linux/drivers/usb/dwc2/hcd_queue.c
<<
>>
Prefs
   1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
   2/*
   3 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
   4 *
   5 * Copyright (C) 2004-2013 Synopsys, Inc.
   6 *
   7 * Redistribution and use in source and binary forms, with or without
   8 * modification, are permitted provided that the following conditions
   9 * are met:
  10 * 1. Redistributions of source code must retain the above copyright
  11 *    notice, this list of conditions, and the following disclaimer,
  12 *    without modification.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. The names of the above-listed copyright holders may not be used
  17 *    to endorse or promote products derived from this software without
  18 *    specific prior written permission.
  19 *
  20 * ALTERNATIVELY, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") as published by the Free Software
  22 * Foundation; either version 2 of the License, or (at your option) any
  23 * later version.
  24 *
  25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  36 */
  37
  38/*
  39 * This file contains the functions to manage Queue Heads and Queue
  40 * Transfer Descriptors for Host mode
  41 */
  42#include <linux/gcd.h>
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/spinlock.h>
  46#include <linux/interrupt.h>
  47#include <linux/dma-mapping.h>
  48#include <linux/io.h>
  49#include <linux/slab.h>
  50#include <linux/usb.h>
  51
  52#include <linux/usb/hcd.h>
  53#include <linux/usb/ch11.h>
  54
  55#include "core.h"
  56#include "hcd.h"
  57
  58/* Wait this long before releasing periodic reservation */
  59#define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5))
  60
  61/* If we get a NAK, wait this long before retrying */
  62#define DWC2_RETRY_WAIT_DELAY (1 * 1E6L)
  63
  64/**
  65 * dwc2_periodic_channel_available() - Checks that a channel is available for a
  66 * periodic transfer
  67 *
  68 * @hsotg: The HCD state structure for the DWC OTG controller
  69 *
  70 * Return: 0 if successful, negative error code otherwise
  71 */
  72static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
  73{
  74        /*
  75         * Currently assuming that there is a dedicated host channel for
  76         * each periodic transaction plus at least one host channel for
  77         * non-periodic transactions
  78         */
  79        int status;
  80        int num_channels;
  81
  82        num_channels = hsotg->params.host_channels;
  83        if ((hsotg->periodic_channels + hsotg->non_periodic_channels <
  84             num_channels) && (hsotg->periodic_channels < num_channels - 1)) {
  85                status = 0;
  86        } else {
  87                dev_dbg(hsotg->dev,
  88                        "%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
  89                        __func__, num_channels,
  90                        hsotg->periodic_channels, hsotg->non_periodic_channels);
  91                status = -ENOSPC;
  92        }
  93
  94        return status;
  95}
  96
  97/**
  98 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
  99 * for the specified QH in the periodic schedule
 100 *
 101 * @hsotg: The HCD state structure for the DWC OTG controller
 102 * @qh:    QH containing periodic bandwidth required
 103 *
 104 * Return: 0 if successful, negative error code otherwise
 105 *
 106 * For simplicity, this calculation assumes that all the transfers in the
 107 * periodic schedule may occur in the same (micro)frame
 108 */
 109static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
 110                                         struct dwc2_qh *qh)
 111{
 112        int status;
 113        s16 max_claimed_usecs;
 114
 115        status = 0;
 116
 117        if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
 118                /*
 119                 * High speed mode
 120                 * Max periodic usecs is 80% x 125 usec = 100 usec
 121                 */
 122                max_claimed_usecs = 100 - qh->host_us;
 123        } else {
 124                /*
 125                 * Full speed mode
 126                 * Max periodic usecs is 90% x 1000 usec = 900 usec
 127                 */
 128                max_claimed_usecs = 900 - qh->host_us;
 129        }
 130
 131        if (hsotg->periodic_usecs > max_claimed_usecs) {
 132                dev_err(hsotg->dev,
 133                        "%s: already claimed usecs %d, required usecs %d\n",
 134                        __func__, hsotg->periodic_usecs, qh->host_us);
 135                status = -ENOSPC;
 136        }
 137
 138        return status;
 139}
 140
 141/**
 142 * pmap_schedule() - Schedule time in a periodic bitmap (pmap).
 143 *
 144 * @map:             The bitmap representing the schedule; will be updated
 145 *                   upon success.
 146 * @bits_per_period: The schedule represents several periods.  This is how many
 147 *                   bits are in each period.  It's assumed that the beginning
 148 *                   of the schedule will repeat after its end.
 149 * @periods_in_map:  The number of periods in the schedule.
 150 * @num_bits:        The number of bits we need per period we want to reserve
 151 *                   in this function call.
 152 * @interval:        How often we need to be scheduled for the reservation this
 153 *                   time.  1 means every period.  2 means every other period.
 154 *                   ...you get the picture?
 155 * @start:           The bit number to start at.  Normally 0.  Must be within
 156 *                   the interval or we return failure right away.
 157 * @only_one_period: Normally we'll allow picking a start anywhere within the
 158 *                   first interval, since we can still make all repetition
 159 *                   requirements by doing that.  However, if you pass true
 160 *                   here then we'll return failure if we can't fit within
 161 *                   the period that "start" is in.
 162 *
 163 * The idea here is that we want to schedule time for repeating events that all
 164 * want the same resource.  The resource is divided into fixed-sized periods
 165 * and the events want to repeat every "interval" periods.  The schedule
 166 * granularity is one bit.
 167 *
 168 * To keep things "simple", we'll represent our schedule with a bitmap that
 169 * contains a fixed number of periods.  This gets rid of a lot of complexity
 170 * but does mean that we need to handle things specially (and non-ideally) if
 171 * the number of the periods in the schedule doesn't match well with the
 172 * intervals that we're trying to schedule.
 173 *
 174 * Here's an explanation of the scheme we'll implement, assuming 8 periods.
 175 * - If interval is 1, we need to take up space in each of the 8
 176 *   periods we're scheduling.  Easy.
 177 * - If interval is 2, we need to take up space in half of the
 178 *   periods.  Again, easy.
 179 * - If interval is 3, we actually need to fall back to interval 1.
 180 *   Why?  Because we might need time in any period.  AKA for the
 181 *   first 8 periods, we'll be in slot 0, 3, 6.  Then we'll be
 182 *   in slot 1, 4, 7.  Then we'll be in 2, 5.  Then we'll be back to
 183 *   0, 3, and 6.  Since we could be in any frame we need to reserve
 184 *   for all of them.  Sucks, but that's what you gotta do.  Note that
 185 *   if we were instead scheduling 8 * 3 = 24 we'd do much better, but
 186 *   then we need more memory and time to do scheduling.
 187 * - If interval is 4, easy.
 188 * - If interval is 5, we again need interval 1.  The schedule will be
 189 *   0, 5, 2, 7, 4, 1, 6, 3, 0
 190 * - If interval is 6, we need interval 2.  0, 6, 4, 2.
 191 * - If interval is 7, we need interval 1.
 192 * - If interval is 8, we need interval 8.
 193 *
 194 * If you do the math, you'll see that we need to pretend that interval is
 195 * equal to the greatest_common_divisor(interval, periods_in_map).
 196 *
 197 * Note that at the moment this function tends to front-pack the schedule.
 198 * In some cases that's really non-ideal (it's hard to schedule things that
 199 * need to repeat every period).  In other cases it's perfect (you can easily
 200 * schedule bigger, less often repeating things).
 201 *
 202 * Here's the algorithm in action (8 periods, 5 bits per period):
 203 *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
 204 *  |*****|  ***|*****|  ***|*****|  ***|*****|  ***|   OK 3 bits, intv 3 at 2
 205 *  |*****|* ***|*****|  ***|*****|* ***|*****|  ***|   OK 1 bits, intv 4 at 5
 206 *  |**   |*    |**   |     |**   |*    |**   |     | Remv 3 bits, intv 3 at 2
 207 *  |***  |*    |***  |     |***  |*    |***  |     |   OK 1 bits, intv 6 at 2
 208 *  |**** |*  * |**** |   * |**** |*  * |**** |   * |   OK 1 bits, intv 1 at 3
 209 *  |**** |**** |**** | *** |**** |**** |**** | *** |   OK 2 bits, intv 2 at 6
 210 *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 1 at 4
 211 *  |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1
 212 *  |  ***|*****|  ***| ****|  ***|*****|  ***| ****| Remv 2 bits, intv 2 at 0
 213 *  |  ***| ****|  ***| ****|  ***| ****|  ***| ****| Remv 1 bits, intv 4 at 5
 214 *  |   **| ****|   **| ****|   **| ****|   **| ****| Remv 1 bits, intv 6 at 2
 215 *  |    *| ** *|    *| ** *|    *| ** *|    *| ** *| Remv 1 bits, intv 1 at 3
 216 *  |    *|    *|    *|    *|    *|    *|    *|    *| Remv 2 bits, intv 2 at 6
 217 *  |     |     |     |     |     |     |     |     | Remv 1 bits, intv 1 at 4
 218 *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
 219 *  |***  |     |**   |     |***  |     |**   |     |   OK 1 bits, intv 4 at 2
 220 *  |*****|     |** **|     |*****|     |** **|     |   OK 2 bits, intv 2 at 3
 221 *  |*****|*    |** **|     |*****|*    |** **|     |   OK 1 bits, intv 4 at 5
 222 *  |*****|***  |** **| **  |*****|***  |** **| **  |   OK 2 bits, intv 2 at 6
 223 *  |*****|*****|** **| ****|*****|*****|** **| ****|   OK 2 bits, intv 2 at 8
 224 *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 4 at 12
 225 *
 226 * This function is pretty generic and could be easily abstracted if anything
 227 * needed similar scheduling.
