linux/drivers/thermal/sprd_thermal.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2// Copyright (C) 2020 Spreadtrum Communications Inc.
   3
   4#include <linux/clk.h>
   5#include <linux/io.h>
   6#include <linux/iopoll.h>
   7#include <linux/module.h>
   8#include <linux/nvmem-consumer.h>
   9#include <linux/of_device.h>
  10#include <linux/platform_device.h>
  11#include <linux/slab.h>
  12#include <linux/thermal.h>
  13
  14#define SPRD_THM_CTL                    0x0
  15#define SPRD_THM_INT_EN                 0x4
  16#define SPRD_THM_INT_STS                0x8
  17#define SPRD_THM_INT_RAW_STS            0xc
  18#define SPRD_THM_DET_PERIOD             0x10
  19#define SPRD_THM_INT_CLR                0x14
  20#define SPRD_THM_INT_CLR_ST             0x18
  21#define SPRD_THM_MON_PERIOD             0x4c
  22#define SPRD_THM_MON_CTL                0x50
  23#define SPRD_THM_INTERNAL_STS1          0x54
  24#define SPRD_THM_RAW_READ_MSK           0x3ff
  25
  26#define SPRD_THM_OFFSET(id)             ((id) * 0x4)
  27#define SPRD_THM_TEMP(id)               (SPRD_THM_OFFSET(id) + 0x5c)
  28#define SPRD_THM_THRES(id)              (SPRD_THM_OFFSET(id) + 0x2c)
  29
  30#define SPRD_THM_SEN(id)                BIT((id) + 2)
  31#define SPRD_THM_SEN_OVERHEAT_EN(id)    BIT((id) + 8)
  32#define SPRD_THM_SEN_OVERHEAT_ALARM_EN(id)      BIT((id) + 0)
  33
  34/* bits definitions for register THM_CTL */
  35#define SPRD_THM_SET_RDY_ST             BIT(13)
  36#define SPRD_THM_SET_RDY                BIT(12)
  37#define SPRD_THM_MON_EN                 BIT(1)
  38#define SPRD_THM_EN                     BIT(0)
  39
  40/* bits definitions for register THM_INT_CTL */
  41#define SPRD_THM_BIT_INT_EN             BIT(26)
  42#define SPRD_THM_OVERHEAT_EN            BIT(25)
  43#define SPRD_THM_OTP_TRIP_SHIFT         10
  44
  45/* bits definitions for register SPRD_THM_INTERNAL_STS1 */
  46#define SPRD_THM_TEMPER_RDY             BIT(0)
  47
  48#define SPRD_THM_DET_PERIOD_DATA        0x800
  49#define SPRD_THM_DET_PERIOD_MASK        GENMASK(19, 0)
  50#define SPRD_THM_MON_MODE               0x7
  51#define SPRD_THM_MON_MODE_MASK          GENMASK(3, 0)
  52#define SPRD_THM_MON_PERIOD_DATA        0x10
  53#define SPRD_THM_MON_PERIOD_MASK        GENMASK(15, 0)
  54#define SPRD_THM_THRES_MASK             GENMASK(19, 0)
  55#define SPRD_THM_INT_CLR_MASK           GENMASK(24, 0)
  56
  57/* thermal sensor calibration parameters */
  58#define SPRD_THM_TEMP_LOW               -40000
  59#define SPRD_THM_TEMP_HIGH              120000
  60#define SPRD_THM_OTP_TEMP               120000
  61#define SPRD_THM_HOT_TEMP               75000
  62#define SPRD_THM_RAW_DATA_LOW           0
  63#define SPRD_THM_RAW_DATA_HIGH          1000
  64#define SPRD_THM_SEN_NUM                8
  65#define SPRD_THM_DT_OFFSET              24
  66#define SPRD_THM_RATION_OFFSET          17
  67#define SPRD_THM_RATION_SIGN            16
  68
  69#define SPRD_THM_RDYST_POLLING_TIME     10
  70#define SPRD_THM_RDYST_TIMEOUT          700
  71#define SPRD_THM_TEMP_READY_POLL_TIME   10000
  72#define SPRD_THM_TEMP_READY_TIMEOUT     600000
  73#define SPRD_THM_MAX_SENSOR             8
  74
  75struct sprd_thermal_sensor {
  76        struct thermal_zone_device *tzd;
  77        struct sprd_thermal_data *data;
  78        struct device *dev;
  79        int cal_slope;
  80        int cal_offset;
  81        int id;
  82};
  83
  84struct sprd_thermal_data {
  85        const struct sprd_thm_variant_data *var_data;
  86        struct sprd_thermal_sensor *sensor[SPRD_THM_MAX_SENSOR];
  87        struct clk *clk;
  88        void __iomem *base;
  89        u32 ratio_off;
  90        int ratio_sign;
  91        int nr_sensors;
  92};
  93
  94/*
  95 * The conversion between ADC and temperature is based on linear relationship,
  96 * and use idea_k to specify the slope and ideal_b to specify the offset.
