cache *t10_alua_lu_gp_cache;
  49struct kmem_cache *t10_alua_lu_gp_mem_cache;
  50struct kmem_cache *t10_alua_tg_pt_gp_cache;
  51struct kmem_cache *t10_alua_lba_map_cache;
  52struct kmem_cache *t10_alua_lba_map_mem_cache;
  53
  54static void transport_complete_task_attr(struct se_cmd *cmd);
  55static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
  56static void transport_handle_queue_full(struct se_cmd *cmd,
  57                struct se_device *dev, int err, bool write_pending);
  58static void target_complete_ok_work(struct work_struct *work);
  59
  60int init_se_kmem_caches(void)
  61{
  62        se_sess_cache = kmem_cache_create("se_sess_cache",
  63                        sizeof(struct se_session), __alignof__(struct se_session),
  64                        0, NULL);
  65        if (!se_sess_cache) {
  66                pr_err("kmem_cache_create() for struct se_session"
  67                                " failed\n");
  68                goto out;
  69        }
  70        se_ua_cache = kmem_cache_create("se_ua_cache",
  71                        sizeof(struct se_ua), __alignof__(struct se_ua),
  72                        0, NULL);
  73        if (!se_ua_cache) {
  74                pr_err("kmem_cache_create() for struct se_ua failed\n");
  75                goto out_free_sess_cache;
  76        }
  77        t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
  78                        sizeof(struct t10_pr_registration),
  79                        __alignof__(struct t10_pr_registration), 0, NULL);
  80        if (!t10_pr_reg_cache) {
  81                pr_err("kmem_cache_create() for struct t10_pr_registration"
  82                                " failed\n");
  83                goto out_free_ua_cache;
  84        }
  85        t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
  86                        sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
  87                        0, NULL);
  88        if (!t10_alua_lu_gp_cache) {
  89                pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
  90                                " failed\n");
  91                goto out_free_pr_reg_cache;
  92        }
  93        t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
  94                        sizeof(struct t10_alua_lu_gp_member),
  95                        __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
  96        if (!t10_alua_lu_gp_mem_cache) {
  97                pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
  98                                "cache failed\n");
  99                goto out_free_lu_gp_cache;
 100        }
 101        t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
 102                        sizeof(struct t10_alua_tg_pt_gp),
 103                        __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
 104        if (!t10_alua_tg_pt_gp_cache) {
 105                pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
 106                                "cache failed\n");
 107                goto out_free_lu_gp_mem_cache;
 108        }
 109        t10_alua_lba_map_cache = kmem_cache_create(
 110                        "t10_alua_lba_map_cache",
 111                        sizeof(struct t10_alua_lba_map),
 112                        __alignof__(struct t10_alua_lba_map), 0, NULL);
 113        if (!t10_alua_lba_map_cache) {
 114                pr_err("kmem_cache_create() for t10_alua_lba_map_"
 115                                "cache failed\n");
 116                goto out_free_tg_pt_gp_cache;
 117        }
 118        t10_alua_lba_map_mem_cache = kmem_cache_create(
 119                        "t10_alua_lba_map_mem_cache",
 120                        sizeof(struct t10_alua_lba_map_member),
 121                        __alignof__(struct t10_alua_lba_map_member), 0, NULL);
 122        if (!t10_alua_lba_map_mem_cache) {
 123                pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
 124                                "cache failed\n");
 125                goto out_free_lba_map_cache;
 126        }
 127
 128        target_completion_wq = alloc_workqueue("target_completion",
 129                                               WQ_MEM_RECLAIM, 0);
 130        if (!target_completion_wq)
 131                goto out_free_lba_map_mem_cache;
 132
 133        target_submission_wq = alloc_workqueue("target_submission",
 134                                               WQ_MEM_RECLAIM, 0);
 135        if (!target_submission_wq)
 136                goto out_free_completion_wq;
 137
 138        return 0;
 139
 140out_free_completion_wq:
 141        destroy_workqueue(target_completion_wq);
 142out_free_lba_map_mem_cache:
 143        kmem_cache_destroy(t10_alua_lba_map_mem_cache);
 144out_free_lba_map_cache:
 145        kmem_cache_destroy(t10_alua_lba_map_cache);
 146out_free_tg_pt_gp_cache:
 147        kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
 148out_free_lu_gp_mem_cache:
 149        kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
 150out_free_lu_gp_cache:
 151        kmem_cache_destroy(t10_alua_lu_gp_cache);
 152out_free_pr_reg_cache:
 153        kmem_cache_destroy(t10_pr_reg_cache);
 154out_free_ua_cache:
 155        kmem_cache_destroy(se_ua_cache);
 156out_free_sess_cache:
 157        kmem_cache_destroy(se_sess_cache);
 158out:
 159        return -ENOMEM;
 160}
 161
 162void release_se_kmem_caches(void)
 163{
 164        destroy_workqueue(target_submission_wq);
 165        destroy_workqueue(target_completion_wq);
 166        kmem_cache_destroy(se_sess_cache);
 167        kmem_cache_destroy(se_ua_cache);
 168        kmem_cache_destroy(t10_pr_reg_cache);
 169        kmem_cache_destroy(t10_alua_lu_gp_cache);
 170        kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
 171        kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
 172        kmem_cache_destroy(t10_alua_lba_map_cache);
 173        kmem_cache_destroy(t10_alua_lba_map_mem_cache);
 174}
 175
 176/* This code ensures unique mib indexes are handed out. */
 177static DEFINE_SPINLOCK(scsi_mib_index_lock);
 178static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
 179
 180/*
 181 * Allocate a new row index for the entry type specified
 182 */
 183u32 scsi_get_new_index(scsi_index_t type)
 184{
 185        u32 new_index;
 186
 187        BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
 188
 189        spin_lock(&scsi_mib_index_lock);
 190        new_index = ++scsi_mib_index[type];
 191        spin_unlock(&scsi_mib_index_lock);
 192
 193        return new_index;
 194}
 195
 196void transport_subsystem_check_init(void)
 197{
 198        int ret;
 199        static int sub_api_initialized;
 200
 201        if (sub_api_initialized)
 202                return;
 203
 204        ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
 205        if (ret != 0)
 206                pr_err("Unable to load target_core_iblock\n");
 207
 208        ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
 209        if (ret != 0)
 210                pr_err("Unable to load target_core_file\n");
 211
 212        ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
 213        if (ret != 0)
 214                pr_err("Unable to load target_core_pscsi\n");
 215
 216        ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
 217        if (ret != 0)
 218                pr_err("Unable to load target_core_user\n");
 219
 220        sub_api_initialized = 1;
 221}
 222
 223static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
 224{
 225        struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
 226
 227        wake_up(&sess->cmd_count_wq);
 228}
 229
 230/**
 231 * transport_init_session - initialize a session object
 232 * @se_sess: Session object pointer.
 233 *
 234 * The caller must have zero-initialized @se_sess before calling this function.
 235 */
 236int transport_init_session(struct se_session *se_sess)
 237{
 238        INIT_LIST_HEAD(&se_sess->sess_list);
 239        INIT_LIST_HEAD(&se_sess->sess_acl_list);
 240        spin_lock_init(&se_sess->sess_cmd_lock);
 241        init_waitqueue_head(&se_sess->cmd_count_wq);
 242        init_completion(&se_sess->stop_done);
 243        atomic_set(&se_sess->stopped, 0);
 244        return percpu_ref_init(&se_sess->cmd_count,
 245                               target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
 246}
 247EXPORT_SYMBOL(transport_init_session);
 248
 249void transport_uninit_session(struct se_session *se_sess)
 250{
 251        /*
 252         * Drivers like iscsi and loop do not call target_stop_session
 253         * during session shutdown so we have to drop the ref taken at init
 254         * time here.
 255         */
 256        if (!atomic_read(&se_sess->stopped))
 257                percpu_ref_put(&se_sess->cmd_count);
 258
 259        percpu_ref_exit(&se_sess->cmd_count);
 260}
 261
 262/**
 263 * transport_alloc_session - allocate a session object and initialize it
 264 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 265 */
 266struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
 267{
 268        struct se_session *se_sess;
 269        int ret;
 270
 271        se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
 272        if (!se_sess) {
 273                pr_err("Unable to allocate struct se_session from"
 274                                " se_sess_cache\n");
 275                return ERR_PTR(-ENOMEM);
 276        }
 277        ret = transport_init_session(se_sess);
 278        if (ret < 0) {
 279                kmem_cache_free(se_sess_cache, se_sess);
 280                return ERR_PTR(ret);
 281        }
 282        se_sess->sup_prot_ops = sup_prot_ops;
 283
 284        return se_sess;
 285}
 286EXPORT_SYMBOL(transport_alloc_session);
 287
 288/**
 289 * transport_alloc_session_tags - allocate target driver private data
 290 * @se_sess:  Session pointer.
 291 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 292 * @tag_size: Size in bytes of the private data a target driver associates with
 293 *            each command.
 294 */
 295int transport_alloc_session_tags(struct se_session *se_sess,
 296                                 unsigned int tag_num, unsigned int tag_size)
 297{
 298        int rc;
 299
 300        se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
 301                                         GFP_KERNEL | __GFP_RETRY_MAYFAIL);
 302        if (!se_sess->sess_cmd_map) {
 303                pr_err("Unable to allocate se_sess->sess_cmd_map\n");
 304                return -ENOMEM;
 305        }
 306
 307        rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
 308                        false, GFP_KERNEL, NUMA_NO_NODE);
 309        if (rc < 0) {
 310                pr_err("Unable to init se_sess->sess_tag_pool,"
 311                        " tag_num: %u\n", tag_num);
 312                kvfree(se_sess->sess_cmd_map);
 313                se_sess->sess_cmd_map = NULL;
 314                return -ENOMEM;
 315        }
 316
 317        return 0;
 318}
 319EXPORT_SYMBOL(transport_alloc_session_tags);
 320
 321/**
 322 * transport_init_session_tags - allocate a session and target driver private data
 323 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 324 * @tag_size: Size in bytes of the private data a target driver associates with
 325 *            each command.
 326 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 327 */
 328static struct se_session *
 329transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
 330                            enum target_prot_op sup_prot_ops)
 331{
 332        struct se_session *se_sess;
 333        int rc;
 334
 335        if (tag_num != 0 && !tag_size) {
 336                pr_err("init_session_tags called with percpu-ida tag_num:"
 337                       " %u, but zero tag_size\n", tag_num);
 338                return ERR_PTR(-EINVAL);
 339        }
 340        if (!tag_num && tag_size) {
 341                pr_err("init_session_tags called with percpu-ida tag_size:"
 342                       " %u, but zero tag_num\n", tag_size);
 343                return ERR_PTR(-EINVAL);
 344        }
 345
 346        se_sess = transport_alloc_session(sup_prot_ops);
 347        if (IS_ERR(se_sess))
 348                return se_sess;
 349
 350        rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
 351        if (rc < 0) {
 352                transport_free_session(se_sess);
 353                return ERR_PTR(-ENOMEM);
 354        }
 355
 356        return se_sess;
 357}
 358
 359/*
 360 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
 361 */
 362void __transport_register_session(
 363        struct se_portal_group *se_tpg,
 364        struct se_node_acl *se_nacl,
 365        struct se_session *se_sess,
 366        void *fabric_sess_ptr)
 367{
 368        const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
 369        unsigned char buf[PR_REG_ISID_LEN];
 370        unsigned long flags;
 371
 372        se_sess->se_tpg = se_tpg;
 373        se_sess->fabric_sess_ptr = fabric_sess_ptr;
 374        /*
 375         * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
 376         *
 377         * Only set for struct se_session's that will actually be moving I/O.
 378         * eg: *NOT* discovery sessions.
 379         */
 380        if (se_nacl) {
 381                /*
 382                 *
 383                 * Determine if fabric allows for T10-PI feature bits exposed to
 384                 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
 385                 *
 386                 * If so, then always save prot_type on a per se_node_acl node
 387                 * basis and re-instate the previous sess_prot_type to avoid
 388                 * disabling PI from below any previously initiator side
 389                 * registered LUNs.
 390                 */
 391                if (se_nacl->saved_prot_type)
 392                        se_sess->sess_prot_type = se_nacl->saved_prot_type;
 393                else if (tfo->tpg_check_prot_fabric_only)
 394                        se_sess->sess_prot_type = se_nacl->saved_prot_type =
 395                                        tfo->tpg_check_prot_fabric_only(se_tpg);
 396                /*
 397                 * If the fabric module supports an ISID based TransportID,
 398                 * save this value in binary from the fabric I_T Nexus now.
 399                 */
 400                if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
 401                        memset(&buf[0], 0, PR_REG_ISID_LEN);
 402                        se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
 403                                        &buf[0], PR_REG_ISID_LEN);
 404                        se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
 405                }
 406
 407                spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
 408                /*
 409                 * The se_nacl->nacl_sess pointer will be set to the
 410                 * last active I_T Nexus for each struct se_node_acl.
 411                 */
 412                se_nacl->nacl_sess = se_sess;
 413
 414                list_add_tail(&se_sess->sess_acl_list,
 415                              &se_nacl->acl_sess_list);
 416                spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
 417        }
 418        list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
 419
 420        pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
 421                se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
 422}
 423EXPORT_SYMBOL(__transport_register_session);
 424
 425void transport_register_session(
 426        struct se_portal_group *se_tpg,
 427        struct se_node_acl *se_nacl,
 428        struct se_session *se_sess,
 429        void *fabric_sess_ptr)
 430{
 431        unsigned long flags;
 432
 433        spin_lock_irqsave(&se_tpg->session_lock, flags);
 434        __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
 435        spin_unlock_irqrestore(&se_tpg->session_lock, flags);
 436}
 437EXPORT_SYMBOL(transport_register_session);
 438
 439struct se_session *
 440target_setup_session(struct se_portal_group *tpg,
 441                     unsigned int tag_num, unsigned int tag_size,
 442                     enum target_prot_op prot_op,
 443                     const char *initiatorname, void *private,
 444                     int (*callback)(struct se_portal_group *,
 445                                     struct se_session *, void *))
 446{
 447        struct se_session *sess;
 448
 449        /*
 450         * If the fabric driver is using percpu-ida based pre allocation
 451         * of I/O descriptor tags, go ahead and perform that setup now..
