linux/drivers/tty/vt/keyboard.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Written for linux by Johan Myreen as a translation from
   4 * the assembly version by Linus (with diacriticals added)
   5 *
   6 * Some additional features added by Christoph Niemann (ChN), March 1993
   7 *
   8 * Loadable keymaps by Risto Kankkunen, May 1993
   9 *
  10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  11 * Added decr/incr_console, dynamic keymaps, Unicode support,
  12 * dynamic function/string keys, led setting,  Sept 1994
  13 * `Sticky' modifier keys, 951006.
  14 *
  15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  16 *
  17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  18 * Merge with the m68k keyboard driver and split-off of the PC low-level
  19 * parts by Geert Uytterhoeven, May 1997
  20 *
  21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/consolemap.h>
  29#include <linux/init.h>
  30#include <linux/input.h>
  31#include <linux/jiffies.h>
  32#include <linux/kbd_diacr.h>
  33#include <linux/kbd_kern.h>
  34#include <linux/leds.h>
  35#include <linux/mm.h>
  36#include <linux/module.h>
  37#include <linux/nospec.h>
  38#include <linux/notifier.h>
  39#include <linux/reboot.h>
  40#include <linux/sched/debug.h>
  41#include <linux/sched/signal.h>
  42#include <linux/slab.h>
  43#include <linux/spinlock.h>
  44#include <linux/string.h>
  45#include <linux/tty_flip.h>
  46#include <linux/tty.h>
  47#include <linux/uaccess.h>
  48#include <linux/vt_kern.h>
  49
  50#include <asm/irq_regs.h>
  51
  52/*
  53 * Exported functions/variables
  54 */
  55
  56#define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
  57
  58#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
  59#include <asm/kbdleds.h>
  60#else
  61static inline int kbd_defleds(void)
  62{
  63        return 0;
  64}
  65#endif
  66
  67#define KBD_DEFLOCK 0
  68
  69/*
  70 * Handler Tables.
  71 */
  72
  73#define K_HANDLERS\
  74        k_self,         k_fn,           k_spec,         k_pad,\
  75        k_dead,         k_cons,         k_cur,          k_shift,\
  76        k_meta,         k_ascii,        k_lock,         k_lowercase,\
  77        k_slock,        k_dead2,        k_brl,          k_ignore
  78
  79typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  80                            char up_flag);
  81static k_handler_fn K_HANDLERS;
  82static k_handler_fn *k_handler[16] = { K_HANDLERS };
  83
  84#define FN_HANDLERS\
  85        fn_null,        fn_enter,       fn_show_ptregs, fn_show_mem,\
  86        fn_show_state,  fn_send_intr,   fn_lastcons,    fn_caps_toggle,\
  87        fn_num,         fn_hold,        fn_scroll_forw, fn_scroll_back,\
  88        fn_boot_it,     fn_caps_on,     fn_compose,     fn_SAK,\
  89        fn_dec_console, fn_inc_console, fn_spawn_con,   fn_bare_num
  90
  91typedef void (fn_handler_fn)(struct vc_data *vc);
  92static fn_handler_fn FN_HANDLERS;
  93static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  94
  95/*
  96 * Variables exported for vt_ioctl.c
  97 */
  98
  99struct vt_spawn_console vt_spawn_con = {
 100        .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
 101        .pid  = NULL,
 102        .sig  = 0,
 103};
 104
 105
 106/*
 107 * Internal Data.
 108 */
 109
 110static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 111static struct kbd_struct *kbd = kbd_table;
 112
 113/* maximum values each key_handler can handle */
 114static const unsigned char max_vals[] = {
 115        [ KT_LATIN      ] = 255,
 116        [ KT_FN         ] = ARRAY_SIZE(func_table) - 1,
 117        [ KT_SPEC       ] = ARRAY_SIZE(fn_handler) - 1,
 118        [ KT_PAD        ] = NR_PAD - 1,
 119        [ KT_DEAD       ] = NR_DEAD - 1,
 120        [ KT_CONS       ] = 255,
 121        [ KT_CUR        ] = 3,
 122        [ KT_SHIFT      ] = NR_SHIFT - 1,
 123        [ KT_META       ] = 255,
 124        [ KT_ASCII      ] = NR_ASCII - 1,
 125        [ KT_LOCK       ] = NR_LOCK - 1,
 126        [ KT_LETTER     ] = 255,
 127        [ KT_SLOCK      ] = NR_LOCK - 1,
 128        [ KT_DEAD2      ] = 255,
 129        [ KT_BRL        ] = NR_BRL - 1,
 130};
 131
 132static const int NR_TYPES = ARRAY_SIZE(max_vals);
 133
 134static void kbd_bh(struct tasklet_struct *unused);
 135static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
 136
 137static struct input_handler kbd_handler;
 138static DEFINE_SPINLOCK(kbd_event_lock);
 139static DEFINE_SPINLOCK(led_lock);
 140static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf'  and friends */
 141static DECLARE_BITMAP(key_down, KEY_CNT);       /* keyboard key bitmap */
 142static unsigned char shift_down[NR_SHIFT];              /* shift state counters.. */
 143static bool dead_key_next;
 144
 145/* Handles a number being assembled on the number pad */
 146static bool npadch_active;
 147static unsigned int npadch_value;
 148
 149static unsigned int diacr;
 150static bool rep;                        /* flag telling character repeat */
 151
 152static int shift_state = 0;
 153
 154static unsigned int ledstate = -1U;                     /* undefined */
 155static unsigned char ledioctl;
 156
 157/*
 158 * Notifier list for console keyboard events
 159 */
 160static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 161
 162int register_keyboard_notifier(struct notifier_block *nb)
 163{
 164        return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 165}
 166EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 167
 168int unregister_keyboard_notifier(struct notifier_block *nb)
 169{
 170        return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 171}
 172EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 173
 174/*
 175 * Translation of scancodes to keycodes. We set them on only the first
 176 * keyboard in the list that accepts the scancode and keycode.
 177 * Explanation for not choosing the first attached keyboard anymore:
 178 *  USB keyboards for example have two event devices: one for all "normal"
 179 *  keys and one for extra function keys (like "volume up", "make coffee",
 180 *  etc.). So this means that scancodes for the extra function keys won't
 181 *  be valid for the first event device, but will be for the second.
 182 */
 183
 184struct getset_keycode_data {
 185        struct input_keymap_entry ke;
 186        int error;
 187};
 188
 189static int getkeycode_helper(struct input_handle *handle, void *data)
 190{
 191        struct getset_keycode_data *d = data;
 192
 193        d->error = input_get_keycode(handle->dev, &d->ke);
 194
 195        return d->error == 0; /* stop as soon as we successfully get one */
 196}
 197
 198static int getkeycode(unsigned int scancode)
 199{
 200        struct getset_keycode_data d = {
 201                .ke     = {
 202                        .flags          = 0,
 203                        .len            = sizeof(scancode),
 204                        .keycode        = 0,
 205                },
 206                .error  = -ENODEV,
 207        };
 208
 209        memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 210
 211        input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 212
 213        return d.error ?: d.ke.keycode;
 214}
 215
 216static int setkeycode_helper(struct input_handle *handle, void *data)
 217{
 218        struct getset_keycode_data *d = data;
 219
 220        d->error = input_set_keycode(handle->dev, &d->ke);
 221
 222        return d->error == 0; /* stop as soon as we successfully set one */
 223}
 224
 225static int setkeycode(unsigned int scancode, unsigned int keycode)
 226{
 227        struct getset_keycode_data d = {
 228                .ke     = {
 229                        .flags          = 0,
 230                        .len            = sizeof(scancode),
 231                        .keycode        = keycode,
 232                },
 233                .error  = -ENODEV,
 234        };
 235
 236        memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 237
 238        input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 239
 240        return d.error;
 241}
 242
 243/*
 244 * Making beeps and bells. Note that we prefer beeps to bells, but when
 245 * shutting the sound off we do both.
 246 */
 247
 248static int kd_sound_helper(struct input_handle *handle, void *data)
 249{
 250        unsigned int *hz = data;
 251        struct input_dev *dev = handle->dev;
 252
 253        if (test_bit(EV_SND, dev->evbit)) {
 254                if (test_bit(SND_TONE, dev->sndbit)) {
 255                        input_inject_event(handle, EV_SND, SND_TONE, *hz);
 256                        if (*hz)
 257                                return 0;
 258                }
 259                if (test_bit(SND_BELL, dev->sndbit))
 260                        input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 261        }
 262
 263        return 0;
 264}
 265
 266static void kd_nosound(struct timer_list *unused)
 267{
 268        static unsigned int zero;
 269
 270        input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 271}
 272
 273static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
 274
 275void kd_mksound(unsigned int hz, unsigned int ticks)
 276{
 277        del_timer_sync(&kd_mksound_timer);
 278
 279        input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 280
 281        if (hz && ticks)
 282                mod_timer(&kd_mksound_timer, jiffies + ticks);
 283}
 284EXPORT_SYMBOL(kd_mksound);
 285
 286/*
 287 * Setting the keyboard rate.