 228 *
 229 * Returns either -ENOSPC or a >= 0 start bit which should be passed to the
 230 * unschedule routine.  The map bitmap will be updated on a non-error result.
 231 */
 232static int pmap_schedule(unsigned long *map, int bits_per_period,
 233                         int periods_in_map, int num_bits,
 234                         int interval, int start, bool only_one_period)
 235{
 236        int interval_bits;
 237        int to_reserve;
 238        int first_end;
 239        int i;
 240
 241        if (num_bits > bits_per_period)
 242                return -ENOSPC;
 243
 244        /* Adjust interval as per description */
 245        interval = gcd(interval, periods_in_map);
 246
 247        interval_bits = bits_per_period * interval;
 248        to_reserve = periods_in_map / interval;
 249
 250        /* If start has gotten us past interval then we can't schedule */
 251        if (start >= interval_bits)
 252                return -ENOSPC;
 253
 254        if (only_one_period)
 255                /* Must fit within same period as start; end at begin of next */
 256                first_end = (start / bits_per_period + 1) * bits_per_period;
 257        else
 258                /* Can fit anywhere in the first interval */
 259                first_end = interval_bits;
 260
 261        /*
 262         * We'll try to pick the first repetition, then see if that time
 263         * is free for each of the subsequent repetitions.  If it's not
 264         * we'll adjust the start time for the next search of the first
 265         * repetition.
 266         */
 267        while (start + num_bits <= first_end) {
 268                int end;
 269
 270                /* Need to stay within this period */
 271                end = (start / bits_per_period + 1) * bits_per_period;
 272
 273                /* Look for num_bits us in this microframe starting at start */
 274                start = bitmap_find_next_zero_area(map, end, start, num_bits,
 275                                                   0);
 276
 277                /*
 278                 * We should get start >= end if we fail.  We might be
 279                 * able to check the next microframe depending on the
 280                 * interval, so continue on (start already updated).
 281                 */
 282                if (start >= end) {
 283                        start = end;
 284                        continue;
 285                }
 286
 287                /* At this point we have a valid point for first one */
 288                for (i = 1; i < to_reserve; i++) {
 289                        int ith_start = start + interval_bits * i;
 290                        int ith_end = end + interval_bits * i;
 291                        int ret;
 292
 293                        /* Use this as a dumb "check if bits are 0" */
 294                        ret = bitmap_find_next_zero_area(
 295                                map, ith_start + num_bits, ith_start, num_bits,
 296                                0);
 297
 298                        /* We got the right place, continue checking */
 299                        if (ret == ith_start)
 300                                continue;
 301
 302                        /* Move start up for next time and exit for loop */
 303                        ith_start = bitmap_find_next_zero_area(
 304                                map, ith_end, ith_start, num_bits, 0);
 305                        if (ith_start >= ith_end)
 306                                /* Need a while new period next time */
 307                                start = end;
 308                        else
 309                                start = ith_start - interval_bits * i;
 310                        break;
 311                }
 312
 313                /* If didn't exit the for loop with a break, we have success */
 314                if (i == to_reserve)
 315                        break;
 316        }
 317
 318        if (start + num_bits > first_end)
 319                return -ENOSPC;
 320
 321        for (i = 0; i < to_reserve; i++) {
 322                int ith_start = start + interval_bits * i;
 323
 324                bitmap_set(map, ith_start, num_bits);
 325        }
 326
 327        return start;
 328}
 329
 330/**
 331 * pmap_unschedule() - Undo work done by pmap_schedule()
 332 *
 333 * @map:             See pmap_schedule().
 334 * @bits_per_period: See pmap_schedule().
 335 * @periods_in_map:  See pmap_schedule().
 336 * @num_bits:        The number of bits that was passed to schedule.
 337 * @interval:        The interval that was passed to schedule.
 338 * @start:           The return value from pmap_schedule().
 339 */
 340static void pmap_unschedule(unsigned long *map, int bits_per_period,
 341                            int periods_in_map, int num_bits,
 342                            int interval, int start)
 343{
 344        int interval_bits;
 345        int to_release;
 346        int i;
 347
 348        /* Adjust interval as per description in pmap_schedule() */
 349        interval = gcd(interval, periods_in_map);
 350
 351        interval_bits = bits_per_period * interval;
 352        to_release = periods_in_map / interval;
 353
 354        for (i = 0; i < to_release; i++) {
 355                int ith_start = start + interval_bits * i;
 356
 357                bitmap_clear(map, ith_start, num_bits);
 358        }
 359}
 360
 361/**
 362 * dwc2_get_ls_map() - Get the map used for the given qh
 363 *
 364 * @hsotg: The HCD state structure for the DWC OTG controller.
 365 * @qh:    QH for the periodic transfer.
 366 *
 367 * We'll always get the periodic map out of our TT.  Note that even if we're
 368 * running the host straight in low speed / full speed mode it appears as if
 369 * a TT is allocated for us, so we'll use it.  If that ever changes we can
 370 * add logic here to get a map out of "hsotg" if !qh->do_split.
 371 *
 372 * Returns: the map or NULL if a map couldn't be found.
 373 */
 374static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg,
 375                                      struct dwc2_qh *qh)
 376{
 377        unsigned long *map;
 378
 379        /* Don't expect to be missing a TT and be doing low speed scheduling */
 380        if (WARN_ON(!qh->dwc_tt))
 381                return NULL;
 382
 383        /* Get the map and adjust if this is a multi_tt hub */
 384        map = qh->dwc_tt->periodic_bitmaps;
 385        if (qh->dwc_tt->usb_tt->multi)
 386                map += DWC2_ELEMENTS_PER_LS_BITMAP * (qh->ttport - 1);
 387
 388        return map;
 389}
 390
 391#ifdef DWC2_PRINT_SCHEDULE
 392/*
 393 * cat_printf() - A printf() + strcat() helper
 394 *
 395 * This is useful for concatenating a bunch of strings where each string is
 396 * constructed using printf.
 397 *
 398 * @buf:   The destination buffer; will be updated to point after the printed
 399 *         data.
 400 * @size:  The number of bytes in the buffer (includes space for '\0').
 401 * @fmt:   The format for printf.
 402 * @...:   The args for printf.
 403 */
 404static __printf(3, 4)
 405void cat_printf(char **buf, size_t *size, const char *fmt, ...)
 406{
 407        va_list args;
 408        int i;
 409
 410        if (*size == 0)
 411                return;
 412
 413        va_start(args, fmt);
 414        i = vsnprintf(*buf, *size, fmt, args);
 415        va_end(args);
 416
 417        if (i >= *size) {
 418                (*buf)[*size - 1] = '\0';
 419                *buf += *size;
 420                *size = 0;
 421        } else {
 422                *buf += i;
 423                *size -= i;
 424        }
 425}
 426
 427/*
 428 * pmap_print() - Print the given periodic map
 429 *
 430 * Will attempt to print out the periodic schedule.
 431 *
 432 * @map:             See pmap_schedule().
 433 * @bits_per_period: See pmap_schedule().
 434 * @periods_in_map:  See pmap_schedule().
 435 * @period_name:     The name of 1 period, like "uFrame"
 436 * @units:           The name of the units, like "us".
 437 * @print_fn:        The function to call for printing.
 438 * @print_data:      Opaque data to pass to the print function.
 439 */
 440static void pmap_print(unsigned long *map, int bits_per_period,
 441                       int periods_in_map, const char *period_name,
 442                       const char *units,
 443                       void (*print_fn)(const char *str, void *data),
 444                       void *print_data)
 445{
 446        int period;
 447
 448        for (period = 0; period < periods_in_map; period++) {
 449                char tmp[64];
 450                char *buf = tmp;
 451                size_t buf_size = sizeof(tmp);
 452                int period_start = period * bits_per_period;
 453                int period_end = period_start + bits_per_period;
 454                int start = 0;
 455                int count = 0;
 456                bool printed = false;
 457                int i;
 458
 459                for (i = period_start; i < period_end + 1; i++) {
 460                        /* Handle case when ith bit is set */
 461                        if (i < period_end &&
 462                            bitmap_find_next_zero_area(map, i + 1,
 463                                                       i, 1, 0) != i) {
 464                                if (count == 0)
 465                                        start = i - period_start;
 466                                count++;
 467                                continue;
 468                        }
 469
 470                        /* ith bit isn't set; don't care if count == 0 */
 471                        if (count == 0)
 472                                continue;
 473
 474                        if (!printed)
 475                                cat_printf(&buf, &buf_size, "%s %d: ",
 476                                           period_name, period);
 477                        else
 478                                cat_printf(&buf, &buf_size, ", ");
 479                        printed = true;
 480
 481                        cat_printf(&buf, &buf_size, "%d %s -%3d %s", start,
 482                                   units, start + count - 1, units);
 483                        count = 0;
 484                }
 485
 486                if (printed)
 487                        print_fn(tmp, print_data);
 488        }
 489}
 490
 491struct dwc2_qh_print_data {
 492        struct dwc2_hsotg *hsotg;
 493        struct dwc2_qh *qh;
 494};
 495
 496/**
 497 * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print()
 498 *
 499 * @str:  The string to print
 500 * @data: A pointer to a struct dwc2_qh_print_data
 501 */
 502static void dwc2_qh_print(const char *str, void *data)
 503{
 504        struct dwc2_qh_print_data *print_data = data;
 505
 506        dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str);
 507}
 508
 509/**
 510 * dwc2_qh_schedule_print() - Print the periodic schedule
 511 *
 512 * @hsotg: The HCD state structure for the DWC OTG controller.
