linux/drivers/thermal/cpufreq_cooling.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/drivers/thermal/cpufreq_cooling.c
   4 *
   5 *  Copyright (C) 2012  Samsung Electronics Co., Ltd(http://www.samsung.com)
   6 *
   7 *  Copyright (C) 2012-2018 Linaro Limited.
   8 *
   9 *  Authors:    Amit Daniel <amit.kachhap@linaro.org>
  10 *              Viresh Kumar <viresh.kumar@linaro.org>
  11 *
  12 */
  13#include <linux/cpu.h>
  14#include <linux/cpufreq.h>
  15#include <linux/cpu_cooling.h>
  16#include <linux/device.h>
  17#include <linux/energy_model.h>
  18#include <linux/err.h>
  19#include <linux/export.h>
  20#include <linux/pm_opp.h>
  21#include <linux/pm_qos.h>
  22#include <linux/slab.h>
  23#include <linux/thermal.h>
  24
  25#include <trace/events/thermal.h>
  26
  27/*
  28 * Cooling state <-> CPUFreq frequency
  29 *
  30 * Cooling states are translated to frequencies throughout this driver and this
  31 * is the relation between them.
  32 *
  33 * Highest cooling state corresponds to lowest possible frequency.
  34 *
  35 * i.e.
  36 *      level 0 --> 1st Max Freq
  37 *      level 1 --> 2nd Max Freq
  38 *      ...
  39 */
  40
  41/**
  42 * struct time_in_idle - Idle time stats
  43 * @time: previous reading of the absolute time that this cpu was idle
  44 * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
  45 */
  46struct time_in_idle {
  47        u64 time;
  48        u64 timestamp;
  49};
  50
  51/**
  52 * struct cpufreq_cooling_device - data for cooling device with cpufreq
  53 * @last_load: load measured by the latest call to cpufreq_get_requested_power()
  54 * @cpufreq_state: integer value representing the current state of cpufreq
  55 *      cooling devices.
  56 * @max_level: maximum cooling level. One less than total number of valid
  57 *      cpufreq frequencies.
  58 * @em: Reference on the Energy Model of the device
  59 * @cdev: thermal_cooling_device pointer to keep track of the
  60 *      registered cooling device.
  61 * @policy: cpufreq policy.
  62 * @idle_time: idle time stats
  63 * @qos_req: PM QoS contraint to apply
  64 *
  65 * This structure is required for keeping information of each registered
  66 * cpufreq_cooling_device.
  67 */
  68struct cpufreq_cooling_device {
  69        u32 last_load;
  70        unsigned int cpufreq_state;
  71        unsigned int max_level;
  72        struct em_perf_domain *em;
  73        struct cpufreq_policy *policy;
  74#ifndef CONFIG_SMP
  75        struct time_in_idle *idle_time;
  76#endif
  77        struct freq_qos_request qos_req;
  78};
  79
  80#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
  81/**
  82 * get_level: Find the level for a particular frequency
  83 * @cpufreq_cdev: cpufreq_cdev for which the property is required
  84 * @freq: Frequency
  85 *
  86 * Return: level corresponding to the frequency.
  87 */
  88static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
  89                               unsigned int freq)
  90{
  91        int i;
  92
  93        for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
  94                if (freq > cpufreq_cdev->em->table[i].frequency)
  95                        break;
  96        }
  97
  98        return cpufreq_cdev->max_level - i - 1;
  99}
 100
 101static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
 102                             u32 freq)
 103{
 104        int i;
 105
 106        for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
 107                if (freq > cpufreq_cdev->em->table[i].frequency)
 108                        break;
 109        }
 110
 111        return cpufreq_cdev->em->table[i + 1].power;
 112}
 113
 114static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
 115                             u32 power)
 116{
 117        int i;
 118
 119        for (i = cpufreq_cdev->max_level; i > 0; i--) {
 120                if (power >= cpufreq_cdev->em->table[i].power)
 121                        break;
 122        }
 123
 124        return cpufreq_cdev->em->table[i].frequency;
 125}
 126
 127/**
 128 * get_load() - get load for a cpu
 129 * @cpufreq_cdev: struct cpufreq_cooling_device for the cpu
 130 * @cpu: cpu number
 131 * @cpu_idx: index of the cpu in time_in_idle array
 132 *
 133 * Return: The average load of cpu @cpu in percentage since this
 134 * function was last called.