 452         */
 453        if (tag_num != 0)
 454                sess = transport_init_session_tags(tag_num, tag_size, prot_op);
 455        else
 456                sess = transport_alloc_session(prot_op);
 457
 458        if (IS_ERR(sess))
 459                return sess;
 460
 461        sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
 462                                        (unsigned char *)initiatorname);
 463        if (!sess->se_node_acl) {
 464                transport_free_session(sess);
 465                return ERR_PTR(-EACCES);
 466        }
 467        /*
 468         * Go ahead and perform any remaining fabric setup that is
 469         * required before transport_register_session().
 470         */
 471        if (callback != NULL) {
 472                int rc = callback(tpg, sess, private);
 473                if (rc) {
 474                        transport_free_session(sess);
 475                        return ERR_PTR(rc);
 476                }
 477        }
 478
 479        transport_register_session(tpg, sess->se_node_acl, sess, private);
 480        return sess;
 481}
 482EXPORT_SYMBOL(target_setup_session);
 483
 484ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
 485{
 486        struct se_session *se_sess;
 487        ssize_t len = 0;
 488
 489        spin_lock_bh(&se_tpg->session_lock);
 490        list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
 491                if (!se_sess->se_node_acl)
 492                        continue;
 493                if (!se_sess->se_node_acl->dynamic_node_acl)
 494                        continue;
 495                if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
 496                        break;
 497
 498                len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
 499                                se_sess->se_node_acl->initiatorname);
 500                len += 1; /* Include NULL terminator */
 501        }
 502        spin_unlock_bh(&se_tpg->session_lock);
 503
 504        return len;
 505}
 506EXPORT_SYMBOL(target_show_dynamic_sessions);
 507
 508static void target_complete_nacl(struct kref *kref)
 509{
 510        struct se_node_acl *nacl = container_of(kref,
 511                                struct se_node_acl, acl_kref);
 512        struct se_portal_group *se_tpg = nacl->se_tpg;
 513
 514        if (!nacl->dynamic_stop) {
 515                complete(&nacl->acl_free_comp);
 516                return;
 517        }
 518
 519        mutex_lock(&se_tpg->acl_node_mutex);
 520        list_del_init(&nacl->acl_list);
 521        mutex_unlock(&se_tpg->acl_node_mutex);
 522
 523        core_tpg_wait_for_nacl_pr_ref(nacl);
 524        core_free_device_list_for_node(nacl, se_tpg);
 525        kfree(nacl);
 526}
 527
 528void target_put_nacl(struct se_node_acl *nacl)
 529{
 530        kref_put(&nacl->acl_kref, target_complete_nacl);
 531}
 532EXPORT_SYMBOL(target_put_nacl);
 533
 534void transport_deregister_session_configfs(struct se_session *se_sess)
 535{
 536        struct se_node_acl *se_nacl;
 537        unsigned long flags;
 538        /*
 539         * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
 540         */
 541        se_nacl = se_sess->se_node_acl;
 542        if (se_nacl) {
 543                spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
 544                if (!list_empty(&se_sess->sess_acl_list))
 545                        list_del_init(&se_sess->sess_acl_list);
 546                /*
 547                 * If the session list is empty, then clear the pointer.
 548                 * Otherwise, set the struct se_session pointer from the tail
 549                 * element of the per struct se_node_acl active session list.
 550                 */
 551                if (list_empty(&se_nacl->acl_sess_list))
 552                        se_nacl->nacl_sess = NULL;
 553                else {
 554                        se_nacl->nacl_sess = container_of(
 555                                        se_nacl->acl_sess_list.prev,
 556                                        struct se_session, sess_acl_list);
 557                }
 558                spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
 559        }
 560}
 561EXPORT_SYMBOL(transport_deregister_session_configfs);
 562
 563void transport_free_session(struct se_session *se_sess)
 564{
 565        struct se_node_acl *se_nacl = se_sess->se_node_acl;
 566
 567        /*
 568         * Drop the se_node_acl->nacl_kref obtained from within
 569         * core_tpg_get_initiator_node_acl().
 570         */
 571        if (se_nacl) {
 572                struct se_portal_group *se_tpg = se_nacl->se_tpg;
 573                const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
 574                unsigned long flags;
 575
 576                se_sess->se_node_acl = NULL;
 577
 578                /*
 579                 * Also determine if we need to drop the extra ->cmd_kref if
 580                 * it had been previously dynamically generated, and
 581                 * the endpoint is not caching dynamic ACLs.
 582                 */
 583                mutex_lock(&se_tpg->acl_node_mutex);
 584                if (se_nacl->dynamic_node_acl &&
 585                    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
 586                        spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
 587                        if (list_empty(&se_nacl->acl_sess_list))
 588                                se_nacl->dynamic_stop = true;
 589                        spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
 590
 591                        if (se_nacl->dynamic_stop)
 592                                list_del_init(&se_nacl->acl_list);
 593                }
 594                mutex_unlock(&se_tpg->acl_node_mutex);
 595
 596                if (se_nacl->dynamic_stop)
 597                        target_put_nacl(se_nacl);
 598
 599                target_put_nacl(se_nacl);
 600        }
 601        if (se_sess->sess_cmd_map) {
 602                sbitmap_queue_free(&se_sess->sess_tag_pool);
 603                kvfree(se_sess->sess_cmd_map);
 604        }
 605        transport_uninit_session(se_sess);
 606        kmem_cache_free(se_sess_cache, se_sess);
 607}
 608EXPORT_SYMBOL(transport_free_session);
 609
 610static int target_release_res(struct se_device *dev, void *data)
 611{
 612        struct se_session *sess = data;
 613
 614        if (dev->reservation_holder == sess)
 615                target_release_reservation(dev);
 616        return 0;
 617}
 618
 619void transport_deregister_session(struct se_session *se_sess)
 620{
 621        struct se_portal_group *se_tpg = se_sess->se_tpg;
 622        unsigned long flags;
 623
 624        if (!se_tpg) {
 625                transport_free_session(se_sess);
 626                return;
 627        }
 628
 629        spin_lock_irqsave(&se_tpg->session_lock, flags);
 630        list_del(&se_sess->sess_list);
 631        se_sess->se_tpg = NULL;
 632        se_sess->fabric_sess_ptr = NULL;
 633        spin_unlock_irqrestore(&se_tpg->session_lock, flags);
 634
 635        /*
 636         * Since the session is being removed, release SPC-2
 637         * reservations held by the session that is disappearing.
 638         */
 639        target_for_each_device(target_release_res, se_sess);
 640
 641        pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
 642                se_tpg->se_tpg_tfo->fabric_name);
 643        /*
 644         * If last kref is dropping now for an explicit NodeACL, awake sleeping
 645         * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
 646         * removal context from within transport_free_session() code.
 647         *
 648         * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
 649         * to release all remaining generate_node_acl=1 created ACL resources.
 650         */
 651
 652        transport_free_session(se_sess);
 653}
 654EXPORT_SYMBOL(transport_deregister_session);
 655
 656void target_remove_session(struct se_session *se_sess)
 657{
 658        transport_deregister_session_configfs(se_sess);
 659        transport_deregister_session(se_sess);
 660}
 661EXPORT_SYMBOL(target_remove_session);
 662
 663static void target_remove_from_state_list(struct se_cmd *cmd)
 664{
 665        struct se_device *dev = cmd->se_dev;
 666        unsigned long flags;
 667
 668        if (!dev)
 669                return;
 670
 671        spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
 672        if (cmd->state_active) {
 673                list_del(&cmd->state_list);
 674                cmd->state_active = false;
 675        }
 676        spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
 677}
 678
 679/*
 680 * This function is called by the target core after the target core has
 681 * finished processing a SCSI command or SCSI TMF. Both the regular command
 682 * processing code and the code for aborting commands can call this
 683 * function. CMD_T_STOP is set if and only if another thread is waiting
 684 * inside transport_wait_for_tasks() for t_transport_stop_comp.
 685 */
 686static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
 687{
 688        unsigned long flags;
 689
 690        target_remove_from_state_list(cmd);
 691
 692        /*
 693         * Clear struct se_cmd->se_lun before the handoff to FE.
 694         */
 695        cmd->se_lun = NULL;
 696
 697        spin_lock_irqsave(&cmd->t_state_lock, flags);
 698        /*
 699         * Determine if frontend context caller is requesting the stopping of
 700         * this command for frontend exceptions.
 701         */
 702        if (cmd->transport_state & CMD_T_STOP) {
 703                pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
 704                        __func__, __LINE__, cmd->tag);
 705
 706                spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 707
 708                complete_all(&cmd->t_transport_stop_comp);
 709                return 1;
 710        }
 711        cmd->transport_state &= ~CMD_T_ACTIVE;
 712        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 713
 714        /*
 715         * Some fabric modules like tcm_loop can release their internally
 716         * allocated I/O reference and struct se_cmd now.
 717         *
 718         * Fabric modules are expected to return '1' here if the se_cmd being
 719         * passed is released at this point, or zero if not being released.
 720         */
 721        return cmd->se_tfo->check_stop_free(cmd);
 722}
 723
 724static void transport_lun_remove_cmd(struct se_cmd *cmd)
 725{
 726        struct se_lun *lun = cmd->se_lun;
 727
 728        if (!lun)
 729                return;
 730
 731        if (cmpxchg(&cmd->lun_ref_active, true, false))
 732                percpu_ref_put(&lun->lun_ref);
 733}
 734
 735static void target_complete_failure_work(struct work_struct *work)
 736{
 737        struct se_cmd *cmd = container_of(work, struct se_cmd, work);
 738
 739        transport_generic_request_failure(cmd, cmd->sense_reason);
 740}
 741
 742/*
 743 * Used when asking transport to copy Sense Data from the underlying
 744 * Linux/SCSI struct scsi_cmnd
 745 */
 746static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
 747{
 748        struct se_device *dev = cmd->se_dev;
 749
 750        WARN_ON(!cmd->se_lun);
 751
 752        if (!dev)
 753                return NULL;
 754
 755        if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
 756                return NULL;
 757
 758        cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
 759
 760        pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
 761                dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
 762        return cmd->sense_buffer;
 763}
 764
 765void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
 766{
 767        unsigned char *cmd_sense_buf;
 768        unsigned long flags;
 769
 770        spin_lock_irqsave(&cmd->t_state_lock, flags);
 771        cmd_sense_buf = transport_get_sense_buffer(cmd);
 772        if (!cmd_sense_buf) {
 773                spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 774                return;
 775        }
 776
 777        cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
 778        memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
 779        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 780}
 781EXPORT_SYMBOL(transport_copy_sense_to_cmd);
 782
 783static void target_handle_abort(struct se_cmd *cmd)
 784{
 785        bool tas = cmd->transport_state & CMD_T_TAS;
 786        bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
 787        int ret;
 788
 789        pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
 790
 791        if (tas) {
 792                if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
 793                        cmd->scsi_status = SAM_STAT_TASK_ABORTED;
 794                        pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
 795                                 cmd->t_task_cdb[0], cmd->tag);
 796                        trace_target_cmd_complete(cmd);
 797                        ret = cmd->se_tfo->queue_status(cmd);
 798                        if (ret) {
 799                                transport_handle_queue_full(cmd, cmd->se_dev,
 800                                                            ret, false);
 801                                return;
 802                        }
 803                } else {
 804                        cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
 805                        cmd->se_tfo->queue_tm_rsp(cmd);
 806                }
 807        } else {
 808                /*
 809                 * Allow the fabric driver to unmap any resources before
 810                 * releasing the descriptor via TFO->release_cmd().
 811                 */
 812                cmd->se_tfo->aborted_task(cmd);
 813                if (ack_kref)
 814                        WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
 815                /*
 816                 * To do: establish a unit attention condition on the I_T
 817                 * nexus associated with cmd. See also the paragraph "Aborting
 818                 * commands" in SAM.
 819                 */
 820        }
 821
 822        WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
 823
 824        transport_lun_remove_cmd(cmd);
 825
 826        transport_cmd_check_stop_to_fabric(cmd);
 827}
 828
 829static void target_abort_work(struct work_struct *work)
 830{
 831        struct se_cmd *cmd = container_of(work, struct se_cmd, work);
 832
 833        target_handle_abort(cmd);
 834}
 835
 836static bool target_cmd_interrupted(struct se_cmd *cmd)
 837{
 838        int post_ret;
 839
 840        if (cmd->transport_state & CMD_T_ABORTED) {
 841                if (cmd->transport_complete_callback)
 842                        cmd->transport_complete_callback(cmd, false, &post_ret);
 843                INIT_WORK(&cmd->work, target_abort_work);
 844                queue_work(target_completion_wq, &cmd->work);
 845                return true;
 846        } else if (cmd->transport_state & CMD_T_STOP) {
 847                if (cmd->transport_complete_callback)
 848                        cmd->transport_complete_callback(cmd, false, &post_ret);
 849                complete_all(&cmd->t_transport_stop_comp);
 850                return true;
 851        }
 852
 853        return false;
 854}
 855
 856/* May be called from interrupt context so must not sleep. */
 857void target_complete_cmd_with_sense(struct se_cmd *cmd, u8 scsi_status,
 858                                    sense_reason_t sense_reason)
 859{
 860        struct se_wwn *wwn = cmd->se_sess->se_tpg->se_tpg_wwn;
 861        int success, cpu;
 862        unsigned long flags;
 863
 864        if (target_cmd_interrupted(cmd))
 865                return;
 866
 867        cmd->scsi_status = scsi_status;
 868        cmd->sense_reason = sense_reason;
 869
 870        spin_lock_irqsave(&cmd->t_state_lock, flags);
 871        switch (cmd->scsi_status) {
 872        case SAM_STAT_CHECK_CONDITION:
 873                if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
 874                        success = 1;
 875                else
 876                        success = 0;
 877                break;
 878        default:
 879                success = 1;
 880                break;
 881        }
 882
 883        cmd->t_state = TRANSPORT_COMPLETE;
 884        cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
 885        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 886
 887        INIT_WORK(&cmd->work, success ? target_complete_ok_work :
 888                  target_complete_failure_work);
 889
 890        if (!wwn || wwn->cmd_compl_affinity == SE_COMPL_AFFINITY_CPUID)
 891                cpu = cmd->cpuid;
 892        else
 893                cpu = wwn->cmd_compl_affinity;
 894
 895        queue_work_on(cpu, target_completion_wq, &cmd->work);
 896}
 897EXPORT_SYMBOL(target_complete_cmd_with_sense);
 898
 899void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
 900{
 901        target_complete_cmd_with_sense(cmd, scsi_status, scsi_status ?