 513 * @qh:    QH to print.
 514 */
 515static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
 516                                   struct dwc2_qh *qh)
 517{
 518        struct dwc2_qh_print_data print_data = { hsotg, qh };
 519        int i;
 520
 521        /*
 522         * The printing functions are quite slow and inefficient.
 523         * If we don't have tracing turned on, don't run unless the special
 524         * define is turned on.
 525         */
 526
 527        if (qh->schedule_low_speed) {
 528                unsigned long *map = dwc2_get_ls_map(hsotg, qh);
 529
 530                dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us",
 531                             qh, qh->device_us,
 532                             DWC2_ROUND_US_TO_SLICE(qh->device_us),
 533                             DWC2_US_PER_SLICE * qh->ls_start_schedule_slice);
 534
 535                if (map) {
 536                        dwc2_sch_dbg(hsotg,
 537                                     "QH=%p Whole low/full speed map %p now:\n",
 538                                     qh, map);
 539                        pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
 540                                   DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices",
 541                                   dwc2_qh_print, &print_data);
 542                }
 543        }
 544
 545        for (i = 0; i < qh->num_hs_transfers; i++) {
 546                struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i;
 547                int uframe = trans_time->start_schedule_us /
 548                             DWC2_HS_PERIODIC_US_PER_UFRAME;
 549                int rel_us = trans_time->start_schedule_us %
 550                             DWC2_HS_PERIODIC_US_PER_UFRAME;
 551
 552                dwc2_sch_dbg(hsotg,
 553                             "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n",
 554                             qh, i, trans_time->duration_us, uframe, rel_us);
 555        }
 556        if (qh->num_hs_transfers) {
 557                dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh);
 558                pmap_print(hsotg->hs_periodic_bitmap,
 559                           DWC2_HS_PERIODIC_US_PER_UFRAME,
 560                           DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us",
 561                           dwc2_qh_print, &print_data);
 562        }
 563}
 564#else
 565static inline void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
 566                                          struct dwc2_qh *qh) {};
 567#endif
 568
 569/**
 570 * dwc2_ls_pmap_schedule() - Schedule a low speed QH
 571 *
 572 * @hsotg:        The HCD state structure for the DWC OTG controller.
 573 * @qh:           QH for the periodic transfer.
 574 * @search_slice: We'll start trying to schedule at the passed slice.
 575 *                Remember that slices are the units of the low speed
 576 *                schedule (think 25us or so).
 577 *
 578 * Wraps pmap_schedule() with the right parameters for low speed scheduling.
 579 *
 580 * Normally we schedule low speed devices on the map associated with the TT.
 581 *
 582 * Returns: 0 for success or an error code.
 583 */
 584static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
 585                                 int search_slice)
 586{
 587        int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
 588        unsigned long *map = dwc2_get_ls_map(hsotg, qh);
 589        int slice;
 590
 591        if (!map)
 592                return -EINVAL;
 593
 594        /*
 595         * Schedule on the proper low speed map with our low speed scheduling
 596         * parameters.  Note that we use the "device_interval" here since
 597         * we want the low speed interval and the only way we'd be in this
 598         * function is if the device is low speed.
 599         *
 600         * If we happen to be doing low speed and high speed scheduling for the
 601         * same transaction (AKA we have a split) we always do low speed first.
 602         * That means we can always pass "false" for only_one_period (that
 603         * parameters is only useful when we're trying to get one schedule to
 604         * match what we already planned in the other schedule).
 605         */
 606        slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
 607                              DWC2_LS_SCHEDULE_FRAMES, slices,
 608                              qh->device_interval, search_slice, false);
 609
 610        if (slice < 0)
 611                return slice;
 612
 613        qh->ls_start_schedule_slice = slice;
 614        return 0;
 615}
 616
 617/**
 618 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule()
 619 *
 620 * @hsotg:       The HCD state structure for the DWC OTG controller.
 621 * @qh:          QH for the periodic transfer.
 622 */
 623static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg,
 624                                    struct dwc2_qh *qh)
 625{
 626        int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
 627        unsigned long *map = dwc2_get_ls_map(hsotg, qh);
 628
 629        /* Schedule should have failed, so no worries about no error code */
 630        if (!map)
 631                return;
 632
 633        pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
 634                        DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval,
 635                        qh->ls_start_schedule_slice);
 636}
 637
 638/**
 639 * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule
 640 *
 641 * This will schedule something on the main dwc2 schedule.
 642 *
 643 * We'll start looking in qh->hs_transfers[index].start_schedule_us.  We'll
 644 * update this with the result upon success.  We also use the duration from
 645 * the same structure.
 646 *
 647 * @hsotg:           The HCD state structure for the DWC OTG controller.
 648 * @qh:              QH for the periodic transfer.
 649 * @only_one_period: If true we will limit ourselves to just looking at
 650 *                   one period (aka one 100us chunk).  This is used if we have
 651 *                   already scheduled something on the low speed schedule and
 652 *                   need to find something that matches on the high speed one.
 653 * @index:           The index into qh->hs_transfers that we're working with.
 654 *
 655 * Returns: 0 for success or an error code.  Upon success the
 656 *          dwc2_hs_transfer_time specified by "index" will be updated.
 657 */
 658static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
 659                                 bool only_one_period, int index)
 660{
 661        struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
 662        int us;
 663
 664        us = pmap_schedule(hsotg->hs_periodic_bitmap,
 665                           DWC2_HS_PERIODIC_US_PER_UFRAME,
 666                           DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
 667                           qh->host_interval, trans_time->start_schedule_us,
 668                           only_one_period);
 669
 670        if (us < 0)
 671                return us;
 672
 673        trans_time->start_schedule_us = us;
 674        return 0;
 675}
 676
 677/**
 678 * dwc2_hs_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule()
 679 *
 680 * @hsotg:       The HCD state structure for the DWC OTG controller.
 681 * @qh:          QH for the periodic transfer.
 682 * @index:       Transfer index
 683 */
 684static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg,
 685                                    struct dwc2_qh *qh, int index)
 686{
 687        struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
 688
 689        pmap_unschedule(hsotg->hs_periodic_bitmap,
 690                        DWC2_HS_PERIODIC_US_PER_UFRAME,
 691                        DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
 692                        qh->host_interval, trans_time->start_schedule_us);
 693}
 694
 695/**
 696 * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer.
 697 *
 698 * This is the most complicated thing in USB.  We have to find matching time
 699 * in both the global high speed schedule for the port and the low speed
 700 * schedule for the TT associated with the given device.
 701 *
 702 * Being here means that the host must be running in high speed mode and the
 703 * device is in low or full speed mode (and behind a hub).
 704 *
 705 * @hsotg:       The HCD state structure for the DWC OTG controller.
 706 * @qh:          QH for the periodic transfer.
 707 */
 708static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg,
 709                                      struct dwc2_qh *qh)
 710{
 711        int bytecount = qh->maxp_mult * qh->maxp;
 712        int ls_search_slice;
 713        int err = 0;
 714        int host_interval_in_sched;
 715
 716        /*
 717         * The interval (how often to repeat) in the actual host schedule.
 718         * See pmap_schedule() for gcd() explanation.
 719         */
 720        host_interval_in_sched = gcd(qh->host_interval,
 721                                     DWC2_HS_SCHEDULE_UFRAMES);
 722
 723        /*
 724         * We always try to find space in the low speed schedule first, then
 725         * try to find high speed time that matches.  If we don't, we'll bump
 726         * up the place we start searching in the low speed schedule and try
 727         * again.  To start we'll look right at the beginning of the low speed
 728         * schedule.
 729         *
 730         * Note that this will tend to front-load the high speed schedule.
 731         * We may eventually want to try to avoid this by either considering
 732         * both schedules together or doing some sort of round robin.
 733         */
 734        ls_search_slice = 0;
 735
 736        while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) {
 737                int start_s_uframe;
 738                int ssplit_s_uframe;
 739                int second_s_uframe;
 740                int rel_uframe;
 741                int first_count;
 742                int middle_count;
 743                int end_count;
 744                int first_data_bytes;
 745                int other_data_bytes;
 746                int i;
 747
 748                if (qh->schedule_low_speed) {
 749                        err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice);
 750
 751                        /*
 752                         * If we got an error here there's no other magic we
 753                         * can do, so bail.  All the looping above is only
 754                         * helpful to redo things if we got a low speed slot
 755                         * and then couldn't find a matching high speed slot.
 756                         */
 757                        if (err)
 758                                return err;
 759                } else {
 760                        /* Must be missing the tt structure?  Why? */
 761                        WARN_ON_ONCE(1);
 762                }
 763
 764                /*
 765                 * This will give us a number 0 - 7 if
 766                 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ...
 767                 */
 768                start_s_uframe = qh->ls_start_schedule_slice /
 769                                 DWC2_SLICES_PER_UFRAME;
 770
 771                /* Get a number that's always 0 - 7 */
 772                rel_uframe = (start_s_uframe % 8);
 773
 774                /*
 775                 * If we were going to start in uframe 7 then we would need to
 776                 * issue a start split in uframe 6, which spec says is not OK.
 777                 * Move on to the next full frame (assuming there is one).
 778                 *
 779                 * See 11.18.4 Host Split Transaction Scheduling Requirements
 780                 * bullet 1.