  97 *
  98 * Since different Spreadtrum SoCs have different ideal_k and ideal_b,
  99 * we should save ideal_k and ideal_b in the device data structure.
 100 */
 101struct sprd_thm_variant_data {
 102        u32 ideal_k;
 103        u32 ideal_b;
 104};
 105
 106static const struct sprd_thm_variant_data ums512_data = {
 107        .ideal_k = 262,
 108        .ideal_b = 66400,
 109};
 110
 111static inline void sprd_thm_update_bits(void __iomem *reg, u32 mask, u32 val)
 112{
 113        u32 tmp, orig;
 114
 115        orig = readl(reg);
 116        tmp = orig & ~mask;
 117        tmp |= val & mask;
 118        writel(tmp, reg);
 119}
 120
 121static int sprd_thm_cal_read(struct device_node *np, const char *cell_id,
 122                             u32 *val)
 123{
 124        struct nvmem_cell *cell;
 125        void *buf;
 126        size_t len;
 127
 128        cell = of_nvmem_cell_get(np, cell_id);
 129        if (IS_ERR(cell))
 130                return PTR_ERR(cell);
 131
 132        buf = nvmem_cell_read(cell, &len);
 133        nvmem_cell_put(cell);
 134        if (IS_ERR(buf))
 135                return PTR_ERR(buf);
 136
 137        if (len > sizeof(u32)) {
 138                kfree(buf);
 139                return -EINVAL;
 140        }
 141
 142        memcpy(val, buf, len);
 143
 144        kfree(buf);
 145        return 0;
 146}
 147
 148static int sprd_thm_sensor_calibration(struct device_node *np,
 149                                       struct sprd_thermal_data *thm,
 150                                       struct sprd_thermal_sensor *sen)
 151{
 152        int ret;
 153        /*
 154         * According to thermal datasheet, the default calibration offset is 64,
 155         * and the default ratio is 1000.
 156         */
 157        int dt_offset = 64, ratio = 1000;
 158
 159        ret = sprd_thm_cal_read(np, "sen_delta_cal", &dt_offset);
 160        if (ret)
 161                return ret;
 162
 163        ratio += thm->ratio_sign * thm->ratio_off;
 164
 165        /*
 166         * According to the ideal slope K and ideal offset B, combined with
 167         * calibration value of thermal from efuse, then calibrate the real
 168         * slope k and offset b:
 169         * k_cal = (k * ratio) / 1000.
 170         * b_cal = b + (dt_offset - 64) * 500.
 171         */
 172        sen->cal_slope = (thm->var_data->ideal_k * ratio) / 1000;
 173        sen->cal_offset = thm->var_data->ideal_b + (dt_offset - 128) * 250;
 174
 175        return 0;
 176}
 177
 178static int sprd_thm_rawdata_to_temp(struct sprd_thermal_sensor *sen,
 179                                    u32 rawdata)
 180{
 181        clamp(rawdata, (u32)SPRD_THM_RAW_DATA_LOW, (u32)SPRD_THM_RAW_DATA_HIGH);
 182
 183        /*
 184         * According to the thermal datasheet, the formula of converting
 185         * adc value to the temperature value should be:
 186         * T_final = k_cal * x - b_cal.
 187         */
 188        return sen->cal_slope * rawdata - sen->cal_offset;
 189}
 190
 191static int sprd_thm_temp_to_rawdata(int temp, struct sprd_thermal_sensor *sen)
 192{
 193        u32 val;
 194
 195        clamp(temp, (int)SPRD_THM_TEMP_LOW, (int)SPRD_THM_TEMP_HIGH);
 196
 197        /*
 198         * According to the thermal datasheet, the formula of converting
 199         * adc value to the temperature value should be:
 200         * T_final = k_cal * x - b_cal.