 288 */
 289
 290static int kbd_rate_helper(struct input_handle *handle, void *data)
 291{
 292        struct input_dev *dev = handle->dev;
 293        struct kbd_repeat *rpt = data;
 294
 295        if (test_bit(EV_REP, dev->evbit)) {
 296
 297                if (rpt[0].delay > 0)
 298                        input_inject_event(handle,
 299                                           EV_REP, REP_DELAY, rpt[0].delay);
 300                if (rpt[0].period > 0)
 301                        input_inject_event(handle,
 302                                           EV_REP, REP_PERIOD, rpt[0].period);
 303
 304                rpt[1].delay = dev->rep[REP_DELAY];
 305                rpt[1].period = dev->rep[REP_PERIOD];
 306        }
 307
 308        return 0;
 309}
 310
 311int kbd_rate(struct kbd_repeat *rpt)
 312{
 313        struct kbd_repeat data[2] = { *rpt };
 314
 315        input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 316        *rpt = data[1]; /* Copy currently used settings */
 317
 318        return 0;
 319}
 320
 321/*
 322 * Helper Functions.
 323 */
 324static void put_queue(struct vc_data *vc, int ch)
 325{
 326        tty_insert_flip_char(&vc->port, ch, 0);
 327        tty_schedule_flip(&vc->port);
 328}
 329
 330static void puts_queue(struct vc_data *vc, const char *cp)
 331{
 332        tty_insert_flip_string(&vc->port, cp, strlen(cp));
 333        tty_schedule_flip(&vc->port);
 334}
 335
 336static void applkey(struct vc_data *vc, int key, char mode)
 337{
 338        static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 339
 340        buf[1] = (mode ? 'O' : '[');
 341        buf[2] = key;
 342        puts_queue(vc, buf);
 343}
 344
 345/*
 346 * Many other routines do put_queue, but I think either
 347 * they produce ASCII, or they produce some user-assigned
 348 * string, and in both cases we might assume that it is
 349 * in utf-8 already.
 350 */
 351static void to_utf8(struct vc_data *vc, uint c)
 352{
 353        if (c < 0x80)
 354                /*  0******* */
 355                put_queue(vc, c);
 356        else if (c < 0x800) {
 357                /* 110***** 10****** */
 358                put_queue(vc, 0xc0 | (c >> 6));
 359                put_queue(vc, 0x80 | (c & 0x3f));
 360        } else if (c < 0x10000) {
 361                if (c >= 0xD800 && c < 0xE000)
 362                        return;
 363                if (c == 0xFFFF)
 364                        return;
 365                /* 1110**** 10****** 10****** */
 366                put_queue(vc, 0xe0 | (c >> 12));
 367                put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 368                put_queue(vc, 0x80 | (c & 0x3f));
 369        } else if (c < 0x110000) {
 370                /* 11110*** 10****** 10****** 10****** */
 371                put_queue(vc, 0xf0 | (c >> 18));
 372                put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 373                put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 374                put_queue(vc, 0x80 | (c & 0x3f));
 375        }
 376}
 377
 378/* FIXME: review locking for vt.c callers */
 379static void set_leds(void)
 380{
 381        tasklet_schedule(&keyboard_tasklet);
 382}
 383
 384/*
 385 * Called after returning from RAW mode or when changing consoles - recompute
 386 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 387 * undefined, so that shiftkey release is seen. The caller must hold the
 388 * kbd_event_lock.
 389 */
 390
 391static void do_compute_shiftstate(void)
 392{
 393        unsigned int k, sym, val;
 394
 395        shift_state = 0;
 396        memset(shift_down, 0, sizeof(shift_down));
 397
 398        for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
 399                sym = U(key_maps[0][k]);
 400                if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 401                        continue;
 402
 403                val = KVAL(sym);
 404                if (val == KVAL(K_CAPSSHIFT))
 405                        val = KVAL(K_SHIFT);
 406
 407                shift_down[val]++;
 408                shift_state |= BIT(val);
 409        }
 410}
 411
 412/* We still have to export this method to vt.c */
 413void vt_set_leds_compute_shiftstate(void)
 414{
 415        unsigned long flags;
 416
 417        set_leds();
 418
 419        spin_lock_irqsave(&kbd_event_lock, flags);
 420        do_compute_shiftstate();
 421        spin_unlock_irqrestore(&kbd_event_lock, flags);
 422}
 423
 424/*
 425 * We have a combining character DIACR here, followed by the character CH.
 426 * If the combination occurs in the table, return the corresponding value.
 427 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 428 * Otherwise, conclude that DIACR was not combining after all,
 429 * queue it and return CH.
 430 */
 431static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 432{
 433        unsigned int d = diacr;
 434        unsigned int i;
 435
 436        diacr = 0;
 437
 438        if ((d & ~0xff) == BRL_UC_ROW) {
 439                if ((ch & ~0xff) == BRL_UC_ROW)
 440                        return d | ch;
 441        } else {
 442                for (i = 0; i < accent_table_size; i++)
 443                        if (accent_table[i].diacr == d && accent_table[i].base == ch)
 444                                return accent_table[i].result;
 445        }
 446
 447        if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 448                return d;
 449
 450        if (kbd->kbdmode == VC_UNICODE)
 451                to_utf8(vc, d);
 452        else {
 453                int c = conv_uni_to_8bit(d);
 454                if (c != -1)
 455                        put_queue(vc, c);
 456        }
 457
 458        return ch;
 459}
 460
 461/*
 462 * Special function handlers
 463 */
 464static void fn_enter(struct vc_data *vc)
 465{
 466        if (diacr) {
 467                if (kbd->kbdmode == VC_UNICODE)
 468                        to_utf8(vc, diacr);
 469                else {
 470                        int c = conv_uni_to_8bit(diacr);
 471                        if (c != -1)
 472                                put_queue(vc, c);
 473                }
 474                diacr = 0;
 475        }
 476
 477        put_queue(vc, '\r');
 478        if (vc_kbd_mode(kbd, VC_CRLF))
 479                put_queue(vc, '\n');
 480}
 481
 482static void fn_caps_toggle(struct vc_data *vc)
 483{
 484        if (rep)
 485                return;
 486
 487        chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 488}
 489
 490static void fn_caps_on(struct vc_data *vc)
 491{
 492        if (rep)
 493                return;
 494
 495        set_vc_kbd_led(kbd, VC_CAPSLOCK);
 496}
 497
 498static void fn_show_ptregs(struct vc_data *vc)
 499{
 500        struct pt_regs *regs = get_irq_regs();
 501
 502        if (regs)
 503                show_regs(regs);
 504}
 505
 506static void fn_hold(struct vc_data *vc)
 507{
 508        struct tty_struct *tty = vc->port.tty;
 509
 510        if (rep || !tty)
 511                return;
 512
 513        /*
 514         * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 515         * these routines are also activated by ^S/^Q.
 516         * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 517         */
 518        if (tty->flow.stopped)
 519                start_tty(tty);
 520        else
 521                stop_tty(tty);
 522}
 523
 524static void fn_num(struct vc_data *vc)
 525{
 526        if (vc_kbd_mode(kbd, VC_APPLIC))
 527                applkey(vc, 'P', 1);
 528        else
 529                fn_bare_num(vc);
 530}
 531
 532/*
 533 * Bind this to Shift-NumLock if you work in application keypad mode
 534 * but want to be able to change the NumLock flag.
 535 * Bind this to NumLock if you prefer that the NumLock key always
 536 * changes the NumLock flag.
