linux/drivers/usb/gadget/udc/udc-xilinx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Xilinx USB peripheral controller driver
   4 *
   5 * Copyright (C) 2004 by Thomas Rathbone
   6 * Copyright (C) 2005 by HP Labs
   7 * Copyright (C) 2005 by David Brownell
   8 * Copyright (C) 2010 - 2014 Xilinx, Inc.
   9 *
  10 * Some parts of this driver code is based on the driver for at91-series
  11 * USB peripheral controller (at91_udc.c).
  12 */
  13
  14#include <linux/delay.h>
  15#include <linux/device.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/module.h>
  20#include <linux/of_address.h>
  21#include <linux/of_device.h>
  22#include <linux/of_platform.h>
  23#include <linux/of_irq.h>
  24#include <linux/prefetch.h>
  25#include <linux/usb/ch9.h>
  26#include <linux/usb/gadget.h>
  27
  28/* Register offsets for the USB device.*/
  29#define XUSB_EP0_CONFIG_OFFSET          0x0000  /* EP0 Config Reg Offset */
  30#define XUSB_SETUP_PKT_ADDR_OFFSET      0x0080  /* Setup Packet Address */
  31#define XUSB_ADDRESS_OFFSET             0x0100  /* Address Register */
  32#define XUSB_CONTROL_OFFSET             0x0104  /* Control Register */
  33#define XUSB_STATUS_OFFSET              0x0108  /* Status Register */
  34#define XUSB_FRAMENUM_OFFSET            0x010C  /* Frame Number Register */
  35#define XUSB_IER_OFFSET                 0x0110  /* Interrupt Enable Register */
  36#define XUSB_BUFFREADY_OFFSET           0x0114  /* Buffer Ready Register */
  37#define XUSB_TESTMODE_OFFSET            0x0118  /* Test Mode Register */
  38#define XUSB_DMA_RESET_OFFSET           0x0200  /* DMA Soft Reset Register */
  39#define XUSB_DMA_CONTROL_OFFSET         0x0204  /* DMA Control Register */
  40#define XUSB_DMA_DSAR_ADDR_OFFSET       0x0208  /* DMA source Address Reg */
  41#define XUSB_DMA_DDAR_ADDR_OFFSET       0x020C  /* DMA destination Addr Reg */
  42#define XUSB_DMA_LENGTH_OFFSET          0x0210  /* DMA Length Register */
  43#define XUSB_DMA_STATUS_OFFSET          0x0214  /* DMA Status Register */
  44
  45/* Endpoint Configuration Space offsets */
  46#define XUSB_EP_CFGSTATUS_OFFSET        0x00    /* Endpoint Config Status  */
  47#define XUSB_EP_BUF0COUNT_OFFSET        0x08    /* Buffer 0 Count */
  48#define XUSB_EP_BUF1COUNT_OFFSET        0x0C    /* Buffer 1 Count */
  49
  50#define XUSB_CONTROL_USB_READY_MASK     0x80000000 /* USB ready Mask */
  51#define XUSB_CONTROL_USB_RMTWAKE_MASK   0x40000000 /* Remote wake up mask */
  52
  53/* Interrupt register related masks.*/
  54#define XUSB_STATUS_GLOBAL_INTR_MASK    0x80000000 /* Global Intr Enable */
  55#define XUSB_STATUS_DMADONE_MASK        0x04000000 /* DMA done Mask */
  56#define XUSB_STATUS_DMAERR_MASK         0x02000000 /* DMA Error Mask */
  57#define XUSB_STATUS_DMABUSY_MASK        0x80000000 /* DMA Error Mask */
  58#define XUSB_STATUS_RESUME_MASK         0x01000000 /* USB Resume Mask */
  59#define XUSB_STATUS_RESET_MASK          0x00800000 /* USB Reset Mask */
  60#define XUSB_STATUS_SUSPEND_MASK        0x00400000 /* USB Suspend Mask */
  61#define XUSB_STATUS_DISCONNECT_MASK     0x00200000 /* USB Disconnect Mask */