 201         */
 202        val = (temp + sen->cal_offset) / sen->cal_slope;
 203
 204        return clamp(val, val, (u32)(SPRD_THM_RAW_DATA_HIGH - 1));
 205}
 206
 207static int sprd_thm_read_temp(void *devdata, int *temp)
 208{
 209        struct sprd_thermal_sensor *sen = devdata;
 210        u32 data;
 211
 212        data = readl(sen->data->base + SPRD_THM_TEMP(sen->id)) &
 213                SPRD_THM_RAW_READ_MSK;
 214
 215        *temp = sprd_thm_rawdata_to_temp(sen, data);
 216
 217        return 0;
 218}
 219
 220static const struct thermal_zone_of_device_ops sprd_thm_ops = {
 221        .get_temp = sprd_thm_read_temp,
 222};
 223
 224static int sprd_thm_poll_ready_status(struct sprd_thermal_data *thm)
 225{
 226        u32 val;
 227        int ret;
 228
 229        /*
 230         * Wait for thermal ready status before configuring thermal parameters.
 231         */
 232        ret = readl_poll_timeout(thm->base + SPRD_THM_CTL, val,
 233                                 !(val & SPRD_THM_SET_RDY_ST),
 234                                 SPRD_THM_RDYST_POLLING_TIME,
 235                                 SPRD_THM_RDYST_TIMEOUT);
 236        if (ret)
 237                return ret;
 238
 239        sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_MON_EN,
 240                             SPRD_THM_MON_EN);
 241        sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_SET_RDY,
 242                             SPRD_THM_SET_RDY);
 243        return 0;
 244}
 245
 246static int sprd_thm_wait_temp_ready(struct sprd_thermal_data *thm)
 247{
 248        u32 val;
 249
 250        /* Wait for first temperature data ready before reading temperature */
 251        return readl_poll_timeout(thm->base + SPRD_THM_INTERNAL_STS1, val,
 252                                  !(val & SPRD_THM_TEMPER_RDY),
 253                                  SPRD_THM_TEMP_READY_POLL_TIME,
 254                                  SPRD_THM_TEMP_READY_TIMEOUT);
 255}
 256
 257static int sprd_thm_set_ready(struct sprd_thermal_data *thm)
 258{
 259        int ret;
 260
 261        ret = sprd_thm_poll_ready_status(thm);
 262        if (ret)
 263                return ret;
 264
 265        /*
 266         * Clear interrupt status, enable thermal interrupt and enable thermal.
 267         *
 268         * The SPRD thermal controller integrates a hardware interrupt signal,
 269         * which means if the temperature is overheat, it will generate an
 270         * interrupt and notify the event to PMIC automatically to shutdown the
 271         * system. So here we should enable the interrupt bits, though we have
 272         * not registered an irq handler.
 273         */
 274        writel(SPRD_THM_INT_CLR_MASK, thm->base + SPRD_THM_INT_CLR);
 275        sprd_thm_update_bits(thm->base + SPRD_THM_INT_EN,
 276                             SPRD_THM_BIT_INT_EN, SPRD_THM_BIT_INT_EN);
 277        sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
 278                             SPRD_THM_EN, SPRD_THM_EN);
 279        return 0;
 280}
 281
 282static void sprd_thm_sensor_init(struct sprd_thermal_data *thm,
 283                                 struct sprd_thermal_sensor *sen)
 284{
 285        u32 otp_rawdata, hot_rawdata;
 286
 287        otp_rawdata = sprd_thm_temp_to_rawdata(SPRD_THM_OTP_TEMP, sen);
 288        hot_rawdata = sprd_thm_temp_to_rawdata(SPRD_THM_HOT_TEMP, sen);
 289
 290        /* Enable the sensor' overheat temperature protection interrupt */
 291        sprd_thm_update_bits(thm->base + SPRD_THM_INT_EN,
 292                             SPRD_THM_SEN_OVERHEAT_ALARM_EN(sen->id),
 293                             SPRD_THM_SEN_OVERHEAT_ALARM_EN(sen->id));
 294
 295        /* Set the sensor' overheat and hot threshold temperature */
 296        sprd_thm_update_bits(thm->base + SPRD_THM_THRES(sen->id),
 297                             SPRD_THM_THRES_MASK,
 298                             (otp_rawdata << SPRD_THM_OTP_TRIP_SHIFT) |
 299                             hot_rawdata);
 300
 301        /* Enable the corresponding sensor */
 302        sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_SEN(sen->id),
 303                             SPRD_THM_SEN(sen->id));
 304}
 305
 306static void sprd_thm_para_config(struct sprd_thermal_data *thm)
 307{
 308        /* Set the period of two valid temperature detection action */
