linux/drivers/usb/dwc2/hcd.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
   2/*
   3 * hcd.h - DesignWare HS OTG Controller host-mode declarations
   4 *
   5 * Copyright (C) 2004-2013 Synopsys, Inc.
   6 *
   7 * Redistribution and use in source and binary forms, with or without
   8 * modification, are permitted provided that the following conditions
   9 * are met:
  10 * 1. Redistributions of source code must retain the above copyright
  11 *    notice, this list of conditions, and the following disclaimer,
  12 *    without modification.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. The names of the above-listed copyright holders may not be used
  17 *    to endorse or promote products derived from this software without
  18 *    specific prior written permission.
  19 *
  20 * ALTERNATIVELY, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") as published by the Free Software
  22 * Foundation; either version 2 of the License, or (at your option) any
  23 * later version.
  24 *
  25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  36 */
  37#ifndef __DWC2_HCD_H__
  38#define __DWC2_HCD_H__
  39
  40/*
  41 * This file contains the structures, constants, and interfaces for the
  42 * Host Contoller Driver (HCD)
  43 *
  44 * The Host Controller Driver (HCD) is responsible for translating requests
  45 * from the USB Driver into the appropriate actions on the DWC_otg controller.
  46 * It isolates the USBD from the specifics of the controller by providing an
  47 * API to the USBD.
  48 */
  49
  50struct dwc2_qh;
  51
  52/**
  53 * struct dwc2_host_chan - Software host channel descriptor
  54 *
  55 * @hc_num:             Host channel number, used for register address lookup
  56 * @dev_addr:           Address of the device
  57 * @ep_num:             Endpoint of the device
  58 * @ep_is_in:           Endpoint direction
  59 * @speed:              Device speed. One of the following values:
  60 *                       - USB_SPEED_LOW
  61 *                       - USB_SPEED_FULL
  62 *                       - USB_SPEED_HIGH
  63 * @ep_type:            Endpoint type. One of the following values:
  64 *                       - USB_ENDPOINT_XFER_CONTROL: 0
  65 *                       - USB_ENDPOINT_XFER_ISOC:    1
  66 *                       - USB_ENDPOINT_XFER_BULK:    2
  67 *                       - USB_ENDPOINT_XFER_INTR:    3
  68 * @max_packet:         Max packet size in bytes
  69 * @data_pid_start:     PID for initial transaction.
  70 *                       0: DATA0
  71 *                       1: DATA2
  72 *                       2: DATA1
  73 *                       3: MDATA (non-Control EP),
  74 *                          SETUP (Control EP)
  75 * @multi_count:        Number of additional periodic transactions per
  76 *                      (micro)frame
  77 * @xfer_buf:           Pointer to current transfer buffer position
  78 * @xfer_dma:           DMA address of xfer_buf
  79 * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
  80 *                      DWORD aligned
  81 * @xfer_len:           Total number of bytes to transfer
  82 * @xfer_count:         Number of bytes transferred so far
  83 * @start_pkt_count:    Packet count at start of transfer
  84 * @xfer_started:       True if the transfer has been started
  85 * @do_ping:            True if a PING request should be issued on this channel
  86 * @error_state:        True if the error count for this transaction is non-zero
  87 * @halt_on_queue:      True if this channel should be halted the next time a
  88 *                      request is queued for the channel. This is necessary in
  89 *                      slave mode if no request queue space is available when
  90 *                      an attempt is made to halt the channel.