 537 */
 538static void fn_bare_num(struct vc_data *vc)
 539{
 540        if (!rep)
 541                chg_vc_kbd_led(kbd, VC_NUMLOCK);
 542}
 543
 544static void fn_lastcons(struct vc_data *vc)
 545{
 546        /* switch to the last used console, ChN */
 547        set_console(last_console);
 548}
 549
 550static void fn_dec_console(struct vc_data *vc)
 551{
 552        int i, cur = fg_console;
 553
 554        /* Currently switching?  Queue this next switch relative to that. */
 555        if (want_console != -1)
 556                cur = want_console;
 557
 558        for (i = cur - 1; i != cur; i--) {
 559                if (i == -1)
 560                        i = MAX_NR_CONSOLES - 1;
 561                if (vc_cons_allocated(i))
 562                        break;
 563        }
 564        set_console(i);
 565}
 566
 567static void fn_inc_console(struct vc_data *vc)
 568{
 569        int i, cur = fg_console;
 570
 571        /* Currently switching?  Queue this next switch relative to that. */
 572        if (want_console != -1)
 573                cur = want_console;
 574
 575        for (i = cur+1; i != cur; i++) {
 576                if (i == MAX_NR_CONSOLES)
 577                        i = 0;
 578                if (vc_cons_allocated(i))
 579                        break;
 580        }
 581        set_console(i);
 582}
 583
 584static void fn_send_intr(struct vc_data *vc)
 585{
 586        tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
 587        tty_schedule_flip(&vc->port);
 588}
 589
 590static void fn_scroll_forw(struct vc_data *vc)
 591{
 592        scrollfront(vc, 0);
 593}
 594
 595static void fn_scroll_back(struct vc_data *vc)
 596{
 597        scrollback(vc);
 598}
 599
 600static void fn_show_mem(struct vc_data *vc)
 601{
 602        show_mem(0, NULL);
 603}
 604
 605static void fn_show_state(struct vc_data *vc)
 606{
 607        show_state();
 608}
 609
 610static void fn_boot_it(struct vc_data *vc)
 611{
 612        ctrl_alt_del();
 613}
 614
 615static void fn_compose(struct vc_data *vc)
 616{
 617        dead_key_next = true;
 618}
 619
 620static void fn_spawn_con(struct vc_data *vc)
 621{
 622        spin_lock(&vt_spawn_con.lock);
 623        if (vt_spawn_con.pid)
 624                if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 625                        put_pid(vt_spawn_con.pid);
 626                        vt_spawn_con.pid = NULL;
 627                }
 628        spin_unlock(&vt_spawn_con.lock);
 629}
 630
 631static void fn_SAK(struct vc_data *vc)
 632{
 633        struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 634        schedule_work(SAK_work);
 635}
 636
 637static void fn_null(struct vc_data *vc)
 638{
 639        do_compute_shiftstate();
 640}
 641
 642/*
 643 * Special key handlers
 644 */
 645static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 646{
 647}
 648
 649static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 650{
 651        if (up_flag)
 652                return;
 653        if (value >= ARRAY_SIZE(fn_handler))
 654                return;
 655        if ((kbd->kbdmode == VC_RAW ||
 656             kbd->kbdmode == VC_MEDIUMRAW ||
 657             kbd->kbdmode == VC_OFF) &&
 658             value != KVAL(K_SAK))
 659                return;         /* SAK is allowed even in raw mode */
 660        fn_handler[value](vc);
 661}
 662
 663static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 664{
 665        pr_err("k_lowercase was called - impossible\n");
 666}
 667
 668static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 669{
 670        if (up_flag)
 671                return;         /* no action, if this is a key release */
 672
 673        if (diacr)
 674                value = handle_diacr(vc, value);
 675
 676        if (dead_key_next) {
 677                dead_key_next = false;
 678                diacr = value;
 679                return;
 680        }
 681        if (kbd->kbdmode == VC_UNICODE)
 682                to_utf8(vc, value);
 683        else {
 684                int c = conv_uni_to_8bit(value);
 685                if (c != -1)
 686                        put_queue(vc, c);
 687        }
 688}
 689
 690/*
 691 * Handle dead key. Note that we now may have several
 692 * dead keys modifying the same character. Very useful
 693 * for Vietnamese.
 694 */
 695static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 696{
 697        if (up_flag)
 698                return;
 699
 700        diacr = (diacr ? handle_diacr(vc, value) : value);
 701}
 702
 703static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 704{
 705        k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 706}
 707
 708static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 709{
 710        k_deadunicode(vc, value, up_flag);
 711}
 712
 713/*
 714 * Obsolete - for backwards compatibility only
 715 */
 716static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 717{
 718        static const unsigned char ret_diacr[NR_DEAD] = {
 719                '`',    /* dead_grave */
 720                '\'',   /* dead_acute */
 721                '^',    /* dead_circumflex */
 722                '~',    /* dead_tilda */
 723                '"',    /* dead_diaeresis */
 724                ',',    /* dead_cedilla */
 725                '_',    /* dead_macron */
 726                'U',    /* dead_breve */
 727                '.',    /* dead_abovedot */
 728                '*',    /* dead_abovering */
 729                '=',    /* dead_doubleacute */
 730                'c',    /* dead_caron */
 731                'k',    /* dead_ogonek */
 732                'i',    /* dead_iota */
 733                '#',    /* dead_voiced_sound */
 734                'o',    /* dead_semivoiced_sound */
 735                '!',    /* dead_belowdot */
 736                '?',    /* dead_hook */
 737                '+',    /* dead_horn */
 738                '-',    /* dead_stroke */
 739                ')',    /* dead_abovecomma */
 740                '(',    /* dead_abovereversedcomma */
 741                ':',    /* dead_doublegrave */
 742                'n',    /* dead_invertedbreve */
 743                ';',    /* dead_belowcomma */
 744                '$',    /* dead_currency */
 745                '@',    /* dead_greek */
 746        };
 747
 748        k_deadunicode(vc, ret_diacr[value], up_flag);
 749}
 750
 751static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 752{
 753        if (up_flag)
 754                return;
 755
 756        set_console(value);
 757}
 758
 759static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 760{
 761        if (up_flag)
 762                return;
 763
 764        if ((unsigned)value < ARRAY_SIZE(func_table)) {
 765                unsigned long flags;
 766
 767                spin_lock_irqsave(&func_buf_lock, flags);
 768                if (func_table[value])
 769                        puts_queue(vc, func_table[value]);
 770                spin_unlock_irqrestore(&func_buf_lock, flags);
 771
 772        } else
 773                pr_err("k_fn called with value=%d\n", value);
 774}
 775
 776static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 777{
 778        static const char cur_chars[] = "BDCA";
 779
 780        if (up_flag)
 781                return;
 782
 783        applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 784}
 785
 786static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 787{
 788        static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 789        static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 790
 791        if (up_flag)
 792                return;         /* no action, if this is a key release */
 793
 794        /* kludge... shift forces cursor/number keys */
 795        if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 796                applkey(vc, app_map[value], 1);
 797                return;
 798        }
 799
 800        if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 801
 802                switch (value) {
 803                case KVAL(K_PCOMMA):
 804                case KVAL(K_PDOT):
 805                        k_fn(vc, KVAL(K_REMOVE), 0);
 806                        return;
 807                case KVAL(K_P0):
 808                        k_fn(vc, KVAL(K_INSERT), 0);
 809                        return;
 810                case KVAL(K_P1):
 811                        k_fn(vc, KVAL(K_SELECT), 0);
 812                        return;
 813                case KVAL(K_P2):
 814                        k_cur(vc, KVAL(K_DOWN), 0);
 815                        return;
 816                case KVAL(K_P3):
 817                        k_fn(vc, KVAL(K_PGDN), 0);
 818                        return;
 819                case KVAL(K_P4):
 820                        k_cur(vc, KVAL(K_LEFT), 0);
 821                        return;
 822                case KVAL(K_P6):
 823                        k_cur(vc, KVAL(K_RIGHT), 0);
 824                        return;
 825                case KVAL(K_P7):
 826                        k_fn(vc, KVAL(K_FIND), 0);
 827                        return;
 828                case KVAL(K_P8):
 829                        k_cur(vc, KVAL(K_UP), 0);
 830                        return;
 831                case KVAL(K_P9):
 832                        k_fn(vc, KVAL(K_PGUP), 0);
 833                        return;
 834                case KVAL(K_P5):
 835                        applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 836                        return;
 837                }
 838        }
 839
 840        put_queue(vc, pad_chars[value]);
 841        if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 842                put_queue(vc, '\n');
 843}
 844
 845static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 846{
 847        int old_state = shift_state;
 848
 849        if (rep)
 850                return;
 851        /*
 852         * Mimic typewriter:
 853         * a CapsShift key acts like Shift but undoes CapsLock
 854         */
 855        if (value == KVAL(K_CAPSSHIFT)) {
 856                value = KVAL(K_SHIFT);
 857                if (!up_flag)
 858                        clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 859        }
 860
 861        if (up_flag) {
 862                /*
 863                 * handle the case that two shift or control
 864                 * keys are depressed simultaneously
 865                 */
 866                if (shift_down[value])
 867                        shift_down[value]--;
 868        } else
 869                shift_down[value]++;
 870
 871        if (shift_down[value])
 872                shift_state |= BIT(value);
 873        else
 874                shift_state &= ~BIT(value);
 875
 876        /* kludge */
 877        if (up_flag && shift_state != old_state && npadch_active) {
 878                if (kbd->kbdmode == VC_UNICODE)
 879                        to_utf8(vc, npadch_value);
 880                else
 881                        put_queue(vc, npadch_value & 0xff);
 882                npadch_active = false;
 883        }
 884}
 885
 886static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 887{
 888        if (up_flag)