  62#define XUSB_STATUS_FIFO_BUFF_RDY_MASK  0x00100000 /* FIFO Buff Ready Mask */
  63#define XUSB_STATUS_FIFO_BUFF_FREE_MASK 0x00080000 /* FIFO Buff Free Mask */
  64#define XUSB_STATUS_SETUP_PACKET_MASK   0x00040000 /* Setup packet received */
  65#define XUSB_STATUS_EP1_BUFF2_COMP_MASK 0x00000200 /* EP 1 Buff 2 Processed */
  66#define XUSB_STATUS_EP1_BUFF1_COMP_MASK 0x00000002 /* EP 1 Buff 1 Processed */
  67#define XUSB_STATUS_EP0_BUFF2_COMP_MASK 0x00000100 /* EP 0 Buff 2 Processed */
  68#define XUSB_STATUS_EP0_BUFF1_COMP_MASK 0x00000001 /* EP 0 Buff 1 Processed */
  69#define XUSB_STATUS_HIGH_SPEED_MASK     0x00010000 /* USB Speed Mask */
  70/* Suspend,Reset,Suspend and Disconnect Mask */
  71#define XUSB_STATUS_INTR_EVENT_MASK     0x01E00000
  72/* Buffers  completion Mask */
  73#define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK     0x0000FEFF
  74/* Mask for buffer 0 and buffer 1 completion for all Endpoints */
  75#define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK   0x00000101
  76#define XUSB_STATUS_EP_BUFF2_SHIFT      8          /* EP buffer offset */
  77
  78/* Endpoint Configuration Status Register */
  79#define XUSB_EP_CFG_VALID_MASK          0x80000000 /* Endpoint Valid bit */
  80#define XUSB_EP_CFG_STALL_MASK          0x40000000 /* Endpoint Stall bit */
  81#define XUSB_EP_CFG_DATA_TOGGLE_MASK    0x08000000 /* Endpoint Data toggle */
  82
  83/* USB device specific global configuration constants.*/
  84#define XUSB_MAX_ENDPOINTS              8       /* Maximum End Points */
  85#define XUSB_EP_NUMBER_ZERO             0       /* End point Zero */
  86/* DPRAM is the source address for DMA transfer */
  87#define XUSB_DMA_READ_FROM_DPRAM        0x80000000
  88#define XUSB_DMA_DMASR_BUSY             0x80000000 /* DMA busy */
  89#define XUSB_DMA_DMASR_ERROR            0x40000000 /* DMA Error */
  90/*
  91 * When this bit is set, the DMA buffer ready bit is set by hardware upon
  92 * DMA transfer completion.
  93 */
  94#define XUSB_DMA_BRR_CTRL               0x40000000 /* DMA bufready ctrl bit */
  95/* Phase States */
  96#define SETUP_PHASE                     0x0000  /* Setup Phase */
  97#define DATA_PHASE                      0x0001  /* Data Phase */
  98#define STATUS_PHASE                    0x0002  /* Status Phase */
  99
 100#define EP0_MAX_PACKET          64 /* Endpoint 0 maximum packet length */
 101#define STATUSBUFF_SIZE         2  /* Buffer size for GET_STATUS command */
 102#define EPNAME_SIZE             4  /* Buffer size for endpoint name */
 103
 104/* container_of helper macros */
 105#define to_udc(g)        container_of((g), struct xusb_udc, gadget)
 106#define to_xusb_ep(ep)   container_of((ep), struct xusb_ep, ep_usb)
 107#define to_xusb_req(req) container_of((req), struct xusb_req, usb_req)
 108
 109/**
 110 * struct xusb_req - Xilinx USB device request structure
 111 * @usb_req: Linux usb request structure
 112 * @queue: usb device request queue
 113 * @ep: pointer to xusb_endpoint structure
 114 */
 115struct xusb_req {
 116        struct usb_request usb_req;
 117        struct list_head queue;
 118        struct xusb_ep *ep;
 119};
 120
 121/**
 122 * struct xusb_ep - USB end point structure.
