linux/drivers/usb/dwc2/core.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
   2/*
   3 * core.h - DesignWare HS OTG Controller common declarations
   4 *
   5 * Copyright (C) 2004-2013 Synopsys, Inc.
   6 *
   7 * Redistribution and use in source and binary forms, with or without
   8 * modification, are permitted provided that the following conditions
   9 * are met:
  10 * 1. Redistributions of source code must retain the above copyright
  11 *    notice, this list of conditions, and the following disclaimer,
  12 *    without modification.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. The names of the above-listed copyright holders may not be used
  17 *    to endorse or promote products derived from this software without
  18 *    specific prior written permission.
  19 *
  20 * ALTERNATIVELY, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") as published by the Free Software
  22 * Foundation; either version 2 of the License, or (at your option) any
  23 * later version.
  24 *
  25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  36 */
  37
  38#ifndef __DWC2_CORE_H__
  39#define __DWC2_CORE_H__
  40
  41#include <linux/acpi.h>
  42#include <linux/phy/phy.h>
  43#include <linux/regulator/consumer.h>
  44#include <linux/usb/gadget.h>
  45#include <linux/usb/otg.h>
  46#include <linux/usb/phy.h>
  47#include "hw.h"
  48
  49/*
  50 * Suggested defines for tracers:
  51 * - no_printk:    Disable tracing
  52 * - pr_info:      Print this info to the console
  53 * - trace_printk: Print this info to trace buffer (good for verbose logging)
  54 */
  55
  56#define DWC2_TRACE_SCHEDULER            no_printk
  57#define DWC2_TRACE_SCHEDULER_VB         no_printk
  58
  59/* Detailed scheduler tracing, but won't overwhelm console */
  60#define dwc2_sch_dbg(hsotg, fmt, ...)                                   \
  61        DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),                   \
  62                             dev_name(hsotg->dev), ##__VA_ARGS__)
  63
  64/* Verbose scheduler tracing */
  65#define dwc2_sch_vdbg(hsotg, fmt, ...)                                  \
  66        DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),                \
  67                                dev_name(hsotg->dev), ##__VA_ARGS__)
  68
  69/* Maximum number of Endpoints/HostChannels */
  70#define MAX_EPS_CHANNELS        16
  71
  72/* dwc2-hsotg declarations */
  73static const char * const dwc2_hsotg_supply_names[] = {
  74        "vusb_d",               /* digital USB supply, 1.2V */
  75        "vusb_a",               /* analog USB supply, 1.1V */
  76};
  77
  78#define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
  79
  80/*
  81 * EP0_MPS_LIMIT
  82 *
  83 * Unfortunately there seems to be a limit of the amount of data that can
  84 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
  85 * packets (which practically means 1 packet and 63 bytes of data) when the
  86 * MPS is set to 64.
  87 *
  88 * This means if we are wanting to move >127 bytes of data, we need to
  89 * split the transactions up, but just doing one packet at a time does
  90 * not work (this may be an implicit DATA0 PID on first packet of the
  91 * transaction) and doing 2 packets is outside the controller's limits.
  92 *
  93 * If we try to lower the MPS size for EP0, then no transfers work properly
  94 * for EP0, and the system will fail basic enumeration. As no cause for this
  95 * has currently been found, we cannot support any large IN transfers for
  96 * EP0.
  97 */
  98#define EP0_MPS_LIMIT   64
  99
 100struct dwc2_hsotg;
 101struct dwc2_hsotg_req;
 102
 103/**
 104 * struct dwc2_hsotg_ep - driver endpoint definition.
 105 * @ep: The gadget layer representation of the endpoint.
 106 * @name: The driver generated name for the endpoint.
 107 * @queue: Queue of requests for this endpoint.
 108 * @parent: Reference back to the parent device structure.
 109 * @req: The current request that the endpoint is processing. This is
 110 *       used to indicate an request has been loaded onto the endpoint
 111 *       and has yet to be completed (maybe due to data move, or simply
 112 *       awaiting an ack from the core all the data has been completed).
 113 * @debugfs: File entry for debugfs file for this endpoint.
 114 * @dir_in: Set to true if this endpoint is of the IN direction, which
 115 *          means that it is sending data to the Host.
 116 * @map_dir: Set to the value of dir_in when the DMA buffer is mapped.
 117 * @index: The index for the endpoint registers.
 118 * @mc: Multi Count - number of transactions per microframe
 119 * @interval: Interval for periodic endpoints, in frames or microframes.
 120 * @name: The name array passed to the USB core.
 121 * @halted: Set if the endpoint has been halted.
 122 * @periodic: Set if this is a periodic ep, such as Interrupt
 123 * @isochronous: Set if this is a isochronous ep
 124 * @send_zlp: Set if we need to send a zero-length packet.
 125 * @wedged: Set if ep is wedged.
 126 * @desc_list_dma: The DMA address of descriptor chain currently in use.
 127 * @desc_list: Pointer to descriptor DMA chain head currently in use.
 128 * @desc_count: Count of entries within the DMA descriptor chain of EP.
 129 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
 130 * @compl_desc: index of next descriptor to be completed by xFerComplete
 131 * @total_data: The total number of data bytes done.
 132 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 133 * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
 134 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 135 * @last_load: The offset of data for the last start of request.
 136 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 137 * @target_frame: Targeted frame num to setup next ISOC transfer
 138 * @frame_overrun: Indicates SOF number overrun in DSTS
 139 *
 140 * This is the driver's state for each registered endpoint, allowing it
 141 * to keep track of transactions that need doing. Each endpoint has a
 142 * lock to protect the state, to try and avoid using an overall lock
 143 * for the host controller as much as possible.
 144 *
 145 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 146 * and keep track of the amount of data in the periodic FIFO for each
 147 * of these as we don't have a status register that tells us how much
 148 * is in each of them. (note, this may actually be useless information
 149 * as in shared-fifo mode periodic in acts like a single-frame packet
 150 * buffer than a fifo)
 151 */
 152struct dwc2_hsotg_ep {
 153        struct usb_ep           ep;
 154        struct list_head        queue;
 155        struct dwc2_hsotg       *parent;
 156        struct dwc2_hsotg_req    *req;
 157        struct dentry           *debugfs;
 158
 159        unsigned long           total_data;
 160        unsigned int            size_loaded;
 161        unsigned int            last_load;
 162        unsigned int            fifo_load;
 163        unsigned short          fifo_size;
 164        unsigned short          fifo_index;
 165
 166        unsigned char           dir_in;
 167        unsigned char           map_dir;
 168        unsigned char           index;
 169        unsigned char           mc;
 170        u16                     interval;
 171
 172        unsigned int            halted:1;
 173        unsigned int            periodic:1;
 174        unsigned int            isochronous:1;
 175        unsigned int            send_zlp:1;
 176        unsigned int            wedged:1;
 177        unsigned int            target_frame;
 178#define TARGET_FRAME_INITIAL   0xFFFFFFFF
 179        bool                    frame_overrun;
 180
 181        dma_addr_t              desc_list_dma;
 182        struct dwc2_dma_desc    *desc_list;
 183        u8                      desc_count;
 184
 185        unsigned int            next_desc;
 186        unsigned int            compl_desc;
 187
 188        char                    name[10];
 189};
 190
 191/**
 192 * struct dwc2_hsotg_req - data transfer request
 193 * @req: The USB gadget request
 194 * @queue: The list of requests for the endpoint this is queued for.