 902                              TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE :
 903                              TCM_NO_SENSE);
 904}
 905EXPORT_SYMBOL(target_complete_cmd);
 906
 907void target_set_cmd_data_length(struct se_cmd *cmd, int length)
 908{
 909        if (length < cmd->data_length) {
 910                if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
 911                        cmd->residual_count += cmd->data_length - length;
 912                } else {
 913                        cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
 914                        cmd->residual_count = cmd->data_length - length;
 915                }
 916
 917                cmd->data_length = length;
 918        }
 919}
 920EXPORT_SYMBOL(target_set_cmd_data_length);
 921
 922void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
 923{
 924        if (scsi_status == SAM_STAT_GOOD ||
 925            cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
 926                target_set_cmd_data_length(cmd, length);
 927        }
 928
 929        target_complete_cmd(cmd, scsi_status);
 930}
 931EXPORT_SYMBOL(target_complete_cmd_with_length);
 932
 933static void target_add_to_state_list(struct se_cmd *cmd)
 934{
 935        struct se_device *dev = cmd->se_dev;
 936        unsigned long flags;
 937
 938        spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
 939        if (!cmd->state_active) {
 940                list_add_tail(&cmd->state_list,
 941                              &dev->queues[cmd->cpuid].state_list);
 942                cmd->state_active = true;
 943        }
 944        spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
 945}
 946
 947/*
 948 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
 949 */
 950static void transport_write_pending_qf(struct se_cmd *cmd);
 951static void transport_complete_qf(struct se_cmd *cmd);
 952
 953void target_qf_do_work(struct work_struct *work)
 954{
 955        struct se_device *dev = container_of(work, struct se_device,
 956                                        qf_work_queue);
 957        LIST_HEAD(qf_cmd_list);
 958        struct se_cmd *cmd, *cmd_tmp;
 959
 960        spin_lock_irq(&dev->qf_cmd_lock);
 961        list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
 962        spin_unlock_irq(&dev->qf_cmd_lock);
 963
 964        list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
 965                list_del(&cmd->se_qf_node);
 966                atomic_dec_mb(&dev->dev_qf_count);
 967
 968                pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
 969                        " context: %s\n", cmd->se_tfo->fabric_name, cmd,
 970                        (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
 971                        (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
 972                        : "UNKNOWN");
 973
 974                if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
 975                        transport_write_pending_qf(cmd);
 976                else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
 977                         cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
 978                        transport_complete_qf(cmd);
 979        }
 980}
 981
 982unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
 983{
 984        switch (cmd->data_direction) {
 985        case DMA_NONE:
 986                return "NONE";
 987        case DMA_FROM_DEVICE:
 988                return "READ";
 989        case DMA_TO_DEVICE:
 990                return "WRITE";
 991        case DMA_BIDIRECTIONAL:
 992                return "BIDI";
 993        default:
 994                break;
 995        }
 996
 997        return "UNKNOWN";
 998}
 999
1000void transport_dump_dev_state(
1001        struct se_device *dev,
1002        char *b,
1003        int *bl)
1004{
1005        *bl += sprintf(b + *bl, "Status: ");
1006        if (dev->export_count)
1007                *bl += sprintf(b + *bl, "ACTIVATED");
1008        else
1009                *bl += sprintf(b + *bl, "DEACTIVATED");
1010
1011        *bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
1012        *bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
1013                dev->dev_attrib.block_size,
1014                dev->dev_attrib.hw_max_sectors);
1015        *bl += sprintf(b + *bl, "        ");
1016}
1017
1018void transport_dump_vpd_proto_id(
1019        struct t10_vpd *vpd,
1020        unsigned char *p_buf,
1021        int p_buf_len)
1022{
1023        unsigned char buf[VPD_TMP_BUF_SIZE];
1024        int len;
1025
1026        memset(buf, 0, VPD_TMP_BUF_SIZE);
1027        len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1028
1029        switch (vpd->protocol_identifier) {
1030        case 0x00:
1031                sprintf(buf+len, "Fibre Channel\n");
1032                break;
1033        case 0x10:
1034                sprintf(buf+len, "Parallel SCSI\n");
1035                break;
1036        case 0x20:
1037                sprintf(buf+len, "SSA\n");
1038                break;
1039        case 0x30:
1040                sprintf(buf+len, "IEEE 1394\n");
1041                break;
1042        case 0x40:
1043                sprintf(buf+len, "SCSI Remote Direct Memory Access"
1044                                " Protocol\n");
1045                break;
1046        case 0x50:
1047                sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1048                break;
1049        case 0x60:
1050                sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1051                break;
1052        case 0x70:
1053                sprintf(buf+len, "Automation/Drive Interface Transport"
1054                                " Protocol\n");
1055                break;
1056        case 0x80:
1057                sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1058                break;
1059        default:
1060                sprintf(buf+len, "Unknown 0x%02x\n",
1061                                vpd->protocol_identifier);
1062                break;
1063        }
1064
1065        if (p_buf)
1066                strncpy(p_buf, buf, p_buf_len);
1067        else
1068                pr_debug("%s", buf);
1069}
1070
1071void
1072transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1073{
1074        /*
1075         * Check if the Protocol Identifier Valid (PIV) bit is set..
1076         *
1077         * from spc3r23.pdf section 7.5.1
1078         */
1079         if (page_83[1] & 0x80) {
1080                vpd->protocol_identifier = (page_83[0] & 0xf0);
1081                vpd->protocol_identifier_set = 1;
1082                transport_dump_vpd_proto_id(vpd, NULL, 0);
1083        }
1084}
1085EXPORT_SYMBOL(transport_set_vpd_proto_id);
1086
1087int transport_dump_vpd_assoc(
1088        struct t10_vpd *vpd,
1089        unsigned char *p_buf,
1090        int p_buf_len)
1091{
1092        unsigned char buf[VPD_TMP_BUF_SIZE];
1093        int ret = 0;
1094        int len;
1095
1096        memset(buf, 0, VPD_TMP_BUF_SIZE);
1097        len = sprintf(buf, "T10 VPD Identifier Association: ");
1098
1099        switch (vpd->association) {
1100        case 0x00:
1101                sprintf(buf+len, "addressed logical unit\n");
1102                break;
1103        case 0x10:
1104                sprintf(buf+len, "target port\n");
1105                break;
1106        case 0x20:
1107                sprintf(buf+len, "SCSI target device\n");
1108                break;
1109        default:
1110                sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1111                ret = -EINVAL;
1112                break;
1113        }
1114
1115        if (p_buf)
1116                strncpy(p_buf, buf, p_buf_len);
1117        else
1118                pr_debug("%s", buf);
1119
1120        return ret;
1121}
1122
1123int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1124{
1125        /*
1126         * The VPD identification association..
1127         *
1128         * from spc3r23.pdf Section 7.6.3.1 Table 297
1129         */
1130        vpd->association = (page_83[1] & 0x30);
1131        return transport_dump_vpd_assoc(vpd, NULL, 0);
1132}
1133EXPORT_SYMBOL(transport_set_vpd_assoc);
1134
1135int transport_dump_vpd_ident_type(
1136        struct t10_vpd *vpd,
1137        unsigned char *p_buf,
1138        int p_buf_len)
1139{
1140        unsigned char buf[VPD_TMP_BUF_SIZE];
1141        int ret = 0;
1142        int len;
1143
1144        memset(buf, 0, VPD_TMP_BUF_SIZE);
1145        len = sprintf(buf, "T10 VPD Identifier Type: ");
1146
1147        switch (vpd->device_identifier_type) {
1148        case 0x00:
1149                sprintf(buf+len, "Vendor specific\n");
1150                break;
1151        case 0x01:
1152                sprintf(buf+len, "T10 Vendor ID based\n");
1153                break;
1154        case 0x02:
1155                sprintf(buf+len, "EUI-64 based\n");
1156                break;
1157        case 0x03:
1158                sprintf(buf+len, "NAA\n");
1159                break;
1160        case 0x04:
1161                sprintf(buf+len, "Relative target port identifier\n");
1162                break;
1163        case 0x08:
1164                sprintf(buf+len, "SCSI name string\n");
1165                break;
1166        default:
1167                sprintf(buf+len, "Unsupported: 0x%02x\n",
1168                                vpd->device_identifier_type);
1169                ret = -EINVAL;
1170                break;
1171        }
1172
1173        if (p_buf) {
1174                if (p_buf_len < strlen(buf)+1)
1175                        return -EINVAL;
1176                strncpy(p_buf, buf, p_buf_len);
1177        } else {
1178                pr_debug("%s", buf);
1179        }
1180
1181        return ret;
1182}
1183
1184int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1185{
1186        /*
1187         * The VPD identifier type..
1188         *
1189         * from spc3r23.pdf Section 7.6.3.1 Table 298
1190         */
1191        vpd->device_identifier_type = (page_83[1] & 0x0f);
1192        return transport_dump_vpd_ident_type(vpd, NULL, 0);
1193}
1194EXPORT_SYMBOL(transport_set_vpd_ident_type);
1195
1196int transport_dump_vpd_ident(
1197        struct t10_vpd *vpd,
1198        unsigned char *p_buf,
1199        int p_buf_len)
1200{
1201        unsigned char buf[VPD_TMP_BUF_SIZE];
1202        int ret = 0;
1203
1204        memset(buf, 0, VPD_TMP_BUF_SIZE);
1205
1206        switch (vpd->device_identifier_code_set) {
1207        case 0x01: /* Binary */
1208                snprintf(buf, sizeof(buf),
1209                        "T10 VPD Binary Device Identifier: %s\n",
1210                        &vpd->device_identifier[0]);
1211                break;
1212        case 0x02: /* ASCII */
1213                snprintf(buf, sizeof(buf),
1214                        "T10 VPD ASCII Device Identifier: %s\n",
1215                        &vpd->device_identifier[0]);
1216                break;
1217        case 0x03: /* UTF-8 */
1218                snprintf(buf, sizeof(buf),
1219                        "T10 VPD UTF-8 Device Identifier: %s\n",
1220                        &vpd->device_identifier[0]);
1221                break;
1222        default:
1223                sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1224                        " 0x%02x", vpd->device_identifier_code_set);
1225                ret = -EINVAL;
1226                break;
1227        }
1228
1229        if (p_buf)
1230                strncpy(p_buf, buf, p_buf_len);
1231        else
1232                pr_debug("%s", buf);
1233
1234        return ret;
1235}
1236
1237int
1238transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1239{
1240        static const char hex_str[] = "0123456789abcdef";
1241        int j = 0, i = 4; /* offset to start of the identifier */
1242
1243        /*
1244         * The VPD Code Set (encoding)
1245         *
1246         * from spc3r23.pdf Section 7.6.3.1 Table 296
1247         */
1248        vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1249        switch (vpd->device_identifier_code_set) {
1250        case 0x01: /* Binary */
1251                vpd->device_identifier[j++] =
1252                                hex_str[vpd->device_identifier_type];
1253                while (i < (4 + page_83[3])) {
1254                        vpd->device_identifier[j++] =
1255                                hex_str[(page_83[i] & 0xf0) >> 4];
1256                        vpd->device_identifier[j++] =
1257                                hex_str[page_83[i] & 0x0f];
1258                        i++;
1259                }
1260                break;
1261        case 0x02: /* ASCII */
1262        case 0x03: /* UTF-8 */
1263                while (i < (4 + page_83[3]))
1264                        vpd->device_identifier[j++] = page_83[i++];
1265                break;
1266        default:
1267                break;
1268        }
1269
1270        return transport_dump_vpd_ident(vpd, NULL, 0);
1271}
1272EXPORT_SYMBOL(transport_set_vpd_ident);
1273
1274static sense_reason_t
1275target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1276                               unsigned int size)
1277{
1278        u32 mtl;
1279
1280        if (!cmd->se_tfo->max_data_sg_nents)
1281                return TCM_NO_SENSE;
1282        /*
1283         * Check if fabric enforced maximum SGL entries per I/O descriptor
1284         * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1285         * residual_count and reduce original cmd->data_length to maximum
1286         * length based on single PAGE_SIZE entry scatter-lists.
1287         */
1288        mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1289        if (cmd->data_length > mtl) {
1290                /*
1291                 * If an existing CDB overflow is present, calculate new residual
1292                 * based on CDB size minus fabric maximum transfer length.
1293                 *
1294                 * If an existing CDB underflow is present, calculate new residual
1295                 * based on original cmd->data_length minus fabric maximum transfer
1296                 * length.
1297                 *
1298                 * Otherwise, set the underflow residual based on cmd->data_length
1299                 * minus fabric maximum transfer length.
1300                 */
1301                if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1302                        cmd->residual_count = (size - mtl);
1303                } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1304                        u32 orig_dl = size + cmd->residual_count;
1305                        cmd->residual_count = (orig_dl - mtl);
1306                } else {
1307                        cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1308                        cmd->residual_count = (cmd->data_length - mtl);
1309                }
1310                cmd->data_length = mtl;
1311                /*
1312                 * Reset sbc_check_prot() calculated protection payload
1313                 * length based upon the new smaller MTL.
1314                 */
1315                if (cmd->prot_length) {
1316                        u32 sectors = (mtl / dev->dev_attrib.block_size);
1317                        cmd->prot_length = dev->prot_length * sectors;
1318                }
1319        }
1320        return TCM_NO_SENSE;
1321}
1322
1323/**
1324 * target_cmd_size_check - Check whether there will be a residual.
1325 * @cmd: SCSI command.
1326 * @size: Data buffer size derived from CDB. The data buffer size provided by
1327 *   the SCSI transport driver is available in @cmd->data_length.
1328 *
1329 * Compare the data buffer size from the CDB with the data buffer limit from the transport
1330 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1331 *
1332 * Note: target drivers set @cmd->data_length by calling __target_init_cmd().