  91 * @halt_pending:       True if the host channel has been halted, but the core
  92 *                      is not finished flushing queued requests
  93 * @do_split:           Enable split for the channel
  94 * @complete_split:     Enable complete split
  95 * @hub_addr:           Address of high speed hub for the split
  96 * @hub_port:           Port of the low/full speed device for the split
  97 * @xact_pos:           Split transaction position. One of the following values:
  98 *                       - DWC2_HCSPLT_XACTPOS_MID
  99 *                       - DWC2_HCSPLT_XACTPOS_BEGIN
 100 *                       - DWC2_HCSPLT_XACTPOS_END
 101 *                       - DWC2_HCSPLT_XACTPOS_ALL
 102 * @requests:           Number of requests issued for this channel since it was
 103 *                      assigned to the current transfer (not counting PINGs)
 104 * @schinfo:            Scheduling micro-frame bitmap
 105 * @ntd:                Number of transfer descriptors for the transfer
 106 * @halt_status:        Reason for halting the host channel
 107 * @hcint:               Contents of the HCINT register when the interrupt came
 108 * @qh:                 QH for the transfer being processed by this channel
 109 * @hc_list_entry:      For linking to list of host channels
 110 * @desc_list_addr:     Current QH's descriptor list DMA address
 111 * @desc_list_sz:       Current QH's descriptor list size
 112 * @split_order_list_entry: List entry for keeping track of the order of splits
 113 *
 114 * This structure represents the state of a single host channel when acting in
 115 * host mode. It contains the data items needed to transfer packets to an
 116 * endpoint via a host channel.
 117 */
 118struct dwc2_host_chan {
 119        u8 hc_num;
 120
 121        unsigned dev_addr:7;
 122        unsigned ep_num:4;
 123        unsigned ep_is_in:1;
 124        unsigned speed:4;
 125        unsigned ep_type:2;
 126        unsigned max_packet:11;
 127        unsigned data_pid_start:2;
 128#define DWC2_HC_PID_DATA0       TSIZ_SC_MC_PID_DATA0
 129#define DWC2_HC_PID_DATA2       TSIZ_SC_MC_PID_DATA2
 130#define DWC2_HC_PID_DATA1       TSIZ_SC_MC_PID_DATA1
 131#define DWC2_HC_PID_MDATA       TSIZ_SC_MC_PID_MDATA
 132#define DWC2_HC_PID_SETUP       TSIZ_SC_MC_PID_SETUP
 133
 134        unsigned multi_count:2;
 135
 136        u8 *xfer_buf;
 137        dma_addr_t xfer_dma;
 138        dma_addr_t align_buf;
 139        u32 xfer_len;
 140        u32 xfer_count;
 141        u16 start_pkt_count;
 142        u8 xfer_started;
 143        u8 do_ping;
 144        u8 error_state;
 145        u8 halt_on_queue;
 146        u8 halt_pending;
 147        u8 do_split;
 148        u8 complete_split;
 149        u8 hub_addr;
 150        u8 hub_port;
 151        u8 xact_pos;
 152#define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
 153#define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
 154#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
 155#define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
 156
 157        u8 requests;
 158        u8 schinfo;
 159        u16 ntd;
 160        enum dwc2_halt_status halt_status;
 161        u32 hcint;
 162        struct dwc2_qh *qh;
 163        struct list_head hc_list_entry;
 164        dma_addr_t desc_list_addr;
 165        u32 desc_list_sz;
 166        struct list_head split_order_list_entry;
 167};
 168
 169struct dwc2_hcd_pipe_info {
 170        u8 dev_addr;
 171        u8 ep_num;
 172        u8 pipe_type;
 173        u8 pipe_dir;
 174        u16 maxp;
 175        u16 maxp_mult;
 176};
 177
 178struct dwc2_hcd_iso_packet_desc {
 179        u32 offset;
 180        u32 length;
 181        u32 actual_length;
 182        u32 status;
 183};
 184
 185struct dwc2_qtd;
 186
 187struct dwc2_hcd_urb {
 188        void *priv;
 189        struct dwc2_qtd *qtd;
 190        void *buf;
 191        dma_addr_t dma;
 192        void *setup_packet;
 193        dma_addr_t setup_dma;
 194        u32 length;
 195        u32 actual_length;
 196        u32 status;
 197        u32 error_count;
 198        u32 packet_count;
 199        u32 flags;
 200        u16 interval;
 201        struct dwc2_hcd_pipe_info pipe_info;
 202        struct dwc2_hcd_iso_packet_desc iso_descs[];
 203};
 204
 205/* Phases for control transfers */
 206enum dwc2_control_phase {
 207        DWC2_CONTROL_SETUP,
 208        DWC2_CONTROL_DATA,
 209        DWC2_CONTROL_STATUS,
 210};
 211
 212/* Transaction types */
 213enum dwc2_transaction_type {
 214        DWC2_TRANSACTION_NONE,
 215        DWC2_TRANSACTION_PERIODIC,
 216        DWC2_TRANSACTION_NON_PERIODIC,
 217        DWC2_TRANSACTION_ALL,
 218};
 219
 220/* The number of elements per LS bitmap (per port on multi_tt) */
 221#define DWC2_ELEMENTS_PER_LS_BITMAP     DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
 222                                                     BITS_PER_LONG)
 223
 224/**
 225 * struct dwc2_tt - dwc2 data associated with a usb_tt
 226 *
 227 * @refcount:           Number of Queue Heads (QHs) holding a reference.