 135 */
 136#ifdef CONFIG_SMP
 137static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
 138                    int cpu_idx)
 139{
 140        unsigned long max = arch_scale_cpu_capacity(cpu);
 141        unsigned long util;
 142
 143        util = sched_cpu_util(cpu, max);
 144        return (util * 100) / max;
 145}
 146#else /* !CONFIG_SMP */
 147static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
 148                    int cpu_idx)
 149{
 150        u32 load;
 151        u64 now, now_idle, delta_time, delta_idle;
 152        struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
 153
 154        now_idle = get_cpu_idle_time(cpu, &now, 0);
 155        delta_idle = now_idle - idle_time->time;
 156        delta_time = now - idle_time->timestamp;
 157
 158        if (delta_time <= delta_idle)
 159                load = 0;
 160        else
 161                load = div64_u64(100 * (delta_time - delta_idle), delta_time);
 162
 163        idle_time->time = now_idle;
 164        idle_time->timestamp = now;
 165
 166        return load;
 167}
 168#endif /* CONFIG_SMP */
 169
 170/**
 171 * get_dynamic_power() - calculate the dynamic power
 172 * @cpufreq_cdev:       &cpufreq_cooling_device for this cdev
 173 * @freq:       current frequency
 174 *
 175 * Return: the dynamic power consumed by the cpus described by
 176 * @cpufreq_cdev.
 177 */
 178static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
 179                             unsigned long freq)
 180{
 181        u32 raw_cpu_power;
 182
 183        raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
 184        return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
 185}
 186
 187/**
 188 * cpufreq_get_requested_power() - get the current power
 189 * @cdev:       &thermal_cooling_device pointer
 190 * @power:      pointer in which to store the resulting power
 191 *
 192 * Calculate the current power consumption of the cpus in milliwatts
 193 * and store it in @power.  This function should actually calculate
 194 * the requested power, but it's hard to get the frequency that
 195 * cpufreq would have assigned if there were no thermal limits.
 196 * Instead, we calculate the current power on the assumption that the
 197 * immediate future will look like the immediate past.
 198 *
 199 * We use the current frequency and the average load since this
 200 * function was last called.  In reality, there could have been
 201 * multiple opps since this function was last called and that affects
 202 * the load calculation.  While it's not perfectly accurate, this
 203 * simplification is good enough and works.  REVISIT this, as more
 204 * complex code may be needed if experiments show that it's not
 205 * accurate enough.
 206 *
 207 * Return: 0 on success, -E* if getting the static power failed.