 123 * @ep_usb: usb endpoint instance
 124 * @queue: endpoint message queue
 125 * @udc: xilinx usb peripheral driver instance pointer
 126 * @desc: pointer to the usb endpoint descriptor
 127 * @rambase: the endpoint buffer address
 128 * @offset: the endpoint register offset value
 129 * @name: name of the endpoint
 130 * @epnumber: endpoint number
 131 * @maxpacket: maximum packet size the endpoint can store
 132 * @buffer0count: the size of the packet recieved in the first buffer
 133 * @buffer1count: the size of the packet received in the second buffer
 134 * @curbufnum: current buffer of endpoint that will be processed next
 135 * @buffer0ready: the busy state of first buffer
 136 * @buffer1ready: the busy state of second buffer
 137 * @is_in: endpoint direction (IN or OUT)
 138 * @is_iso: endpoint type(isochronous or non isochronous)
 139 */
 140struct xusb_ep {
 141        struct usb_ep ep_usb;
 142        struct list_head queue;
 143        struct xusb_udc *udc;
 144        const struct usb_endpoint_descriptor *desc;
 145        u32  rambase;
 146        u32  offset;
 147        char name[4];
 148        u16  epnumber;
 149        u16  maxpacket;
 150        u16  buffer0count;
 151        u16  buffer1count;
 152        u8   curbufnum;
 153        bool buffer0ready;
 154        bool buffer1ready;
 155        bool is_in;
 156        bool is_iso;
 157};
 158
 159/**
 160 * struct xusb_udc -  USB peripheral driver structure
 161 * @gadget: USB gadget driver instance
 162 * @ep: an array of endpoint structures
 163 * @driver: pointer to the usb gadget driver instance
 164 * @setup: usb_ctrlrequest structure for control requests
 165 * @req: pointer to dummy request for get status command
 166 * @dev: pointer to device structure in gadget
 167 * @usb_state: device in suspended state or not
 168 * @remote_wkp: remote wakeup enabled by host
 169 * @setupseqtx: tx status
 170 * @setupseqrx: rx status
 171 * @addr: the usb device base address
 172 * @lock: instance of spinlock
 173 * @dma_enabled: flag indicating whether the dma is included in the system
 174 * @read_fn: function pointer to read device registers
 175 * @write_fn: function pointer to write to device registers
 176 */
 177struct xusb_udc {
 178        struct usb_gadget gadget;
 179        struct xusb_ep ep[8];
 180        struct usb_gadget_driver *driver;
 181        struct usb_ctrlrequest setup;
 182        struct xusb_req *req;
 183        struct device *dev;
 184        u32 usb_state;
 185        u32 remote_wkp;
 186        u32 setupseqtx;
 187        u32 setupseqrx;
 188        void __iomem *addr;
 189        spinlock_t lock;
 190        bool dma_enabled;
 191
 192        unsigned int (*read_fn)(void __iomem *);
 193        void (*write_fn)(void __iomem *, u32, u32);
 194};
 195
 196/* Endpoint buffer start addresses in the core */
 197static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500,
 198                          0x1600 };
 199
 200static const char driver_name[] = "xilinx-udc";
 201static const char ep0name[] = "ep0";
 202
 203/* Control endpoint configuration.*/
 204static const struct usb_endpoint_descriptor config_bulk_out_desc = {
 205        .bLength                = USB_DT_ENDPOINT_SIZE,
 206        .bDescriptorType        = USB_DT_ENDPOINT,
 207        .bEndpointAddress       = USB_DIR_OUT,
 208        .bmAttributes           = USB_ENDPOINT_XFER_BULK,
 209        .wMaxPacketSize         = cpu_to_le16(EP0_MAX_PACKET),
 210};
 211
 212/**
 213 * xudc_write32 - little endian write to device registers
 214 * @addr: base addr of device registers
 215 * @offset: register offset
 216 * @val: data to be written
 217 */
 218static void xudc_write32(void __iomem *addr, u32 offset, u32 val)
 219{
 220        iowrite32(val, addr + offset);
 221}
 222
 223/**
 224 * xudc_read32 - little endian read from device registers
 225 * @addr: addr of device register
 226 * Return: value at addr
 227 */
 228static unsigned int xudc_read32(void __iomem *addr)
 229{
 230        return ioread32(addr);
 231}
 232
 233/**
 234 * xudc_write32_be - big endian write to device registers
 235 * @addr: base addr of device registers
 236 * @offset: register offset
 237 * @val: data to be written
 238 */
 239static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val)
 240{
 241        iowrite32be(val, addr + offset);
 242}
 243
 244/**
 245 * xudc_read32_be - big endian read from device registers
 246 * @addr: addr of device register
 247 * Return: value at addr
 248 */
 249static unsigned int xudc_read32_be(void __iomem *addr)
 250{
 251        return ioread32be(addr);
 252}
 253
 254/**
 255 * xudc_wrstatus - Sets up the usb device status stages.
 256 * @udc: pointer to the usb device controller structure.
 257 */
 258static void xudc_wrstatus(struct xusb_udc *udc)
 259{
 260        struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
 261        u32 epcfgreg;
 262
 263        epcfgreg = udc->read_fn(udc->addr + ep0->offset)|
 264                                XUSB_EP_CFG_DATA_TOGGLE_MASK;
 265        udc->write_fn(udc->addr, ep0->offset, epcfgreg);
 266        udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0);
 267        udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
 268}
 269
 270/**
 271 * xudc_epconfig - Configures the given endpoint.