 228 * @usb_tt:             Pointer back to the official usb_tt.
 229 * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
 230 *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
 231 *                      elements (so sizeof(long) times that in bytes).
 232 *
 233 * This structure is stored in the hcpriv of the official usb_tt.
 234 */
 235struct dwc2_tt {
 236        int refcount;
 237        struct usb_tt *usb_tt;
 238        unsigned long periodic_bitmaps[];
 239};
 240
 241/**
 242 * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
 243 *
 244 * @start_schedule_us:  The start time on the main bus schedule.  Note that
 245 *                         the main bus schedule is tightly packed and this
 246 *                         time should be interpreted as tightly packed (so
 247 *                         uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
 248 *                         instead of 125 us).
 249 * @duration_us:           How long this transfer goes.
 250 */
 251
 252struct dwc2_hs_transfer_time {
 253        u32 start_schedule_us;
 254        u16 duration_us;
 255};
 256
 257/**
 258 * struct dwc2_qh - Software queue head structure
 259 *
 260 * @hsotg:              The HCD state structure for the DWC OTG controller
 261 * @ep_type:            Endpoint type. One of the following values:
 262 *                       - USB_ENDPOINT_XFER_CONTROL
 263 *                       - USB_ENDPOINT_XFER_BULK
 264 *                       - USB_ENDPOINT_XFER_INT
 265 *                       - USB_ENDPOINT_XFER_ISOC
 266 * @ep_is_in:           Endpoint direction
 267 * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
 268 * @maxp_mult:          Multiplier for maxp
 269 * @dev_speed:          Device speed. One of the following values:
 270 *                       - USB_SPEED_LOW
 271 *                       - USB_SPEED_FULL
 272 *                       - USB_SPEED_HIGH
 273 * @data_toggle:        Determines the PID of the next data packet for
 274 *                      non-controltransfers. Ignored for control transfers.
 275 *                      One of the following values:
 276 *                       - DWC2_HC_PID_DATA0
 277 *                       - DWC2_HC_PID_DATA1
 278 * @ping_state:         Ping state
 279 * @do_split:           Full/low speed endpoint on high-speed hub requires split
 280 * @td_first:           Index of first activated isochronous transfer descriptor
 281 * @td_last:            Index of last activated isochronous transfer descriptor
 282 * @host_us:            Bandwidth in microseconds per transfer as seen by host
 283 * @device_us:          Bandwidth in microseconds per transfer as seen by device
 284 * @host_interval:      Interval between transfers as seen by the host.  If
 285 *                      the host is high speed and the device is low speed this
 286 *                      will be 8 times device interval.
 287 * @device_interval:    Interval between transfers as seen by the device.
 288 *                      interval.
 289 * @next_active_frame:  (Micro)frame _before_ we next need to put something on
 290 *                      the bus.  We'll move the qh to active here.  If the
 291 *                      host is in high speed mode this will be a uframe.  If
 292 *                      the host is in low speed mode this will be a full frame.
 293 * @start_active_frame: If we are partway through a split transfer, this will be
 294 *                      what next_active_frame was when we started.  Otherwise
 295 *                      it should always be the same as next_active_frame.
 296 * @num_hs_transfers:   Number of transfers in hs_transfers.
 297 *                      Normally this is 1 but can be more than one for splits.
 298 *                      Always >= 1 unless the host is in low/full speed mode.