1333 *
1334 * Return: TCM_NO_SENSE
1335 */
1336sense_reason_t
1337target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1338{
1339        struct se_device *dev = cmd->se_dev;
1340
1341        if (cmd->unknown_data_length) {
1342                cmd->data_length = size;
1343        } else if (size != cmd->data_length) {
1344                pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1345                        " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1346                        " 0x%02x\n", cmd->se_tfo->fabric_name,
1347                                cmd->data_length, size, cmd->t_task_cdb[0]);
1348                /*
1349                 * For READ command for the overflow case keep the existing
1350                 * fabric provided ->data_length. Otherwise for the underflow
1351                 * case, reset ->data_length to the smaller SCSI expected data
1352                 * transfer length.
1353                 */
1354                if (size > cmd->data_length) {
1355                        cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1356                        cmd->residual_count = (size - cmd->data_length);
1357                } else {
1358                        cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1359                        cmd->residual_count = (cmd->data_length - size);
1360                        /*
1361                         * Do not truncate ->data_length for WRITE command to
1362                         * dump all payload
1363                         */
1364                        if (cmd->data_direction == DMA_FROM_DEVICE) {
1365                                cmd->data_length = size;
1366                        }
1367                }
1368
1369                if (cmd->data_direction == DMA_TO_DEVICE) {
1370                        if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1371                                pr_err_ratelimited("Rejecting underflow/overflow"
1372                                                   " for WRITE data CDB\n");
1373                                return TCM_INVALID_FIELD_IN_COMMAND_IU;
1374                        }
1375                        /*
1376                         * Some fabric drivers like iscsi-target still expect to
1377                         * always reject overflow writes.  Reject this case until
1378                         * full fabric driver level support for overflow writes
1379                         * is introduced tree-wide.
1380                         */
1381                        if (size > cmd->data_length) {
1382                                pr_err_ratelimited("Rejecting overflow for"
1383                                                   " WRITE control CDB\n");
1384                                return TCM_INVALID_CDB_FIELD;
1385                        }
1386                }
1387        }
1388
1389        return target_check_max_data_sg_nents(cmd, dev, size);
1390
1391}
1392
1393/*
1394 * Used by fabric modules containing a local struct se_cmd within their
1395 * fabric dependent per I/O descriptor.
1396 *
1397 * Preserves the value of @cmd->tag.
1398 */
1399void __target_init_cmd(
1400        struct se_cmd *cmd,
1401        const struct target_core_fabric_ops *tfo,
1402        struct se_session *se_sess,
1403        u32 data_length,
1404        int data_direction,
1405        int task_attr,
1406        unsigned char *sense_buffer, u64 unpacked_lun)
1407{
1408        INIT_LIST_HEAD(&cmd->se_delayed_node);
1409        INIT_LIST_HEAD(&cmd->se_qf_node);
1410        INIT_LIST_HEAD(&cmd->state_list);
1411        init_completion(&cmd->t_transport_stop_comp);
1412        cmd->free_compl = NULL;
1413        cmd->abrt_compl = NULL;
1414        spin_lock_init(&cmd->t_state_lock);
1415        INIT_WORK(&cmd->work, NULL);
1416        kref_init(&cmd->cmd_kref);
1417
1418        cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1419        cmd->se_tfo = tfo;
1420        cmd->se_sess = se_sess;
1421        cmd->data_length = data_length;
1422        cmd->data_direction = data_direction;
1423        cmd->sam_task_attr = task_attr;
1424        cmd->sense_buffer = sense_buffer;
1425        cmd->orig_fe_lun = unpacked_lun;
1426
1427        if (!(cmd->se_cmd_flags & SCF_USE_CPUID))
1428                cmd->cpuid = raw_smp_processor_id();
1429
1430        cmd->state_active = false;
1431}
1432EXPORT_SYMBOL(__target_init_cmd);
1433
1434static sense_reason_t
1435transport_check_alloc_task_attr(struct se_cmd *cmd)
1436{
1437        struct se_device *dev = cmd->se_dev;
1438
1439        /*
1440         * Check if SAM Task Attribute emulation is enabled for this
1441         * struct se_device storage object
1442         */
1443        if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1444                return 0;
1445
1446        if (cmd->sam_task_attr == TCM_ACA_TAG) {
1447                pr_debug("SAM Task Attribute ACA"
1448                        " emulation is not supported\n");
1449                return TCM_INVALID_CDB_FIELD;
1450        }
1451
1452        return 0;
1453}
1454
1455sense_reason_t
1456target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb, gfp_t gfp)
1457{
1458        sense_reason_t ret;
1459
1460        /*
1461         * Ensure that the received CDB is less than the max (252 + 8) bytes
1462         * for VARIABLE_LENGTH_CMD
1463         */
1464        if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1465                pr_err("Received SCSI CDB with command_size: %d that"
1466                        " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1467                        scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1468                ret = TCM_INVALID_CDB_FIELD;
1469                goto err;
1470        }
1471        /*
1472         * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1473         * allocate the additional extended CDB buffer now..  Otherwise
1474         * setup the pointer from __t_task_cdb to t_task_cdb.
1475         */
1476        if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1477                cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), gfp);
1478                if (!cmd->t_task_cdb) {
1479                        pr_err("Unable to allocate cmd->t_task_cdb"
1480                                " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1481                                scsi_command_size(cdb),
1482                                (unsigned long)sizeof(cmd->__t_task_cdb));
1483                        ret = TCM_OUT_OF_RESOURCES;
1484                        goto err;
1485                }
1486        }
1487        /*
1488         * Copy the original CDB into cmd->
1489         */
1490        memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1491
1492        trace_target_sequencer_start(cmd);
1493        return 0;
1494
1495err:
1496        /*
1497         * Copy the CDB here to allow trace_target_cmd_complete() to
1498         * print the cdb to the trace buffers.
1499         */
1500        memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1501                                         (unsigned int)TCM_MAX_COMMAND_SIZE));
1502        return ret;
1503}
1504EXPORT_SYMBOL(target_cmd_init_cdb);
1505
1506sense_reason_t
1507target_cmd_parse_cdb(struct se_cmd *cmd)
1508{
1509        struct se_device *dev = cmd->se_dev;
1510        sense_reason_t ret;
1511
1512        ret = dev->transport->parse_cdb(cmd);
1513        if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1514                pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1515                                    cmd->se_tfo->fabric_name,
1516                                    cmd->se_sess->se_node_acl->initiatorname,
1517                                    cmd->t_task_cdb[0]);
1518        if (ret)
1519                return ret;
1520
1521        ret = transport_check_alloc_task_attr(cmd);
1522        if (ret)
1523                return ret;
1524
1525        cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1526        atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1527        return 0;
1528}
1529EXPORT_SYMBOL(target_cmd_parse_cdb);
1530
1531/*
1532 * Used by fabric module frontends to queue tasks directly.
1533 * May only be used from process context.
1534 */
1535int transport_handle_cdb_direct(
1536        struct se_cmd *cmd)
1537{
1538        sense_reason_t ret;
1539
1540        might_sleep();
1541
1542        if (!cmd->se_lun) {
1543                dump_stack();
1544                pr_err("cmd->se_lun is NULL\n");
1545                return -EINVAL;
1546        }
1547
1548        /*
1549         * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1550         * outstanding descriptors are handled correctly during shutdown via
1551         * transport_wait_for_tasks()
1552         *
1553         * Also, we don't take cmd->t_state_lock here as we only expect
1554         * this to be called for initial descriptor submission.
1555         */
1556        cmd->t_state = TRANSPORT_NEW_CMD;
1557        cmd->transport_state |= CMD_T_ACTIVE;
1558
1559        /*
1560         * transport_generic_new_cmd() is already handling QUEUE_FULL,
1561         * so follow TRANSPORT_NEW_CMD processing thread context usage
1562         * and call transport_generic_request_failure() if necessary..
1563         */
1564        ret = transport_generic_new_cmd(cmd);
1565        if (ret)
1566                transport_generic_request_failure(cmd, ret);
1567        return 0;
1568}
1569EXPORT_SYMBOL(transport_handle_cdb_direct);
1570
1571sense_reason_t
1572transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1573                u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1574{
1575        if (!sgl || !sgl_count)
1576                return 0;
1577
1578        /*
1579         * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1580         * scatterlists already have been set to follow what the fabric
1581         * passes for the original expected data transfer length.
1582         */
1583        if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1584                pr_warn("Rejecting SCSI DATA overflow for fabric using"
1585                        " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1586                return TCM_INVALID_CDB_FIELD;
1587        }
1588
1589        cmd->t_data_sg = sgl;
1590        cmd->t_data_nents = sgl_count;
1591        cmd->t_bidi_data_sg = sgl_bidi;
1592        cmd->t_bidi_data_nents = sgl_bidi_count;
1593
1594        cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1595        return 0;
1596}
1597
1598/**
1599 * target_init_cmd - initialize se_cmd
1600 * @se_cmd: command descriptor to init
1601 * @se_sess: associated se_sess for endpoint
1602 * @sense: pointer to SCSI sense buffer
1603 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1604 * @data_length: fabric expected data transfer length
1605 * @task_attr: SAM task attribute
1606 * @data_dir: DMA data direction
1607 * @flags: flags for command submission from target_sc_flags_tables
1608 *
1609 * Task tags are supported if the caller has set @se_cmd->tag.
1610 *
1611 * Returns:
1612 *      - less than zero to signal active I/O shutdown failure.
1613 *      - zero on success.
1614 *
1615 * If the fabric driver calls target_stop_session, then it must check the
1616 * return code and handle failures. This will never fail for other drivers,
1617 * and the return code can be ignored.
1618 */
1619int target_init_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1620                    unsigned char *sense, u64 unpacked_lun,
1621                    u32 data_length, int task_attr, int data_dir, int flags)
1622{
1623        struct se_portal_group *se_tpg;
1624
1625        se_tpg = se_sess->se_tpg;
1626        BUG_ON(!se_tpg);
1627        BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1628
1629        if (flags & TARGET_SCF_USE_CPUID)
1630                se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1631        /*
1632         * Signal bidirectional data payloads to target-core
1633         */
1634        if (flags & TARGET_SCF_BIDI_OP)
1635                se_cmd->se_cmd_flags |= SCF_BIDI;
1636
1637        if (flags & TARGET_SCF_UNKNOWN_SIZE)
1638                se_cmd->unknown_data_length = 1;
1639        /*
1640         * Initialize se_cmd for target operation.  From this point
1641         * exceptions are handled by sending exception status via
1642         * target_core_fabric_ops->queue_status() callback
1643         */
1644        __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length,
1645                          data_dir, task_attr, sense, unpacked_lun);
1646
1647        /*
1648         * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
1649         * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
1650         * kref_put() to happen during fabric packet acknowledgement.
1651         */
1652        return target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1653}
1654EXPORT_SYMBOL_GPL(target_init_cmd);
1655
1656/**
1657 * target_submit_prep - prepare cmd for submission
1658 * @se_cmd: command descriptor to prep
1659 * @cdb: pointer to SCSI CDB
1660 * @sgl: struct scatterlist memory for unidirectional mapping
1661 * @sgl_count: scatterlist count for unidirectional mapping
1662 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1663 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1664 * @sgl_prot: struct scatterlist memory protection information
1665 * @sgl_prot_count: scatterlist count for protection information
1666 * @gfp: gfp allocation type
1667 *
1668 * Returns:
1669 *      - less than zero to signal failure.
1670 *      - zero on success.
1671 *
1672 * If failure is returned, lio will the callers queue_status to complete
1673 * the cmd.
1674 */
1675int target_submit_prep(struct se_cmd *se_cmd, unsigned char *cdb,
1676                       struct scatterlist *sgl, u32 sgl_count,
1677                       struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1678                       struct scatterlist *sgl_prot, u32 sgl_prot_count,
1679                       gfp_t gfp)
1680{
1681        sense_reason_t rc;
1682
1683        rc = target_cmd_init_cdb(se_cmd, cdb, gfp);
1684        if (rc)
1685                goto send_cc_direct;
1686
1687        /*
1688         * Locate se_lun pointer and attach it to struct se_cmd
1689         */
1690        rc = transport_lookup_cmd_lun(se_cmd);
1691        if (rc)
1692                goto send_cc_direct;
1693
1694        rc = target_cmd_parse_cdb(se_cmd);
1695        if (rc != 0)
1696                goto generic_fail;
1697
1698        /*
1699         * Save pointers for SGLs containing protection information,
1700         * if present.
1701         */
1702        if (sgl_prot_count) {
1703                se_cmd->t_prot_sg = sgl_prot;
1704                se_cmd->t_prot_nents = sgl_prot_count;
1705                se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1706        }
1707
1708        /*
1709         * When a non zero sgl_count has been passed perform SGL passthrough
1710         * mapping for pre-allocated fabric memory instead of having target
1711         * core perform an internal SGL allocation..
1712         */
1713        if (sgl_count != 0) {
1714                BUG_ON(!sgl);
1715
1716                rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1717                                sgl_bidi, sgl_bidi_count);
1718                if (rc != 0)
1719                        goto generic_fail;
1720        }
1721
1722        return 0;
1723
1724send_cc_direct:
1725        transport_send_check_condition_and_sense(se_cmd, rc, 0);
1726        target_put_sess_cmd(se_cmd);
1727        return -EIO;
1728
1729generic_fail:
1730        transport_generic_request_failure(se_cmd, rc);
1731        return -EIO;
1732}
1733EXPORT_SYMBOL_GPL(target_submit_prep);
1734
1735/**
1736 * target_submit - perform final initialization and submit cmd to LIO core
1737 * @se_cmd: command descriptor to submit
1738 *
1739 * target_submit_prep must have been called on the cmd, and this must be
1740 * called from process context.
1741 */
1742void target_submit(struct se_cmd *se_cmd)
1743{
1744        struct scatterlist *sgl = se_cmd->t_data_sg;
1745        unsigned char *buf = NULL;
1746
1747        might_sleep();
1748
1749        if (se_cmd->t_data_nents != 0) {
1750                BUG_ON(!sgl);
1751                /*
1752                 * A work-around for tcm_loop as some userspace code via
1753                 * scsi-generic do not memset their associated read buffers,
1754                 * so go ahead and do that here for type non-data CDBs.  Also
1755                 * note that this is currently guaranteed to be a single SGL
1756                 * for this case by target core in target_setup_cmd_from_cdb()
1757                 * -> transport_generic_cmd_sequencer().