 195 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
 196 */
 197struct dwc2_hsotg_req {
 198        struct usb_request      req;
 199        struct list_head        queue;
 200        void *saved_req_buf;
 201};
 202
 203#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
 204        IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 205#define call_gadget(_hs, _entry) \
 206do { \
 207        if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
 208                (_hs)->driver && (_hs)->driver->_entry) { \
 209                spin_unlock(&_hs->lock); \
 210                (_hs)->driver->_entry(&(_hs)->gadget); \
 211                spin_lock(&_hs->lock); \
 212        } \
 213} while (0)
 214#else
 215#define call_gadget(_hs, _entry)        do {} while (0)
 216#endif
 217
 218struct dwc2_hsotg;
 219struct dwc2_host_chan;
 220
 221/* Device States */
 222enum dwc2_lx_state {
 223        DWC2_L0,        /* On state */
 224        DWC2_L1,        /* LPM sleep state */
 225        DWC2_L2,        /* USB suspend state */
 226        DWC2_L3,        /* Off state */
 227};
 228
 229/* Gadget ep0 states */
 230enum dwc2_ep0_state {
 231        DWC2_EP0_SETUP,
 232        DWC2_EP0_DATA_IN,
 233        DWC2_EP0_DATA_OUT,
 234        DWC2_EP0_STATUS_IN,
 235        DWC2_EP0_STATUS_OUT,
 236};
 237
 238/**
 239 * struct dwc2_core_params - Parameters for configuring the core
 240 *
 241 * @otg_cap:            Specifies the OTG capabilities.
 242 *                       0 - HNP and SRP capable
 243 *                       1 - SRP Only capable
 244 *                       2 - No HNP/SRP capable (always available)
 245 *                      Defaults to best available option (0, 1, then 2)
 246 * @host_dma:           Specifies whether to use slave or DMA mode for accessing
 247 *                      the data FIFOs. The driver will automatically detect the
 248 *                      value for this parameter if none is specified.
 249 *                       0 - Slave (always available)
 250 *                       1 - DMA (default, if available)
 251 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 252 *                      address DMA mode or descriptor DMA mode for accessing
 253 *                      the data FIFOs. The driver will automatically detect the
 254 *                      value for this if none is specified.
 255 *                       0 - Address DMA
 256 *                       1 - Descriptor DMA (default, if available)
 257 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
 258 *                      address DMA mode or descriptor DMA mode for accessing
 259 *                      the data FIFOs in Full Speed mode only. The driver
 260 *                      will automatically detect the value for this if none is
 261 *                      specified.
 262 *                       0 - Address DMA
 263 *                       1 - Descriptor DMA in FS (default, if available)
 264 * @speed:              Specifies the maximum speed of operation in host and
 265 *                      device mode. The actual speed depends on the speed of
 266 *                      the attached device and the value of phy_type.
 267 *                       0 - High Speed
 268 *                           (default when phy_type is UTMI+ or ULPI)
 269 *                       1 - Full Speed
 270 *                           (default when phy_type is Full Speed)
 271 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
 272 *                       1 - Allow dynamic FIFO sizing (default, if available)
 273 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
 274 *                      are enabled for non-periodic IN endpoints in device
 275 *                      mode.
 276 * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
 277 *                      dynamic FIFO sizing is enabled
 278 *                       16 to 32768
 279 *                      Actual maximum value is autodetected and also
 280 *                      the default.
 281 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 282 *                      in host mode when dynamic FIFO sizing is enabled
 283 *                       16 to 32768
 284 *                      Actual maximum value is autodetected and also
 285 *                      the default.
 286 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 287 *                      host mode when dynamic FIFO sizing is enabled
 288 *                       16 to 32768
 289 *                      Actual maximum value is autodetected and also
 290 *                      the default.
 291 * @max_transfer_size:  The maximum transfer size supported, in bytes
 292 *                       2047 to 65,535
 293 *                      Actual maximum value is autodetected and also
 294 *                      the default.
 295 * @max_packet_count:   The maximum number of packets in a transfer
 296 *                       15 to 511
 297 *                      Actual maximum value is autodetected and also
 298 *                      the default.
 299 * @host_channels:      The number of host channel registers to use
 300 *                       1 to 16
 301 *                      Actual maximum value is autodetected and also
 302 *                      the default.
 303 * @phy_type:           Specifies the type of PHY interface to use. By default,
 304 *                      the driver will automatically detect the phy_type.
 305 *                       0 - Full Speed Phy
 306 *                       1 - UTMI+ Phy
 307 *                       2 - ULPI Phy
 308 *                      Defaults to best available option (2, 1, then 0)
 309 * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
 310 *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
 311 *                      ULPI phy_type, this parameter indicates the data width
 312 *                      between the MAC and the ULPI Wrapper.) Also, this
 313 *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
 314 *                      parameter was set to "8 and 16 bits", meaning that the
 315 *                      core has been configured to work at either data path
 316 *                      width.
 317 *                       8 or 16 (default 16 if available)
 318 * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
 319 *                      data rate. This parameter is only applicable if phy_type
 320 *                      is ULPI.
 321 *                       0 - single data rate ULPI interface with 8 bit wide
 322 *                           data bus (default)
 323 *                       1 - double data rate ULPI interface with 4 bit wide
 324 *                           data bus
 325 * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
 326 *                      external supply to drive the VBus
 327 *                       0 - Internal supply (default)
 328 *                       1 - External supply
 329 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 330 *                      speed PHY. This parameter is only applicable if phy_type
 331 *                      is FS.
 332 *                       0 - No (default)
 333 *                       1 - Yes
 334 * @ipg_isoc_en:        Indicates the IPG supports is enabled or disabled.
 335 *                       0 - Disable (default)
 336 *                       1 - Enable
 337 * @acg_enable:         For enabling Active Clock Gating in the controller
 338 *                       0 - No
 339 *                       1 - Yes
 340 * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
 341 *                       0 - No (default)
 342 *                       1 - Yes
 343 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
 344 *                      when attached to a Full Speed or Low Speed device in
 345 *                      host mode.
 346 *                       0 - Don't support low power mode (default)
 347 *                       1 - Support low power mode
 348 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
 349 *                      when connected to a Low Speed device in host
 350 *                      mode. This parameter is applicable only if
 351 *                      host_support_fs_ls_low_power is enabled.
 352 *                       0 - 48 MHz
 353 *                           (default when phy_type is UTMI+ or ULPI)
 354 *                       1 - 6 MHz
 355 *                           (default when phy_type is Full Speed)
 356 * @oc_disable:         Flag to disable overcurrent condition.
 357 *                      0 - Allow overcurrent condition to get detected
 358 *                      1 - Disable overcurrent condtion to get detected
 359 * @ts_dline:           Enable Term Select Dline pulsing
 360 *                       0 - No (default)
 361 *                       1 - Yes
 362 * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
 363 *                       0 - No (default for core < 2.92a)
 364 *                       1 - Yes (default for core >= 2.92a)
 365 * @ahbcfg:             This field allows the default value of the GAHBCFG
 366 *                      register to be overridden
 367 *                       -1         - GAHBCFG value will be set to 0x06
 368 *                                    (INCR, default)
 369 *                       all others - GAHBCFG value will be overridden with
 370 *                                    this value
 371 *                      Not all bits can be controlled like this, the
 372 *                      bits defined by GAHBCFG_CTRL_MASK are controlled
 373 *                      by the driver and are ignored in this
 374 *                      configuration value.
 375 * @uframe_sched:       True to enable the microframe scheduler
 376 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
 377 *                      Disable CONIDSTSCHNG controller interrupt in such
 378 *                      case.