 889                return;
 890
 891        if (vc_kbd_mode(kbd, VC_META)) {
 892                put_queue(vc, '\033');
 893                put_queue(vc, value);
 894        } else
 895                put_queue(vc, value | BIT(7));
 896}
 897
 898static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 899{
 900        unsigned int base;
 901
 902        if (up_flag)
 903                return;
 904
 905        if (value < 10) {
 906                /* decimal input of code, while Alt depressed */
 907                base = 10;
 908        } else {
 909                /* hexadecimal input of code, while AltGr depressed */
 910                value -= 10;
 911                base = 16;
 912        }
 913
 914        if (!npadch_active) {
 915                npadch_value = 0;
 916                npadch_active = true;
 917        }
 918
 919        npadch_value = npadch_value * base + value;
 920}
 921
 922static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 923{
 924        if (up_flag || rep)
 925                return;
 926
 927        chg_vc_kbd_lock(kbd, value);
 928}
 929
 930static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 931{
 932        k_shift(vc, value, up_flag);
 933        if (up_flag || rep)
 934                return;
 935
 936        chg_vc_kbd_slock(kbd, value);
 937        /* try to make Alt, oops, AltGr and such work */
 938        if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 939                kbd->slockstate = 0;
 940                chg_vc_kbd_slock(kbd, value);
 941        }
 942}
 943
 944/* by default, 300ms interval for combination release */
 945static unsigned brl_timeout = 300;
 946MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 947module_param(brl_timeout, uint, 0644);
 948
 949static unsigned brl_nbchords = 1;
 950MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 951module_param(brl_nbchords, uint, 0644);
 952
 953static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 954{
 955        static unsigned long chords;
 956        static unsigned committed;
 957
 958        if (!brl_nbchords)
 959                k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 960        else {
 961                committed |= pattern;
 962                chords++;
 963                if (chords == brl_nbchords) {
 964                        k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 965                        chords = 0;
 966                        committed = 0;
 967                }
 968        }
 969}
 970
 971static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 972{
 973        static unsigned pressed, committing;
 974        static unsigned long releasestart;
 975
 976        if (kbd->kbdmode != VC_UNICODE) {
 977                if (!up_flag)
 978                        pr_warn("keyboard mode must be unicode for braille patterns\n");
 979                return;
 980        }
 981
 982        if (!value) {
 983                k_unicode(vc, BRL_UC_ROW, up_flag);
 984                return;
 985        }
 986
 987        if (value > 8)
 988                return;
 989
 990        if (!up_flag) {
 991                pressed |= BIT(value - 1);
 992                if (!brl_timeout)
 993                        committing = pressed;
 994        } else if (brl_timeout) {
 995                if (!committing ||
 996                    time_after(jiffies,
 997                               releasestart + msecs_to_jiffies(brl_timeout))) {
 998                        committing = pressed;
 999                        releasestart = jiffies;
1000                }
1001                pressed &= ~BIT(value - 1);
1002                if (!pressed && committing) {
1003                        k_brlcommit(vc, committing, 0);
1004                        committing = 0;
1005                }
1006        } else {
1007                if (committing) {
1008                        k_brlcommit(vc, committing, 0);
1009                        committing = 0;
1010                }
1011                pressed &= ~BIT(value - 1);
1012        }
1013}
1014
1015#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1016
1017struct kbd_led_trigger {
1018        struct led_trigger trigger;
1019        unsigned int mask;
1020};
1021
1022static int kbd_led_trigger_activate(struct led_classdev *cdev)
1023{
1024        struct kbd_led_trigger *trigger =
1025                container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1026
1027        tasklet_disable(&keyboard_tasklet);
1028        if (ledstate != -1U)
1029                led_trigger_event(&trigger->trigger,
1030                                  ledstate & trigger->mask ?
1031                                        LED_FULL : LED_OFF);
1032        tasklet_enable(&keyboard_tasklet);
1033
1034        return 0;
1035}
1036
1037#define KBD_LED_TRIGGER(_led_bit, _name) {                      \
1038                .trigger = {                                    \
1039                        .name = _name,                          \
1040                        .activate = kbd_led_trigger_activate,   \
1041                },                                              \
1042                .mask   = BIT(_led_bit),                        \
1043        }
1044
1045#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)          \
1046        KBD_LED_TRIGGER((_led_bit) + 8, _name)
1047
1048static struct kbd_led_trigger kbd_led_triggers[] = {
1049        KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1050        KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
1051        KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
1052        KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
1053
1054        KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
1055        KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
1056        KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
1057        KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
1058        KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1059        KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1060        KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
1061        KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
1062};
1063
1064static void kbd_propagate_led_state(unsigned int old_state,
1065                                    unsigned int new_state)
1066{
1067        struct kbd_led_trigger *trigger;
1068        unsigned int changed = old_state ^ new_state;
1069        int i;
1070
1071        for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1072                trigger = &kbd_led_triggers[i];
1073
1074                if (changed & trigger->mask)
1075                        led_trigger_event(&trigger->trigger,
1076                                          new_state & trigger->mask ?
1077                                                LED_FULL : LED_OFF);
1078        }
1079}
1080
1081static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1082{
1083        unsigned int led_state = *(unsigned int *)data;
1084
1085        if (test_bit(EV_LED, handle->dev->evbit))
1086                kbd_propagate_led_state(~led_state, led_state);
1087
1088        return 0;
1089}
1090
1091static void kbd_init_leds(void)
1092{
1093        int error;
1094        int i;
1095
1096        for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1097                error = led_trigger_register(&kbd_led_triggers[i].trigger);
1098                if (error)
1099                        pr_err("error %d while registering trigger %s\n",
1100                               error, kbd_led_triggers[i].trigger.name);
1101        }
1102}
1103
1104#else
1105
1106static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1107{
1108        unsigned int leds = *(unsigned int *)data;
1109
1110        if (test_bit(EV_LED, handle->dev->evbit)) {
1111                input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1112                input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & BIT(1)));
1113                input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & BIT(2)));
1114                input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1115        }
1116
1117        return 0;
1118}
1119
1120static void kbd_propagate_led_state(unsigned int old_state,
1121                                    unsigned int new_state)
1122{
1123        input_handler_for_each_handle(&kbd_handler, &new_state,
1124                                      kbd_update_leds_helper);
1125}
1126
1127static void kbd_init_leds(void)
1128{
1129}
1130
1131#endif
1132
1133/*
1134 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1135 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1136 * or (iii) specified bits of specified words in kernel memory.
1137 */
1138static unsigned char getledstate(void)
1139{
1140        return ledstate & 0xff;
1141}
1142
1143void setledstate(struct kbd_struct *kb, unsigned int led)
1144{
1145        unsigned long flags;
1146        spin_lock_irqsave(&led_lock, flags);
1147        if (!(led & ~7)) {
1148                ledioctl = led;
1149                kb->ledmode = LED_SHOW_IOCTL;
1150        } else
1151                kb->ledmode = LED_SHOW_FLAGS;
1152
1153        set_leds();
1154        spin_unlock_irqrestore(&led_lock, flags);
1155}
1156
1157static inline unsigned char getleds(void)
1158{
1159        struct kbd_struct *kb = kbd_table + fg_console;
1160
1161        if (kb->ledmode == LED_SHOW_IOCTL)
1162                return ledioctl;
1163
1164        return kb->ledflagstate;
1165}
1166
1167/**
1168 *      vt_get_leds     -       helper for braille console
1169 *      @console: console to read
1170 *      @flag: flag we want to check
1171 *
1172 *      Check the status of a keyboard led flag and report it back
1173 */
1174int vt_get_leds(unsigned int console, int flag)
1175{
1176        struct kbd_struct *kb = &kbd_table[console];
1177        int ret;
1178        unsigned long flags;
1179
1180        spin_lock_irqsave(&led_lock, flags);
1181        ret = vc_kbd_led(kb, flag);
1182        spin_unlock_irqrestore(&led_lock, flags);
1183
1184        return ret;
1185}
1186EXPORT_SYMBOL_GPL(vt_get_leds);
1187
1188/**
1189 *      vt_set_led_state        -       set LED state of a console
1190 *      @console: console to set
1191 *      @leds: LED bits
1192 *
1193 *      Set the LEDs on a console. This is a wrapper for the VT layer
1194 *      so that we can keep kbd knowledge internal
1195 */
1196void vt_set_led_state(unsigned int console, int leds)
1197{
1198        struct kbd_struct *kb = &kbd_table[console];
1199        setledstate(kb, leds);
1200}
1201
1202/**
1203 *      vt_kbd_con_start        -       Keyboard side of console start
1204 *      @console: console
1205 *
1206 *      Handle console start. This is a wrapper for the VT layer
1207 *      so that we can keep kbd knowledge internal
1208 *
1209 *      FIXME: We eventually need to hold the kbd lock here to protect
1210 *      the LED updating. We can't do it yet because fn_hold calls stop_tty
1211 *      and start_tty under the kbd_event_lock, while normal tty paths
1212 *      don't hold the lock. We probably need to split out an LED lock
1213 *      but not during an -rc release!