 309        sprd_thm_update_bits(thm->base + SPRD_THM_DET_PERIOD,
 310                             SPRD_THM_DET_PERIOD_MASK, SPRD_THM_DET_PERIOD);
 311
 312        /* Set the sensors' monitor mode */
 313        sprd_thm_update_bits(thm->base + SPRD_THM_MON_CTL,
 314                             SPRD_THM_MON_MODE_MASK, SPRD_THM_MON_MODE);
 315
 316        /* Set the sensors' monitor period */
 317        sprd_thm_update_bits(thm->base + SPRD_THM_MON_PERIOD,
 318                             SPRD_THM_MON_PERIOD_MASK, SPRD_THM_MON_PERIOD);
 319}
 320
 321static void sprd_thm_toggle_sensor(struct sprd_thermal_sensor *sen, bool on)
 322{
 323        struct thermal_zone_device *tzd = sen->tzd;
 324
 325        if (on)
 326                thermal_zone_device_enable(tzd);
 327        else
 328                thermal_zone_device_disable(tzd);
 329}
 330
 331static int sprd_thm_probe(struct platform_device *pdev)
 332{
 333        struct device_node *np = pdev->dev.of_node;
 334        struct device_node *sen_child;
 335        struct sprd_thermal_data *thm;
 336        struct sprd_thermal_sensor *sen;
 337        const struct sprd_thm_variant_data *pdata;
 338        int ret, i;
 339        u32 val;
 340
 341        pdata = of_device_get_match_data(&pdev->dev);
 342        if (!pdata) {
 343                dev_err(&pdev->dev, "No matching driver data found\n");
 344                return -EINVAL;
 345        }
 346
 347        thm = devm_kzalloc(&pdev->dev, sizeof(*thm), GFP_KERNEL);
 348        if (!thm)
 349                return -ENOMEM;
 350
 351        thm->var_data = pdata;
 352        thm->base = devm_platform_ioremap_resource(pdev, 0);
 353        if (IS_ERR(thm->base))
 354                return PTR_ERR(thm->base);
 355
 356        thm->nr_sensors = of_get_child_count(np);
 357        if (thm->nr_sensors == 0 || thm->nr_sensors > SPRD_THM_MAX_SENSOR) {
 358                dev_err(&pdev->dev, "incorrect sensor count\n");
 359                return -EINVAL;
 360        }
 361
 362        thm->clk = devm_clk_get(&pdev->dev, "enable");
 363        if (IS_ERR(thm->clk)) {
 364                dev_err(&pdev->dev, "failed to get enable clock\n");
 365                return PTR_ERR(thm->clk);
 366        }
 367
 368        ret = clk_prepare_enable(thm->clk);
 369        if (ret)
 370                return ret;
 371
 372        sprd_thm_para_config(thm);
 373
 374        ret = sprd_thm_cal_read(np, "thm_sign_cal", &val);
 375        if (ret)
 376                goto disable_clk;
 377
 378        if (val > 0)
 379                thm->ratio_sign = -1;
 380        else
 381                thm->ratio_sign = 1;
 382
 383        ret = sprd_thm_cal_read(np, "thm_ratio_cal", &thm->ratio_off);
 384        if (ret)
 385                goto disable_clk;
 386
 387        for_each_child_of_node(np, sen_child) {
 388                sen = devm_kzalloc(&pdev->dev, sizeof(*sen), GFP_KERNEL);
 389                if (!sen) {
 390                        ret = -ENOMEM;
 391                        goto of_put;
 392                }
 393
 394                sen->data = thm;
 395                sen->dev = &pdev->dev;
 396
 397                ret = of_property_read_u32(sen_child, "reg", &sen->id);
 398                if (ret) {
 399                        dev_err(&pdev->dev, "get sensor reg failed");
 400                        goto of_put;
 401                }
 402
 403                ret = sprd_thm_sensor_calibration(sen_child, thm, sen);
 404                if (ret) {
 405                        dev_err(&pdev->dev, "efuse cal analysis failed");
 406                        goto of_put;
 407                }
 408
 409                sprd_thm_sensor_init(thm, sen);
 410
 411                sen->tzd = devm_thermal_zone_of_sensor_register(sen->dev,
 412                                                                sen->id,
 413                                                                sen,
 414                                                                &sprd_thm_ops);
 415                if (IS_ERR(sen->tzd)) {
 416                        dev_err(&pdev->dev, "register thermal zone failed %d\n",
 417                                sen->id);
 418                        ret = PTR_ERR(sen->tzd);
 419                        goto of_put;
 420                }
 421