 208 */
 209static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
 210                                       u32 *power)
 211{
 212        unsigned long freq;
 213        int i = 0, cpu;
 214        u32 total_load = 0;
 215        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 216        struct cpufreq_policy *policy = cpufreq_cdev->policy;
 217        u32 *load_cpu = NULL;
 218
 219        freq = cpufreq_quick_get(policy->cpu);
 220
 221        if (trace_thermal_power_cpu_get_power_enabled()) {
 222                u32 ncpus = cpumask_weight(policy->related_cpus);
 223
 224                load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
 225        }
 226
 227        for_each_cpu(cpu, policy->related_cpus) {
 228                u32 load;
 229
 230                if (cpu_online(cpu))
 231                        load = get_load(cpufreq_cdev, cpu, i);
 232                else
 233                        load = 0;
 234
 235                total_load += load;
 236                if (load_cpu)
 237                        load_cpu[i] = load;
 238
 239                i++;
 240        }
 241
 242        cpufreq_cdev->last_load = total_load;
 243
 244        *power = get_dynamic_power(cpufreq_cdev, freq);
 245
 246        if (load_cpu) {
 247                trace_thermal_power_cpu_get_power(policy->related_cpus, freq,
 248                                                  load_cpu, i, *power);
 249
 250                kfree(load_cpu);
 251        }
 252
 253        return 0;
 254}
 255
 256/**
 257 * cpufreq_state2power() - convert a cpu cdev state to power consumed
 258 * @cdev:       &thermal_cooling_device pointer
 259 * @state:      cooling device state to be converted
 260 * @power:      pointer in which to store the resulting power
 261 *
 262 * Convert cooling device state @state into power consumption in
 263 * milliwatts assuming 100% load.  Store the calculated power in
 264 * @power.
 265 *
 266 * Return: 0 on success, -EINVAL if the cooling device state could not
 267 * be converted into a frequency or other -E* if there was an error
 268 * when calculating the static power.
 269 */
 270static int cpufreq_state2power(struct thermal_cooling_device *cdev,
 271                               unsigned long state, u32 *power)
 272{
 273        unsigned int freq, num_cpus, idx;
 274        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 275
 276        /* Request state should be less than max_level */
 277        if (state > cpufreq_cdev->max_level)
 278                return -EINVAL;
 279
 280        num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
 281
 282        idx = cpufreq_cdev->max_level - state;
 283        freq = cpufreq_cdev->em->table[idx].frequency;
 284        *power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
 285
 286        return 0;
 287}
 288
 289/**
 290 * cpufreq_power2state() - convert power to a cooling device state
 291 * @cdev:       &thermal_cooling_device pointer
 292 * @power:      power in milliwatts to be converted
 293 * @state:      pointer in which to store the resulting state
 294 *
 295 * Calculate a cooling device state for the cpus described by @cdev
 296 * that would allow them to consume at most @power mW and store it in
 297 * @state.  Note that this calculation depends on external factors
 298 * such as the cpu load or the current static power.  Calling this
 299 * function with the same power as input can yield different cooling
 300 * device states depending on those external factors.
 301 *
 302 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
 303 * the calculated frequency could not be converted to a valid state.
 304 * The latter should not happen unless the frequencies available to
 305 * cpufreq have changed since the initialization of the cpu cooling
 306 * device.
 307 */
 308static int cpufreq_power2state(struct thermal_cooling_device *cdev,
 309                               u32 power, unsigned long *state)
 310{
 311        unsigned int target_freq;
 312        u32 last_load, normalised_power;
 313        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 314        struct cpufreq_policy *policy = cpufreq_cdev->policy;
 315
 316        last_load = cpufreq_cdev->last_load ?: 1;
 317        normalised_power = (power * 100) / last_load;
 318        target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
 319
 320        *state = get_level(cpufreq_cdev, target_freq);
 321        trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
 322                                      power);
 323        return 0;
 324}
 325
 326static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev,