 781                 */
 782                if (rel_uframe == 7) {
 783                        if (qh->schedule_low_speed)
 784                                dwc2_ls_pmap_unschedule(hsotg, qh);
 785                        ls_search_slice =
 786                                (qh->ls_start_schedule_slice /
 787                                 DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) *
 788                                DWC2_LS_PERIODIC_SLICES_PER_FRAME;
 789                        continue;
 790                }
 791
 792                /*
 793                 * For ISOC in:
 794                 * - start split            (frame -1)
 795                 * - complete split w/ data (frame +1)
 796                 * - complete split w/ data (frame +2)
 797                 * - ...
 798                 * - complete split w/ data (frame +num_data_packets)
 799                 * - complete split w/ data (frame +num_data_packets+1)
 800                 * - complete split w/ data (frame +num_data_packets+2, max 8)
 801                 *   ...though if frame was "0" then max is 7...
 802                 *
 803                 * For ISOC out we might need to do:
 804                 * - start split w/ data    (frame -1)
 805                 * - start split w/ data    (frame +0)
 806                 * - ...
 807                 * - start split w/ data    (frame +num_data_packets-2)
 808                 *
 809                 * For INTERRUPT in we might need to do:
 810                 * - start split            (frame -1)
 811                 * - complete split w/ data (frame +1)
 812                 * - complete split w/ data (frame +2)
 813                 * - complete split w/ data (frame +3, max 8)
 814                 *
 815                 * For INTERRUPT out we might need to do:
 816                 * - start split w/ data    (frame -1)
 817                 * - complete split         (frame +1)
 818                 * - complete split         (frame +2)
 819                 * - complete split         (frame +3, max 8)
 820                 *
 821                 * Start adjusting!
 822                 */
 823                ssplit_s_uframe = (start_s_uframe +
 824                                   host_interval_in_sched - 1) %
 825                                  host_interval_in_sched;
 826                if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)
 827                        second_s_uframe = start_s_uframe;
 828                else
 829                        second_s_uframe = start_s_uframe + 1;
 830
 831                /* First data transfer might not be all 188 bytes. */
 832                first_data_bytes = 188 -
 833                        DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice %
 834                                            DWC2_SLICES_PER_UFRAME),
 835                                     DWC2_SLICES_PER_UFRAME);
 836                if (first_data_bytes > bytecount)
 837                        first_data_bytes = bytecount;
 838                other_data_bytes = bytecount - first_data_bytes;
 839
 840                /*
 841                 * For now, skip OUT xfers where first xfer is partial
 842                 *
 843                 * Main dwc2 code assumes:
 844                 * - INT transfers never get split in two.
 845                 * - ISOC transfers can always transfer 188 bytes the first
 846                 *   time.
 847                 *
 848                 * Until that code is fixed, try again if the first transfer
 849                 * couldn't transfer everything.
 850                 *
 851                 * This code can be removed if/when the rest of dwc2 handles
 852                 * the above cases.  Until it's fixed we just won't be able
 853                 * to schedule quite as tightly.
 854                 */
 855                if (!qh->ep_is_in &&
 856                    (first_data_bytes != min_t(int, 188, bytecount))) {
 857                        dwc2_sch_dbg(hsotg,
 858                                     "QH=%p avoiding broken 1st xfer (%d, %d)\n",
 859                                     qh, first_data_bytes, bytecount);
 860                        if (qh->schedule_low_speed)
 861                                dwc2_ls_pmap_unschedule(hsotg, qh);
 862                        ls_search_slice = (start_s_uframe + 1) *
 863                                DWC2_SLICES_PER_UFRAME;
 864                        continue;
 865                }
 866
 867                /* Start by assuming transfers for the bytes */
 868                qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188);
 869
 870                /*
 871                 * Everything except ISOC OUT has extra transfers.  Rules are
 872                 * complicated.  See 11.18.4 Host Split Transaction Scheduling
 873                 * Requirements bullet 3.
 874                 */
 875                if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
 876                        if (rel_uframe == 6)
 877                                qh->num_hs_transfers += 2;
 878                        else
 879                                qh->num_hs_transfers += 3;
 880
 881                        if (qh->ep_is_in) {
 882                                /*
 883                                 * First is start split, middle/end is data.
 884                                 * Allocate full data bytes for all data.
 885                                 */
 886                                first_count = 4;
 887                                middle_count = bytecount;
 888                                end_count = bytecount;
 889                        } else {
 890                                /*
 891                                 * First is data, middle/end is complete.
 892                                 * First transfer and second can have data.
 893                                 * Rest should just have complete split.
 894                                 */
 895                                first_count = first_data_bytes;
 896                                middle_count = max_t(int, 4, other_data_bytes);
 897                                end_count = 4;
 898                        }
 899                } else {
 900                        if (qh->ep_is_in) {
 901                                int last;
 902
 903                                /* Account for the start split */
 904                                qh->num_hs_transfers++;
 905
 906                                /* Calculate "L" value from spec */
 907                                last = rel_uframe + qh->num_hs_transfers + 1;
 908
 909                                /* Start with basic case */
 910                                if (last <= 6)
 911                                        qh->num_hs_transfers += 2;
 912                                else
 913                                        qh->num_hs_transfers += 1;
 914
 915                                /* Adjust downwards */
 916                                if (last >= 6 && rel_uframe == 0)
 917                                        qh->num_hs_transfers--;
 918
 919                                /* 1st = start; rest can contain data */
 920                                first_count = 4;
 921                                middle_count = min_t(int, 188, bytecount);
 922                                end_count = middle_count;
 923                        } else {
 924                                /* All contain data, last might be smaller */
 925                                first_count = first_data_bytes;
 926                                middle_count = min_t(int, 188,
 927                                                     other_data_bytes);
 928                                end_count = other_data_bytes % 188;
 929                        }
 930                }
 931
 932                /* Assign durations per uFrame */
 933                qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count);
 934                for (i = 1; i < qh->num_hs_transfers - 1; i++)
 935                        qh->hs_transfers[i].duration_us =
 936                                HS_USECS_ISO(middle_count);
 937                if (qh->num_hs_transfers > 1)
 938                        qh->hs_transfers[qh->num_hs_transfers - 1].duration_us =
 939                                HS_USECS_ISO(end_count);
 940
 941                /*
 942                 * Assign start us.  The call below to dwc2_hs_pmap_schedule()
 943                 * will start with these numbers but may adjust within the same
 944                 * microframe.
 945                 */
 946                qh->hs_transfers[0].start_schedule_us =
 947                        ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME;
 948                for (i = 1; i < qh->num_hs_transfers; i++)
 949                        qh->hs_transfers[i].start_schedule_us =
 950                                ((second_s_uframe + i - 1) %
 951                                 DWC2_HS_SCHEDULE_UFRAMES) *
 952                                DWC2_HS_PERIODIC_US_PER_UFRAME;
 953
 954                /* Try to schedule with filled in hs_transfers above */
 955                for (i = 0; i < qh->num_hs_transfers; i++) {
 956                        err = dwc2_hs_pmap_schedule(hsotg, qh, true, i);
 957                        if (err)
 958                                break;
 959                }
 960
 961                /* If we scheduled all w/out breaking out then we're all good */
 962                if (i == qh->num_hs_transfers)
 963                        break;
 964
 965                for (; i >= 0; i--)
 966                        dwc2_hs_pmap_unschedule(hsotg, qh, i);
 967
 968                if (qh->schedule_low_speed)
 969                        dwc2_ls_pmap_unschedule(hsotg, qh);
 970
 971                /* Try again starting in the next microframe */
 972                ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME;
 973        }
 974
 975        if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES)
 976                return -ENOSPC;
 977
 978        return 0;
 979}
 980
 981/**
 982 * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer.
 983 *
 984 * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean
 985 * interface.
 986 *
 987 * @hsotg:       The HCD state structure for the DWC OTG controller.
 988 * @qh:          QH for the periodic transfer.
 989 */
 990static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
 991{
 992        /* In non-split host and device time are the same */
 993        WARN_ON(qh->host_us != qh->device_us);
 994        WARN_ON(qh->host_interval != qh->device_interval);
 995        WARN_ON(qh->num_hs_transfers != 1);
 996
 997        /* We'll have one transfer; init start to 0 before calling scheduler */
 998        qh->hs_transfers[0].start_schedule_us = 0;
 999        qh->hs_transfers[0].duration_us = qh->host_us;
1000
1001        return dwc2_hs_pmap_schedule(hsotg, qh, false, 0);
1002}
1003
1004/**
1005 * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer.
1006 *
1007 * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean
1008 * interface.
1009 *
1010 * @hsotg:       The HCD state structure for the DWC OTG controller.
1011 * @qh:          QH for the periodic transfer.
1012 */
1013static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1014{
1015        /* In non-split host and device time are the same */
1016        WARN_ON(qh->host_us != qh->device_us);
1017        WARN_ON(qh->host_interval != qh->device_interval);
1018        WARN_ON(!qh->schedule_low_speed);
1019
1020        /* Run on the main low speed schedule (no split = no hub = no TT) */
1021        return dwc2_ls_pmap_schedule(hsotg, qh, 0);
1022}
1023
1024/**
1025 * dwc2_uframe_schedule - Schedule a QH for a periodic xfer.
1026 *
1027 * Calls one of the 3 sub-function depending on what type of transfer this QH
1028 * is for.  Also adds some printing.
1029 *
1030 * @hsotg:       The HCD state structure for the DWC OTG controller.
1031 * @qh:          QH for the periodic transfer.