 299 * @hs_transfers:       Transfers that are scheduled as seen by the high speed
 300 *                      bus.  Not used if host is in low or full speed mode (but
 301 *                      note that it IS USED if the device is low or full speed
 302 *                      as long as the HOST is in high speed mode).
 303 * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
 304 *                           schedule that's being used by this device.  This
 305 *                           will be on the periodic_bitmap in a
 306 *                           "struct dwc2_tt".  Not used if this device is high
 307 *                           speed.  Note that this is in "schedule slice" which
 308 *                           is tightly packed.
 309 * @ntd:                Actual number of transfer descriptors in a list
 310 * @dw_align_buf:       Used instead of original buffer if its physical address
 311 *                      is not dword-aligned
 312 * @dw_align_buf_dma:   DMA address for dw_align_buf
 313 * @qtd_list:           List of QTDs for this QH
 314 * @channel:            Host channel currently processing transfers for this QH
 315 * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
 316 *                      schedule
 317 * @desc_list:          List of transfer descriptors
 318 * @desc_list_dma:      Physical address of desc_list
 319 * @desc_list_sz:       Size of descriptors list
 320 * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
 321 *                      descriptor and indicates original XferSize value for the
 322 *                      descriptor
 323 * @unreserve_timer:    Timer for releasing periodic reservation.
 324 * @wait_timer:         Timer used to wait before re-queuing.
 325 * @dwc_tt:            Pointer to our tt info (or NULL if no tt).
 326 * @ttport:             Port number within our tt.
 327 * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
 328 * @unreserve_pending:  True if we planned to unreserve but haven't yet.
 329 * @schedule_low_speed: True if we have a low/full speed component (either the
 330 *                      host is in low/full speed mode or do_split).
 331 * @want_wait:          We should wait before re-queuing; only matters for non-
 332 *                      periodic transfers and is ignored for periodic ones.
 333 * @wait_timer_cancel:  Set to true to cancel the wait_timer.
 334 *
 335 * @tt_buffer_dirty:    True if EP's TT buffer is not clean.
 336 * A Queue Head (QH) holds the static characteristics of an endpoint and
 337 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
 338 * be entered in either the non-periodic or periodic schedule.
 339 */
 340struct dwc2_qh {
 341        struct dwc2_hsotg *hsotg;
 342        u8 ep_type;
 343        u8 ep_is_in;
 344        u16 maxp;
 345        u16 maxp_mult;
 346        u8 dev_speed;
 347        u8 data_toggle;
 348        u8 ping_state;
 349        u8 do_split;
 350        u8 td_first;
 351        u8 td_last;
 352        u16 host_us;
 353        u16 device_us;
 354        u16 host_interval;
 355        u16 device_interval;
 356        u16 next_active_frame;
 357        u16 start_active_frame;
 358        s16 num_hs_transfers;
 359        struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
 360        u32 ls_start_schedule_slice;
 361        u16 ntd;
 362        u8 *dw_align_buf;
 363        dma_addr_t dw_align_buf_dma;
 364        struct list_head qtd_list;
 365        struct dwc2_host_chan *channel;
 366        struct list_head qh_list_entry;
 367        struct dwc2_dma_desc *desc_list;
 368        dma_addr_t desc_list_dma;
 369        u32 desc_list_sz;
 370        u32 *n_bytes;
 371        struct timer_list unreserve_timer;
 372        struct hrtimer wait_timer;
 373        struct dwc2_tt *dwc_tt;
 374        int ttport;
 375        unsigned tt_buffer_dirty:1;
 376        unsigned unreserve_pending:1;
 377        unsigned schedule_low_speed:1;
 378        unsigned want_wait:1;
 379        unsigned wait_timer_cancel:1;
 380};
 381
 382/**
 383 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
 384 *
 385 * @control_phase:      Current phase for control transfers (Setup, Data, or
 386 *                      Status)
 387 * @in_process:         Indicates if this QTD is currently processed by HW
 388 * @data_toggle:        Determines the PID of the next data packet for the
 389 *                      data phase of control transfers. Ignored for other
 390 *                      transfer types. One of the following values:
 391 *                       - DWC2_HC_PID_DATA0
 392 *                       - DWC2_HC_PID_DATA1
 393 * @complete_split:     Keeps track of the current split type for FS/LS
 394 *                      endpoints on a HS Hub
 395 * @isoc_split_pos:     Position of the ISOC split in full/low speed
 396 * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
 397 *                      transfer. A frame descriptor describes the buffer
 398 *                      position and length of the data to be transferred in the
 399 *                      next scheduled (micro)frame of an isochronous transfer.