 379 *                      0 - No (default)
 380 *                      1 - Yes
 381 * @power_down:         Specifies whether the controller support power_down.
 382 *                      If power_down is enabled, the controller will enter
 383 *                      power_down in both peripheral and host mode when
 384 *                      needed.
 385 *                      0 - No (default)
 386 *                      1 - Partial power down
 387 *                      2 - Hibernation
 388 * @no_clock_gating:    Specifies whether to avoid clock gating feature.
 389 *                      0 - No (use clock gating)
 390 *                      1 - Yes (avoid it)
 391 * @lpm:                Enable LPM support.
 392 *                      0 - No
 393 *                      1 - Yes
 394 * @lpm_clock_gating:           Enable core PHY clock gating.
 395 *                      0 - No
 396 *                      1 - Yes
 397 * @besl:               Enable LPM Errata support.
 398 *                      0 - No
 399 *                      1 - Yes
 400 * @hird_threshold_en:  HIRD or HIRD Threshold enable.
 401 *                      0 - No
 402 *                      1 - Yes
 403 * @hird_threshold:     Value of BESL or HIRD Threshold.
 404 * @ref_clk_per:        Indicates in terms of pico seconds the period
 405 *                      of ref_clk.
 406 *                      62500 - 16MHz
 407 *                      58823 - 17MHz
 408 *                      52083 - 19.2MHz
 409 *                      50000 - 20MHz
 410 *                      41666 - 24MHz
 411 *                      33333 - 30MHz (default)
 412 *                      25000 - 40MHz
 413 * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which
 414 *                      the controller should generate an interrupt if the
 415 *                      device had been in L1 state until that period.
 416 *                      This is used by SW to initiate Remote WakeUp in the
 417 *                      controller so as to sync to the uF number from the host.
 418 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
 419 *                      register.
 420 *                      0 - Deactivate the transceiver (default)
 421 *                      1 - Activate the transceiver
 422 * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level
 423 *                      detection using GGPIO register.
 424 *                      0 - Deactivate the external level detection (default)
 425 *                      1 - Activate the external level detection
 426 * @g_dma:              Enables gadget dma usage (default: autodetect).
 427 * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
 428 * @g_rx_fifo_size:     The periodic rx fifo size for the device, in
 429 *                      DWORDS from 16-32768 (default: 2048 if
 430 *                      possible, otherwise autodetect).
 431 * @g_np_tx_fifo_size:  The non-periodic tx fifo size for the device in
 432 *                      DWORDS from 16-32768 (default: 1024 if
 433 *                      possible, otherwise autodetect).
 434 * @g_tx_fifo_size:     An array of TX fifo sizes in dedicated fifo
 435 *                      mode. Each value corresponds to one EP
 436 *                      starting from EP1 (max 15 values). Sizes are
 437 *                      in DWORDS with possible values from
 438 *                      16-32768 (default: 256, 256, 256, 256, 768,
 439 *                      768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
 440 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
 441 *                      while full&low speed device connect. And change speed
 442 *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
 443 *                      0 - No (default)
 444 *                      1 - Yes
 445 * @service_interval:   Enable service interval based scheduling.
 446 *                      0 - No
 447 *                      1 - Yes
 448 *
 449 * The following parameters may be specified when starting the module. These
 450 * parameters define how the DWC_otg controller should be configured. A
 451 * value of -1 (or any other out of range value) for any parameter means
 452 * to read the value from hardware (if possible) or use the builtin
 453 * default described above.
 454 */
 455struct dwc2_core_params {
 456        u8 otg_cap;
 457#define DWC2_CAP_PARAM_HNP_SRP_CAPABLE          0
 458#define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE         1
 459#define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE       2
 460
 461        u8 phy_type;
 462#define DWC2_PHY_TYPE_PARAM_FS          0
 463#define DWC2_PHY_TYPE_PARAM_UTMI        1
 464#define DWC2_PHY_TYPE_PARAM_ULPI        2
 465
 466        u8 speed;
 467#define DWC2_SPEED_PARAM_HIGH   0
 468#define DWC2_SPEED_PARAM_FULL   1
 469#define DWC2_SPEED_PARAM_LOW    2
 470
 471        u8 phy_utmi_width;
 472        bool phy_ulpi_ddr;
 473        bool phy_ulpi_ext_vbus;
 474        bool enable_dynamic_fifo;
 475        bool en_multiple_tx_fifo;
 476        bool i2c_enable;
 477        bool acg_enable;
 478        bool ulpi_fs_ls;
 479        bool ts_dline;
 480        bool reload_ctl;
 481        bool uframe_sched;
 482        bool external_id_pin_ctl;
 483
 484        int power_down;
 485#define DWC2_POWER_DOWN_PARAM_NONE              0
 486#define DWC2_POWER_DOWN_PARAM_PARTIAL           1
 487#define DWC2_POWER_DOWN_PARAM_HIBERNATION       2
 488        bool no_clock_gating;
 489
 490        bool lpm;
 491        bool lpm_clock_gating;
 492        bool besl;
 493        bool hird_threshold_en;
 494        bool service_interval;
 495        u8 hird_threshold;
 496        bool activate_stm_fs_transceiver;
 497        bool activate_stm_id_vb_detection;
 498        bool ipg_isoc_en;
 499        u16 max_packet_count;
 500        u32 max_transfer_size;
 501        u32 ahbcfg;
 502
 503        /* GREFCLK parameters */
 504        u32 ref_clk_per;
 505        u16 sof_cnt_wkup_alert;
 506
 507        /* Host parameters */
 508        bool host_dma;
 509        bool dma_desc_enable;
 510        bool dma_desc_fs_enable;
 511        bool host_support_fs_ls_low_power;
 512        bool host_ls_low_power_phy_clk;
 513        bool oc_disable;
 514
 515        u8 host_channels;
 516        u16 host_rx_fifo_size;
 517        u16 host_nperio_tx_fifo_size;
 518        u16 host_perio_tx_fifo_size;
 519
 520        /* Gadget parameters */
 521        bool g_dma;
 522        bool g_dma_desc;
 523        u32 g_rx_fifo_size;
 524        u32 g_np_tx_fifo_size;
 525        u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
 526
 527        bool change_speed_quirk;
 528};
 529
 530/**
 531 * struct dwc2_hw_params - Autodetected parameters.
 532 *
 533 * These parameters are the various parameters read from hardware
 534 * registers during initialization. They typically contain the best
 535 * supported or maximum value that can be configured in the
 536 * corresponding dwc2_core_params value.
 537 *
 538 * The values that are not in dwc2_core_params are documented below.
 539 *
 540 * @op_mode:             Mode of Operation
 541 *                       0 - HNP- and SRP-Capable OTG (Host & Device)
 542 *                       1 - SRP-Capable OTG (Host & Device)
 543 *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
 544 *                       3 - SRP-Capable Device
 545 *                       4 - Non-OTG Device
 546 *                       5 - SRP-Capable Host
 547 *                       6 - Non-OTG Host
 548 * @arch:                Architecture
 549 *                       0 - Slave only
 550 *                       1 - External DMA
 551 *                       2 - Internal DMA
 552 * @ipg_isoc_en:        This feature indicates that the controller supports
 553 *                      the worst-case scenario of Rx followed by Rx
 554 *                      Interpacket Gap (IPG) (32 bitTimes) as per the utmi
 555 *                      specification for any token following ISOC OUT token.