1032 */
1033static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1034{
1035        int ret;
1036
1037        if (qh->dev_speed == USB_SPEED_HIGH)
1038                ret = dwc2_uframe_schedule_hs(hsotg, qh);
1039        else if (!qh->do_split)
1040                ret = dwc2_uframe_schedule_ls(hsotg, qh);
1041        else
1042                ret = dwc2_uframe_schedule_split(hsotg, qh);
1043
1044        if (ret)
1045                dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret);
1046        else
1047                dwc2_qh_schedule_print(hsotg, qh);
1048
1049        return ret;
1050}
1051
1052/**
1053 * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule().
1054 *
1055 * @hsotg:       The HCD state structure for the DWC OTG controller.
1056 * @qh:          QH for the periodic transfer.
1057 */
1058static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1059{
1060        int i;
1061
1062        for (i = 0; i < qh->num_hs_transfers; i++)
1063                dwc2_hs_pmap_unschedule(hsotg, qh, i);
1064
1065        if (qh->schedule_low_speed)
1066                dwc2_ls_pmap_unschedule(hsotg, qh);
1067
1068        dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh);
1069}
1070
1071/**
1072 * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled
1073 *
1074 * Takes a qh that has already been scheduled (which means we know we have the
1075 * bandwdith reserved for us) and set the next_active_frame and the
1076 * start_active_frame.
1077 *
1078 * This is expected to be called on qh's that weren't previously actively
1079 * running.  It just picks the next frame that we can fit into without any
1080 * thought about the past.
1081 *
1082 * @hsotg: The HCD state structure for the DWC OTG controller
1083 * @qh:    QH for a periodic endpoint
1084 *
1085 */
1086static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1087{
1088        u16 frame_number;
1089        u16 earliest_frame;
1090        u16 next_active_frame;
1091        u16 relative_frame;
1092        u16 interval;
1093
1094        /*
1095         * Use the real frame number rather than the cached value as of the
1096         * last SOF to give us a little extra slop.
1097         */
1098        frame_number = dwc2_hcd_get_frame_number(hsotg);
1099
1100        /*
1101         * We wouldn't want to start any earlier than the next frame just in
1102         * case the frame number ticks as we're doing this calculation.
1103         *
1104         * NOTE: if we could quantify how long till we actually get scheduled
1105         * we might be able to avoid the "+ 1" by looking at the upper part of
1106         * HFNUM (the FRREM field).  For now we'll just use the + 1 though.
1107         */
1108        earliest_frame = dwc2_frame_num_inc(frame_number, 1);
1109        next_active_frame = earliest_frame;
1110
1111        /* Get the "no microframe schduler" out of the way... */
1112        if (!hsotg->params.uframe_sched) {
1113                if (qh->do_split)
1114                        /* Splits are active at microframe 0 minus 1 */
1115                        next_active_frame |= 0x7;
1116                goto exit;
1117        }
1118
1119        if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
1120                /*
1121                 * We're either at high speed or we're doing a split (which
1122                 * means we're talking high speed to a hub).  In any case
1123                 * the first frame should be based on when the first scheduled
1124                 * event is.
1125                 */
1126                WARN_ON(qh->num_hs_transfers < 1);
1127
1128                relative_frame = qh->hs_transfers[0].start_schedule_us /
1129                                 DWC2_HS_PERIODIC_US_PER_UFRAME;
1130
1131                /* Adjust interval as per high speed schedule */
1132                interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES);
1133
1134        } else {
1135                /*
1136                 * Low or full speed directly on dwc2.  Just about the same
1137                 * as high speed but on a different schedule and with slightly
1138                 * different adjustments.  Note that this works because when
1139                 * the host and device are both low speed then frames in the
1140                 * controller tick at low speed.
1141                 */
1142                relative_frame = qh->ls_start_schedule_slice /
1143                                 DWC2_LS_PERIODIC_SLICES_PER_FRAME;
1144                interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES);
1145        }
1146
1147        /* Scheduler messed up if frame is past interval */
1148        WARN_ON(relative_frame >= interval);
1149
1150        /*
1151         * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've
1152         * done the gcd(), so it's safe to move to the beginning of the current
1153         * interval like this.
1154         *
1155         * After this we might be before earliest_frame, but don't worry,
1156         * we'll fix it...
1157         */
1158        next_active_frame = (next_active_frame / interval) * interval;
1159
1160        /*
1161         * Actually choose to start at the frame number we've been
1162         * scheduled for.
1163         */
1164        next_active_frame = dwc2_frame_num_inc(next_active_frame,
1165                                               relative_frame);
1166
1167        /*
1168         * We actually need 1 frame before since the next_active_frame is
1169         * the frame number we'll be put on the ready list and we won't be on
1170         * the bus until 1 frame later.
1171         */
1172        next_active_frame = dwc2_frame_num_dec(next_active_frame, 1);
1173
1174        /*
1175         * By now we might actually be before the earliest_frame.  Let's move
1176         * up intervals until we're not.
1177         */
1178        while (dwc2_frame_num_gt(earliest_frame, next_active_frame))
1179                next_active_frame = dwc2_frame_num_inc(next_active_frame,
1180                                                       interval);
1181
1182exit:
1183        qh->next_active_frame = next_active_frame;
1184        qh->start_active_frame = next_active_frame;
1185
1186        dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n",
1187                      qh, frame_number, qh->next_active_frame);
1188}
1189
1190/**
1191 * dwc2_do_reserve() - Make a periodic reservation
1192 *
1193 * Try to allocate space in the periodic schedule.  Depending on parameters
1194 * this might use the microframe scheduler or the dumb scheduler.
1195 *
1196 * @hsotg: The HCD state structure for the DWC OTG controller
1197 * @qh:    QH for the periodic transfer.
1198 *
1199 * Returns: 0 upon success; error upon failure.
1200 */
1201static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1202{
1203        int status;
1204
1205        if (hsotg->params.uframe_sched) {
1206                status = dwc2_uframe_schedule(hsotg, qh);
1207        } else {
1208                status = dwc2_periodic_channel_available(hsotg);
1209                if (status) {
1210                        dev_info(hsotg->dev,
1211                                 "%s: No host channel available for periodic transfer\n",
1212                                 __func__);
1213                        return status;
1214                }
1215
1216                status = dwc2_check_periodic_bandwidth(hsotg, qh);
1217        }
1218
1219        if (status) {
1220                dev_dbg(hsotg->dev,
1221                        "%s: Insufficient periodic bandwidth for periodic transfer\n",
1222                        __func__);
1223                return status;
1224        }
1225
1226        if (!hsotg->params.uframe_sched)
1227                /* Reserve periodic channel */
1228                hsotg->periodic_channels++;
1229
1230        /* Update claimed usecs per (micro)frame */
1231        hsotg->periodic_usecs += qh->host_us;
1232
1233        dwc2_pick_first_frame(hsotg, qh);
1234
1235        return 0;
1236}
1237
1238/**
1239 * dwc2_do_unreserve() - Actually release the periodic reservation
1240 *
1241 * This function actually releases the periodic bandwidth that was reserved
1242 * by the given qh.
1243 *
1244 * @hsotg: The HCD state structure for the DWC OTG controller
1245 * @qh:    QH for the periodic transfer.
1246 */
1247static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1248{
1249        assert_spin_locked(&hsotg->lock);
1250
1251        WARN_ON(!qh->unreserve_pending);
1252
1253        /* No more unreserve pending--we're doing it */
1254        qh->unreserve_pending = false;
1255
1256        if (WARN_ON(!list_empty(&qh->qh_list_entry)))
1257                list_del_init(&qh->qh_list_entry);
1258
1259        /* Update claimed usecs per (micro)frame */
1260        hsotg->periodic_usecs -= qh->host_us;
1261
1262        if (hsotg->params.uframe_sched) {
1263                dwc2_uframe_unschedule(hsotg, qh);
1264        } else {
1265                /* Release periodic channel reservation */
1266                hsotg->periodic_channels--;
1267        }
1268}
1269
1270/**
1271 * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation
1272 *
1273 * According to the kernel doc for usb_submit_urb() (specifically the part about
1274 * "Reserved Bandwidth Transfers"), we need to keep a reservation active as
1275 * long as a device driver keeps submitting.  Since we're using HCD_BH to give
1276 * back the URB we need to give the driver a little bit of time before we
1277 * release the reservation.  This worker is called after the appropriate
1278 * delay.
1279 *
1280 * @t: Address to a qh unreserve_work.
1281 */
1282static void dwc2_unreserve_timer_fn(struct timer_list *t)
1283{
1284        struct dwc2_qh *qh = from_timer(qh, t, unreserve_timer);
1285        struct dwc2_hsotg *hsotg = qh->hsotg;
1286        unsigned long flags;
1287
1288        /*
1289         * Wait for the lock, or for us to be scheduled again.  We
1290         * could be scheduled again if:
1291         * - We started executing but didn't get the lock yet.
1292         * - A new reservation came in, but cancel didn't take effect
1293         *   because we already started executing.
1294         * - The timer has been kicked again.
1295         * In that case cancel and wait for the next call.
1296         */
1297        while (!spin_trylock_irqsave(&hsotg->lock, flags)) {
1298                if (timer_pending(&qh->unreserve_timer))
1299                        return;
1300        }
1301
1302        /*
1303         * Might be no more unreserve pending if:
1304         * - We started executing but didn't get the lock yet.
1305         * - A new reservation came in, but cancel didn't take effect
1306         *   because we already started executing.
1307         *
1308         * We can't put this in the loop above because unreserve_pending needs
1309         * to be accessed under lock, so we can only check it once we got the
1310         * lock.