 400 *                      It also holds status for that transaction. The frame
 401 *                      index starts at 0.
 402 * @isoc_split_offset:  Position of the ISOC split in the buffer for the
 403 *                      current frame
 404 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
 405 * @error_count:        Holds the number of bus errors that have occurred for
 406 *                      a transaction within this transfer
 407 * @n_desc:             Number of DMA descriptors for this QTD
 408 * @isoc_frame_index_last: Last activated frame (packet) index, used in
 409 *                      descriptor DMA mode only
 410 * @num_naks:           Number of NAKs received on this QTD.
 411 * @urb:                URB for this transfer
 412 * @qh:                 Queue head for this QTD
 413 * @qtd_list_entry:     For linking to the QH's list of QTDs
 414 * @isoc_td_first:      Index of first activated isochronous transfer
 415 *                      descriptor in Descriptor DMA mode
 416 * @isoc_td_last:       Index of last activated isochronous transfer
 417 *                      descriptor in Descriptor DMA mode
 418 *
 419 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
 420 * interrupt, or isochronous transfer. A single QTD is created for each URB
 421 * (of one of these types) submitted to the HCD. The transfer associated with
 422 * a QTD may require one or multiple transactions.
 423 *
 424 * A QTD is linked to a Queue Head, which is entered in either the
 425 * non-periodic or periodic schedule for execution. When a QTD is chosen for
 426 * execution, some or all of its transactions may be executed. After
 427 * execution, the state of the QTD is updated. The QTD may be retired if all
 428 * its transactions are complete or if an error occurred. Otherwise, it
 429 * remains in the schedule so more transactions can be executed later.
 430 */
 431struct dwc2_qtd {
 432        enum dwc2_control_phase control_phase;
 433        u8 in_process;
 434        u8 data_toggle;
 435        u8 complete_split;
 436        u8 isoc_split_pos;
 437        u16 isoc_frame_index;
 438        u16 isoc_split_offset;
 439        u16 isoc_td_last;
 440        u16 isoc_td_first;
 441        u32 ssplit_out_xfer_count;
 442        u8 error_count;
 443        u8 n_desc;
 444        u16 isoc_frame_index_last;
 445        u16 num_naks;
 446        struct dwc2_hcd_urb *urb;
 447        struct dwc2_qh *qh;
 448        struct list_head qtd_list_entry;
 449};
 450
 451#ifdef DEBUG
 452struct hc_xfer_info {
 453        struct dwc2_hsotg *hsotg;
 454        struct dwc2_host_chan *chan;
 455};
 456#endif
 457
 458u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
 459
 460/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
 461static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
 462{
 463        return (struct usb_hcd *)hsotg->priv;
 464}
 465
 466/*
 467 * Inline used to disable one channel interrupt. Channel interrupts are
 468 * disabled when the channel is halted or released by the interrupt handler.
 469 * There is no need to handle further interrupts of that type until the
 470 * channel is re-assigned. In fact, subsequent handling may cause crashes
 471 * because the channel structures are cleaned up when the channel is released.
 472 */
 473static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
 474{
 475        u32 mask = dwc2_readl(hsotg, HCINTMSK(chnum));
 476
 477        mask &= ~intr;
 478        dwc2_writel(hsotg, mask, HCINTMSK(chnum));
 479}
 480
 481void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
 482void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
 483                  enum dwc2_halt_status halt_status);
 484void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
 485                                 struct dwc2_host_chan *chan);
 486
 487/*
 488 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
 489 * are read as 1, they won't clear when written back.