1214 */
1215void vt_kbd_con_start(unsigned int console)
1216{
1217        struct kbd_struct *kb = &kbd_table[console];
1218        unsigned long flags;
1219        spin_lock_irqsave(&led_lock, flags);
1220        clr_vc_kbd_led(kb, VC_SCROLLOCK);
1221        set_leds();
1222        spin_unlock_irqrestore(&led_lock, flags);
1223}
1224
1225/**
1226 *      vt_kbd_con_stop         -       Keyboard side of console stop
1227 *      @console: console
1228 *
1229 *      Handle console stop. This is a wrapper for the VT layer
1230 *      so that we can keep kbd knowledge internal
1231 */
1232void vt_kbd_con_stop(unsigned int console)
1233{
1234        struct kbd_struct *kb = &kbd_table[console];
1235        unsigned long flags;
1236        spin_lock_irqsave(&led_lock, flags);
1237        set_vc_kbd_led(kb, VC_SCROLLOCK);
1238        set_leds();
1239        spin_unlock_irqrestore(&led_lock, flags);
1240}
1241
1242/*
1243 * This is the tasklet that updates LED state of LEDs using standard
1244 * keyboard triggers. The reason we use tasklet is that we need to
1245 * handle the scenario when keyboard handler is not registered yet
1246 * but we already getting updates from the VT to update led state.
1247 */
1248static void kbd_bh(struct tasklet_struct *unused)
1249{
1250        unsigned int leds;
1251        unsigned long flags;
1252
1253        spin_lock_irqsave(&led_lock, flags);
1254        leds = getleds();
1255        leds |= (unsigned int)kbd->lockstate << 8;
1256        spin_unlock_irqrestore(&led_lock, flags);
1257
1258        if (leds != ledstate) {
1259                kbd_propagate_led_state(ledstate, leds);
1260                ledstate = leds;
1261        }
1262}
1263
1264#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1265    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1266    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1267    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1268
1269static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1270{
1271        if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1272                return false;
1273
1274        return dev->id.bustype == BUS_I8042 &&
1275                dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1276}
1277
1278static const unsigned short x86_keycodes[256] =
1279        { 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1280         16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1281         32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1282         48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1283         64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1284         80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1285        284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1286        367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1287        360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1288        103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1289        291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1290        264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1291        377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1292        308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1293        332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1294
1295#ifdef CONFIG_SPARC
1296static int sparc_l1_a_state;
1297extern void sun_do_break(void);
1298#endif
1299
1300static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1301                       unsigned char up_flag)
1302{
1303        int code;
1304
1305        switch (keycode) {
1306
1307        case KEY_PAUSE:
1308                put_queue(vc, 0xe1);
1309                put_queue(vc, 0x1d | up_flag);
1310                put_queue(vc, 0x45 | up_flag);
1311                break;
1312
1313        case KEY_HANGEUL:
1314                if (!up_flag)
1315                        put_queue(vc, 0xf2);
1316                break;
1317
1318        case KEY_HANJA:
1319                if (!up_flag)
1320                        put_queue(vc, 0xf1);
1321                break;
1322
1323        case KEY_SYSRQ:
1324                /*
1325                 * Real AT keyboards (that's what we're trying
1326                 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1327                 * pressing PrtSc/SysRq alone, but simply 0x54
1328                 * when pressing Alt+PrtSc/SysRq.
1329                 */
1330                if (test_bit(KEY_LEFTALT, key_down) ||
1331                    test_bit(KEY_RIGHTALT, key_down)) {
1332                        put_queue(vc, 0x54 | up_flag);
1333                } else {
1334                        put_queue(vc, 0xe0);
1335                        put_queue(vc, 0x2a | up_flag);
1336                        put_queue(vc, 0xe0);
1337                        put_queue(vc, 0x37 | up_flag);
1338                }
1339                break;
1340
1341        default:
1342                if (keycode > 255)
1343                        return -1;
1344
1345                code = x86_keycodes[keycode];
1346                if (!code)
1347                        return -1;
1348
1349                if (code & 0x100)
1350                        put_queue(vc, 0xe0);
1351                put_queue(vc, (code & 0x7f) | up_flag);
1352
1353                break;
1354        }
1355
1356        return 0;
1357}
1358
1359#else
1360
1361static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1362{
1363        return false;
1364}
1365
1366static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1367{
1368        if (keycode > 127)
1369                return -1;
1370
1371        put_queue(vc, keycode | up_flag);
1372        return 0;
1373}
1374#endif
1375
1376static void kbd_rawcode(unsigned char data)
1377{
1378        struct vc_data *vc = vc_cons[fg_console].d;
1379
1380        kbd = &kbd_table[vc->vc_num];
1381        if (kbd->kbdmode == VC_RAW)
1382                put_queue(vc, data);
1383}
1384
1385static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1386{
1387        struct vc_data *vc = vc_cons[fg_console].d;
1388        unsigned short keysym, *key_map;
1389        unsigned char type;
1390        bool raw_mode;
1391        struct tty_struct *tty;
1392        int shift_final;
1393        struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1394        int rc;
1395
1396        tty = vc->port.tty;
1397
1398        if (tty && (!tty->driver_data)) {
1399                /* No driver data? Strange. Okay we fix it then. */
1400                tty->driver_data = vc;
1401        }
1402
1403        kbd = &kbd_table[vc->vc_num];
1404
1405#ifdef CONFIG_SPARC
1406        if (keycode == KEY_STOP)
1407                sparc_l1_a_state = down;
1408#endif
1409
1410        rep = (down == 2);
1411
1412        raw_mode = (kbd->kbdmode == VC_RAW);
1413        if (raw_mode && !hw_raw)
1414                if (emulate_raw(vc, keycode, !down << 7))
1415                        if (keycode < BTN_MISC && printk_ratelimit())
1416                                pr_warn("can't emulate rawmode for keycode %d\n",
1417                                        keycode);
1418
1419#ifdef CONFIG_SPARC
1420        if (keycode == KEY_A && sparc_l1_a_state) {
1421                sparc_l1_a_state = false;
1422                sun_do_break();
1423        }
1424#endif
1425
1426        if (kbd->kbdmode == VC_MEDIUMRAW) {
1427                /*
1428                 * This is extended medium raw mode, with keys above 127
1429                 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1430                 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1431                 * interfere with anything else. The two bytes after 0 will
1432                 * always have the up flag set not to interfere with older
1433                 * applications. This allows for 16384 different keycodes,
1434                 * which should be enough.
1435                 */
1436                if (keycode < 128) {
1437                        put_queue(vc, keycode | (!down << 7));
1438                } else {
1439                        put_queue(vc, !down << 7);
1440                        put_queue(vc, (keycode >> 7) | BIT(7));
1441                        put_queue(vc, keycode | BIT(7));
1442                }
1443                raw_mode = true;
1444        }
1445
1446        assign_bit(keycode, key_down, down);
1447
1448        if (rep &&
1449            (!vc_kbd_mode(kbd, VC_REPEAT) ||
1450             (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1451                /*
1452                 * Don't repeat a key if the input buffers are not empty and the
1453                 * characters get aren't echoed locally. This makes key repeat
1454                 * usable with slow applications and under heavy loads.