 556 *                       0 - Don't support
 557 *                       1 - Support
 558 * @power_optimized:    Are power optimizations enabled?
 559 * @num_dev_ep:         Number of device endpoints available
 560 * @num_dev_in_eps:     Number of device IN endpoints available
 561 * @num_dev_perio_in_ep: Number of device periodic IN endpoints
 562 *                       available
 563 * @dev_token_q_depth:  Device Mode IN Token Sequence Learning Queue
 564 *                      Depth
 565 *                       0 to 30
 566 * @host_perio_tx_q_depth:
 567 *                      Host Mode Periodic Request Queue Depth
 568 *                       2, 4 or 8
 569 * @nperio_tx_q_depth:
 570 *                      Non-Periodic Request Queue Depth
 571 *                       2, 4 or 8
 572 * @hs_phy_type:         High-speed PHY interface type
 573 *                       0 - High-speed interface not supported
 574 *                       1 - UTMI+
 575 *                       2 - ULPI
 576 *                       3 - UTMI+ and ULPI
 577 * @fs_phy_type:         Full-speed PHY interface type
 578 *                       0 - Full speed interface not supported
 579 *                       1 - Dedicated full speed interface
 580 *                       2 - FS pins shared with UTMI+ pins
 581 *                       3 - FS pins shared with ULPI pins
 582 * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
 583 * @hibernation:        Is hibernation enabled?
 584 * @utmi_phy_data_width: UTMI+ PHY data width
 585 *                       0 - 8 bits
 586 *                       1 - 16 bits
 587 *                       2 - 8 or 16 bits
 588 * @snpsid:             Value from SNPSID register
 589 * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
 590 * @g_tx_fifo_size:     Power-on values of TxFIFO sizes
 591 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 592 *                      address DMA mode or descriptor DMA mode for accessing
 593 *                      the data FIFOs. The driver will automatically detect the
 594 *                      value for this if none is specified.
 595 *                       0 - Address DMA
 596 *                       1 - Descriptor DMA (default, if available)
 597 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
 598 *                       1 - Allow dynamic FIFO sizing (default, if available)
 599 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
 600 *                      are enabled for non-periodic IN endpoints in device
 601 *                      mode.
 602 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 603 *                      in host mode when dynamic FIFO sizing is enabled
 604 *                       16 to 32768
 605 *                      Actual maximum value is autodetected and also
 606 *                      the default.
 607 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 608 *                      host mode when dynamic FIFO sizing is enabled
 609 *                       16 to 32768
 610 *                      Actual maximum value is autodetected and also
 611 *                      the default.
 612 * @max_transfer_size:  The maximum transfer size supported, in bytes
 613 *                       2047 to 65,535
 614 *                      Actual maximum value is autodetected and also
 615 *                      the default.
 616 * @max_packet_count:   The maximum number of packets in a transfer
 617 *                       15 to 511
 618 *                      Actual maximum value is autodetected and also
 619 *                      the default.
 620 * @host_channels:      The number of host channel registers to use
 621 *                       1 to 16
 622 *                      Actual maximum value is autodetected and also
 623 *                      the default.
 624 * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 625 *                           in device mode when dynamic FIFO sizing is enabled
 626 *                           16 to 32768
 627 *                           Actual maximum value is autodetected and also
 628 *                           the default.
 629 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 630 *                      speed PHY. This parameter is only applicable if phy_type
 631 *                      is FS.
 632 *                       0 - No (default)
 633 *                       1 - Yes
 634 * @acg_enable:         For enabling Active Clock Gating in the controller
 635 *                       0 - Disable
 636 *                       1 - Enable
 637 * @lpm_mode:           For enabling Link Power Management in the controller
 638 *                       0 - Disable
 639 *                       1 - Enable
 640 * @rx_fifo_size:       Number of 4-byte words in the  Rx FIFO when dynamic
 641 *                      FIFO sizing is enabled 16 to 32768
 642 *                      Actual maximum value is autodetected and also
 643 *                      the default.
 644 * @service_interval_mode: For enabling service interval based scheduling in the
 645 *                         controller.
 646 *                           0 - Disable
 647 *                           1 - Enable
 648 */
 649struct dwc2_hw_params {
 650        unsigned op_mode:3;
 651        unsigned arch:2;
 652        unsigned dma_desc_enable:1;
 653        unsigned enable_dynamic_fifo:1;
 654        unsigned en_multiple_tx_fifo:1;
 655        unsigned rx_fifo_size:16;
 656        unsigned host_nperio_tx_fifo_size:16;
 657        unsigned dev_nperio_tx_fifo_size:16;
 658        unsigned host_perio_tx_fifo_size:16;
 659        unsigned nperio_tx_q_depth:3;
 660        unsigned host_perio_tx_q_depth:3;
 661        unsigned dev_token_q_depth:5;
 662        unsigned max_transfer_size:26;
 663        unsigned max_packet_count:11;
 664        unsigned host_channels:5;
 665        unsigned hs_phy_type:2;
 666        unsigned fs_phy_type:2;
 667        unsigned i2c_enable:1;
 668        unsigned acg_enable:1;
 669        unsigned num_dev_ep:4;
 670        unsigned num_dev_in_eps : 4;
 671        unsigned num_dev_perio_in_ep:4;
 672        unsigned total_fifo_size:16;
 673        unsigned power_optimized:1;
 674        unsigned hibernation:1;
 675        unsigned utmi_phy_data_width:2;
 676        unsigned lpm_mode:1;
 677        unsigned ipg_isoc_en:1;
 678        unsigned service_interval_mode:1;
 679        u32 snpsid;
 680        u32 dev_ep_dirs;
 681        u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
 682};
 683
 684/* Size of control and EP0 buffers */
 685#define DWC2_CTRL_BUFF_SIZE 8
 686
 687/**
 688 * struct dwc2_gregs_backup - Holds global registers state before
 689 * entering partial power down
 690 * @gotgctl:            Backup of GOTGCTL register
 691 * @gintmsk:            Backup of GINTMSK register
 692 * @gahbcfg:            Backup of GAHBCFG register
 693 * @gusbcfg:            Backup of GUSBCFG register
 694 * @grxfsiz:            Backup of GRXFSIZ register
 695 * @gnptxfsiz:          Backup of GNPTXFSIZ register
 696 * @gi2cctl:            Backup of GI2CCTL register
 697 * @glpmcfg:            Backup of GLPMCFG register
 698 * @gdfifocfg:          Backup of GDFIFOCFG register
 699 * @pcgcctl:            Backup of PCGCCTL register
 700 * @pcgcctl1:           Backup of PCGCCTL1 register
 701 * @dtxfsiz:            Backup of DTXFSIZ registers for each endpoint
 702 * @gpwrdn:             Backup of GPWRDN register
 703 * @valid:              True if registers values backuped.
 704 */
 705struct dwc2_gregs_backup {
 706        u32 gotgctl;
 707        u32 gintmsk;
 708        u32 gahbcfg;
 709        u32 gusbcfg;
 710        u32 grxfsiz;
 711        u32 gnptxfsiz;
 712        u32 gi2cctl;
 713        u32 glpmcfg;
 714        u32 pcgcctl;
 715        u32 pcgcctl1;
 716        u32 gdfifocfg;
 717        u32 gpwrdn;
 718        bool valid;
 719};
 720
 721/**
 722 * struct dwc2_dregs_backup - Holds device registers state before
 723 * entering partial power down
 724 * @dcfg:               Backup of DCFG register
 725 * @dctl:               Backup of DCTL register
 726 * @daintmsk:           Backup of DAINTMSK register
 727 * @diepmsk:            Backup of DIEPMSK register
 728 * @doepmsk:            Backup of DOEPMSK register
 729 * @diepctl:            Backup of DIEPCTL register
 730 * @dieptsiz:           Backup of DIEPTSIZ register
 731 * @diepdma:            Backup of DIEPDMA register
 732 * @doepctl:            Backup of DOEPCTL register
 733 * @doeptsiz:           Backup of DOEPTSIZ register
 734 * @doepdma:            Backup of DOEPDMA register
 735 * @dtxfsiz:            Backup of DTXFSIZ registers for each endpoint
 736 * @valid:      True if registers values backuped.