1311         */
1312        if (qh->unreserve_pending)
1313                dwc2_do_unreserve(hsotg, qh);
1314
1315        spin_unlock_irqrestore(&hsotg->lock, flags);
1316}
1317
1318/**
1319 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
1320 * host channel is large enough to handle the maximum data transfer in a single
1321 * (micro)frame for a periodic transfer
1322 *
1323 * @hsotg: The HCD state structure for the DWC OTG controller
1324 * @qh:    QH for a periodic endpoint
1325 *
1326 * Return: 0 if successful, negative error code otherwise
1327 */
1328static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
1329                                    struct dwc2_qh *qh)
1330{
1331        u32 max_xfer_size;
1332        u32 max_channel_xfer_size;
1333        int status = 0;
1334
1335        max_xfer_size = qh->maxp * qh->maxp_mult;
1336        max_channel_xfer_size = hsotg->params.max_transfer_size;
1337
1338        if (max_xfer_size > max_channel_xfer_size) {
1339                dev_err(hsotg->dev,
1340                        "%s: Periodic xfer length %d > max xfer length for channel %d\n",
1341                        __func__, max_xfer_size, max_channel_xfer_size);
1342                status = -ENOSPC;
1343        }
1344
1345        return status;
1346}
1347
1348/**
1349 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
1350 * the periodic schedule
1351 *
1352 * @hsotg: The HCD state structure for the DWC OTG controller
1353 * @qh:    QH for the periodic transfer. The QH should already contain the
1354 *         scheduling information.
1355 *
1356 * Return: 0 if successful, negative error code otherwise
1357 */
1358static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1359{
1360        int status;
1361
1362        status = dwc2_check_max_xfer_size(hsotg, qh);
1363        if (status) {
1364                dev_dbg(hsotg->dev,
1365                        "%s: Channel max transfer size too small for periodic transfer\n",
1366                        __func__);
1367                return status;
1368        }
1369
1370        /* Cancel pending unreserve; if canceled OK, unreserve was pending */
1371        if (del_timer(&qh->unreserve_timer))
1372                WARN_ON(!qh->unreserve_pending);
1373
1374        /*
1375         * Only need to reserve if there's not an unreserve pending, since if an
1376         * unreserve is pending then by definition our old reservation is still
1377         * valid.  Unreserve might still be pending even if we didn't cancel if
1378         * dwc2_unreserve_timer_fn() already started.  Code in the timer handles
1379         * that case.
1380         */
1381        if (!qh->unreserve_pending) {
1382                status = dwc2_do_reserve(hsotg, qh);
1383                if (status)
1384                        return status;
1385        } else {
1386                /*
1387                 * It might have been a while, so make sure that frame_number
1388                 * is still good.  Note: we could also try to use the similar
1389                 * dwc2_next_periodic_start() but that schedules much more
1390                 * tightly and we might need to hurry and queue things up.
1391                 */
1392                if (dwc2_frame_num_le(qh->next_active_frame,
1393                                      hsotg->frame_number))
1394                        dwc2_pick_first_frame(hsotg, qh);
1395        }
1396
1397        qh->unreserve_pending = 0;
1398
1399        if (hsotg->params.dma_desc_enable)
1400                /* Don't rely on SOF and start in ready schedule */
1401                list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
1402        else
1403                /* Always start in inactive schedule */
1404                list_add_tail(&qh->qh_list_entry,
1405                              &hsotg->periodic_sched_inactive);
1406
1407        return 0;
1408}
1409
1410/**
1411 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
1412 * from the periodic schedule
1413 *
1414 * @hsotg: The HCD state structure for the DWC OTG controller
1415 * @qh:    QH for the periodic transfer
1416 */
1417static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
1418                                     struct dwc2_qh *qh)
1419{
1420        bool did_modify;
1421
1422        assert_spin_locked(&hsotg->lock);
1423
1424        /*
1425         * Schedule the unreserve to happen in a little bit.  Cases here:
1426         * - Unreserve worker might be sitting there waiting to grab the lock.
1427         *   In this case it will notice it's been schedule again and will
1428         *   quit.
1429         * - Unreserve worker might not be scheduled.
1430         *
1431         * We should never already be scheduled since dwc2_schedule_periodic()
1432         * should have canceled the scheduled unreserve timer (hence the
1433         * warning on did_modify).
1434         *
1435         * We add + 1 to the timer to guarantee that at least 1 jiffy has
1436         * passed (otherwise if the jiffy counter might tick right after we
1437         * read it and we'll get no delay).
1438         */
1439        did_modify = mod_timer(&qh->unreserve_timer,
1440                               jiffies + DWC2_UNRESERVE_DELAY + 1);
1441        WARN_ON(did_modify);
1442        qh->unreserve_pending = 1;
1443
1444        list_del_init(&qh->qh_list_entry);
1445}
1446
1447/**
1448 * dwc2_wait_timer_fn() - Timer function to re-queue after waiting
1449 *
1450 * As per the spec, a NAK indicates that "a function is temporarily unable to
1451 * transmit or receive data, but will eventually be able to do so without need
1452 * of host intervention".
1453 *
1454 * That means that when we encounter a NAK we're supposed to retry.
1455 *
1456 * ...but if we retry right away (from the interrupt handler that saw the NAK)
1457 * then we can end up with an interrupt storm (if the other side keeps NAKing
1458 * us) because on slow enough CPUs it could take us longer to get out of the
1459 * interrupt routine than it takes for the device to send another NAK.  That
1460 * leads to a constant stream of NAK interrupts and the CPU locks.
1461 *
1462 * ...so instead of retrying right away in the case of a NAK we'll set a timer
1463 * to retry some time later.  This function handles that timer and moves the
1464 * qh back to the "inactive" list, then queues transactions.
1465 *
1466 * @t: Pointer to wait_timer in a qh.
1467 *
1468 * Return: HRTIMER_NORESTART to not automatically restart this timer.
1469 */
1470static enum hrtimer_restart dwc2_wait_timer_fn(struct hrtimer *t)
1471{
1472        struct dwc2_qh *qh = container_of(t, struct dwc2_qh, wait_timer);
1473        struct dwc2_hsotg *hsotg = qh->hsotg;
1474        unsigned long flags;
1475
1476        spin_lock_irqsave(&hsotg->lock, flags);
1477
1478        /*
1479         * We'll set wait_timer_cancel to true if we want to cancel this
1480         * operation in dwc2_hcd_qh_unlink().
1481         */
1482        if (!qh->wait_timer_cancel) {
1483                enum dwc2_transaction_type tr_type;
1484
1485                qh->want_wait = false;
1486
1487                list_move(&qh->qh_list_entry,
1488                          &hsotg->non_periodic_sched_inactive);
1489
1490                tr_type = dwc2_hcd_select_transactions(hsotg);
1491                if (tr_type != DWC2_TRANSACTION_NONE)
1492                        dwc2_hcd_queue_transactions(hsotg, tr_type);
1493        }
1494
1495        spin_unlock_irqrestore(&hsotg->lock, flags);
1496        return HRTIMER_NORESTART;
1497}
1498
1499/**
1500 * dwc2_qh_init() - Initializes a QH structure
1501 *
1502 * @hsotg: The HCD state structure for the DWC OTG controller
1503 * @qh:    The QH to init
1504 * @urb:   Holds the information about the device/endpoint needed to initialize
1505 *         the QH
1506 * @mem_flags: Flags for allocating memory.
1507 */
1508static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1509                         struct dwc2_hcd_urb *urb, gfp_t mem_flags)
1510{
1511        int dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1512        u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
1513        bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info);
1514        bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC);
1515        bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT);
1516        u32 hprt = dwc2_readl(hsotg, HPRT0);
1517        u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1518        bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED &&
1519                         dev_speed != USB_SPEED_HIGH);
1520        int maxp = dwc2_hcd_get_maxp(&urb->pipe_info);
1521        int maxp_mult = dwc2_hcd_get_maxp_mult(&urb->pipe_info);
1522        int bytecount = maxp_mult * maxp;
1523        char *speed, *type;
1524
1525        /* Initialize QH */
1526        qh->hsotg = hsotg;
1527        timer_setup(&qh->unreserve_timer, dwc2_unreserve_timer_fn, 0);
1528        hrtimer_init(&qh->wait_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1529        qh->wait_timer.function = &dwc2_wait_timer_fn;
1530        qh->ep_type = ep_type;
1531        qh->ep_is_in = ep_is_in;
1532
1533        qh->data_toggle = DWC2_HC_PID_DATA0;
1534        qh->maxp = maxp;
1535        qh->maxp_mult = maxp_mult;
1536        INIT_LIST_HEAD(&qh->qtd_list);
1537        INIT_LIST_HEAD(&qh->qh_list_entry);
1538
1539        qh->do_split = do_split;
1540        qh->dev_speed = dev_speed;
1541
1542        if (ep_is_int || ep_is_isoc) {
1543                /* Compute scheduling parameters once and save them */
1544                int host_speed = do_split ? USB_SPEED_HIGH : dev_speed;
1545                struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv,
1546                                                               mem_flags,
1547                                                               &qh->ttport);
1548                int device_ns;
1549
1550                qh->dwc_tt = dwc_tt;
1551
1552                qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in,
1553                                       ep_is_isoc, bytecount));
1554                device_ns = usb_calc_bus_time(dev_speed, ep_is_in,
1555                                              ep_is_isoc, bytecount);
1556
1557                if (do_split && dwc_tt)
1558                        device_ns += dwc_tt->usb_tt->think_time;
1559                qh->device_us = NS_TO_US(device_ns);
1560
1561                qh->device_interval = urb->interval;
1562                qh->host_interval = urb->interval * (do_split ? 8 : 1);
1563
1564                /*
1565                 * Schedule low speed if we're running the host in low or
1566                 * full speed OR if we've got a "TT" to deal with to access this
1567                 * device.