 490 */
 491static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
 492{
 493        u32 hprt0 = dwc2_readl(hsotg, HPRT0);
 494
 495        hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
 496        return hprt0;
 497}
 498
 499static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
 500{
 501        return pipe->ep_num;
 502}
 503
 504static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
 505{
 506        return pipe->pipe_type;
 507}
 508
 509static inline u16 dwc2_hcd_get_maxp(struct dwc2_hcd_pipe_info *pipe)
 510{
 511        return pipe->maxp;
 512}
 513
 514static inline u16 dwc2_hcd_get_maxp_mult(struct dwc2_hcd_pipe_info *pipe)
 515{
 516        return pipe->maxp_mult;
 517}
 518
 519static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
 520{
 521        return pipe->dev_addr;
 522}
 523
 524static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
 525{
 526        return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
 527}
 528
 529static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
 530{
 531        return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
 532}
 533
 534static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
 535{
 536        return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
 537}
 538
 539static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
 540{
 541        return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
 542}
 543
 544static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
 545{
 546        return pipe->pipe_dir == USB_DIR_IN;
 547}
 548
 549static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
 550{
 551        return !dwc2_hcd_is_pipe_in(pipe);
 552}
 553
 554int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
 555void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
 556
 557/* Transaction Execution Functions */
 558enum dwc2_transaction_type dwc2_hcd_select_transactions(
 559                                                struct dwc2_hsotg *hsotg);
 560void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
 561                                 enum dwc2_transaction_type tr_type);
 562
 563/* Schedule Queue Functions */
 564/* Implemented in hcd_queue.c */
 565struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
 566                                   struct dwc2_hcd_urb *urb,
 567                                          gfp_t mem_flags);
 568void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 569int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 570void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 571void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
 572                            int sched_csplit);
 573
 574void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
 575int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
 576                     struct dwc2_qh *qh);
 577
 578/* Unlinks and frees a QTD */
 579static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
 580                                                struct dwc2_qtd *qtd,
 581                                                struct dwc2_qh *qh)
 582{
 583        list_del(&qtd->qtd_list_entry);
 584        kfree(qtd);
 585}
 586
 587/* Descriptor DMA support functions */
 588void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
 589                              struct dwc2_qh *qh);
 590void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
 591                                 struct dwc2_host_chan *chan, int chnum,
 592                                        enum dwc2_halt_status halt_status);
 593
 594int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
 595                          gfp_t mem_flags);
 596void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 597
 598/* Check if QH is non-periodic */
 599#define dwc2_qh_is_non_per(_qh_ptr_) \
 600        ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
 601         (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
 602
 603#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
 604static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
 605static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
 606static inline bool dbg_urb(struct urb *urb) { return true; }
 607static inline bool dbg_perio(void) { return true; }
 608#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
 609static inline bool dbg_hc(struct dwc2_host_chan *hc)
 610{
 611        return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
 612               hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
 613}
 614
 615static inline bool dbg_qh(struct dwc2_qh *qh)
 616{
 617        return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
 618               qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
 619}
 620
 621static inline bool dbg_urb(struct urb *urb)
 622{
 623        return usb_pipetype(urb->pipe) == PIPE_BULK ||
 624               usb_pipetype(urb->pipe) == PIPE_CONTROL;
 625}
 626
 627static inline bool dbg_perio(void) { return false; }
 628#endif
 629
 630/*
 631 * Returns true if frame1 index is greater than frame2 index. The comparison
 632 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
 633 * frame number when the max index frame number is reached.
 634 */
 635static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
 636{
 637        u16 diff = fr_idx1 - fr_idx2;
 638        u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
 639
 640        return diff && !sign;
 641}
 642
 643/*
 644 * Returns true if frame1 is less than or equal to frame2. The comparison is
 645 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
 646 * frame number when the max frame number is reached.
 647 */
 648static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
 649{
 650        return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
 651}
 652
 653/*
 654 * Returns true if frame1 is greater than frame2. The comparison is done
 655 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
 656 * number when the max frame number is reached.