 327                              struct em_perf_domain *em) {
 328        struct cpufreq_policy *policy;
 329        unsigned int nr_levels;
 330
 331        if (!em)
 332                return false;
 333
 334        policy = cpufreq_cdev->policy;
 335        if (!cpumask_equal(policy->related_cpus, em_span_cpus(em))) {
 336                pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n",
 337                        cpumask_pr_args(em_span_cpus(em)),
 338                        cpumask_pr_args(policy->related_cpus));
 339                return false;
 340        }
 341
 342        nr_levels = cpufreq_cdev->max_level + 1;
 343        if (em_pd_nr_perf_states(em) != nr_levels) {
 344                pr_err("The number of performance states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n",
 345                        cpumask_pr_args(em_span_cpus(em)),
 346                        em_pd_nr_perf_states(em), nr_levels);
 347                return false;
 348        }
 349
 350        return true;
 351}
 352#endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */
 353
 354#ifdef CONFIG_SMP
 355static inline int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
 356{
 357        return 0;
 358}
 359
 360static inline void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
 361{
 362}
 363#else
 364static int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
 365{
 366        unsigned int num_cpus = cpumask_weight(cpufreq_cdev->policy->related_cpus);
 367
 368        cpufreq_cdev->idle_time = kcalloc(num_cpus,
 369                                          sizeof(*cpufreq_cdev->idle_time),
 370                                          GFP_KERNEL);
 371        if (!cpufreq_cdev->idle_time)
 372                return -ENOMEM;
 373
 374        return 0;
 375}
 376
 377static void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
 378{
 379        kfree(cpufreq_cdev->idle_time);
 380        cpufreq_cdev->idle_time = NULL;
 381}
 382#endif /* CONFIG_SMP */
 383
 384static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev,
 385                                   unsigned long state)
 386{
 387        struct cpufreq_policy *policy;
 388        unsigned long idx;
 389
 390#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
 391        /* Use the Energy Model table if available */
 392        if (cpufreq_cdev->em) {
 393                idx = cpufreq_cdev->max_level - state;
 394                return cpufreq_cdev->em->table[idx].frequency;
 395        }
 396#endif
 397
 398        /* Otherwise, fallback on the CPUFreq table */
 399        policy = cpufreq_cdev->policy;
 400        if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
 401                idx = cpufreq_cdev->max_level - state;
 402        else
 403                idx = state;
 404
 405        return policy->freq_table[idx].frequency;
 406}
 407
 408/* cpufreq cooling device callback functions are defined below */
 409
 410/**
 411 * cpufreq_get_max_state - callback function to get the max cooling state.
 412 * @cdev: thermal cooling device pointer.
 413 * @state: fill this variable with the max cooling state.
 414 *
 415 * Callback for the thermal cooling device to return the cpufreq
 416 * max cooling state.
 417 *
 418 * Return: 0 on success, an error code otherwise.
 419 */
 420static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
 421                                 unsigned long *state)
 422{
 423        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 424
 425        *state = cpufreq_cdev->max_level;
 426        return 0;
 427}
 428
 429/**
 430 * cpufreq_get_cur_state - callback function to get the current cooling state.
 431 * @cdev: thermal cooling device pointer.
 432 * @state: fill this variable with the current cooling state.
 433 *
 434 * Callback for the thermal cooling device to return the cpufreq
 435 * current cooling state.
 436 *
 437 * Return: 0 on success, an error code otherwise.
 438 */
 439static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
 440                                 unsigned long *state)
 441{
 442        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 443
 444        *state = cpufreq_cdev->cpufreq_state;
 445
 446        return 0;
 447}
 448
 449/**
 450 * cpufreq_set_cur_state - callback function to set the current cooling state.
 451 * @cdev: thermal cooling device pointer.
 452 * @state: set this variable to the current cooling state.
 453 *
 454 * Callback for the thermal cooling device to change the cpufreq
 455 * current cooling state.
 456 *
 457 * Return: 0 on success, an error code otherwise.