1455                 */
1456                return;
1457        }
1458
1459        param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1460        param.ledstate = kbd->ledflagstate;
1461        key_map = key_maps[shift_final];
1462
1463        rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1464                                        KBD_KEYCODE, &param);
1465        if (rc == NOTIFY_STOP || !key_map) {
1466                atomic_notifier_call_chain(&keyboard_notifier_list,
1467                                           KBD_UNBOUND_KEYCODE, &param);
1468                do_compute_shiftstate();
1469                kbd->slockstate = 0;
1470                return;
1471        }
1472
1473        if (keycode < NR_KEYS)
1474                keysym = key_map[keycode];
1475        else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1476                keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1477        else
1478                return;
1479
1480        type = KTYP(keysym);
1481
1482        if (type < 0xf0) {
1483                param.value = keysym;
1484                rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1485                                                KBD_UNICODE, &param);
1486                if (rc != NOTIFY_STOP)
1487                        if (down && !raw_mode)
1488                                k_unicode(vc, keysym, !down);
1489                return;
1490        }
1491
1492        type -= 0xf0;
1493
1494        if (type == KT_LETTER) {
1495                type = KT_LATIN;
1496                if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1497                        key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1498                        if (key_map)
1499                                keysym = key_map[keycode];
1500                }
1501        }
1502
1503        param.value = keysym;
1504        rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1505                                        KBD_KEYSYM, &param);
1506        if (rc == NOTIFY_STOP)
1507                return;
1508
1509        if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1510                return;
1511
1512        (*k_handler[type])(vc, keysym & 0xff, !down);
1513
1514        param.ledstate = kbd->ledflagstate;
1515        atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1516
1517        if (type != KT_SLOCK)
1518                kbd->slockstate = 0;
1519}
1520
1521static void kbd_event(struct input_handle *handle, unsigned int event_type,
1522                      unsigned int event_code, int value)
1523{
1524        /* We are called with interrupts disabled, just take the lock */
1525        spin_lock(&kbd_event_lock);
1526
1527        if (event_type == EV_MSC && event_code == MSC_RAW &&
1528                        kbd_is_hw_raw(handle->dev))
1529                kbd_rawcode(value);
1530        if (event_type == EV_KEY && event_code <= KEY_MAX)
1531                kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1532
1533        spin_unlock(&kbd_event_lock);
1534
1535        tasklet_schedule(&keyboard_tasklet);
1536        do_poke_blanked_console = 1;
1537        schedule_console_callback();
1538}
1539
1540static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1541{
1542        if (test_bit(EV_SND, dev->evbit))
1543                return true;
1544
1545        if (test_bit(EV_KEY, dev->evbit)) {
1546                if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1547                                BTN_MISC)
1548                        return true;
1549                if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1550                                        KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1551                        return true;
1552        }
1553
1554        return false;
1555}
1556
1557/*
1558 * When a keyboard (or other input device) is found, the kbd_connect
1559 * function is called. The function then looks at the device, and if it
1560 * likes it, it can open it and get events from it. In this (kbd_connect)
1561 * function, we should decide which VT to bind that keyboard to initially.
1562 */
1563static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1564                        const struct input_device_id *id)
1565{
1566        struct input_handle *handle;
1567        int error;
1568
1569        handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1570        if (!handle)
1571                return -ENOMEM;
1572
1573        handle->dev = dev;
1574        handle->handler = handler;
1575        handle->name = "kbd";
1576
1577        error = input_register_handle(handle);
1578        if (error)
1579                goto err_free_handle;
1580
1581        error = input_open_device(handle);
1582        if (error)
1583                goto err_unregister_handle;
1584
1585        return 0;
1586
1587 err_unregister_handle:
1588        input_unregister_handle(handle);
1589 err_free_handle:
1590        kfree(handle);
1591        return error;
1592}
1593
1594static void kbd_disconnect(struct input_handle *handle)
1595{
1596        input_close_device(handle);
1597        input_unregister_handle(handle);
1598        kfree(handle);
1599}
1600
1601/*
1602 * Start keyboard handler on the new keyboard by refreshing LED state to
1603 * match the rest of the system.
1604 */
1605static void kbd_start(struct input_handle *handle)
1606{
1607        tasklet_disable(&keyboard_tasklet);
1608
1609        if (ledstate != -1U)
1610                kbd_update_leds_helper(handle, &ledstate);
1611
1612        tasklet_enable(&keyboard_tasklet);
1613}
1614
1615static const struct input_device_id kbd_ids[] = {
1616        {
1617                .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1618                .evbit = { BIT_MASK(EV_KEY) },
1619        },
1620
1621        {
1622                .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1623                .evbit = { BIT_MASK(EV_SND) },
1624        },
1625
1626        { },    /* Terminating entry */
1627};
1628
1629MODULE_DEVICE_TABLE(input, kbd_ids);
1630
1631static struct input_handler kbd_handler = {
1632        .event          = kbd_event,
1633        .match          = kbd_match,
1634        .connect        = kbd_connect,
1635        .disconnect     = kbd_disconnect,
1636        .start          = kbd_start,
1637        .name           = "kbd",
1638        .id_table       = kbd_ids,
1639};
1640
1641int __init kbd_init(void)
1642{
1643        int i;
1644        int error;
1645
1646        for (i = 0; i < MAX_NR_CONSOLES; i++) {
1647                kbd_table[i].ledflagstate = kbd_defleds();
1648                kbd_table[i].default_ledflagstate = kbd_defleds();
1649                kbd_table[i].ledmode = LED_SHOW_FLAGS;
1650                kbd_table[i].lockstate = KBD_DEFLOCK;
1651                kbd_table[i].slockstate = 0;
1652                kbd_table[i].modeflags = KBD_DEFMODE;
1653                kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1654        }
1655
1656        kbd_init_leds();
1657
1658        error = input_register_handler(&kbd_handler);
1659        if (error)
1660                return error;
1661
1662        tasklet_enable(&keyboard_tasklet);
1663        tasklet_schedule(&keyboard_tasklet);
1664
1665        return 0;
1666}
1667
1668/* Ioctl support code */
1669
1670/**
1671 *      vt_do_diacrit           -       diacritical table updates
1672 *      @cmd: ioctl request
1673 *      @udp: pointer to user data for ioctl
1674 *      @perm: permissions check computed by caller
1675 *
1676 *      Update the diacritical tables atomically and safely. Lock them
1677 *      against simultaneous keypresses
1678 */
1679int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1680{
1681        unsigned long flags;
1682        int asize;
1683        int ret = 0;
1684
1685        switch (cmd) {
1686        case KDGKBDIACR:
1687        {
1688                struct kbdiacrs __user *a = udp;
1689                struct kbdiacr *dia;
1690                int i;
1691
1692                dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1693                                                                GFP_KERNEL);
1694                if (!dia)
1695                        return -ENOMEM;
1696
1697                /* Lock the diacriticals table, make a copy and then
1698                   copy it after we unlock */
1699                spin_lock_irqsave(&kbd_event_lock, flags);
1700
1701                asize = accent_table_size;
1702                for (i = 0; i < asize; i++) {
1703                        dia[i].diacr = conv_uni_to_8bit(
1704                                                accent_table[i].diacr);
1705                        dia[i].base = conv_uni_to_8bit(
1706                                                accent_table[i].base);
1707                        dia[i].result = conv_uni_to_8bit(
1708                                                accent_table[i].result);
1709                }
1710                spin_unlock_irqrestore(&kbd_event_lock, flags);
1711
1712                if (put_user(asize, &a->kb_cnt))
1713                        ret = -EFAULT;
1714                else  if (copy_to_user(a->kbdiacr, dia,
1715                                asize * sizeof(struct kbdiacr)))
1716                        ret = -EFAULT;
1717                kfree(dia);
1718                return ret;
1719        }
1720        case KDGKBDIACRUC:
1721        {
1722                struct kbdiacrsuc __user *a = udp;
1723                void *buf;
1724
1725                buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1726                                                                GFP_KERNEL);
1727                if (buf == NULL)