 272 * @ep: pointer to the usb device endpoint structure.
 273 * @udc: pointer to the usb peripheral controller structure.
 274 *
 275 * This function configures a specific endpoint with the given configuration
 276 * data.
 277 */
 278static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc)
 279{
 280        u32 epcfgreg;
 281
 282        /*
 283         * Configure the end point direction, type, Max Packet Size and the
 284         * EP buffer location.
 285         */
 286        epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) |
 287                   (ep->ep_usb.maxpacket << 15) | (ep->rambase));
 288        udc->write_fn(udc->addr, ep->offset, epcfgreg);
 289
 290        /* Set the Buffer count and the Buffer ready bits.*/
 291        udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET,
 292                      ep->buffer0count);
 293        udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET,
 294                      ep->buffer1count);
 295        if (ep->buffer0ready)
 296                udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 297                              1 << ep->epnumber);
 298        if (ep->buffer1ready)
 299                udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 300                              1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
 301}
 302
 303/**
 304 * xudc_start_dma - Starts DMA transfer.
 305 * @ep: pointer to the usb device endpoint structure.
 306 * @src: DMA source address.
 307 * @dst: DMA destination address.
 308 * @length: number of bytes to transfer.
 309 *
 310 * Return: 0 on success, error code on failure
 311 *
 312 * This function starts DMA transfer by writing to DMA source,
 313 * destination and lenth registers.
 314 */
 315static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src,
 316                          dma_addr_t dst, u32 length)
 317{
 318        struct xusb_udc *udc = ep->udc;
 319        int rc = 0;
 320        u32 timeout = 500;
 321        u32 reg;
 322
 323        /*
 324         * Set the addresses in the DMA source and
 325         * destination registers and then set the length
 326         * into the DMA length register.
 327         */
 328        udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src);
 329        udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst);
 330        udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length);
 331
 332        /*
 333         * Wait till DMA transaction is complete and
 334         * check whether the DMA transaction was
 335         * successful.
 336         */
 337        do {
 338                reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET);
 339                if (!(reg &  XUSB_DMA_DMASR_BUSY))
 340                        break;
 341
 342                /*
 343                 * We can't sleep here, because it's also called from
 344                 * interrupt context.
 345                 */
 346                timeout--;
 347                if (!timeout) {
 348                        dev_err(udc->dev, "DMA timeout\n");
 349                        return -ETIMEDOUT;
 350                }
 351                udelay(1);
 352        } while (1);
 353
 354        if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) &
 355                          XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){
 356                dev_err(udc->dev, "DMA Error\n");
 357                rc = -EINVAL;
 358        }
 359
 360        return rc;
 361}
 362
 363/**
 364 * xudc_dma_send - Sends IN data using DMA.
 365 * @ep: pointer to the usb device endpoint structure.
 366 * @req: pointer to the usb request structure.
 367 * @buffer: pointer to data to be sent.
 368 * @length: number of bytes to send.
 369 *
 370 * Return: 0 on success, -EAGAIN if no buffer is free and error
 371 *         code on failure.
 372 *
 373 * This function sends data using DMA.
 374 */
 375static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req,
 376                         u8 *buffer, u32 length)
 377{
 378        u32 *eprambase;
 379        dma_addr_t src;
 380        dma_addr_t dst;
 381        struct xusb_udc *udc = ep->udc;
 382
 383        src = req->usb_req.dma + req->usb_req.actual;
 384        if (req->usb_req.length)
 385                dma_sync_single_for_device(udc->dev, src,
 386                                           length, DMA_TO_DEVICE);
 387        if (!ep->curbufnum && !ep->buffer0ready) {
 388                /* Get the Buffer address and copy the transmit data.*/
 389                eprambase = (u32 __force *)(udc->addr + ep->rambase);
 390                dst = virt_to_phys(eprambase);
 391                udc->write_fn(udc->addr, ep->offset +
 392                              XUSB_EP_BUF0COUNT_OFFSET, length);
 393                udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 394                              XUSB_DMA_BRR_CTRL | (1 << ep->epnumber));
 395                ep->buffer0ready = 1;
 396                ep->curbufnum = 1;
 397        } else if (ep->curbufnum && !ep->buffer1ready) {
 398                /* Get the Buffer address and copy the transmit data.*/
 399                eprambase = (u32 __force *)(udc->addr + ep->rambase +
 400                             ep->ep_usb.maxpacket);
 401                dst = virt_to_phys(eprambase);
 402                udc->write_fn(udc->addr, ep->offset +
 403                              XUSB_EP_BUF1COUNT_OFFSET, length);
 404                udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 405                              XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber +
 406                              XUSB_STATUS_EP_BUFF2_SHIFT)));
 407                ep->buffer1ready = 1;
 408                ep->curbufnum = 0;
 409        } else {
 410                /* None of ping pong buffers are ready currently .*/
 411                return -EAGAIN;
 412        }
 413
 414        return xudc_start_dma(ep, src, dst, length);
 415}
 416
 417/**
 418 * xudc_dma_receive - Receives OUT data using DMA.