 458 */
 459static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
 460                                 unsigned long state)
 461{
 462        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 463        struct cpumask *cpus;
 464        unsigned int frequency;
 465        unsigned long max_capacity, capacity;
 466        int ret;
 467
 468        /* Request state should be less than max_level */
 469        if (state > cpufreq_cdev->max_level)
 470                return -EINVAL;
 471
 472        /* Check if the old cooling action is same as new cooling action */
 473        if (cpufreq_cdev->cpufreq_state == state)
 474                return 0;
 475
 476        frequency = get_state_freq(cpufreq_cdev, state);
 477
 478        ret = freq_qos_update_request(&cpufreq_cdev->qos_req, frequency);
 479        if (ret >= 0) {
 480                cpufreq_cdev->cpufreq_state = state;
 481                cpus = cpufreq_cdev->policy->related_cpus;
 482                max_capacity = arch_scale_cpu_capacity(cpumask_first(cpus));
 483                capacity = frequency * max_capacity;
 484                capacity /= cpufreq_cdev->policy->cpuinfo.max_freq;
 485                arch_set_thermal_pressure(cpus, max_capacity - capacity);
 486                ret = 0;
 487        }
 488
 489        return ret;
 490}
 491
 492/* Bind cpufreq callbacks to thermal cooling device ops */
 493
 494static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
 495        .get_max_state          = cpufreq_get_max_state,
 496        .get_cur_state          = cpufreq_get_cur_state,
 497        .set_cur_state          = cpufreq_set_cur_state,
 498};
 499
 500/**
 501 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
 502 * @np: a valid struct device_node to the cooling device device tree node
 503 * @policy: cpufreq policy
 504 * Normally this should be same as cpufreq policy->related_cpus.
 505 * @em: Energy Model of the cpufreq policy
 506 *
 507 * This interface function registers the cpufreq cooling device with the name
 508 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
 509 * cooling devices. It also gives the opportunity to link the cooling device
 510 * with a device tree node, in order to bind it via the thermal DT code.
 511 *
 512 * Return: a valid struct thermal_cooling_device pointer on success,
 513 * on failure, it returns a corresponding ERR_PTR().
 514 */
 515static struct thermal_cooling_device *
 516__cpufreq_cooling_register(struct device_node *np,
 517                        struct cpufreq_policy *policy,
 518                        struct em_perf_domain *em)
 519{
 520        struct thermal_cooling_device *cdev;
 521        struct cpufreq_cooling_device *cpufreq_cdev;
 522        unsigned int i;
 523        struct device *dev;
 524        int ret;
 525        struct thermal_cooling_device_ops *cooling_ops;
 526        char *name;
 527
 528        dev = get_cpu_device(policy->cpu);
 529        if (unlikely(!dev)) {
 530                pr_warn("No cpu device for cpu %d\n", policy->cpu);
 531                return ERR_PTR(-ENODEV);
 532        }
 533
 534        if (IS_ERR_OR_NULL(policy)) {
 535                pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
 536                return ERR_PTR(-EINVAL);
 537        }
 538
 539        i = cpufreq_table_count_valid_entries(policy);
 540        if (!i) {
 541                pr_debug("%s: CPUFreq table not found or has no valid entries\n",
 542                         __func__);
 543                return ERR_PTR(-ENODEV);
 544        }
 545
 546        cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
 547        if (!cpufreq_cdev)
 548                return ERR_PTR(-ENOMEM);
 549
 550        cpufreq_cdev->policy = policy;
 551
 552        ret = allocate_idle_time(cpufreq_cdev);
 553        if (ret) {
 554                cdev = ERR_PTR(ret);
 555                goto free_cdev;
 556        }
 557
 558        /* max_level is an index, not a counter */
 559        cpufreq_cdev->max_level = i - 1;
 560
 561        cooling_ops = &cpufreq_cooling_ops;
 562
 563#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
 564        if (em_is_sane(cpufreq_cdev, em)) {
 565                cpufreq_cdev->em = em;
 566                cooling_ops->get_requested_power = cpufreq_get_requested_power;
 567                cooling_ops->state2power = cpufreq_state2power;
 568                cooling_ops->power2state = cpufreq_power2state;
 569        } else
 570#endif
 571        if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) {