1568                 */
1569                qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED ||
1570                                         dwc_tt;
1571
1572                if (do_split) {
1573                        /* We won't know num transfers until we schedule */
1574                        qh->num_hs_transfers = -1;
1575                } else if (dev_speed == USB_SPEED_HIGH) {
1576                        qh->num_hs_transfers = 1;
1577                } else {
1578                        qh->num_hs_transfers = 0;
1579                }
1580
1581                /* We'll schedule later when we have something to do */
1582        }
1583
1584        switch (dev_speed) {
1585        case USB_SPEED_LOW:
1586                speed = "low";
1587                break;
1588        case USB_SPEED_FULL:
1589                speed = "full";
1590                break;
1591        case USB_SPEED_HIGH:
1592                speed = "high";
1593                break;
1594        default:
1595                speed = "?";
1596                break;
1597        }
1598
1599        switch (qh->ep_type) {
1600        case USB_ENDPOINT_XFER_ISOC:
1601                type = "isochronous";
1602                break;
1603        case USB_ENDPOINT_XFER_INT:
1604                type = "interrupt";
1605                break;
1606        case USB_ENDPOINT_XFER_CONTROL:
1607                type = "control";
1608                break;
1609        case USB_ENDPOINT_XFER_BULK:
1610                type = "bulk";
1611                break;
1612        default:
1613                type = "?";
1614                break;
1615        }
1616
1617        dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type,
1618                     speed, bytecount);
1619        dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh,
1620                     dwc2_hcd_get_dev_addr(&urb->pipe_info),
1621                     dwc2_hcd_get_ep_num(&urb->pipe_info),
1622                     ep_is_in ? "IN" : "OUT");
1623        if (ep_is_int || ep_is_isoc) {
1624                dwc2_sch_dbg(hsotg,
1625                             "QH=%p ...duration: host=%d us, device=%d us\n",
1626                             qh, qh->host_us, qh->device_us);
1627                dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n",
1628                             qh, qh->host_interval, qh->device_interval);
1629                if (qh->schedule_low_speed)
1630                        dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n",
1631                                     qh, dwc2_get_ls_map(hsotg, qh));
1632        }
1633}
1634
1635/**
1636 * dwc2_hcd_qh_create() - Allocates and initializes a QH
1637 *
1638 * @hsotg:        The HCD state structure for the DWC OTG controller
1639 * @urb:          Holds the information about the device/endpoint needed
1640 *                to initialize the QH
1641 * @mem_flags:   Flags for allocating memory.
1642 *
1643 * Return: Pointer to the newly allocated QH, or NULL on error
1644 */
1645struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
1646                                   struct dwc2_hcd_urb *urb,
1647                                          gfp_t mem_flags)
1648{
1649        struct dwc2_qh *qh;
1650
1651        if (!urb->priv)
1652                return NULL;
1653
1654        /* Allocate memory */
1655        qh = kzalloc(sizeof(*qh), mem_flags);
1656        if (!qh)
1657                return NULL;
1658
1659        dwc2_qh_init(hsotg, qh, urb, mem_flags);
1660
1661        if (hsotg->params.dma_desc_enable &&
1662            dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
1663                dwc2_hcd_qh_free(hsotg, qh);
1664                return NULL;
1665        }
1666
1667        return qh;
1668}
1669
1670/**
1671 * dwc2_hcd_qh_free() - Frees the QH
1672 *
1673 * @hsotg: HCD instance
1674 * @qh:    The QH to free
1675 *
1676 * QH should already be removed from the list. QTD list should already be empty
1677 * if called from URB Dequeue.
1678 *
1679 * Must NOT be called with interrupt disabled or spinlock held
1680 */
1681void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1682{
1683        /* Make sure any unreserve work is finished. */
1684        if (del_timer_sync(&qh->unreserve_timer)) {
1685                unsigned long flags;
1686
1687                spin_lock_irqsave(&hsotg->lock, flags);
1688                dwc2_do_unreserve(hsotg, qh);
1689                spin_unlock_irqrestore(&hsotg->lock, flags);
1690        }
1691
1692        /*
1693         * We don't have the lock so we can safely wait until the wait timer
1694         * finishes.  Of course, at this point in time we'd better have set
1695         * wait_timer_active to false so if this timer was still pending it
1696         * won't do anything anyway, but we want it to finish before we free
1697         * memory.
1698         */
1699        hrtimer_cancel(&qh->wait_timer);
1700
1701        dwc2_host_put_tt_info(hsotg, qh->dwc_tt);
1702
1703        if (qh->desc_list)
1704                dwc2_hcd_qh_free_ddma(hsotg, qh);
1705        else if (hsotg->unaligned_cache && qh->dw_align_buf)
1706                kmem_cache_free(hsotg->unaligned_cache, qh->dw_align_buf);
1707
1708        kfree(qh);
1709}
1710
1711/**
1712 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
1713 * schedule if it is not already in the schedule. If the QH is already in
1714 * the schedule, no action is taken.
1715 *
1716 * @hsotg: The HCD state structure for the DWC OTG controller
1717 * @qh:    The QH to add
1718 *
1719 * Return: 0 if successful, negative error code otherwise
1720 */
1721int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1722{
1723        int status;
1724        u32 intr_mask;
1725        ktime_t delay;
1726
1727        if (dbg_qh(qh))
1728                dev_vdbg(hsotg->dev, "%s()\n", __func__);
1729
1730        if (!list_empty(&qh->qh_list_entry))
1731                /* QH already in a schedule */
1732                return 0;
1733
1734        /* Add the new QH to the appropriate schedule */
1735        if (dwc2_qh_is_non_per(qh)) {
1736                /* Schedule right away */
1737                qh->start_active_frame = hsotg->frame_number;
1738                qh->next_active_frame = qh->start_active_frame;
1739
1740                if (qh->want_wait) {
1741                        list_add_tail(&qh->qh_list_entry,
1742                                      &hsotg->non_periodic_sched_waiting);
1743                        qh->wait_timer_cancel = false;
1744                        delay = ktime_set(0, DWC2_RETRY_WAIT_DELAY);
1745                        hrtimer_start(&qh->wait_timer, delay, HRTIMER_MODE_REL);
1746                } else {
1747                        list_add_tail(&qh->qh_list_entry,
1748                                      &hsotg->non_periodic_sched_inactive);
1749                }
1750                return 0;
1751        }
1752
1753        status = dwc2_schedule_periodic(hsotg, qh);
1754        if (status)
1755                return status;
1756        if (!hsotg->periodic_qh_count) {
1757                intr_mask = dwc2_readl(hsotg, GINTMSK);
1758                intr_mask |= GINTSTS_SOF;
1759                dwc2_writel(hsotg, intr_mask, GINTMSK);
1760        }
1761        hsotg->periodic_qh_count++;
1762
1763        return 0;
1764}
1765
1766/**
1767 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
1768 * schedule. Memory is not freed.
1769 *
1770 * @hsotg: The HCD state structure
1771 * @qh:    QH to remove from schedule
1772 */
1773void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1774{
1775        u32 intr_mask;
1776
1777        dev_vdbg(hsotg->dev, "%s()\n", __func__);
1778
1779        /* If the wait_timer is pending, this will stop it from acting */
1780        qh->wait_timer_cancel = true;
1781
1782        if (list_empty(&qh->qh_list_entry))
1783                /* QH is not in a schedule */
1784                return;
1785
1786        if (dwc2_qh_is_non_per(qh)) {
1787                if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
1788                        hsotg->non_periodic_qh_ptr =
1789                                        hsotg->non_periodic_qh_ptr->next;
1790                list_del_init(&qh->qh_list_entry);
1791                return;
1792        }
1793
1794        dwc2_deschedule_periodic(hsotg, qh);
1795        hsotg->periodic_qh_count--;
1796        if (!hsotg->periodic_qh_count &&
1797            !hsotg->params.dma_desc_enable) {
1798                intr_mask = dwc2_readl(hsotg, GINTMSK);
1799                intr_mask &= ~GINTSTS_SOF;
1800                dwc2_writel(hsotg, intr_mask, GINTMSK);
1801        }
1802}
1803
1804/**
1805 * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split.
1806 *
1807 * This is called for setting next_active_frame for periodic splits for all but
1808 * the first packet of the split.  Confusing?  I thought so...
1809 *
1810 * Periodic splits are single low/full speed transfers that we end up splitting
1811 * up into several high speed transfers.  They always fit into one full (1 ms)
1812 * frame but might be split over several microframes (125 us each).  We to put
1813 * each of the parts on a very specific high speed frame.
1814 *
1815 * This function figures out where the next active uFrame needs to be.
1816 *
1817 * @hsotg:        The HCD state structure
1818 * @qh:           QH for the periodic transfer.
1819 * @frame_number: The current frame number.
1820 *
1821 * Return: number missed by (or 0 if we didn't miss).
1822 */
1823static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg,
1824                                        struct dwc2_qh *qh, u16 frame_number)
1825{
1826        u16 old_frame = qh->next_active_frame;
1827        u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1828        int missed = 0;
1829        u16 incr;
1830
1831        /*
1832         * See dwc2_uframe_schedule_split() for split scheduling.
1833         *
1834         * Basically: increment 1 normally, but 2 right after the start split
1835         * (except for ISOC out).