1728                        return -ENOMEM;
1729
1730                /* Lock the diacriticals table, make a copy and then
1731                   copy it after we unlock */
1732                spin_lock_irqsave(&kbd_event_lock, flags);
1733
1734                asize = accent_table_size;
1735                memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1736
1737                spin_unlock_irqrestore(&kbd_event_lock, flags);
1738
1739                if (put_user(asize, &a->kb_cnt))
1740                        ret = -EFAULT;
1741                else if (copy_to_user(a->kbdiacruc, buf,
1742                                asize*sizeof(struct kbdiacruc)))
1743                        ret = -EFAULT;
1744                kfree(buf);
1745                return ret;
1746        }
1747
1748        case KDSKBDIACR:
1749        {
1750                struct kbdiacrs __user *a = udp;
1751                struct kbdiacr *dia = NULL;
1752                unsigned int ct;
1753                int i;
1754
1755                if (!perm)
1756                        return -EPERM;
1757                if (get_user(ct, &a->kb_cnt))
1758                        return -EFAULT;
1759                if (ct >= MAX_DIACR)
1760                        return -EINVAL;
1761
1762                if (ct) {
1763
1764                        dia = memdup_user(a->kbdiacr,
1765                                        sizeof(struct kbdiacr) * ct);
1766                        if (IS_ERR(dia))
1767                                return PTR_ERR(dia);
1768
1769                }
1770
1771                spin_lock_irqsave(&kbd_event_lock, flags);
1772                accent_table_size = ct;
1773                for (i = 0; i < ct; i++) {
1774                        accent_table[i].diacr =
1775                                        conv_8bit_to_uni(dia[i].diacr);
1776                        accent_table[i].base =
1777                                        conv_8bit_to_uni(dia[i].base);
1778                        accent_table[i].result =
1779                                        conv_8bit_to_uni(dia[i].result);
1780                }
1781                spin_unlock_irqrestore(&kbd_event_lock, flags);
1782                kfree(dia);
1783                return 0;
1784        }
1785
1786        case KDSKBDIACRUC:
1787        {
1788                struct kbdiacrsuc __user *a = udp;
1789                unsigned int ct;
1790                void *buf = NULL;
1791
1792                if (!perm)
1793                        return -EPERM;
1794
1795                if (get_user(ct, &a->kb_cnt))
1796                        return -EFAULT;
1797
1798                if (ct >= MAX_DIACR)
1799                        return -EINVAL;
1800
1801                if (ct) {
1802                        buf = memdup_user(a->kbdiacruc,
1803                                          ct * sizeof(struct kbdiacruc));
1804                        if (IS_ERR(buf))
1805                                return PTR_ERR(buf);
1806                } 
1807                spin_lock_irqsave(&kbd_event_lock, flags);
1808                if (ct)
1809                        memcpy(accent_table, buf,
1810                                        ct * sizeof(struct kbdiacruc));
1811                accent_table_size = ct;
1812                spin_unlock_irqrestore(&kbd_event_lock, flags);
1813                kfree(buf);
1814                return 0;
1815        }
1816        }
1817        return ret;
1818}
1819
1820/**
1821 *      vt_do_kdskbmode         -       set keyboard mode ioctl
1822 *      @console: the console to use
1823 *      @arg: the requested mode
1824 *
1825 *      Update the keyboard mode bits while holding the correct locks.
1826 *      Return 0 for success or an error code.
1827 */
1828int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1829{
1830        struct kbd_struct *kb = &kbd_table[console];
1831        int ret = 0;
1832        unsigned long flags;
1833
1834        spin_lock_irqsave(&kbd_event_lock, flags);
1835        switch(arg) {
1836        case K_RAW:
1837                kb->kbdmode = VC_RAW;
1838                break;
1839        case K_MEDIUMRAW:
1840                kb->kbdmode = VC_MEDIUMRAW;
1841                break;
1842        case K_XLATE:
1843                kb->kbdmode = VC_XLATE;
1844                do_compute_shiftstate();
1845                break;
1846        case K_UNICODE:
1847                kb->kbdmode = VC_UNICODE;
1848                do_compute_shiftstate();
1849                break;
1850        case K_OFF:
1851                kb->kbdmode = VC_OFF;
1852                break;
1853        default:
1854                ret = -EINVAL;
1855        }
1856        spin_unlock_irqrestore(&kbd_event_lock, flags);
1857        return ret;
1858}
1859
1860/**
1861 *      vt_do_kdskbmeta         -       set keyboard meta state
1862 *      @console: the console to use
1863 *      @arg: the requested meta state
1864 *
1865 *      Update the keyboard meta bits while holding the correct locks.
1866 *      Return 0 for success or an error code.
1867 */
1868int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1869{
1870        struct kbd_struct *kb = &kbd_table[console];
1871        int ret = 0;
1872        unsigned long flags;
1873
1874        spin_lock_irqsave(&kbd_event_lock, flags);
1875        switch(arg) {
1876        case K_METABIT:
1877                clr_vc_kbd_mode(kb, VC_META);
1878                break;
1879        case K_ESCPREFIX:
1880                set_vc_kbd_mode(kb, VC_META);
1881                break;
1882        default:
1883                ret = -EINVAL;
1884        }
1885        spin_unlock_irqrestore(&kbd_event_lock, flags);
1886        return ret;
1887}
1888
1889int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1890                                                                int perm)
1891{
1892        struct kbkeycode tmp;
1893        int kc = 0;
1894
1895        if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1896                return -EFAULT;
1897        switch (cmd) {
1898        case KDGETKEYCODE:
1899                kc = getkeycode(tmp.scancode);
1900                if (kc >= 0)
1901                        kc = put_user(kc, &user_kbkc->keycode);
1902                break;
1903        case KDSETKEYCODE:
1904                if (!perm)
1905                        return -EPERM;
1906                kc = setkeycode(tmp.scancode, tmp.keycode);
1907                break;
1908        }
1909        return kc;
1910}
1911
1912static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1913                unsigned char map)
1914{
1915        unsigned short *key_map, val;
1916        unsigned long flags;
1917
1918        /* Ensure another thread doesn't free it under us */
1919        spin_lock_irqsave(&kbd_event_lock, flags);
1920        key_map = key_maps[map];
1921        if (key_map) {
1922                val = U(key_map[idx]);
1923                if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1924                        val = K_HOLE;
1925        } else
1926                val = idx ? K_HOLE : K_NOSUCHMAP;
1927        spin_unlock_irqrestore(&kbd_event_lock, flags);
1928
1929        return val;
1930}
1931
1932static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1933                unsigned char map, unsigned short val)
1934{
1935        unsigned long flags;
1936        unsigned short *key_map, *new_map, oldval;
1937
1938        if (!idx && val == K_NOSUCHMAP) {
1939                spin_lock_irqsave(&kbd_event_lock, flags);
1940                /* deallocate map */
1941                key_map = key_maps[map];
1942                if (map && key_map) {
1943                        key_maps[map] = NULL;
1944                        if (key_map[0] == U(K_ALLOCATED)) {
1945                                kfree(key_map);
1946                                keymap_count--;
1947                        }
1948                }
1949                spin_unlock_irqrestore(&kbd_event_lock, flags);
1950
1951                return 0;
1952        }
1953
1954        if (KTYP(val) < NR_TYPES) {
1955                if (KVAL(val) > max_vals[KTYP(val)])
1956                        return -EINVAL;
1957        } else if (kbdmode != VC_UNICODE)
1958                return -EINVAL;
1959
1960        /* ++Geert: non-PC keyboards may generate keycode zero */
1961#if !defined(__mc68000__) && !defined(__powerpc__)
1962        /* assignment to entry 0 only tests validity of args */
1963        if (!idx)
1964                return 0;
1965#endif
1966
1967        new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1968        if (!new_map)
1969                return -ENOMEM;
1970
1971        spin_lock_irqsave(&kbd_event_lock, flags);
1972        key_map = key_maps[map];
1973        if (key_map == NULL) {
1974                int j;
1975
1976                if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1977                    !capable(CAP_SYS_RESOURCE)) {
1978                        spin_unlock_irqrestore(&kbd_event_lock, flags);
1979                        kfree(new_map);
1980                        return -EPERM;
1981                }
1982                key_maps[map] = new_map;
1983                key_map = new_map;
1984                key_map[0] = U(K_ALLOCATED);
1985                for (j = 1; j < NR_KEYS; j++)
1986                        key_map[j] = U(K_HOLE);
1987                keymap_count++;
1988        } else
1989                kfree(new_map);
1990
1991        oldval = U(key_map[idx]);
1992        if (val == oldval)
1993                goto out;
1994
1995        /* Attention Key */
1996        if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
1997                spin_unlock_irqrestore(&kbd_event_lock, flags);