 419 * @ep: pointer to the usb device endpoint structure.
 420 * @req: pointer to the usb request structure.
 421 * @buffer: pointer to storage buffer of received data.
 422 * @length: number of bytes to receive.
 423 *
 424 * Return: 0 on success, -EAGAIN if no buffer is free and error
 425 *         code on failure.
 426 *
 427 * This function receives data using DMA.
 428 */
 429static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req,
 430                            u8 *buffer, u32 length)
 431{
 432        u32 *eprambase;
 433        dma_addr_t src;
 434        dma_addr_t dst;
 435        struct xusb_udc *udc = ep->udc;
 436
 437        dst = req->usb_req.dma + req->usb_req.actual;
 438        if (!ep->curbufnum && !ep->buffer0ready) {
 439                /* Get the Buffer address and copy the transmit data */
 440                eprambase = (u32 __force *)(udc->addr + ep->rambase);
 441                src = virt_to_phys(eprambase);
 442                udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 443                              XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
 444                              (1 << ep->epnumber));
 445                ep->buffer0ready = 1;
 446                ep->curbufnum = 1;
 447        } else if (ep->curbufnum && !ep->buffer1ready) {
 448                /* Get the Buffer address and copy the transmit data */
 449                eprambase = (u32 __force *)(udc->addr +
 450                             ep->rambase + ep->ep_usb.maxpacket);
 451                src = virt_to_phys(eprambase);
 452                udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 453                              XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
 454                              (1 << (ep->epnumber +
 455                              XUSB_STATUS_EP_BUFF2_SHIFT)));
 456                ep->buffer1ready = 1;
 457                ep->curbufnum = 0;
 458        } else {
 459                /* None of the ping-pong buffers are ready currently */
 460                return -EAGAIN;
 461        }
 462
 463        return xudc_start_dma(ep, src, dst, length);
 464}
 465
 466/**
 467 * xudc_eptxrx - Transmits or receives data to or from an endpoint.
 468 * @ep: pointer to the usb endpoint configuration structure.
 469 * @req: pointer to the usb request structure.
 470 * @bufferptr: pointer to buffer containing the data to be sent.
 471 * @bufferlen: The number of data bytes to be sent.
 472 *
 473 * Return: 0 on success, -EAGAIN if no buffer is free.
 474 *
 475 * This function copies the transmit/receive data to/from the end point buffer
 476 * and enables the buffer for transmission/reception.
 477 */
 478static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req,
 479                       u8 *bufferptr, u32 bufferlen)
 480{
 481        u32 *eprambase;
 482        u32 bytestosend;
 483        int rc = 0;
 484        struct xusb_udc *udc = ep->udc;
 485
 486        bytestosend = bufferlen;
 487        if (udc->dma_enabled) {
 488                if (ep->is_in)
 489                        rc = xudc_dma_send(ep, req, bufferptr, bufferlen);
 490                else
 491                        rc = xudc_dma_receive(ep, req, bufferptr, bufferlen);
 492                return rc;
 493        }
 494        /* Put the transmit buffer into the correct ping-pong buffer.*/
 495        if (!ep->curbufnum && !ep->buffer0ready) {
 496                /* Get the Buffer address and copy the transmit data.*/
 497                eprambase = (u32 __force *)(udc->addr + ep->rambase);
 498                if (ep->is_in) {
 499                        memcpy(eprambase, bufferptr, bytestosend);
 500                        udc->write_fn(udc->addr, ep->offset +
 501                                      XUSB_EP_BUF0COUNT_OFFSET, bufferlen);
 502                } else {
 503                        memcpy(bufferptr, eprambase, bytestosend);
 504                }
 505                /*
 506                 * Enable the buffer for transmission.