1758                 */
1759                if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1760                     se_cmd->data_direction == DMA_FROM_DEVICE) {
1761                        if (sgl)
1762                                buf = kmap(sg_page(sgl)) + sgl->offset;
1763
1764                        if (buf) {
1765                                memset(buf, 0, sgl->length);
1766                                kunmap(sg_page(sgl));
1767                        }
1768                }
1769
1770        }
1771
1772        /*
1773         * Check if we need to delay processing because of ALUA
1774         * Active/NonOptimized primary access state..
1775         */
1776        core_alua_check_nonop_delay(se_cmd);
1777
1778        transport_handle_cdb_direct(se_cmd);
1779}
1780EXPORT_SYMBOL_GPL(target_submit);
1781
1782/**
1783 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1784 *
1785 * @se_cmd: command descriptor to submit
1786 * @se_sess: associated se_sess for endpoint
1787 * @cdb: pointer to SCSI CDB
1788 * @sense: pointer to SCSI sense buffer
1789 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1790 * @data_length: fabric expected data transfer length
1791 * @task_attr: SAM task attribute
1792 * @data_dir: DMA data direction
1793 * @flags: flags for command submission from target_sc_flags_tables
1794 *
1795 * Task tags are supported if the caller has set @se_cmd->tag.
1796 *
1797 * This may only be called from process context, and also currently
1798 * assumes internal allocation of fabric payload buffer by target-core.
1799 *
1800 * It also assumes interal target core SGL memory allocation.
1801 *
1802 * This function must only be used by drivers that do their own
1803 * sync during shutdown and does not use target_stop_session. If there
1804 * is a failure this function will call into the fabric driver's
1805 * queue_status with a CHECK_CONDITION.
1806 */
1807void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1808                unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1809                u32 data_length, int task_attr, int data_dir, int flags)
1810{
1811        int rc;
1812
1813        rc = target_init_cmd(se_cmd, se_sess, sense, unpacked_lun, data_length,
1814                             task_attr, data_dir, flags);
1815        WARN(rc, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n");
1816        if (rc)
1817                return;
1818
1819        if (target_submit_prep(se_cmd, cdb, NULL, 0, NULL, 0, NULL, 0,
1820                               GFP_KERNEL))
1821                return;
1822
1823        target_submit(se_cmd);
1824}
1825EXPORT_SYMBOL(target_submit_cmd);
1826
1827
1828static struct se_dev_plug *target_plug_device(struct se_device *se_dev)
1829{
1830        struct se_dev_plug *se_plug;
1831
1832        if (!se_dev->transport->plug_device)
1833                return NULL;
1834
1835        se_plug = se_dev->transport->plug_device(se_dev);
1836        if (!se_plug)
1837                return NULL;
1838
1839        se_plug->se_dev = se_dev;
1840        /*
1841         * We have a ref to the lun at this point, but the cmds could
1842         * complete before we unplug, so grab a ref to the se_device so we
1843         * can call back into the backend.
1844         */
1845        config_group_get(&se_dev->dev_group);
1846        return se_plug;
1847}
1848
1849static void target_unplug_device(struct se_dev_plug *se_plug)
1850{
1851        struct se_device *se_dev = se_plug->se_dev;
1852
1853        se_dev->transport->unplug_device(se_plug);
1854        config_group_put(&se_dev->dev_group);
1855}
1856
1857void target_queued_submit_work(struct work_struct *work)
1858{
1859        struct se_cmd_queue *sq = container_of(work, struct se_cmd_queue, work);
1860        struct se_cmd *se_cmd, *next_cmd;
1861        struct se_dev_plug *se_plug = NULL;
1862        struct se_device *se_dev = NULL;
1863        struct llist_node *cmd_list;
1864
1865        cmd_list = llist_del_all(&sq->cmd_list);
1866        if (!cmd_list)
1867                /* Previous call took what we were queued to submit */
1868                return;
1869
1870        cmd_list = llist_reverse_order(cmd_list);
1871        llist_for_each_entry_safe(se_cmd, next_cmd, cmd_list, se_cmd_list) {
1872                if (!se_dev) {
1873                        se_dev = se_cmd->se_dev;
1874                        se_plug = target_plug_device(se_dev);
1875                }
1876
1877                target_submit(se_cmd);
1878        }
1879
1880        if (se_plug)
1881                target_unplug_device(se_plug);
1882}
1883
1884/**
1885 * target_queue_submission - queue the cmd to run on the LIO workqueue
1886 * @se_cmd: command descriptor to submit
1887 */
1888void target_queue_submission(struct se_cmd *se_cmd)
1889{
1890        struct se_device *se_dev = se_cmd->se_dev;
1891        int cpu = se_cmd->cpuid;
1892        struct se_cmd_queue *sq;
1893
1894        sq = &se_dev->queues[cpu].sq;
1895        llist_add(&se_cmd->se_cmd_list, &sq->cmd_list);
1896        queue_work_on(cpu, target_submission_wq, &sq->work);
1897}
1898EXPORT_SYMBOL_GPL(target_queue_submission);
1899
1900static void target_complete_tmr_failure(struct work_struct *work)
1901{
1902        struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1903
1904        se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1905        se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1906
1907        transport_lun_remove_cmd(se_cmd);
1908        transport_cmd_check_stop_to_fabric(se_cmd);
1909}
1910
1911/**
1912 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1913 *                     for TMR CDBs
1914 *
1915 * @se_cmd: command descriptor to submit
1916 * @se_sess: associated se_sess for endpoint
1917 * @sense: pointer to SCSI sense buffer
1918 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1919 * @fabric_tmr_ptr: fabric context for TMR req
1920 * @tm_type: Type of TM request
1921 * @gfp: gfp type for caller
1922 * @tag: referenced task tag for TMR_ABORT_TASK
1923 * @flags: submit cmd flags
1924 *
1925 * Callable from all contexts.
1926 **/
1927
1928int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1929                unsigned char *sense, u64 unpacked_lun,
1930                void *fabric_tmr_ptr, unsigned char tm_type,
1931                gfp_t gfp, u64 tag, int flags)
1932{
1933        struct se_portal_group *se_tpg;
1934        int ret;
1935
1936        se_tpg = se_sess->se_tpg;
1937        BUG_ON(!se_tpg);
1938
1939        __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1940                          0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun);
1941        /*
1942         * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1943         * allocation failure.
1944         */
1945        ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1946        if (ret < 0)
1947                return -ENOMEM;
1948
1949        if (tm_type == TMR_ABORT_TASK)
1950                se_cmd->se_tmr_req->ref_task_tag = tag;
1951
1952        /* See target_submit_cmd for commentary */
1953        ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1954        if (ret) {
1955                core_tmr_release_req(se_cmd->se_tmr_req);
1956                return ret;
1957        }
1958
1959        ret = transport_lookup_tmr_lun(se_cmd);
1960        if (ret)
1961                goto failure;
1962
1963        transport_generic_handle_tmr(se_cmd);
1964        return 0;
1965
1966        /*
1967         * For callback during failure handling, push this work off
1968         * to process context with TMR_LUN_DOES_NOT_EXIST status.
1969         */
1970failure:
1971        INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1972        schedule_work(&se_cmd->work);
1973        return 0;
1974}
1975EXPORT_SYMBOL(target_submit_tmr);
1976
1977/*
1978 * Handle SAM-esque emulation for generic transport request failures.
1979 */
1980void transport_generic_request_failure(struct se_cmd *cmd,
1981                sense_reason_t sense_reason)
1982{
1983        int ret = 0, post_ret;
1984
1985        pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1986                 sense_reason);
1987        target_show_cmd("-----[ ", cmd);
1988
1989        /*
1990         * For SAM Task Attribute emulation for failed struct se_cmd
1991         */
1992        transport_complete_task_attr(cmd);
1993
1994        if (cmd->transport_complete_callback)
1995                cmd->transport_complete_callback(cmd, false, &post_ret);
1996
1997        if (cmd->transport_state & CMD_T_ABORTED) {
1998                INIT_WORK(&cmd->work, target_abort_work);
1999                queue_work(target_completion_wq, &cmd->work);
2000                return;
2001        }
2002
2003        switch (sense_reason) {
2004        case TCM_NON_EXISTENT_LUN:
2005        case TCM_UNSUPPORTED_SCSI_OPCODE:
2006        case TCM_INVALID_CDB_FIELD:
2007        case TCM_INVALID_PARAMETER_LIST:
2008        case TCM_PARAMETER_LIST_LENGTH_ERROR:
2009        case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2010        case TCM_UNKNOWN_MODE_PAGE:
2011        case TCM_WRITE_PROTECTED:
2012        case TCM_ADDRESS_OUT_OF_RANGE:
2013        case TCM_CHECK_CONDITION_ABORT_CMD:
2014        case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2015        case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2016        case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2017        case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2018        case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
2019        case TCM_TOO_MANY_TARGET_DESCS:
2020        case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
2021        case TCM_TOO_MANY_SEGMENT_DESCS:
2022        case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
2023        case TCM_INVALID_FIELD_IN_COMMAND_IU:
2024        case TCM_ALUA_TG_PT_STANDBY:
2025        case TCM_ALUA_TG_PT_UNAVAILABLE:
2026        case TCM_ALUA_STATE_TRANSITION:
2027        case TCM_ALUA_OFFLINE:
2028                break;
2029        case TCM_OUT_OF_RESOURCES:
2030                cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
2031                goto queue_status;
2032        case TCM_LUN_BUSY:
2033                cmd->scsi_status = SAM_STAT_BUSY;
2034                goto queue_status;
2035        case TCM_RESERVATION_CONFLICT:
2036                /*
2037                 * No SENSE Data payload for this case, set SCSI Status
2038                 * and queue the response to $FABRIC_MOD.
2039                 *
2040                 * Uses linux/include/scsi/scsi.h SAM status codes defs
2041                 */
2042                cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2043                /*
2044                 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2045                 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2046                 * CONFLICT STATUS.
2047                 *
2048                 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2049                 */
2050                if (cmd->se_sess &&
2051                    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
2052                                        == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
2053                        target_ua_allocate_lun(cmd->se_sess->se_node_acl,
2054                                               cmd->orig_fe_lun, 0x2C,
2055                                        ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2056                }
2057
2058                goto queue_status;
2059        default:
2060                pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2061                        cmd->t_task_cdb[0], sense_reason);
2062                sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2063                break;
2064        }
2065
2066        ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
2067        if (ret)
2068                goto queue_full;
2069
2070check_stop:
2071        transport_lun_remove_cmd(cmd);
2072        transport_cmd_check_stop_to_fabric(cmd);
2073        return;
2074
2075queue_status:
2076        trace_target_cmd_complete(cmd);
2077        ret = cmd->se_tfo->queue_status(cmd);
2078        if (!ret)
2079                goto check_stop;
2080queue_full:
2081        transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2082}
2083EXPORT_SYMBOL(transport_generic_request_failure);
2084
2085void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
2086{
2087        sense_reason_t ret;
2088
2089        if (!cmd->execute_cmd) {
2090                ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2091                goto err;
2092        }
2093        if (do_checks) {
2094                /*
2095                 * Check for an existing UNIT ATTENTION condition after
2096                 * target_handle_task_attr() has done SAM task attr
2097                 * checking, and possibly have already defered execution
2098                 * out to target_restart_delayed_cmds() context.
2099                 */
2100                ret = target_scsi3_ua_check(cmd);
2101                if (ret)
2102                        goto err;
2103
2104                ret = target_alua_state_check(cmd);
2105                if (ret)
2106                        goto err;
2107
2108                ret = target_check_reservation(cmd);
2109                if (ret) {
2110                        cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2111                        goto err;
2112                }
2113        }
2114
2115        ret = cmd->execute_cmd(cmd);
2116        if (!ret)
2117                return;
2118err:
2119        spin_lock_irq(&cmd->t_state_lock);
2120        cmd->transport_state &= ~CMD_T_SENT;
2121        spin_unlock_irq(&cmd->t_state_lock);
2122
2123        transport_generic_request_failure(cmd, ret);
2124}
2125
2126static int target_write_prot_action(struct se_cmd *cmd)
2127{
2128        u32 sectors;
2129        /*
2130         * Perform WRITE_INSERT of PI using software emulation when backend
2131         * device has PI enabled, if the transport has not already generated
2132         * PI using hardware WRITE_INSERT offload.
2133         */
2134        switch (cmd->prot_op) {
2135        case TARGET_PROT_DOUT_INSERT:
2136                if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
2137                        sbc_dif_generate(cmd);
2138                break;
2139        case TARGET_PROT_DOUT_STRIP:
2140                if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2141                        break;
2142
2143                sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2144                cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2145                                             sectors, 0, cmd->t_prot_sg, 0);
2146                if (unlikely(cmd->pi_err)) {
2147                        spin_lock_irq(&cmd->t_state_lock);
2148                        cmd->transport_state &= ~CMD_T_SENT;
2149                        spin_unlock_irq(&cmd->t_state_lock);
2150                        transport_generic_request_failure(cmd, cmd->pi_err);
2151                        return -1;
2152                }
2153                break;
2154        default:
2155                break;
2156        }
2157
2158        return 0;
2159}
2160
2161static bool target_handle_task_attr(struct se_cmd *cmd)
2162{
2163        struct se_device *dev = cmd->se_dev;
2164
2165        if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2166                return false;
2167
2168        cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2169
2170        /*
2171         * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2172         * to allow the passed struct se_cmd list of tasks to the front of the list.
2173         */
2174        switch (cmd->sam_task_attr) {
2175        case TCM_HEAD_TAG:
2176                pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2177                         cmd->t_task_cdb[0]);
2178                return false;
2179        case TCM_ORDERED_TAG:
2180                atomic_inc_mb(&dev->dev_ordered_sync);
2181
2182                pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2183                         cmd->t_task_cdb[0]);
2184
2185                /*
2186                 * Execute an ORDERED command if no other older commands
2187                 * exist that need to be completed first.