 572                pr_err("%s: unsorted frequency tables are not supported\n",
 573                       __func__);
 574                cdev = ERR_PTR(-EINVAL);
 575                goto free_idle_time;
 576        }
 577
 578        ret = freq_qos_add_request(&policy->constraints,
 579                                   &cpufreq_cdev->qos_req, FREQ_QOS_MAX,
 580                                   get_state_freq(cpufreq_cdev, 0));
 581        if (ret < 0) {
 582                pr_err("%s: Failed to add freq constraint (%d)\n", __func__,
 583                       ret);
 584                cdev = ERR_PTR(ret);
 585                goto free_idle_time;
 586        }
 587
 588        cdev = ERR_PTR(-ENOMEM);
 589        name = kasprintf(GFP_KERNEL, "cpufreq-%s", dev_name(dev));
 590        if (!name)
 591                goto remove_qos_req;
 592
 593        cdev = thermal_of_cooling_device_register(np, name, cpufreq_cdev,
 594                                                  cooling_ops);
 595        kfree(name);
 596
 597        if (IS_ERR(cdev))
 598                goto remove_qos_req;
 599
 600        return cdev;
 601
 602remove_qos_req:
 603        freq_qos_remove_request(&cpufreq_cdev->qos_req);
 604free_idle_time:
 605        free_idle_time(cpufreq_cdev);
 606free_cdev:
 607        kfree(cpufreq_cdev);
 608        return cdev;
 609}
 610
 611/**
 612 * cpufreq_cooling_register - function to create cpufreq cooling device.
 613 * @policy: cpufreq policy
 614 *
 615 * This interface function registers the cpufreq cooling device with the name
 616 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
 617 * cooling devices.
 618 *
 619 * Return: a valid struct thermal_cooling_device pointer on success,
 620 * on failure, it returns a corresponding ERR_PTR().
 621 */
 622struct thermal_cooling_device *
 623cpufreq_cooling_register(struct cpufreq_policy *policy)
 624{
 625        return __cpufreq_cooling_register(NULL, policy, NULL);
 626}
 627EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
 628
 629/**
 630 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
 631 * @policy: cpufreq policy
 632 *
 633 * This interface function registers the cpufreq cooling device with the name
 634 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
 635 * cooling devices. Using this API, the cpufreq cooling device will be
 636 * linked to the device tree node provided.
 637 *
 638 * Using this function, the cooling device will implement the power
 639 * extensions by using a simple cpu power model.  The cpus must have
 640 * registered their OPPs using the OPP library.
 641 *
 642 * It also takes into account, if property present in policy CPU node, the
 643 * static power consumed by the cpu.
 644 *
 645 * Return: a valid struct thermal_cooling_device pointer on success,
 646 * and NULL on failure.
 647 */
 648struct thermal_cooling_device *
 649of_cpufreq_cooling_register(struct cpufreq_policy *policy)
 650{
 651        struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
 652        struct thermal_cooling_device *cdev = NULL;
 653
 654        if (!np) {
 655                pr_err("cpufreq_cooling: OF node not available for cpu%d\n",
 656                       policy->cpu);
 657                return NULL;
 658        }
 659
 660        if (of_find_property(np, "#cooling-cells", NULL)) {
 661                struct em_perf_domain *em = em_cpu_get(policy->cpu);
 662
 663                cdev = __cpufreq_cooling_register(np, policy, em);
 664                if (IS_ERR(cdev)) {
 665                        pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n",
 666                               policy->cpu, PTR_ERR(cdev));
 667                        cdev = NULL;
 668                }
 669        }
 670
 671        of_node_put(np);
 672        return cdev;
 673}
 674EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
 675
 676/**
 677 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
 678 * @cdev: thermal cooling device pointer.
 679 *
 680 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
 681 */
 682void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
 683{
 684        struct cpufreq_cooling_device *cpufreq_cdev;
 685
 686        if (!cdev)
 687                return;
 688
 689        cpufreq_cdev = cdev->devdata;
 690
 691        thermal_cooling_device_unregister(cdev);
 692        freq_qos_remove_request(&cpufreq_cdev->qos_req);
 693        free_idle_time(cpufreq_cdev);
 694        kfree(cpufreq_cdev);
 695}
 696EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
 697