1836         */
1837        if (old_frame == qh->start_active_frame &&
1838            !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in))
1839                incr = 2;
1840        else
1841                incr = 1;
1842
1843        qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr);
1844
1845        /*
1846         * Note that it's OK for frame_number to be 1 frame past
1847         * next_active_frame.  Remember that next_active_frame is supposed to
1848         * be 1 frame _before_ when we want to be scheduled.  If we're 1 frame
1849         * past it just means schedule ASAP.
1850         *
1851         * It's _not_ OK, however, if we're more than one frame past.
1852         */
1853        if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) {
1854                /*
1855                 * OOPS, we missed.  That's actually pretty bad since
1856                 * the hub will be unhappy; try ASAP I guess.
1857                 */
1858                missed = dwc2_frame_num_dec(prev_frame_number,
1859                                            qh->next_active_frame);
1860                qh->next_active_frame = frame_number;
1861        }
1862
1863        return missed;
1864}
1865
1866/**
1867 * dwc2_next_periodic_start() - Set next_active_frame for next transfer start
1868 *
1869 * This is called for setting next_active_frame for a periodic transfer for
1870 * all cases other than midway through a periodic split.  This will also update
1871 * start_active_frame.
1872 *
1873 * Since we _always_ keep start_active_frame as the start of the previous
1874 * transfer this is normally pretty easy: we just add our interval to
1875 * start_active_frame and we've got our answer.
1876 *
1877 * The tricks come into play if we miss.  In that case we'll look for the next
1878 * slot we can fit into.
1879 *
1880 * @hsotg:        The HCD state structure
1881 * @qh:           QH for the periodic transfer.
1882 * @frame_number: The current frame number.
1883 *
1884 * Return: number missed by (or 0 if we didn't miss).
1885 */
1886static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg,
1887                                    struct dwc2_qh *qh, u16 frame_number)
1888{
1889        int missed = 0;
1890        u16 interval = qh->host_interval;
1891        u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1892
1893        qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame,
1894                                                    interval);
1895
1896        /*
1897         * The dwc2_frame_num_gt() function used below won't work terribly well
1898         * with if we just incremented by a really large intervals since the
1899         * frame counter only goes to 0x3fff.  It's terribly unlikely that we
1900         * will have missed in this case anyway.  Just go to exit.  If we want
1901         * to try to do better we'll need to keep track of a bigger counter
1902         * somewhere in the driver and handle overflows.
1903         */
1904        if (interval >= 0x1000)
1905                goto exit;
1906
1907        /*
1908         * Test for misses, which is when it's too late to schedule.
1909         *
1910         * A few things to note:
1911         * - We compare against prev_frame_number since start_active_frame
1912         *   and next_active_frame are always 1 frame before we want things
1913         *   to be active and we assume we can still get scheduled in the
1914         *   current frame number.
1915         * - It's possible for start_active_frame (now incremented) to be
1916         *   next_active_frame if we got an EO MISS (even_odd miss) which
1917         *   basically means that we detected there wasn't enough time for
1918         *   the last packet and dwc2_hc_set_even_odd_frame() rescheduled us
1919         *   at the last second.  We want to make sure we don't schedule
1920         *   another transfer for the same frame.  My test webcam doesn't seem
1921         *   terribly upset by missing a transfer but really doesn't like when
1922         *   we do two transfers in the same frame.
1923         * - Some misses are expected.  Specifically, in order to work
1924         *   perfectly dwc2 really needs quite spectacular interrupt latency
1925         *   requirements.  It needs to be able to handle its interrupts
1926         *   completely within 125 us of them being asserted. That not only
1927         *   means that the dwc2 interrupt handler needs to be fast but it
1928         *   means that nothing else in the system has to block dwc2 for a long
1929         *   time.  We can help with the dwc2 parts of this, but it's hard to
1930         *   guarantee that a system will have interrupt latency < 125 us, so
1931         *   we have to be robust to some misses.
1932         */
1933        if (qh->start_active_frame == qh->next_active_frame ||
1934            dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) {
1935                u16 ideal_start = qh->start_active_frame;
1936                int periods_in_map;
1937
1938                /*
1939                 * Adjust interval as per gcd with map size.
1940                 * See pmap_schedule() for more details here.
1941                 */
1942                if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH)
1943                        periods_in_map = DWC2_HS_SCHEDULE_UFRAMES;
1944                else
1945                        periods_in_map = DWC2_LS_SCHEDULE_FRAMES;
1946                interval = gcd(interval, periods_in_map);
1947
1948                do {
1949                        qh->start_active_frame = dwc2_frame_num_inc(
1950                                qh->start_active_frame, interval);
1951                } while (dwc2_frame_num_gt(prev_frame_number,
1952                                           qh->start_active_frame));
1953
1954                missed = dwc2_frame_num_dec(qh->start_active_frame,
1955                                            ideal_start);
1956        }
1957
1958exit:
1959        qh->next_active_frame = qh->start_active_frame;
1960
1961        return missed;
1962}
1963
1964/*
1965 * Deactivates a QH. For non-periodic QHs, removes the QH from the active
1966 * non-periodic schedule. The QH is added to the inactive non-periodic
1967 * schedule if any QTDs are still attached to the QH.
1968 *
1969 * For periodic QHs, the QH is removed from the periodic queued schedule. If
1970 * there are any QTDs still attached to the QH, the QH is added to either the
1971 * periodic inactive schedule or the periodic ready schedule and its next
1972 * scheduled frame is calculated. The QH is placed in the ready schedule if
1973 * the scheduled frame has been reached already. Otherwise it's placed in the
1974 * inactive schedule. If there are no QTDs attached to the QH, the QH is
1975 * completely removed from the periodic schedule.
1976 */
1977void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1978                            int sched_next_periodic_split)
1979{
1980        u16 old_frame = qh->next_active_frame;
1981        u16 frame_number;
1982        int missed;
1983
1984        if (dbg_qh(qh))
1985                dev_vdbg(hsotg->dev, "%s()\n", __func__);
1986
1987        if (dwc2_qh_is_non_per(qh)) {
1988                dwc2_hcd_qh_unlink(hsotg, qh);
1989                if (!list_empty(&qh->qtd_list))
1990                        /* Add back to inactive/waiting non-periodic schedule */
1991                        dwc2_hcd_qh_add(hsotg, qh);
1992                return;
1993        }
1994
1995        /*
1996         * Use the real frame number rather than the cached value as of the
1997         * last SOF just to get us a little closer to reality.  Note that
1998         * means we don't actually know if we've already handled the SOF
1999         * interrupt for this frame.
2000         */
2001        frame_number = dwc2_hcd_get_frame_number(hsotg);
2002
2003        if (sched_next_periodic_split)
2004                missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number);
2005        else
2006                missed = dwc2_next_periodic_start(hsotg, qh, frame_number);
2007
2008        dwc2_sch_vdbg(hsotg,
2009                      "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n",
2010                     qh, sched_next_periodic_split, frame_number, old_frame,
2011                     qh->next_active_frame,
2012                     dwc2_frame_num_dec(qh->next_active_frame, old_frame),
2013                missed, missed ? "MISS" : "");
2014
2015        if (list_empty(&qh->qtd_list)) {
2016                dwc2_hcd_qh_unlink(hsotg, qh);
2017                return;
2018        }
2019
2020        /*
2021         * Remove from periodic_sched_queued and move to
2022         * appropriate queue
2023         *
2024         * Note: we purposely use the frame_number from the "hsotg" structure
2025         * since we know SOF interrupt will handle future frames.
2026         */
2027        if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number))
2028                list_move_tail(&qh->qh_list_entry,
2029                               &hsotg->periodic_sched_ready);
2030        else
2031                list_move_tail(&qh->qh_list_entry,
2032                               &hsotg->periodic_sched_inactive);
2033}
2034
2035/**
2036 * dwc2_hcd_qtd_init() - Initializes a QTD structure
2037 *
2038 * @qtd: The QTD to initialize
2039 * @urb: The associated URB
2040 */
2041void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2042{
2043        qtd->urb = urb;
2044        if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
2045                        USB_ENDPOINT_XFER_CONTROL) {
2046                /*
2047                 * The only time the QTD data toggle is used is on the data
2048                 * phase of control transfers. This phase always starts with
2049                 * DATA1.
2050                 */
2051                qtd->data_toggle = DWC2_HC_PID_DATA1;
2052                qtd->control_phase = DWC2_CONTROL_SETUP;
2053        }
2054
2055        /* Start split */
2056        qtd->complete_split = 0;
2057        qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
2058        qtd->isoc_split_offset = 0;
2059        qtd->in_process = 0;
2060
2061        /* Store the qtd ptr in the urb to reference the QTD */
2062        urb->qtd = qtd;
2063}
2064
2065/**
2066 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
2067 *                      Caller must hold driver lock.
2068 *
2069 * @hsotg:        The DWC HCD structure
2070 * @qtd:          The QTD to add
2071 * @qh:           Queue head to add qtd to
2072 *
2073 * Return: 0 if successful, negative error code otherwise
2074 *
2075 * If the QH to which the QTD is added is not currently scheduled, it is placed
2076 * into the proper schedule based on its EP type.
2077 */
2078int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
2079                     struct dwc2_qh *qh)
2080{
2081        int retval;
2082
2083        if (unlikely(!qh)) {
2084                dev_err(hsotg->dev, "%s: Invalid QH\n", __func__);
2085                retval = -EINVAL;
2086                goto fail;
2087        }
2088
2089        retval = dwc2_hcd_qh_add(hsotg, qh);
2090        if (retval)
2091                goto fail;
2092
2093        qtd->qh = qh;
2094        list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
2095
2096        return 0;
2097fail:
2098        return retval;
2099}
2100