 737 */
 738struct dwc2_dregs_backup {
 739        u32 dcfg;
 740        u32 dctl;
 741        u32 daintmsk;
 742        u32 diepmsk;
 743        u32 doepmsk;
 744        u32 diepctl[MAX_EPS_CHANNELS];
 745        u32 dieptsiz[MAX_EPS_CHANNELS];
 746        u32 diepdma[MAX_EPS_CHANNELS];
 747        u32 doepctl[MAX_EPS_CHANNELS];
 748        u32 doeptsiz[MAX_EPS_CHANNELS];
 749        u32 doepdma[MAX_EPS_CHANNELS];
 750        u32 dtxfsiz[MAX_EPS_CHANNELS];
 751        bool valid;
 752};
 753
 754/**
 755 * struct dwc2_hregs_backup - Holds host registers state before
 756 * entering partial power down
 757 * @hcfg:               Backup of HCFG register
 758 * @haintmsk:           Backup of HAINTMSK register
 759 * @hcintmsk:           Backup of HCINTMSK register
 760 * @hprt0:              Backup of HPTR0 register
 761 * @hfir:               Backup of HFIR register
 762 * @hptxfsiz:           Backup of HPTXFSIZ register
 763 * @valid:      True if registers values backuped.
 764 */
 765struct dwc2_hregs_backup {
 766        u32 hcfg;
 767        u32 haintmsk;
 768        u32 hcintmsk[MAX_EPS_CHANNELS];
 769        u32 hprt0;
 770        u32 hfir;
 771        u32 hptxfsiz;
 772        bool valid;
 773};
 774
 775/*
 776 * Constants related to high speed periodic scheduling
 777 *
 778 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
 779 * reservation point of view it's assumed that the schedule goes right back to
 780 * the beginning after the end of the schedule.
 781 *
 782 * What does that mean for scheduling things with a long interval?  It means
 783 * we'll reserve time for them in every possible microframe that they could
 784 * ever be scheduled in.  ...but we'll still only actually schedule them as
 785 * often as they were requested.
 786 *
 787 * We keep our schedule in a "bitmap" structure.  This simplifies having
 788 * to keep track of and merge intervals: we just let the bitmap code do most
 789 * of the heavy lifting.  In a way scheduling is much like memory allocation.
 790 *
 791 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
 792 * supposed to schedule for periodic transfers).  That's according to spec.
 793 *
 794 * Note that though we only schedule 80% of each microframe, the bitmap that we
 795 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
 796 * space for each uFrame).
 797 *
 798 * Requirements:
 799 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
 800 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
 801 *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
 802 *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
 803 */
 804#define DWC2_US_PER_UFRAME              125
 805#define DWC2_HS_PERIODIC_US_PER_UFRAME  100
 806
 807#define DWC2_HS_SCHEDULE_UFRAMES        8
 808#define DWC2_HS_SCHEDULE_US             (DWC2_HS_SCHEDULE_UFRAMES * \
 809                                         DWC2_HS_PERIODIC_US_PER_UFRAME)
 810
 811/*
 812 * Constants related to low speed scheduling
 813 *
 814 * For high speed we schedule every 1us.  For low speed that's a bit overkill,
 815 * so we make up a unit called a "slice" that's worth 25us.  There are 40
 816 * slices in a full frame and we can schedule 36 of those (90%) for periodic
 817 * transfers.
 818 *
 819 * Our low speed schedule can be as short as 1 frame or could be longer.  When
 820 * we only schedule 1 frame it means that we'll need to reserve a time every
 821 * frame even for things that only transfer very rarely, so something that runs
 822 * every 2048 frames will get time reserved in every frame.  Our low speed
 823 * schedule can be longer and we'll be able to handle more overlap, but that
 824 * will come at increased memory cost and increased time to schedule.
 825 *
 826 * Note: one other advantage of a short low speed schedule is that if we mess
 827 * up and miss scheduling we can jump in and use any of the slots that we
 828 * happened to reserve.
 829 *
 830 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
 831 * the schedule.  There will be one schedule per TT.
 832 *
 833 * Requirements:
 834 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
 835 */
 836#define DWC2_US_PER_SLICE       25
 837#define DWC2_SLICES_PER_UFRAME  (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
 838
 839#define DWC2_ROUND_US_TO_SLICE(us) \
 840                                (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
 841                                 DWC2_US_PER_SLICE)
 842
 843#define DWC2_LS_PERIODIC_US_PER_FRAME \
 844                                900
 845#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
 846                                (DWC2_LS_PERIODIC_US_PER_FRAME / \
 847                                 DWC2_US_PER_SLICE)
 848
 849#define DWC2_LS_SCHEDULE_FRAMES 1
 850#define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \
 851                                 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
 852
 853/**
 854 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
 855 * and periodic schedules
 856 *
 857 * These are common for both host and peripheral modes:
 858 *
 859 * @dev:                The struct device pointer
 860 * @regs:               Pointer to controller regs
 861 * @hw_params:          Parameters that were autodetected from the
 862 *                      hardware registers
 863 * @params:     Parameters that define how the core should be configured
 864 * @op_state:           The operational State, during transitions (a_host=>
 865 *                      a_peripheral and b_device=>b_host) this may not match
 866 *                      the core, but allows the software to determine
 867 *                      transitions
 868 * @dr_mode:            Requested mode of operation, one of following:
 869 *                      - USB_DR_MODE_PERIPHERAL
 870 *                      - USB_DR_MODE_HOST
 871 *                      - USB_DR_MODE_OTG
 872 * @role_sw:            usb_role_switch handle
 873 * @hcd_enabled:        Host mode sub-driver initialization indicator.
 874 * @gadget_enabled:     Peripheral mode sub-driver initialization indicator.
 875 * @ll_hw_enabled:      Status of low-level hardware resources.
 876 * @hibernated:         True if core is hibernated
 877 * @in_ppd:             True if core is partial power down mode.
 878 * @bus_suspended:      True if bus is suspended
 879 * @reset_phy_on_wake:  Quirk saying that we should assert PHY reset on a
 880 *                      remote wakeup.
 881 * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend.
 882 * @need_phy_for_wake:  Quirk saying that we should keep the PHY on at
 883 *                      suspend if we need USB to wake us up.
 884 * @frame_number:       Frame number read from the core. For both device
 885 *                      and host modes. The value ranges are from 0
 886 *                      to HFNUM_MAX_FRNUM.
 887 * @phy:                The otg phy transceiver structure for phy control.
 888 * @uphy:               The otg phy transceiver structure for old USB phy
 889 *                      control.
 890 * @plat:               The platform specific configuration data. This can be
 891 *                      removed once all SoCs support usb transceiver.
 892 * @supplies:           Definition of USB power supplies
 893 * @vbus_supply:        Regulator supplying vbus.