2188                 */
2189                if (!atomic_read(&dev->simple_cmds))
2190                        return false;
2191                break;
2192        default:
2193                /*
2194                 * For SIMPLE and UNTAGGED Task Attribute commands
2195                 */
2196                atomic_inc_mb(&dev->simple_cmds);
2197                break;
2198        }
2199
2200        if (atomic_read(&dev->dev_ordered_sync) == 0)
2201                return false;
2202
2203        spin_lock(&dev->delayed_cmd_lock);
2204        list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2205        spin_unlock(&dev->delayed_cmd_lock);
2206
2207        pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2208                cmd->t_task_cdb[0], cmd->sam_task_attr);
2209        return true;
2210}
2211
2212void target_execute_cmd(struct se_cmd *cmd)
2213{
2214        /*
2215         * Determine if frontend context caller is requesting the stopping of
2216         * this command for frontend exceptions.
2217         *
2218         * If the received CDB has already been aborted stop processing it here.
2219         */
2220        if (target_cmd_interrupted(cmd))
2221                return;
2222
2223        spin_lock_irq(&cmd->t_state_lock);
2224        cmd->t_state = TRANSPORT_PROCESSING;
2225        cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2226        spin_unlock_irq(&cmd->t_state_lock);
2227
2228        if (target_write_prot_action(cmd))
2229                return;
2230
2231        if (target_handle_task_attr(cmd)) {
2232                spin_lock_irq(&cmd->t_state_lock);
2233                cmd->transport_state &= ~CMD_T_SENT;
2234                spin_unlock_irq(&cmd->t_state_lock);
2235                return;
2236        }
2237
2238        __target_execute_cmd(cmd, true);
2239}
2240EXPORT_SYMBOL(target_execute_cmd);
2241
2242/*
2243 * Process all commands up to the last received ORDERED task attribute which
2244 * requires another blocking boundary
2245 */
2246static void target_restart_delayed_cmds(struct se_device *dev)
2247{
2248        for (;;) {
2249                struct se_cmd *cmd;
2250
2251                spin_lock(&dev->delayed_cmd_lock);
2252                if (list_empty(&dev->delayed_cmd_list)) {
2253                        spin_unlock(&dev->delayed_cmd_lock);
2254                        break;
2255                }
2256
2257                cmd = list_entry(dev->delayed_cmd_list.next,
2258                                 struct se_cmd, se_delayed_node);
2259                list_del(&cmd->se_delayed_node);
2260                spin_unlock(&dev->delayed_cmd_lock);
2261
2262                cmd->transport_state |= CMD_T_SENT;
2263
2264                __target_execute_cmd(cmd, true);
2265
2266                if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2267                        break;
2268        }
2269}
2270
2271/*
2272 * Called from I/O completion to determine which dormant/delayed
2273 * and ordered cmds need to have their tasks added to the execution queue.
2274 */
2275static void transport_complete_task_attr(struct se_cmd *cmd)
2276{
2277        struct se_device *dev = cmd->se_dev;
2278
2279        if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2280                return;
2281
2282        if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2283                goto restart;
2284
2285        if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2286                atomic_dec_mb(&dev->simple_cmds);
2287                dev->dev_cur_ordered_id++;
2288        } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2289                dev->dev_cur_ordered_id++;
2290                pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2291                         dev->dev_cur_ordered_id);
2292        } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2293                atomic_dec_mb(&dev->dev_ordered_sync);
2294
2295                dev->dev_cur_ordered_id++;
2296                pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2297                         dev->dev_cur_ordered_id);
2298        }
2299        cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2300
2301restart:
2302        target_restart_delayed_cmds(dev);
2303}
2304
2305static void transport_complete_qf(struct se_cmd *cmd)
2306{
2307        int ret = 0;
2308
2309        transport_complete_task_attr(cmd);
2310        /*
2311         * If a fabric driver ->write_pending() or ->queue_data_in() callback
2312         * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2313         * the same callbacks should not be retried.  Return CHECK_CONDITION
2314         * if a scsi_status is not already set.
2315         *
2316         * If a fabric driver ->queue_status() has returned non zero, always
2317         * keep retrying no matter what..
2318         */
2319        if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2320                if (cmd->scsi_status)
2321                        goto queue_status;
2322
2323                translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2324                goto queue_status;
2325        }
2326
2327        /*
2328         * Check if we need to send a sense buffer from
2329         * the struct se_cmd in question. We do NOT want
2330         * to take this path of the IO has been marked as
2331         * needing to be treated like a "normal read". This
2332         * is the case if it's a tape read, and either the
2333         * FM, EOM, or ILI bits are set, but there is no
2334         * sense data.
2335         */
2336        if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2337            cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2338                goto queue_status;
2339
2340        switch (cmd->data_direction) {
2341        case DMA_FROM_DEVICE:
2342                /* queue status if not treating this as a normal read */
2343                if (cmd->scsi_status &&
2344                    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2345                        goto queue_status;
2346
2347                trace_target_cmd_complete(cmd);
2348                ret = cmd->se_tfo->queue_data_in(cmd);
2349                break;
2350        case DMA_TO_DEVICE:
2351                if (cmd->se_cmd_flags & SCF_BIDI) {
2352                        ret = cmd->se_tfo->queue_data_in(cmd);
2353                        break;
2354                }
2355                fallthrough;
2356        case DMA_NONE:
2357queue_status:
2358                trace_target_cmd_complete(cmd);
2359                ret = cmd->se_tfo->queue_status(cmd);
2360                break;
2361        default:
2362                break;
2363        }
2364
2365        if (ret < 0) {
2366                transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2367                return;
2368        }
2369        transport_lun_remove_cmd(cmd);
2370        transport_cmd_check_stop_to_fabric(cmd);
2371}
2372
2373static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2374                                        int err, bool write_pending)
2375{
2376        /*
2377         * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2378         * ->queue_data_in() callbacks from new process context.
2379         *
2380         * Otherwise for other errors, transport_complete_qf() will send
2381         * CHECK_CONDITION via ->queue_status() instead of attempting to
2382         * retry associated fabric driver data-transfer callbacks.
2383         */
2384        if (err == -EAGAIN || err == -ENOMEM) {
2385                cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2386                                                 TRANSPORT_COMPLETE_QF_OK;
2387        } else {
2388                pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2389                cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2390        }
2391
2392        spin_lock_irq(&dev->qf_cmd_lock);
2393        list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2394        atomic_inc_mb(&dev->dev_qf_count);
2395        spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2396
2397        schedule_work(&cmd->se_dev->qf_work_queue);
2398}
2399
2400static bool target_read_prot_action(struct se_cmd *cmd)
2401{
2402        switch (cmd->prot_op) {
2403        case TARGET_PROT_DIN_STRIP:
2404                if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2405                        u32 sectors = cmd->data_length >>
2406                                  ilog2(cmd->se_dev->dev_attrib.block_size);
2407
2408                        cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2409                                                     sectors, 0, cmd->t_prot_sg,
2410                                                     0);
2411                        if (cmd->pi_err)
2412                                return true;
2413                }
2414                break;
2415        case TARGET_PROT_DIN_INSERT:
2416                if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2417                        break;
2418
2419                sbc_dif_generate(cmd);
2420                break;
2421        default:
2422                break;
2423        }
2424
2425        return false;
2426}
2427
2428static void target_complete_ok_work(struct work_struct *work)
2429{
2430        struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2431        int ret;
2432
2433        /*
2434         * Check if we need to move delayed/dormant tasks from cmds on the
2435         * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2436         * Attribute.
2437         */
2438        transport_complete_task_attr(cmd);
2439
2440        /*
2441         * Check to schedule QUEUE_FULL work, or execute an existing
2442         * cmd->transport_qf_callback()
2443         */
2444        if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2445                schedule_work(&cmd->se_dev->qf_work_queue);
2446
2447        /*
2448         * Check if we need to send a sense buffer from
2449         * the struct se_cmd in question. We do NOT want
2450         * to take this path of the IO has been marked as
2451         * needing to be treated like a "normal read". This
2452         * is the case if it's a tape read, and either the
2453         * FM, EOM, or ILI bits are set, but there is no
2454         * sense data.
2455         */
2456        if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2457            cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2458                WARN_ON(!cmd->scsi_status);
2459                ret = transport_send_check_condition_and_sense(
2460                                        cmd, 0, 1);
2461                if (ret)
2462                        goto queue_full;
2463
2464                transport_lun_remove_cmd(cmd);
2465                transport_cmd_check_stop_to_fabric(cmd);
2466                return;
2467        }
2468        /*
2469         * Check for a callback, used by amongst other things
2470         * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2471         */
2472        if (cmd->transport_complete_callback) {
2473                sense_reason_t rc;
2474                bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2475                bool zero_dl = !(cmd->data_length);
2476                int post_ret = 0;
2477
2478                rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2479                if (!rc && !post_ret) {
2480                        if (caw && zero_dl)
2481                                goto queue_rsp;
2482
2483                        return;
2484                } else if (rc) {
2485                        ret = transport_send_check_condition_and_sense(cmd,
2486                                                rc, 0);
2487                        if (ret)
2488                                goto queue_full;
2489
2490                        transport_lun_remove_cmd(cmd);
2491                        transport_cmd_check_stop_to_fabric(cmd);
2492                        return;
2493                }
2494        }
2495
2496queue_rsp:
2497        switch (cmd->data_direction) {
2498        case DMA_FROM_DEVICE:
2499                /*
2500                 * if this is a READ-type IO, but SCSI status
2501                 * is set, then skip returning data and just
2502                 * return the status -- unless this IO is marked
2503                 * as needing to be treated as a normal read,
2504                 * in which case we want to go ahead and return
2505                 * the data. This happens, for example, for tape
2506                 * reads with the FM, EOM, or ILI bits set, with
2507                 * no sense data.
2508                 */
2509                if (cmd->scsi_status &&
2510                    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2511                        goto queue_status;
2512
2513                atomic_long_add(cmd->data_length,
2514                                &cmd->se_lun->lun_stats.tx_data_octets);
2515                /*
2516                 * Perform READ_STRIP of PI using software emulation when
2517                 * backend had PI enabled, if the transport will not be
2518                 * performing hardware READ_STRIP offload.
2519                 */
2520                if (target_read_prot_action(cmd)) {
2521                        ret = transport_send_check_condition_and_sense(cmd,
2522                                                cmd->pi_err, 0);
2523                        if (ret)
2524                                goto queue_full;
2525
2526                        transport_lun_remove_cmd(cmd);
2527                        transport_cmd_check_stop_to_fabric(cmd);
2528                        return;
2529                }
2530
2531                trace_target_cmd_complete(cmd);
2532                ret = cmd->se_tfo->queue_data_in(cmd);
2533                if (ret)
2534                        goto queue_full;
2535                break;
2536        case DMA_TO_DEVICE:
2537                atomic_long_add(cmd->data_length,
2538                                &cmd->se_lun->lun_stats.rx_data_octets);
2539                /*
2540                 * Check if we need to send READ payload for BIDI-COMMAND
2541                 */
2542                if (cmd->se_cmd_flags & SCF_BIDI) {
2543                        atomic_long_add(cmd->data_length,
2544                                        &cmd->se_lun->lun_stats.tx_data_octets);
2545                        ret = cmd->se_tfo->queue_data_in(cmd);
2546                        if (ret)
2547                                goto queue_full;
2548                        break;
2549                }
2550                fallthrough;
2551        case DMA_NONE:
2552queue_status:
2553                trace_target_cmd_complete(cmd);
2554                ret = cmd->se_tfo->queue_status(cmd);
2555                if (ret)
2556                        goto queue_full;
2557                break;
2558        default:
2559                break;
2560        }
2561
2562        transport_lun_remove_cmd(cmd);
2563        transport_cmd_check_stop_to_fabric(cmd);
2564        return;
2565
2566queue_full:
2567        pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2568                " data_direction: %d\n", cmd, cmd->data_direction);
2569
2570        transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2571}
2572
2573void target_free_sgl(struct scatterlist *sgl, int nents)
2574{
2575        sgl_free_n_order(sgl, nents, 0);
2576}
2577EXPORT_SYMBOL(target_free_sgl);
2578
2579static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2580{
2581        /*
2582         * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2583         * emulation, and free + reset pointers if necessary..
2584         */
2585        if (!cmd->t_data_sg_orig)
2586                return;
2587
2588        kfree(cmd->t_data_sg);
2589        cmd->t_data_sg = cmd->t_data_sg_orig;
2590        cmd->t_data_sg_orig = NULL;
2591        cmd->t_data_nents = cmd->t_data_nents_orig;
2592        cmd->t_data_nents_orig = 0;
2593}
2594
2595static inline void transport_free_pages(struct se_cmd *cmd)
2596{
2597        if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2598                target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2599                cmd->t_prot_sg = NULL;
2600                cmd->t_prot_nents = 0;
2601        }
2602
2603        if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2604                /*
2605                 * Release special case READ buffer payload required for
2606                 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2607                 */
2608                if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2609                        target_free_sgl(cmd->t_bidi_data_sg,
2610                                           cmd->t_bidi_data_nents);
2611                        cmd->t_bidi_data_sg = NULL;
2612                        cmd->t_bidi_data_nents = 0;
2613                }
2614                transport_reset_sgl_orig(cmd);
2615                return;
2616        }
2617        transport_reset_sgl_orig(cmd);
2618
2619        target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2620        cmd->t_data_sg = NULL;
2621        cmd->t_data_nents = 0;
2622
2623        target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2624        cmd->t_bidi_data_sg = NULL;
2625        cmd->t_bidi_data_nents = 0;
2626}
2627
2628void *transport_kmap_data_sg(struct se_cmd *cmd)
2629{
2630        struct scatterlist *sg = cmd->t_data_sg;
2631        struct page **pages;
2632        int i;
2633
2634        /*
2635         * We need to take into account a possible offset here for fabrics like
2636         * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2637         * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2638         */
2639        if (!cmd->t_data_nents)
2640                return NULL;
2641
2642        BUG_ON(!sg);
2643        if (cmd->t_data_nents == 1)
2644                return kmap(sg_page(sg)) + sg->offset;
2645
2646        /* >1 page. use vmap */
2647        pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2648        if (!pages)
2649                return NULL;
2650
2651        /* convert sg[] to pages[] */
2652        for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2653                pages[i] = sg_page(sg);
2654        }
2655
2656        cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2657        kfree(pages);
2658        if (!cmd->t_data_vmap)
2659                return NULL;
2660
2661        return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2662}
2663EXPORT_SYMBOL(transport_kmap_data_sg);
2664
2665void transport_kunmap_data_sg(struct se_cmd *cmd)
2666{
2667        if (!cmd->t_data_nents) {
2668                return;
2669        } else if (cmd->t_data_nents == 1) {
2670                kunmap(sg_page(cmd->t_data_sg));
2671                return;
2672        }
2673
2674        vunmap(cmd->t_data_vmap);
2675        cmd->t_data_vmap = NULL;
2676}
2677EXPORT_SYMBOL(transport_kunmap_data_sg);
2678
2679int
2680target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2681                 bool zero_page, bool chainable)
2682{
2683        gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2684
2685        *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2686        return *sgl ? 0 : -ENOMEM;
2687}
2688EXPORT_SYMBOL(target_alloc_sgl);
2689
2690/*
2691 * Allocate any required resources to execute the command.  For writes we
2692 * might not have the payload yet, so notify the fabric via a call to
2693 * ->write_pending instead. Otherwise place it on the execution queue.