1998                return -EPERM;
1999        }
2000
2001        key_map[idx] = U(val);
2002        if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2003                do_compute_shiftstate();
2004out:
2005        spin_unlock_irqrestore(&kbd_event_lock, flags);
2006
2007        return 0;
2008}
2009
2010int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2011                                                unsigned int console)
2012{
2013        struct kbd_struct *kb = &kbd_table[console];
2014        struct kbentry kbe;
2015
2016        if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2017                return -EFAULT;
2018
2019        switch (cmd) {
2020        case KDGKBENT:
2021                return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2022                                        kbe.kb_table),
2023                                &user_kbe->kb_value);
2024        case KDSKBENT:
2025                if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2026                        return -EPERM;
2027                return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2028                                kbe.kb_value);
2029        }
2030        return 0;
2031}
2032
2033static char *vt_kdskbsent(char *kbs, unsigned char cur)
2034{
2035        static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2036        char *cur_f = func_table[cur];
2037
2038        if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2039                strcpy(cur_f, kbs);
2040                return kbs;
2041        }
2042
2043        func_table[cur] = kbs;
2044
2045        return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2046}
2047
2048int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2049{
2050        unsigned char kb_func;
2051        unsigned long flags;
2052        char *kbs;
2053        int ret;
2054
2055        if (get_user(kb_func, &user_kdgkb->kb_func))
2056                return -EFAULT;
2057
2058        kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2059
2060        switch (cmd) {
2061        case KDGKBSENT: {
2062                /* size should have been a struct member */
2063                ssize_t len = sizeof(user_kdgkb->kb_string);
2064
2065                kbs = kmalloc(len, GFP_KERNEL);
2066                if (!kbs)
2067                        return -ENOMEM;
2068
2069                spin_lock_irqsave(&func_buf_lock, flags);
2070                len = strlcpy(kbs, func_table[kb_func] ? : "", len);
2071                spin_unlock_irqrestore(&func_buf_lock, flags);
2072
2073                ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2074                        -EFAULT : 0;
2075
2076                break;
2077        }
2078        case KDSKBSENT:
2079                if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2080                        return -EPERM;
2081
2082                kbs = strndup_user(user_kdgkb->kb_string,
2083                                sizeof(user_kdgkb->kb_string));
2084                if (IS_ERR(kbs))
2085                        return PTR_ERR(kbs);
2086
2087                spin_lock_irqsave(&func_buf_lock, flags);
2088                kbs = vt_kdskbsent(kbs, kb_func);
2089                spin_unlock_irqrestore(&func_buf_lock, flags);
2090
2091                ret = 0;
2092                break;
2093        }
2094
2095        kfree(kbs);
2096
2097        return ret;
2098}
2099
2100int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2101{
2102        struct kbd_struct *kb = &kbd_table[console];
2103        unsigned long flags;
2104        unsigned char ucval;
2105
2106        switch(cmd) {
2107        /* the ioctls below read/set the flags usually shown in the leds */
2108        /* don't use them - they will go away without warning */
2109        case KDGKBLED:
2110                spin_lock_irqsave(&kbd_event_lock, flags);
2111                ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2112                spin_unlock_irqrestore(&kbd_event_lock, flags);
2113                return put_user(ucval, (char __user *)arg);
2114
2115        case KDSKBLED:
2116                if (!perm)
2117                        return -EPERM;
2118                if (arg & ~0x77)
2119                        return -EINVAL;
2120                spin_lock_irqsave(&led_lock, flags);
2121                kb->ledflagstate = (arg & 7);
2122                kb->default_ledflagstate = ((arg >> 4) & 7);
2123                set_leds();
2124                spin_unlock_irqrestore(&led_lock, flags);
2125                return 0;
2126
2127        /* the ioctls below only set the lights, not the functions */
2128        /* for those, see KDGKBLED and KDSKBLED above */
2129        case KDGETLED:
2130                ucval = getledstate();
2131                return put_user(ucval, (char __user *)arg);
2132
2133        case KDSETLED:
2134                if (!perm)
2135                        return -EPERM;
2136                setledstate(kb, arg);
2137                return 0;
2138        }
2139        return -ENOIOCTLCMD;
2140}
2141
2142int vt_do_kdgkbmode(unsigned int console)
2143{
2144        struct kbd_struct *kb = &kbd_table[console];
2145        /* This is a spot read so needs no locking */
2146        switch (kb->kbdmode) {
2147        case VC_RAW:
2148                return K_RAW;
2149        case VC_MEDIUMRAW:
2150                return K_MEDIUMRAW;
2151        case VC_UNICODE:
2152                return K_UNICODE;
2153        case VC_OFF:
2154                return K_OFF;
2155        default:
2156                return K_XLATE;
2157        }
2158}
2159
2160/**
2161 *      vt_do_kdgkbmeta         -       report meta status
2162 *      @console: console to report
2163 *
2164 *      Report the meta flag status of this console
2165 */
2166int vt_do_kdgkbmeta(unsigned int console)
2167{
2168        struct kbd_struct *kb = &kbd_table[console];
2169        /* Again a spot read so no locking */
2170        return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2171}
2172
2173/**
2174 *      vt_reset_unicode        -       reset the unicode status
2175 *      @console: console being reset
2176 *
2177 *      Restore the unicode console state to its default
2178 */
2179void vt_reset_unicode(unsigned int console)
2180{
2181        unsigned long flags;
2182
2183        spin_lock_irqsave(&kbd_event_lock, flags);
2184        kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2185        spin_unlock_irqrestore(&kbd_event_lock, flags);
2186}
2187
2188/**
2189 *      vt_get_shift_state      -       shift bit state
2190 *
2191 *      Report the shift bits from the keyboard state. We have to export
2192 *      this to support some oddities in the vt layer.
2193 */
2194int vt_get_shift_state(void)
2195{
2196        /* Don't lock as this is a transient report */
2197        return shift_state;
2198}
2199
2200/**
2201 *      vt_reset_keyboard       -       reset keyboard state
2202 *      @console: console to reset
2203 *
2204 *      Reset the keyboard bits for a console as part of a general console
2205 *      reset event
2206 */
2207void vt_reset_keyboard(unsigned int console)
2208{
2209        struct kbd_struct *kb = &kbd_table[console];
2210        unsigned long flags;
2211
2212        spin_lock_irqsave(&kbd_event_lock, flags);
2213        set_vc_kbd_mode(kb, VC_REPEAT);
2214        clr_vc_kbd_mode(kb, VC_CKMODE);
2215        clr_vc_kbd_mode(kb, VC_APPLIC);
2216        clr_vc_kbd_mode(kb, VC_CRLF);
2217        kb->lockstate = 0;
2218        kb->slockstate = 0;
2219        spin_lock(&led_lock);
2220        kb->ledmode = LED_SHOW_FLAGS;
2221        kb->ledflagstate = kb->default_ledflagstate;
2222        spin_unlock(&led_lock);
2223        /* do not do set_leds here because this causes an endless tasklet loop
2224           when the keyboard hasn't been initialized yet */
2225        spin_unlock_irqrestore(&kbd_event_lock, flags);
2226}
2227
2228/**
2229 *      vt_get_kbd_mode_bit     -       read keyboard status bits
2230 *      @console: console to read from
2231 *      @bit: mode bit to read
2232 *
2233 *      Report back a vt mode bit. We do this without locking so the
2234 *      caller must be sure that there are no synchronization needs
2235 */
2236
2237int vt_get_kbd_mode_bit(unsigned int console, int bit)
2238{
2239        struct kbd_struct *kb = &kbd_table[console];
2240        return vc_kbd_mode(kb, bit);
2241}
2242
2243/**
2244 *      vt_set_kbd_mode_bit     -       read keyboard status bits
2245 *      @console: console to read from
2246 *      @bit: mode bit to read
2247 *
2248 *      Set a vt mode bit. We do this without locking so the
2249 *      caller must be sure that there are no synchronization needs
2250 */
2251
2252void vt_set_kbd_mode_bit(unsigned int console, int bit)
2253{
2254        struct kbd_struct *kb = &kbd_table[console];
2255        unsigned long flags;
2256
2257        spin_lock_irqsave(&kbd_event_lock, flags);
2258        set_vc_kbd_mode(kb, bit);
2259        spin_unlock_irqrestore(&kbd_event_lock, flags);
2260}
2261
2262/**
2263 *      vt_clr_kbd_mode_bit     -       read keyboard status bits
2264 *      @console: console to read from
2265 *      @bit: mode bit to read
2266 *
2267 *      Report back a vt mode bit. We do this without locking so the
2268 *      caller must be sure that there are no synchronization needs
2269 */
2270
2271void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2272{
2273        struct kbd_struct *kb = &kbd_table[console];
2274        unsigned long flags;
2275
2276        spin_lock_irqsave(&kbd_event_lock, flags);
2277        clr_vc_kbd_mode(kb, bit);
2278        spin_unlock_irqrestore(&kbd_event_lock, flags);
2279}
2280