 657 */
 658static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
 659{
 660        return (frame1 != frame2) &&
 661               ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
 662}
 663
 664/*
 665 * Increments frame by the amount specified by inc. The addition is done
 666 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
 667 */
 668static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
 669{
 670        return (frame + inc) & HFNUM_MAX_FRNUM;
 671}
 672
 673static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
 674{
 675        return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
 676}
 677
 678static inline u16 dwc2_full_frame_num(u16 frame)
 679{
 680        return (frame & HFNUM_MAX_FRNUM) >> 3;
 681}
 682
 683static inline u16 dwc2_micro_frame_num(u16 frame)
 684{
 685        return frame & 0x7;
 686}
 687
 688/*
 689 * Returns the Core Interrupt Status register contents, ANDed with the Core
 690 * Interrupt Mask register contents
 691 */
 692static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
 693{
 694        return dwc2_readl(hsotg, GINTSTS) &
 695               dwc2_readl(hsotg, GINTMSK);
 696}
 697
 698static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
 699{
 700        return dwc2_urb->status;
 701}
 702
 703static inline u32 dwc2_hcd_urb_get_actual_length(
 704                struct dwc2_hcd_urb *dwc2_urb)
 705{
 706        return dwc2_urb->actual_length;
 707}
 708
 709static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
 710{
 711        return dwc2_urb->error_count;
 712}
 713
 714static inline void dwc2_hcd_urb_set_iso_desc_params(
 715                struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
 716                u32 length)
 717{
 718        dwc2_urb->iso_descs[desc_num].offset = offset;
 719        dwc2_urb->iso_descs[desc_num].length = length;
 720}
 721
 722static inline u32 dwc2_hcd_urb_get_iso_desc_status(
 723                struct dwc2_hcd_urb *dwc2_urb, int desc_num)
 724{
 725        return dwc2_urb->iso_descs[desc_num].status;
 726}
 727
 728static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
 729                struct dwc2_hcd_urb *dwc2_urb, int desc_num)
 730{
 731        return dwc2_urb->iso_descs[desc_num].actual_length;
 732}
 733
 734static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
 735                                                  struct usb_host_endpoint *ep)
 736{
 737        struct dwc2_qh *qh = ep->hcpriv;
 738
 739        if (qh && !list_empty(&qh->qh_list_entry))
 740                return 1;
 741
 742        return 0;
 743}
 744
 745static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
 746                                            struct usb_host_endpoint *ep)
 747{
 748        struct dwc2_qh *qh = ep->hcpriv;
 749
 750        if (!qh) {
 751                WARN_ON(1);
 752                return 0;
 753        }
 754
 755        return qh->host_us;
 756}
 757
 758void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
 759                               struct dwc2_host_chan *chan, int chnum,
 760                                      struct dwc2_qtd *qtd);
 761
 762/* HCD Core API */
 763
 764/**
 765 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
 766 *
 767 * @hsotg: The DWC2 HCD
 768 *
 769 * Returns IRQ_HANDLED if interrupt is handled
 770 * Return IRQ_NONE if interrupt is not handled
 771 */
 772irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
 773
 774/**
 775 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
 776 *
 777 * @hsotg: The DWC2 HCD
 778 */
 779void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
 780
 781/**
 782 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
 783 * and 0 otherwise
 784 *
 785 * @hsotg: The DWC2 HCD
 786 */
 787int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
 788
 789/**
 790 * dwc2_hcd_dump_state() - Dumps hsotg state
 791 *
 792 * @hsotg: The DWC2 HCD
 793 *
 794 * NOTE: This function will be removed once the peripheral controller code
 795 * is integrated and the driver is stable
 796 */
 797void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
 798
 799/* URB interface */
 800
 801/* Transfer flags */
 802#define URB_GIVEBACK_ASAP       0x1
 803#define URB_SEND_ZERO_PACKET    0x2
 804
 805/* Host driver callbacks */
 806struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
 807                                      void *context, gfp_t mem_flags,
 808                                      int *ttport);
 809
 810void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
 811                           struct dwc2_tt *dwc_tt);
 812int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
 813void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
 814                        int status);
 815
 816#endif /* __DWC2_HCD_H__ */
 817