 894 * @usb33d:             Optional 3.3v regulator used on some stm32 devices to
 895 *                      supply ID and VBUS detection hardware.
 896 * @lock:               Spinlock that protects all the driver data structures
 897 * @priv:               Stores a pointer to the struct usb_hcd
 898 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
 899 *                      transfer are in process of being queued
 900 * @srp_success:        Stores status of SRP request in the case of a FS PHY
 901 *                      with an I2C interface
 902 * @wq_otg:             Workqueue object used for handling of some interrupts
 903 * @wf_otg:             Work object for handling Connector ID Status Change
 904 *                      interrupt
 905 * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
 906 * @lx_state:           Lx state of connected device
 907 * @gr_backup: Backup of global registers during suspend
 908 * @dr_backup: Backup of device registers during suspend
 909 * @hr_backup: Backup of host registers during suspend
 910 * @needs_byte_swap:            Specifies whether the opposite endianness.
 911 *
 912 * These are for host mode:
 913 *
 914 * @flags:              Flags for handling root port state changes
 915 * @flags.d32:          Contain all root port flags
 916 * @flags.b:            Separate root port flags from each other
 917 * @flags.b.port_connect_status_change: True if root port connect status
 918 *                      changed
 919 * @flags.b.port_connect_status: True if device connected to root port
 920 * @flags.b.port_reset_change: True if root port reset status changed
 921 * @flags.b.port_enable_change: True if root port enable status changed
 922 * @flags.b.port_suspend_change: True if root port suspend status changed
 923 * @flags.b.port_over_current_change: True if root port over current state
 924 *                       changed.
 925 * @flags.b.port_l1_change: True if root port l1 status changed
 926 * @flags.b.reserved:   Reserved bits of root port register
 927 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
 928 *                      Transfers associated with these QHs are not currently
 929 *                      assigned to a host channel.
 930 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
 931 *                      Transfers associated with these QHs are currently
 932 *                      assigned to a host channel.
 933 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
 934 *                      non-periodic schedule
 935 * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
 936 *                      Transfers associated with these QHs are not currently
 937 *                      assigned to a host channel.
 938 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
 939 *                      list of QHs for periodic transfers that are _not_
 940 *                      scheduled for the next frame. Each QH in the list has an
 941 *                      interval counter that determines when it needs to be
 942 *                      scheduled for execution. This scheduling mechanism
 943 *                      allows only a simple calculation for periodic bandwidth
 944 *                      used (i.e. must assume that all periodic transfers may
 945 *                      need to execute in the same frame). However, it greatly
 946 *                      simplifies scheduling and should be sufficient for the
 947 *                      vast majority of OTG hosts, which need to connect to a
 948 *                      small number of peripherals at one time. Items move from
 949 *                      this list to periodic_sched_ready when the QH interval
 950 *                      counter is 0 at SOF.
 951 * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
 952 *                      the next frame, but have not yet been assigned to host
 953 *                      channels. Items move from this list to
 954 *                      periodic_sched_assigned as host channels become
 955 *                      available during the current frame.
 956 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
 957 *                      frame that are assigned to host channels. Items move
 958 *                      from this list to periodic_sched_queued as the
 959 *                      transactions for the QH are queued to the DWC_otg
 960 *                      controller.
 961 * @periodic_sched_queued: List of periodic QHs that have been queued for
 962 *                      execution. Items move from this list to either
 963 *                      periodic_sched_inactive or periodic_sched_ready when the
 964 *                      channel associated with the transfer is released. If the
 965 *                      interval for the QH is 1, the item moves to
 966 *                      periodic_sched_ready because it must be rescheduled for
 967 *                      the next frame. Otherwise, the item moves to
 968 *                      periodic_sched_inactive.
 969 * @split_order:        List keeping track of channels doing splits, in order.
 970 * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
 971 *                      This value is in microseconds per (micro)frame. The
 972 *                      assumption is that all periodic transfers may occur in
 973 *                      the same (micro)frame.
 974 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
 975 *                      host is in high speed mode; low speed schedules are
 976 *                      stored elsewhere since we need one per TT.
 977 * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
 978 *                      SOF enable/disable.
 979 * @free_hc_list:       Free host channels in the controller. This is a list of
 980 *                      struct dwc2_host_chan items.
 981 * @periodic_channels:  Number of host channels assigned to periodic transfers.
 982 *                      Currently assuming that there is a dedicated host
 983 *                      channel for each periodic transaction and at least one
 984 *                      host channel is available for non-periodic transactions.
 985 * @non_periodic_channels: Number of host channels assigned to non-periodic
 986 *                      transfers
 987 * @available_host_channels: Number of host channels available for the
 988 *                           microframe scheduler to use
 989 * @hc_ptr_array:       Array of pointers to the host channel descriptors.
 990 *                      Allows accessing a host channel descriptor given the
 991 *                      host channel number. This is useful in interrupt
 992 *                      handlers.
 993 * @status_buf:         Buffer used for data received during the status phase of
 994 *                      a control transfer.
 995 * @status_buf_dma:     DMA address for status_buf
 996 * @start_work:         Delayed work for handling host A-cable connection
 997 * @reset_work:         Delayed work for handling a port reset
 998 * @phy_reset_work:     Work structure for doing a PHY reset
 999 * @otg_port:           OTG port number
1000 * @frame_list:         Frame list
1001 * @frame_list_dma:     Frame list DMA address
1002 * @frame_list_sz:      Frame list size
1003 * @desc_gen_cache:     Kmem cache for generic descriptors
1004 * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
1005 * @unaligned_cache:    Kmem cache for DMA mode to handle non-aligned buf
1006 *
1007 * These are for peripheral mode:
1008 *
1009 * @driver:             USB gadget driver
1010 * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
1011 * @num_of_eps:         Number of available EPs (excluding EP0)
1012 * @debug_root:         Root directrory for debugfs.
1013 * @ep0_reply:          Request used for ep0 reply.
1014 * @ep0_buff:           Buffer for EP0 reply data, if needed.
1015 * @ctrl_buff:          Buffer for EP0 control requests.
1016 * @ctrl_req:           Request for EP0 control packets.
1017 * @ep0_state:          EP0 control transfers state
1018 * @delayed_status:             true when gadget driver asks for delayed status
1019 * @test_mode:          USB test mode requested by the host
1020 * @remote_wakeup_allowed: True if device is allowed to wake-up host by
1021 *                      remote-wakeup signalling
1022 * @setup_desc_dma:     EP0 setup stage desc chain DMA address
1023 * @setup_desc:         EP0 setup stage desc chain pointer
1024 * @ctrl_in_desc_dma:   EP0 IN data phase desc chain DMA address
1025 * @ctrl_in_desc:       EP0 IN data phase desc chain pointer
1026 * @ctrl_out_desc_dma:  EP0 OUT data phase desc chain DMA address
1027 * @ctrl_out_desc:      EP0 OUT data phase desc chain pointer
1028 * @irq:                Interrupt request line number
1029 * @clk:                Pointer to otg clock
1030 * @reset:              Pointer to dwc2 reset controller
1031 * @reset_ecc:          Pointer to dwc2 optional reset controller in Stratix10.
1032 * @regset:             A pointer to a struct debugfs_regset32, which contains
1033 *                      a pointer to an array of register definitions, the
1034 *                      array size and the base address where the register bank
1035 *                      is to be found.
1036 * @last_frame_num:     Number of last frame. Range from 0 to  32768
1037 * @frame_num_array:    Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1038 *                      defined, for missed SOFs tracking. Array holds that
1039 *                      frame numbers, which not equal to last_frame_num +1
1040 * @last_frame_num_array:   Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1041 *                          defined, for missed SOFs tracking.