2694 */
2695sense_reason_t
2696transport_generic_new_cmd(struct se_cmd *cmd)
2697{
2698        unsigned long flags;
2699        int ret = 0;
2700        bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2701
2702        if (cmd->prot_op != TARGET_PROT_NORMAL &&
2703            !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2704                ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2705                                       cmd->prot_length, true, false);
2706                if (ret < 0)
2707                        return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2708        }
2709
2710        /*
2711         * Determine if the TCM fabric module has already allocated physical
2712         * memory, and is directly calling transport_generic_map_mem_to_cmd()
2713         * beforehand.
2714         */
2715        if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2716            cmd->data_length) {
2717
2718                if ((cmd->se_cmd_flags & SCF_BIDI) ||
2719                    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2720                        u32 bidi_length;
2721
2722                        if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2723                                bidi_length = cmd->t_task_nolb *
2724                                              cmd->se_dev->dev_attrib.block_size;
2725                        else
2726                                bidi_length = cmd->data_length;
2727
2728                        ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2729                                               &cmd->t_bidi_data_nents,
2730                                               bidi_length, zero_flag, false);
2731                        if (ret < 0)
2732                                return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2733                }
2734
2735                ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2736                                       cmd->data_length, zero_flag, false);
2737                if (ret < 0)
2738                        return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2739        } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2740                    cmd->data_length) {
2741                /*
2742                 * Special case for COMPARE_AND_WRITE with fabrics
2743                 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2744                 */
2745                u32 caw_length = cmd->t_task_nolb *
2746                                 cmd->se_dev->dev_attrib.block_size;
2747
2748                ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2749                                       &cmd->t_bidi_data_nents,
2750                                       caw_length, zero_flag, false);
2751                if (ret < 0)
2752                        return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2753        }
2754        /*
2755         * If this command is not a write we can execute it right here,
2756         * for write buffers we need to notify the fabric driver first
2757         * and let it call back once the write buffers are ready.
2758         */
2759        target_add_to_state_list(cmd);
2760        if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2761                target_execute_cmd(cmd);
2762                return 0;
2763        }
2764
2765        spin_lock_irqsave(&cmd->t_state_lock, flags);
2766        cmd->t_state = TRANSPORT_WRITE_PENDING;
2767        /*
2768         * Determine if frontend context caller is requesting the stopping of
2769         * this command for frontend exceptions.
2770         */
2771        if (cmd->transport_state & CMD_T_STOP &&
2772            !cmd->se_tfo->write_pending_must_be_called) {
2773                pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2774                         __func__, __LINE__, cmd->tag);
2775
2776                spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2777
2778                complete_all(&cmd->t_transport_stop_comp);
2779                return 0;
2780        }
2781        cmd->transport_state &= ~CMD_T_ACTIVE;
2782        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2783
2784        ret = cmd->se_tfo->write_pending(cmd);
2785        if (ret)
2786                goto queue_full;
2787
2788        return 0;
2789
2790queue_full:
2791        pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2792        transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2793        return 0;
2794}
2795EXPORT_SYMBOL(transport_generic_new_cmd);
2796
2797static void transport_write_pending_qf(struct se_cmd *cmd)
2798{
2799        unsigned long flags;
2800        int ret;
2801        bool stop;
2802
2803        spin_lock_irqsave(&cmd->t_state_lock, flags);
2804        stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2805        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2806
2807        if (stop) {
2808                pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2809                        __func__, __LINE__, cmd->tag);
2810                complete_all(&cmd->t_transport_stop_comp);
2811                return;
2812        }
2813
2814        ret = cmd->se_tfo->write_pending(cmd);
2815        if (ret) {
2816                pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2817                         cmd);
2818                transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2819        }
2820}
2821
2822static bool
2823__transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2824                           unsigned long *flags);
2825
2826static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2827{
2828        unsigned long flags;
2829
2830        spin_lock_irqsave(&cmd->t_state_lock, flags);
2831        __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2832        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2833}
2834
2835/*
2836 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2837 * finished.
2838 */
2839void target_put_cmd_and_wait(struct se_cmd *cmd)
2840{
2841        DECLARE_COMPLETION_ONSTACK(compl);
2842
2843        WARN_ON_ONCE(cmd->abrt_compl);
2844        cmd->abrt_compl = &compl;
2845        target_put_sess_cmd(cmd);
2846        wait_for_completion(&compl);
2847}
2848
2849/*
2850 * This function is called by frontend drivers after processing of a command
2851 * has finished.
2852 *
2853 * The protocol for ensuring that either the regular frontend command
2854 * processing flow or target_handle_abort() code drops one reference is as
2855 * follows:
2856 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2857 *   the frontend driver to call this function synchronously or asynchronously.
2858 *   That will cause one reference to be dropped.
2859 * - During regular command processing the target core sets CMD_T_COMPLETE
2860 *   before invoking one of the .queue_*() functions.
2861 * - The code that aborts commands skips commands and TMFs for which
2862 *   CMD_T_COMPLETE has been set.
2863 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2864 *   commands that will be aborted.
2865 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2866 *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2867 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2868 *   be called and will drop a reference.
2869 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2870 *   will be called. target_handle_abort() will drop the final reference.
2871 */
2872int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2873{
2874        DECLARE_COMPLETION_ONSTACK(compl);
2875        int ret = 0;
2876        bool aborted = false, tas = false;
2877
2878        if (wait_for_tasks)
2879                target_wait_free_cmd(cmd, &aborted, &tas);
2880
2881        if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2882                /*
2883                 * Handle WRITE failure case where transport_generic_new_cmd()
2884                 * has already added se_cmd to state_list, but fabric has
2885                 * failed command before I/O submission.
2886                 */
2887                if (cmd->state_active)
2888                        target_remove_from_state_list(cmd);
2889
2890                if (cmd->se_lun)
2891                        transport_lun_remove_cmd(cmd);
2892        }
2893        if (aborted)
2894                cmd->free_compl = &compl;
2895        ret = target_put_sess_cmd(cmd);
2896        if (aborted) {
2897                pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2898                wait_for_completion(&compl);
2899                ret = 1;
2900        }
2901        return ret;
2902}
2903EXPORT_SYMBOL(transport_generic_free_cmd);
2904
2905/**
2906 * target_get_sess_cmd - Verify the session is accepting cmds and take ref
2907 * @se_cmd:     command descriptor to add
2908 * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
2909 */
2910int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2911{
2912        struct se_session *se_sess = se_cmd->se_sess;
2913        int ret = 0;
2914
2915        /*
2916         * Add a second kref if the fabric caller is expecting to handle
2917         * fabric acknowledgement that requires two target_put_sess_cmd()
2918         * invocations before se_cmd descriptor release.
2919         */
2920        if (ack_kref) {
2921                kref_get(&se_cmd->cmd_kref);
2922                se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2923        }
2924
2925        if (!percpu_ref_tryget_live(&se_sess->cmd_count))
2926                ret = -ESHUTDOWN;
2927
2928        if (ret && ack_kref)
2929                target_put_sess_cmd(se_cmd);
2930
2931        return ret;
2932}
2933EXPORT_SYMBOL(target_get_sess_cmd);
2934
2935static void target_free_cmd_mem(struct se_cmd *cmd)
2936{
2937        transport_free_pages(cmd);
2938
2939        if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2940                core_tmr_release_req(cmd->se_tmr_req);
2941        if (cmd->t_task_cdb != cmd->__t_task_cdb)
2942                kfree(cmd->t_task_cdb);
2943}
2944
2945static void target_release_cmd_kref(struct kref *kref)
2946{
2947        struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2948        struct se_session *se_sess = se_cmd->se_sess;
2949        struct completion *free_compl = se_cmd->free_compl;
2950        struct completion *abrt_compl = se_cmd->abrt_compl;
2951
2952        target_free_cmd_mem(se_cmd);
2953        se_cmd->se_tfo->release_cmd(se_cmd);
2954        if (free_compl)
2955                complete(free_compl);
2956        if (abrt_compl)
2957                complete(abrt_compl);
2958
2959        percpu_ref_put(&se_sess->cmd_count);
2960}
2961
2962/**
2963 * target_put_sess_cmd - decrease the command reference count
2964 * @se_cmd:     command to drop a reference from
2965 *
2966 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2967 * refcount to drop to zero. Returns zero otherwise.
2968 */
2969int target_put_sess_cmd(struct se_cmd *se_cmd)
2970{
2971        return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2972}
2973EXPORT_SYMBOL(target_put_sess_cmd);
2974
2975static const char *data_dir_name(enum dma_data_direction d)
2976{
2977        switch (d) {
2978        case DMA_BIDIRECTIONAL: return "BIDI";
2979        case DMA_TO_DEVICE:     return "WRITE";
2980        case DMA_FROM_DEVICE:   return "READ";
2981        case DMA_NONE:          return "NONE";
2982        }
2983
2984        return "(?)";
2985}
2986
2987static const char *cmd_state_name(enum transport_state_table t)
2988{
2989        switch (t) {
2990        case TRANSPORT_NO_STATE:        return "NO_STATE";
2991        case TRANSPORT_NEW_CMD:         return "NEW_CMD";
2992        case TRANSPORT_WRITE_PENDING:   return "WRITE_PENDING";
2993        case TRANSPORT_PROCESSING:      return "PROCESSING";
2994        case TRANSPORT_COMPLETE:        return "COMPLETE";
2995        case TRANSPORT_ISTATE_PROCESSING:
2996                                        return "ISTATE_PROCESSING";
2997        case TRANSPORT_COMPLETE_QF_WP:  return "COMPLETE_QF_WP";
2998        case TRANSPORT_COMPLETE_QF_OK:  return "COMPLETE_QF_OK";
2999        case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
3000        }
3001
3002        return "(?)";
3003}
3004
3005static void target_append_str(char **str, const char *txt)
3006{
3007        char *prev = *str;
3008
3009        *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
3010                kstrdup(txt, GFP_ATOMIC);
3011        kfree(prev);
3012}
3013
3014/*
3015 * Convert a transport state bitmask into a string. The caller is
3016 * responsible for freeing the returned pointer.
3017 */
3018static char *target_ts_to_str(u32 ts)
3019{
3020        char *str = NULL;
3021
3022        if (ts & CMD_T_ABORTED)
3023                target_append_str(&str, "aborted");
3024        if (ts & CMD_T_ACTIVE)
3025                target_append_str(&str, "active");
3026        if (ts & CMD_T_COMPLETE)
3027                target_append_str(&str, "complete");
3028        if (ts & CMD_T_SENT)
3029                target_append_str(&str, "sent");
3030        if (ts & CMD_T_STOP)
3031                target_append_str(&str, "stop");
3032        if (ts & CMD_T_FABRIC_STOP)
3033                target_append_str(&str, "fabric_stop");
3034
3035        return str;
3036}
3037
3038static const char *target_tmf_name(enum tcm_tmreq_table tmf)
3039{
3040        switch (tmf) {
3041        case TMR_ABORT_TASK:            return "ABORT_TASK";
3042        case TMR_ABORT_TASK_SET:        return "ABORT_TASK_SET";
3043        case TMR_CLEAR_ACA:             return "CLEAR_ACA";
3044        case TMR_CLEAR_TASK_SET:        return "CLEAR_TASK_SET";
3045        case TMR_LUN_RESET:             return "LUN_RESET";
3046        case TMR_TARGET_WARM_RESET:     return "TARGET_WARM_RESET";
3047        case TMR_TARGET_COLD_RESET:     return "TARGET_COLD_RESET";
3048        case TMR_LUN_RESET_PRO:         return "LUN_RESET_PRO";
3049        case TMR_UNKNOWN:               break;
3050        }
3051        return "(?)";
3052}
3053
3054void target_show_cmd(const char *pfx, struct se_cmd *cmd)
3055{
3056        char *ts_str = target_ts_to_str(cmd->transport_state);
3057        const u8 *cdb = cmd->t_task_cdb;
3058        struct se_tmr_req *tmf = cmd->se_tmr_req;
3059
3060        if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3061                pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
3062                         pfx, cdb[0], cdb[1], cmd->tag,
3063                         data_dir_name(cmd->data_direction),
3064                         cmd->se_tfo->get_cmd_state(cmd),
3065                         cmd_state_name(cmd->t_state), cmd->data_length,
3066                         kref_read(&cmd->cmd_kref), ts_str);
3067        } else {
3068                pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
3069                         pfx, target_tmf_name(tmf->function), cmd->tag,
3070                         tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
3071                         cmd_state_name(cmd->t_state),
3072                         kref_read(&cmd->cmd_kref), ts_str);
3073        }
3074        kfree(ts_str);
3075}
3076EXPORT_SYMBOL(target_show_cmd);
3077
3078static void target_stop_session_confirm(struct percpu_ref *ref)
3079{
3080        struct se_session *se_sess = container_of(ref, struct se_session,
3081                                                  cmd_count);
3082        complete_all(&se_sess->stop_done);
3083}
3084
3085/**
3086 * target_stop_session - Stop new IO from being queued on the session.