 422                thm->sensor[sen->id] = sen;
 423        }
 424        /* sen_child set to NULL at this point */
 425
 426        ret = sprd_thm_set_ready(thm);
 427        if (ret)
 428                goto of_put;
 429
 430        ret = sprd_thm_wait_temp_ready(thm);
 431        if (ret)
 432                goto of_put;
 433
 434        for (i = 0; i < thm->nr_sensors; i++)
 435                sprd_thm_toggle_sensor(thm->sensor[i], true);
 436
 437        platform_set_drvdata(pdev, thm);
 438        return 0;
 439
 440of_put:
 441        of_node_put(sen_child);
 442disable_clk:
 443        clk_disable_unprepare(thm->clk);
 444        return ret;
 445}
 446
 447#ifdef CONFIG_PM_SLEEP
 448static void sprd_thm_hw_suspend(struct sprd_thermal_data *thm)
 449{
 450        int i;
 451
 452        for (i = 0; i < thm->nr_sensors; i++) {
 453                sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
 454                                     SPRD_THM_SEN(thm->sensor[i]->id), 0);
 455        }
 456
 457        sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
 458                             SPRD_THM_EN, 0x0);
 459}
 460
 461static int sprd_thm_suspend(struct device *dev)
 462{
 463        struct sprd_thermal_data *thm = dev_get_drvdata(dev);
 464        int i;
 465
 466        for (i = 0; i < thm->nr_sensors; i++)
 467                sprd_thm_toggle_sensor(thm->sensor[i], false);
 468
 469        sprd_thm_hw_suspend(thm);
 470        clk_disable_unprepare(thm->clk);
 471
 472        return 0;
 473}
 474
 475static int sprd_thm_hw_resume(struct sprd_thermal_data *thm)
 476{
 477        int ret, i;
 478
 479        for (i = 0; i < thm->nr_sensors; i++) {
 480                sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
 481                                     SPRD_THM_SEN(thm->sensor[i]->id),
 482                                     SPRD_THM_SEN(thm->sensor[i]->id));
 483        }
 484
 485        ret = sprd_thm_poll_ready_status(thm);
 486        if (ret)
 487                return ret;
 488
 489        writel(SPRD_THM_INT_CLR_MASK, thm->base + SPRD_THM_INT_CLR);
 490        sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
 491                             SPRD_THM_EN, SPRD_THM_EN);
 492        return sprd_thm_wait_temp_ready(thm);
 493}
 494
 495static int sprd_thm_resume(struct device *dev)
 496{
 497        struct sprd_thermal_data *thm = dev_get_drvdata(dev);
 498        int ret, i;
 499
 500        ret = clk_prepare_enable(thm->clk);
 501        if (ret)
 502                return ret;
 503
 504        ret = sprd_thm_hw_resume(thm);
 505        if (ret)
 506                goto disable_clk;
 507
 508        for (i = 0; i < thm->nr_sensors; i++)
 509                sprd_thm_toggle_sensor(thm->sensor[i], true);
 510
 511        return 0;
 512
 513disable_clk:
 514        clk_disable_unprepare(thm->clk);
 515        return ret;
 516}
 517#endif
 518
 519static int sprd_thm_remove(struct platform_device *pdev)
 520{
 521        struct sprd_thermal_data *thm = platform_get_drvdata(pdev);
 522        int i;
 523
 524        for (i = 0; i < thm->nr_sensors; i++) {
 525                sprd_thm_toggle_sensor(thm->sensor[i], false);
 526                devm_thermal_zone_of_sensor_unregister(&pdev->dev,
 527                                                       thm->sensor[i]->tzd);
 528        }
 529
 530        clk_disable_unprepare(thm->clk);
 531        return 0;
 532}
 533
 534static const struct of_device_id sprd_thermal_of_match[] = {
 535        { .compatible = "sprd,ums512-thermal", .data = &ums512_data },
 536        { },
 537};
 538MODULE_DEVICE_TABLE(of, sprd_thermal_of_match);
 539
 540static const struct dev_pm_ops sprd_thermal_pm_ops = {
 541        SET_SYSTEM_SLEEP_PM_OPS(sprd_thm_suspend, sprd_thm_resume)
 542};
 543
 544static struct platform_driver sprd_thermal_driver = {
 545        .probe = sprd_thm_probe,
 546        .remove = sprd_thm_remove,
 547        .driver = {
 548                .name = "sprd-thermal",
 549                .pm = &sprd_thermal_pm_ops,
 550                .of_match_table = sprd_thermal_of_match,
 551        },
 552};
 553
 554module_platform_driver(sprd_thermal_driver);
 555
 556MODULE_AUTHOR("Freeman Liu <freeman.liu@unisoc.com>");
 557MODULE_DESCRIPTION("Spreadtrum thermal driver");
 558MODULE_LICENSE("GPL v2");
 559