1042 *                          If current_frame_number != last_frame_num+1
1043 *                          then last_frame_num added to this array
1044 * @frame_num_idx:      Actual size of frame_num_array and last_frame_num_array
1045 * @dumped_frame_num_array:     1 - if missed SOFs frame numbers dumbed
1046 *                              0 - if missed SOFs frame numbers not dumbed
1047 * @fifo_mem:                   Total internal RAM for FIFOs (bytes)
1048 * @fifo_map:           Each bit intend for concrete fifo. If that bit is set,
1049 *                      then that fifo is used
1050 * @gadget:             Represents a usb gadget device
1051 * @connected:          Used in slave mode. True if device connected with host
1052 * @eps_in:             The IN endpoints being supplied to the gadget framework
1053 * @eps_out:            The OUT endpoints being supplied to the gadget framework
1054 * @new_connection:     Used in host mode. True if there are new connected
1055 *                      device
1056 * @enabled:            Indicates the enabling state of controller
1057 *
1058 */
1059struct dwc2_hsotg {
1060        struct device *dev;
1061        void __iomem *regs;
1062        /** Params detected from hardware */
1063        struct dwc2_hw_params hw_params;
1064        /** Params to actually use */
1065        struct dwc2_core_params params;
1066        enum usb_otg_state op_state;
1067        enum usb_dr_mode dr_mode;
1068        struct usb_role_switch *role_sw;
1069        unsigned int hcd_enabled:1;
1070        unsigned int gadget_enabled:1;
1071        unsigned int ll_hw_enabled:1;
1072        unsigned int hibernated:1;
1073        unsigned int in_ppd:1;
1074        bool bus_suspended;
1075        unsigned int reset_phy_on_wake:1;
1076        unsigned int need_phy_for_wake:1;
1077        unsigned int phy_off_for_suspend:1;
1078        u16 frame_number;
1079
1080        struct phy *phy;
1081        struct usb_phy *uphy;
1082        struct dwc2_hsotg_plat *plat;
1083        struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
1084        struct regulator *vbus_supply;
1085        struct regulator *usb33d;
1086
1087        spinlock_t lock;
1088        void *priv;
1089        int     irq;
1090        struct clk *clk;
1091        struct reset_control *reset;
1092        struct reset_control *reset_ecc;
1093
1094        unsigned int queuing_high_bandwidth:1;
1095        unsigned int srp_success:1;
1096
1097        struct workqueue_struct *wq_otg;
1098        struct work_struct wf_otg;
1099        struct timer_list wkp_timer;
1100        enum dwc2_lx_state lx_state;
1101        struct dwc2_gregs_backup gr_backup;
1102        struct dwc2_dregs_backup dr_backup;
1103        struct dwc2_hregs_backup hr_backup;
1104
1105        struct dentry *debug_root;
1106        struct debugfs_regset32 *regset;
1107        bool needs_byte_swap;
1108
1109        /* DWC OTG HW Release versions */
1110#define DWC2_CORE_REV_2_71a     0x4f54271a
1111#define DWC2_CORE_REV_2_72a     0x4f54272a
1112#define DWC2_CORE_REV_2_80a     0x4f54280a
1113#define DWC2_CORE_REV_2_90a     0x4f54290a
1114#define DWC2_CORE_REV_2_91a     0x4f54291a
1115#define DWC2_CORE_REV_2_92a     0x4f54292a
1116#define DWC2_CORE_REV_2_94a     0x4f54294a
1117#define DWC2_CORE_REV_3_00a     0x4f54300a
1118#define DWC2_CORE_REV_3_10a     0x4f54310a
1119#define DWC2_CORE_REV_4_00a     0x4f54400a
1120#define DWC2_CORE_REV_4_20a     0x4f54420a
1121#define DWC2_FS_IOT_REV_1_00a   0x5531100a
1122#define DWC2_HS_IOT_REV_1_00a   0x5532100a
1123#define DWC2_CORE_REV_MASK      0x0000ffff
1124
1125        /* DWC OTG HW Core ID */
1126#define DWC2_OTG_ID             0x4f540000
1127#define DWC2_FS_IOT_ID          0x55310000
1128#define DWC2_HS_IOT_ID          0x55320000
1129
1130#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1131        union dwc2_hcd_internal_flags {
1132                u32 d32;
1133                struct {
1134                        unsigned port_connect_status_change:1;
1135                        unsigned port_connect_status:1;
1136                        unsigned port_reset_change:1;
1137                        unsigned port_enable_change:1;
1138                        unsigned port_suspend_change:1;
1139                        unsigned port_over_current_change:1;
1140                        unsigned port_l1_change:1;
1141                        unsigned reserved:25;
1142                } b;
1143        } flags;
1144
1145        struct list_head non_periodic_sched_inactive;
1146        struct list_head non_periodic_sched_waiting;
1147        struct list_head non_periodic_sched_active;
1148        struct list_head *non_periodic_qh_ptr;
1149        struct list_head periodic_sched_inactive;
1150        struct list_head periodic_sched_ready;
1151        struct list_head periodic_sched_assigned;
1152        struct list_head periodic_sched_queued;
1153        struct list_head split_order;
1154        u16 periodic_usecs;
1155        unsigned long hs_periodic_bitmap[
1156                DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
1157        u16 periodic_qh_count;
1158        bool new_connection;
1159
1160        u16 last_frame_num;
1161
1162#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1163#define FRAME_NUM_ARRAY_SIZE 1000
1164        u16 *frame_num_array;
1165        u16 *last_frame_num_array;
1166        int frame_num_idx;
1167        int dumped_frame_num_array;
1168#endif
1169
1170        struct list_head free_hc_list;
1171        int periodic_channels;
1172        int non_periodic_channels;
1173        int available_host_channels;
1174        struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1175        u8 *status_buf;
1176        dma_addr_t status_buf_dma;
1177#define DWC2_HCD_STATUS_BUF_SIZE 64
1178
1179        struct delayed_work start_work;
1180        struct delayed_work reset_work;
1181        struct work_struct phy_reset_work;
1182        u8 otg_port;
1183        u32 *frame_list;
1184        dma_addr_t frame_list_dma;
1185        u32 frame_list_sz;
1186        struct kmem_cache *desc_gen_cache;
1187        struct kmem_cache *desc_hsisoc_cache;
1188        struct kmem_cache *unaligned_cache;
1189#define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
1190
1191#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1192
1193#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1194        IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1195        /* Gadget structures */
1196        struct usb_gadget_driver *driver;
1197        int fifo_mem;
1198        unsigned int dedicated_fifos:1;
1199        unsigned char num_of_eps;
1200        u32 fifo_map;
1201
1202        struct usb_request *ep0_reply;
1203        struct usb_request *ctrl_req;
1204        void *ep0_buff;
1205        void *ctrl_buff;
1206        enum dwc2_ep0_state ep0_state;
1207        unsigned delayed_status : 1;
1208        u8 test_mode;
1209
1210        dma_addr_t setup_desc_dma[2];
1211        struct dwc2_dma_desc *setup_desc[2];
1212        dma_addr_t ctrl_in_desc_dma;
1213        struct dwc2_dma_desc *ctrl_in_desc;
1214        dma_addr_t ctrl_out_desc_dma;
1215        struct dwc2_dma_desc *ctrl_out_desc;
1216
1217        struct usb_gadget gadget;
1218        unsigned int enabled:1;
1219        unsigned int connected:1;
1220        unsigned int remote_wakeup_allowed:1;
1221        struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1222        struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1223#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1224};
1225
1226/* Normal architectures just use readl/write */
1227static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset)
1228{
1229        u32 val;
1230
1231        val = readl(hsotg->regs + offset);
1232        if (hsotg->needs_byte_swap)
1233                return swab32(val);
1234        else
1235                return val;
1236}
1237
1238static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset)
1239{
1240        if (hsotg->needs_byte_swap)
1241                writel(swab32(value), hsotg->regs + offset);
1242        else
1243                writel(value, hsotg->regs + offset);
1244
1245#ifdef DWC2_LOG_WRITES
1246        pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset);
1247#endif
1248}
1249
1250static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset,
1251                                  void *buffer, unsigned int count)
1252{
1253        if (count) {
1254                u32 *buf = buffer;
1255
1256                do {
1257                        u32 x = dwc2_readl(hsotg, offset);
1258                        *buf++ = x;
1259                } while (--count);
1260        }
1261}
1262
1263static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset,
1264                                   const void *buffer, unsigned int count)
1265{
1266        if (count) {
1267                const u32 *buf = buffer;
1268
1269                do {
1270                        dwc2_writel(hsotg, *buf++, offset);
1271                } while (--count);
1272        }
1273}
1274
1275/* Reasons for halting a host channel */
1276enum dwc2_halt_status {
1277        DWC2_HC_XFER_NO_HALT_STATUS,
1278        DWC2_HC_XFER_COMPLETE,
1279        DWC2_HC_XFER_URB_COMPLETE,
1280        DWC2_HC_XFER_ACK,
1281        DWC2_HC_XFER_NAK,
1282        DWC2_HC_XFER_NYET,
1283        DWC2_HC_XFER_STALL,
1284        DWC2_HC_XFER_XACT_ERR,
1285        DWC2_HC_XFER_FRAME_OVERRUN,
1286        DWC2_HC_XFER_BABBLE_ERR,
1287        DWC2_HC_XFER_DATA_TOGGLE_ERR,
1288        DWC2_HC_XFER_AHB_ERR,
1289        DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1290        DWC2_HC_XFER_URB_DEQUEUE,
1291};
1292
1293/* Core version information */
1294static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1295{
1296        return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1297}
1298
1299static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1300{
1301        return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1302}
1303
1304static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1305{
1306        return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1307}
1308
1309/*
1310 * The following functions support initialization of the core driver component
1311 * and the DWC_otg controller
1312 */
1313int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1314int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1315int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup,
1316                                 bool restore);
1317int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1318int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
1319                int reset, int is_host);