3087 * @se_sess:    session to stop
3088 */
3089void target_stop_session(struct se_session *se_sess)
3090{
3091        pr_debug("Stopping session queue.\n");
3092        if (atomic_cmpxchg(&se_sess->stopped, 0, 1) == 0)
3093                percpu_ref_kill_and_confirm(&se_sess->cmd_count,
3094                                            target_stop_session_confirm);
3095}
3096EXPORT_SYMBOL(target_stop_session);
3097
3098/**
3099 * target_wait_for_sess_cmds - Wait for outstanding commands
3100 * @se_sess:    session to wait for active I/O
3101 */
3102void target_wait_for_sess_cmds(struct se_session *se_sess)
3103{
3104        int ret;
3105
3106        WARN_ON_ONCE(!atomic_read(&se_sess->stopped));
3107
3108        do {
3109                pr_debug("Waiting for running cmds to complete.\n");
3110                ret = wait_event_timeout(se_sess->cmd_count_wq,
3111                                percpu_ref_is_zero(&se_sess->cmd_count),
3112                                180 * HZ);
3113        } while (ret <= 0);
3114
3115        wait_for_completion(&se_sess->stop_done);
3116        pr_debug("Waiting for cmds done.\n");
3117}
3118EXPORT_SYMBOL(target_wait_for_sess_cmds);
3119
3120/*
3121 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3122 * all references to the LUN have been released. Called during LUN shutdown.
3123 */
3124void transport_clear_lun_ref(struct se_lun *lun)
3125{
3126        percpu_ref_kill(&lun->lun_ref);
3127        wait_for_completion(&lun->lun_shutdown_comp);
3128}
3129
3130static bool
3131__transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
3132                           bool *aborted, bool *tas, unsigned long *flags)
3133        __releases(&cmd->t_state_lock)
3134        __acquires(&cmd->t_state_lock)
3135{
3136        lockdep_assert_held(&cmd->t_state_lock);
3137
3138        if (fabric_stop)
3139                cmd->transport_state |= CMD_T_FABRIC_STOP;
3140
3141        if (cmd->transport_state & CMD_T_ABORTED)
3142                *aborted = true;
3143
3144        if (cmd->transport_state & CMD_T_TAS)
3145                *tas = true;
3146
3147        if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3148            !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3149                return false;
3150
3151        if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3152            !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3153                return false;
3154
3155        if (!(cmd->transport_state & CMD_T_ACTIVE))
3156                return false;
3157
3158        if (fabric_stop && *aborted)
3159                return false;
3160
3161        cmd->transport_state |= CMD_T_STOP;
3162
3163        target_show_cmd("wait_for_tasks: Stopping ", cmd);
3164
3165        spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3166
3167        while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3168                                            180 * HZ))
3169                target_show_cmd("wait for tasks: ", cmd);
3170
3171        spin_lock_irqsave(&cmd->t_state_lock, *flags);
3172        cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3173
3174        pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3175                 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3176
3177        return true;
3178}
3179
3180/**
3181 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3182 * @cmd: command to wait on
3183 */
3184bool transport_wait_for_tasks(struct se_cmd *cmd)
3185{
3186        unsigned long flags;
3187        bool ret, aborted = false, tas = false;
3188
3189        spin_lock_irqsave(&cmd->t_state_lock, flags);
3190        ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3191        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3192
3193        return ret;
3194}
3195EXPORT_SYMBOL(transport_wait_for_tasks);
3196
3197struct sense_detail {
3198        u8 key;
3199        u8 asc;
3200        u8 ascq;
3201        bool add_sense_info;
3202};
3203
3204static const struct sense_detail sense_detail_table[] = {
3205        [TCM_NO_SENSE] = {
3206                .key = NOT_READY
3207        },
3208        [TCM_NON_EXISTENT_LUN] = {
3209                .key = ILLEGAL_REQUEST,
3210                .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3211        },
3212        [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3213                .key = ILLEGAL_REQUEST,
3214                .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3215        },
3216        [TCM_SECTOR_COUNT_TOO_MANY] = {
3217                .key = ILLEGAL_REQUEST,
3218                .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3219        },
3220        [TCM_UNKNOWN_MODE_PAGE] = {
3221                .key = ILLEGAL_REQUEST,
3222                .asc = 0x24, /* INVALID FIELD IN CDB */
3223        },
3224        [TCM_CHECK_CONDITION_ABORT_CMD] = {
3225                .key = ABORTED_COMMAND,
3226                .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3227                .ascq = 0x03,
3228        },
3229        [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3230                .key = ABORTED_COMMAND,
3231                .asc = 0x0c, /* WRITE ERROR */
3232                .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3233        },
3234        [TCM_INVALID_CDB_FIELD] = {
3235                .key = ILLEGAL_REQUEST,
3236                .asc = 0x24, /* INVALID FIELD IN CDB */
3237        },
3238        [TCM_INVALID_PARAMETER_LIST] = {
3239                .key = ILLEGAL_REQUEST,
3240                .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3241        },
3242        [TCM_TOO_MANY_TARGET_DESCS] = {
3243                .key = ILLEGAL_REQUEST,
3244                .asc = 0x26,
3245                .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3246        },
3247        [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3248                .key = ILLEGAL_REQUEST,
3249                .asc = 0x26,
3250                .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3251        },
3252        [TCM_TOO_MANY_SEGMENT_DESCS] = {
3253                .key = ILLEGAL_REQUEST,
3254                .asc = 0x26,
3255                .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3256        },
3257        [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3258                .key = ILLEGAL_REQUEST,
3259                .asc = 0x26,
3260                .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3261        },
3262        [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3263                .key = ILLEGAL_REQUEST,
3264                .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3265        },
3266        [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3267                .key = ILLEGAL_REQUEST,
3268                .asc = 0x0c, /* WRITE ERROR */
3269                .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3270        },
3271        [TCM_SERVICE_CRC_ERROR] = {
3272                .key = ABORTED_COMMAND,
3273                .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3274                .ascq = 0x05, /* N/A */
3275        },
3276        [TCM_SNACK_REJECTED] = {
3277                .key = ABORTED_COMMAND,
3278                .asc = 0x11, /* READ ERROR */
3279                .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3280        },
3281        [TCM_WRITE_PROTECTED] = {
3282                .key = DATA_PROTECT,
3283                .asc = 0x27, /* WRITE PROTECTED */
3284        },
3285        [TCM_ADDRESS_OUT_OF_RANGE] = {
3286                .key = ILLEGAL_REQUEST,
3287                .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3288        },
3289        [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3290                .key = UNIT_ATTENTION,
3291        },
3292        [TCM_MISCOMPARE_VERIFY] = {
3293                .key = MISCOMPARE,
3294                .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3295                .ascq = 0x00,
3296                .add_sense_info = true,
3297        },
3298        [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3299                .key = ABORTED_COMMAND,
3300                .asc = 0x10,
3301                .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3302                .add_sense_info = true,
3303        },
3304        [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3305                .key = ABORTED_COMMAND,
3306                .asc = 0x10,
3307                .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3308                .add_sense_info = true,
3309        },
3310        [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3311                .key = ABORTED_COMMAND,
3312                .asc = 0x10,
3313                .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3314                .add_sense_info = true,
3315        },
3316        [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3317                .key = COPY_ABORTED,
3318                .asc = 0x0d,
3319                .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3320
3321        },
3322        [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3323                /*
3324                 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3325                 * Solaris initiators.  Returning NOT READY instead means the
3326                 * operations will be retried a finite number of times and we
3327                 * can survive intermittent errors.
3328                 */
3329                .key = NOT_READY,
3330                .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3331        },
3332        [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3333                /*
3334                 * From spc4r22 section5.7.7,5.7.8
3335                 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3336                 * or a REGISTER AND IGNORE EXISTING KEY service action or
3337                 * REGISTER AND MOVE service actionis attempted,
3338                 * but there are insufficient device server resources to complete the
3339                 * operation, then the command shall be terminated with CHECK CONDITION
3340                 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3341                 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3342                 */
3343                .key = ILLEGAL_REQUEST,
3344                .asc = 0x55,
3345                .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3346        },
3347        [TCM_INVALID_FIELD_IN_COMMAND_IU] = {
3348                .key = ILLEGAL_REQUEST,
3349                .asc = 0x0e,
3350                .ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */
3351        },
3352        [TCM_ALUA_TG_PT_STANDBY] = {
3353                .key = NOT_READY,
3354                .asc = 0x04,
3355                .ascq = ASCQ_04H_ALUA_TG_PT_STANDBY,
3356        },
3357        [TCM_ALUA_TG_PT_UNAVAILABLE] = {
3358                .key = NOT_READY,
3359                .asc = 0x04,
3360                .ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE,
3361        },
3362        [TCM_ALUA_STATE_TRANSITION] = {
3363                .key = NOT_READY,
3364                .asc = 0x04,
3365                .ascq = ASCQ_04H_ALUA_STATE_TRANSITION,
3366        },
3367        [TCM_ALUA_OFFLINE] = {
3368                .key = NOT_READY,
3369                .asc = 0x04,
3370                .ascq = ASCQ_04H_ALUA_OFFLINE,
3371        },
3372};
3373
3374/**
3375 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3376 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3377 *   be stored.
3378 * @reason: LIO sense reason code. If this argument has the value
3379 *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3380 *   dequeuing a unit attention fails due to multiple commands being processed
3381 *   concurrently, set the command status to BUSY.
3382 *
3383 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3384 */
3385static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3386{
3387        const struct sense_detail *sd;
3388        u8 *buffer = cmd->sense_buffer;
3389        int r = (__force int)reason;
3390        u8 key, asc, ascq;
3391        bool desc_format = target_sense_desc_format(cmd->se_dev);
3392
3393        if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key)
3394                sd = &sense_detail_table[r];
3395        else
3396                sd = &sense_detail_table[(__force int)
3397                                       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3398
3399        key = sd->key;
3400        if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3401                if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3402                                                       &ascq)) {
3403                        cmd->scsi_status = SAM_STAT_BUSY;
3404                        return;
3405                }
3406        } else {
3407                WARN_ON_ONCE(sd->asc == 0);
3408                asc = sd->asc;
3409                ascq = sd->ascq;
3410        }
3411
3412        cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3413        cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3414        cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3415        scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3416        if (sd->add_sense_info)
3417                WARN_ON_ONCE(scsi_set_sense_information(buffer,
3418                                                        cmd->scsi_sense_length,
3419                                                        cmd->sense_info) < 0);
3420}
3421
3422int
3423transport_send_check_condition_and_sense(struct se_cmd *cmd,
3424                sense_reason_t reason, int from_transport)
3425{
3426        unsigned long flags;
3427
3428        WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3429
3430        spin_lock_irqsave(&cmd->t_state_lock, flags);
3431        if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3432                spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3433                return 0;
3434        }
3435        cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3436        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3437
3438        if (!from_transport)
3439                translate_sense_reason(cmd, reason);
3440
3441        trace_target_cmd_complete(cmd);
3442        return cmd->se_tfo->queue_status(cmd);
3443}
3444EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3445
3446/**
3447 * target_send_busy - Send SCSI BUSY status back to the initiator
3448 * @cmd: SCSI command for which to send a BUSY reply.
3449 *
3450 * Note: Only call this function if target_submit_cmd*() failed.
3451 */
3452int target_send_busy(struct se_cmd *cmd)
3453{
3454        WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3455
3456        cmd->scsi_status = SAM_STAT_BUSY;
3457        trace_target_cmd_complete(cmd);
3458        return cmd->se_tfo->queue_status(cmd);
3459}
3460EXPORT_SYMBOL(target_send_busy);
3461
3462static void target_tmr_work(struct work_struct *work)
3463{
3464        struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3465        struct se_device *dev = cmd->se_dev;
3466        struct se_tmr_req *tmr = cmd->se_tmr_req;
3467        int ret;
3468
3469        if (cmd->transport_state & CMD_T_ABORTED)
3470                goto aborted;
3471
3472        switch (tmr->function) {
3473        case TMR_ABORT_TASK:
3474                core_tmr_abort_task(dev, tmr, cmd->se_sess);
3475                break;
3476        case TMR_ABORT_TASK_SET:
3477        case TMR_CLEAR_ACA:
3478        case TMR_CLEAR_TASK_SET:
3479                tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3480                break;
3481        case TMR_LUN_RESET:
3482                ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3483                tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3484                                         TMR_FUNCTION_REJECTED;
3485                if (tmr->response == TMR_FUNCTION_COMPLETE) {
3486                        target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3487                                               cmd->orig_fe_lun, 0x29,
3488                                               ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3489                }
3490                break;
3491        case TMR_TARGET_WARM_RESET:
3492                tmr->response = TMR_FUNCTION_REJECTED;
3493                break;
3494        case TMR_TARGET_COLD_RESET:
3495                tmr->response = TMR_FUNCTION_REJECTED;
3496                break;
3497        default:
3498                pr_err("Unknown TMR function: 0x%02x.\n",
3499                                tmr->function);
3500                tmr->response = TMR_FUNCTION_REJECTED;
3501                break;
3502        }
3503
3504        if (cmd->transport_state & CMD_T_ABORTED)
3505                goto aborted;
3506
3507        cmd->se_tfo->queue_tm_rsp(cmd);
3508
3509        transport_lun_remove_cmd(cmd);
3510        transport_cmd_check_stop_to_fabric(cmd);
3511        return;
3512
3513aborted:
3514        target_handle_abort(cmd);
3515}
3516
3517int transport_generic_handle_tmr(
3518        struct se_cmd *cmd)
3519{
3520        unsigned long flags;
3521        bool aborted = false;
3522
3523        spin_lock_irqsave(&cmd->t_state_lock, flags);
3524        if (cmd->transport_state & CMD_T_ABORTED) {
3525                aborted = true;
3526        } else {
3527                cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3528                cmd->transport_state |= CMD_T_ACTIVE;
3529        }
3530        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3531
3532        if (aborted) {
3533                pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3534                                    cmd->se_tmr_req->function,
3535                                    cmd->se_tmr_req->ref_task_tag, cmd->tag);
3536                target_handle_abort(cmd);
3537                return 0;
3538        }
3539
3540        INIT_WORK(&cmd->work, target_tmr_work);
3541        schedule_work(&cmd->work);
3542        return 0;
3543}
3544EXPORT_SYMBOL(transport_generic_handle_tmr);
3545
3546bool
3547target_check_wce(struct se_device *dev)
3548{
3549        bool wce = false;
3550
3551        if (dev->transport->get_write_cache)
3552                wce = dev->transport->get_write_cache(dev);
3553        else if (dev->dev_attrib.emulate_write_cache > 0)
3554                wce = true;
3555
3556        return wce;
3557}
3558
3559bool
3560target_check_fua(struct se_device *dev)
3561{
3562        return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3563}
3564