1320void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg);
1321int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy);
1322
1323void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
1324void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1325
1326bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1327
1328int dwc2_check_core_version(struct dwc2_hsotg *hsotg);
1329
1330/*
1331 * Common core Functions.
1332 * The following functions support managing the DWC_otg controller in either
1333 * device or host mode.
1334 */
1335void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1336void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1337void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1338
1339void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1340void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1341
1342void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1343                             int is_host);
1344int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1345int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
1346
1347void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1348
1349/* This function should be called on every hardware interrupt. */
1350irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1351
1352/* The device ID match table */
1353extern const struct of_device_id dwc2_of_match_table[];
1354extern const struct acpi_device_id dwc2_acpi_match[];
1355
1356int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1357int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1358
1359/* Common polling functions */
1360int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1361                            u32 timeout);
1362int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1363                              u32 timeout);
1364/* Parameters */
1365int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1366int dwc2_init_params(struct dwc2_hsotg *hsotg);
1367
1368/*
1369 * The following functions check the controller's OTG operation mode
1370 * capability (GHWCFG2.OTG_MODE).
1371 *
1372 * These functions can be used before the internal hsotg->hw_params
1373 * are read in and cached so they always read directly from the
1374 * GHWCFG2 register.
1375 */
1376unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1377bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1378bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1379bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1380
1381/*
1382 * Returns the mode of operation, host or device
1383 */
1384static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1385{
1386        return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1387}
1388
1389static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1390{
1391        return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1392}
1393
1394int dwc2_drd_init(struct dwc2_hsotg *hsotg);
1395void dwc2_drd_suspend(struct dwc2_hsotg *hsotg);
1396void dwc2_drd_resume(struct dwc2_hsotg *hsotg);
1397void dwc2_drd_exit(struct dwc2_hsotg *hsotg);
1398
1399/*
1400 * Dump core registers and SPRAM
1401 */
1402void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1403void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1404void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1405
1406/* Gadget defines */
1407#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1408        IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1409int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1410int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1411int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1412int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1413void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1414                                       bool reset);
1415void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg);
1416void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1417void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1418int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1419#define dwc2_is_device_connected(hsotg) (hsotg->connected)
1420int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1421int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
1422int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1423int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1424                                 int rem_wakeup, int reset);
1425int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1426int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1427                                        bool restore);
1428void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg);
1429void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1430                                   int rem_wakeup);
1431int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1432int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1433int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1434void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1435void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg);
1436static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg)
1437{ hsotg->fifo_map = 0; }
1438#else
1439static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1440{ return 0; }
1441static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1442{ return 0; }
1443static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1444{ return 0; }
1445static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1446{ return 0; }
1447static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1448                                                     bool reset) {}
1449static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {}
1450static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1451static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1452static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1453                                           int testmode)
1454{ return 0; }
1455#define dwc2_is_device_connected(hsotg) (0)
1456static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1457{ return 0; }
1458static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1459                                                int remote_wakeup)
1460{ return 0; }
1461static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1462{ return 0; }
1463static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1464                                               int rem_wakeup, int reset)
1465{ return 0; }
1466static inline int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1467{ return 0; }
1468static inline int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1469                                                      bool restore)
1470{ return 0; }
1471static inline void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1472static inline void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1473                                                 int rem_wakeup) {}
1474static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1475{ return 0; }
1476static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1477{ return 0; }
1478static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1479{ return 0; }
1480static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
1481static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {}
1482static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) {}
1483#endif
1484
1485#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1486int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1487int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1488void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1489void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1490void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1491int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
1492int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex);
1493int dwc2_port_resume(struct dwc2_hsotg *hsotg);
1494int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1495int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1496int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1497int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1498                               int rem_wakeup, int reset);
1499int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1500int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1501                                      int rem_wakeup, bool restore);
1502void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg);
1503void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup);
1504bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2);
1505static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg)
1506{ schedule_work(&hsotg->phy_reset_work); }
1507#else
1508static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1509{ return 0; }
1510static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1511                                                   int us)
1512{ return 0; }
1513static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1514static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1515static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1516static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1517static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1518{ return 0; }
1519static inline int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
1520{ return 0; }
1521static inline int dwc2_port_resume(struct dwc2_hsotg *hsotg)
1522{ return 0; }
1523static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1524{ return 0; }
1525static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1526{ return 0; }
1527static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1528{ return 0; }
1529static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1530{ return 0; }
1531static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1532                                             int rem_wakeup, int reset)
1533{ return 0; }
1534static inline int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1535{ return 0; }
1536static inline int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1537                                                    int rem_wakeup, bool restore)
1538{ return 0; }
1539static inline void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1540static inline void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg,
1541                                               int rem_wakeup) {}
1542static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
1543{ return false; }
1544static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {}
1545
1546#endif
1547
1548#endif /* __DWC2_CORE_H__ */
1549