 507                 */
 508                udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 509                              1 << ep->epnumber);
 510                ep->buffer0ready = 1;
 511                ep->curbufnum = 1;
 512        } else if (ep->curbufnum && !ep->buffer1ready) {
 513                /* Get the Buffer address and copy the transmit data.*/
 514                eprambase = (u32 __force *)(udc->addr + ep->rambase +
 515                             ep->ep_usb.maxpacket);
 516                if (ep->is_in) {
 517                        memcpy(eprambase, bufferptr, bytestosend);
 518                        udc->write_fn(udc->addr, ep->offset +
 519                                      XUSB_EP_BUF1COUNT_OFFSET, bufferlen);
 520                } else {
 521                        memcpy(bufferptr, eprambase, bytestosend);
 522                }
 523                /*
 524                 * Enable the buffer for transmission.
 525                 */
 526                udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 527                              1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
 528                ep->buffer1ready = 1;
 529                ep->curbufnum = 0;
 530        } else {
 531                /* None of the ping-pong buffers are ready currently */
 532                return -EAGAIN;
 533        }
 534        return rc;
 535}
 536
 537/**
 538 * xudc_done - Exeutes the endpoint data transfer completion tasks.
 539 * @ep: pointer to the usb device endpoint structure.
 540 * @req: pointer to the usb request structure.
 541 * @status: Status of the data transfer.
 542 *
 543 * Deletes the message from the queue and updates data transfer completion
 544 * status.
 545 */
 546static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status)
 547{
 548        struct xusb_udc *udc = ep->udc;
 549
 550        list_del_init(&req->queue);
 551
 552        if (req->usb_req.status == -EINPROGRESS)
 553                req->usb_req.status = status;
 554        else
 555                status = req->usb_req.status;
 556
 557        if (status && status != -ESHUTDOWN)
 558                dev_dbg(udc->dev, "%s done %p, status %d\n",
 559                        ep->ep_usb.name, req, status);
 560        /* unmap request if DMA is present*/
 561        if (udc->dma_enabled && ep->epnumber && req->usb_req.length)
 562                usb_gadget_unmap_request(&udc->gadget, &req->usb_req,
 563                                         ep->is_in);
 564
 565        if (req->usb_req.complete) {
 566                spin_unlock(&udc->lock);
 567                req->usb_req.complete(&ep->ep_usb, &req->usb_req);
 568                spin_lock(&udc->lock);
 569        }
 570}
 571
 572/**
 573 * xudc_read_fifo - Reads the data from the given endpoint buffer.
 574 * @ep: pointer to the usb device endpoint structure.
 575 * @req: pointer to the usb request structure.
 576 *
 577 * Return: 0 if request is completed and -EAGAIN if not completed.
 578 *
 579 * Pulls OUT packet data from the endpoint buffer.
 580 */
 581static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req)
 582{
 583        u8 *buf;
 584        u32 is_short, count, bufferspace;
 585        u8 bufoffset;
 586        u8 two_pkts = 0;
 587        int ret;
 588        int retval = -EAGAIN;
 589        struct xusb_udc *udc = ep->udc;
 590
 591        if (ep->buffer0ready && ep->buffer1ready) {
 592                dev_dbg(udc->dev, "Packet NOT ready!\n");
 593                return retval;
 594        }
 595top:
 596        if (ep->curbufnum)
 597                bufoffset = XUSB_EP_BUF1COUNT_OFFSET;
 598        else
 599                bufoffset = XUSB_EP_BUF0COUNT_OFFSET;
 600
 601        count = udc->read_fn(udc->addr + ep->offset + bufoffset);
 602
 603        if (!ep->buffer0ready && !ep->buffer1ready)
 604                two_pkts = 1;
 605
 606        buf = req->usb_req.buf + req->usb_req.actual;
 607        prefetchw(buf);
 608        bufferspace = req->usb_req.length - req->usb_req.actual;
 609        is_short = count < ep->ep_usb.maxpacket;
 610
 611        if (unlikely(!bufferspace)) {
 612                /*
 613                 * This happens when the driver's buffer
 614                 * is smaller than what the host sent.
 615                 * discard the extra data.
 616                 */
 617                if (req->usb_req.status != -EOVERFLOW)
 618                        dev_dbg(udc->dev, "%s overflow %d\n",
 619                                ep->ep_usb.name, count);
 620                req->usb_req.status = -EOVERFLOW;
 621                xudc_done(ep, req, -EOVERFLOW);
 622                return 0;
 623        }
 624
 625        ret = xudc_eptxrx(ep, req, buf, count);
 626        switch (ret) {
 627        case 0:
 628                req->usb_req.actual += min(count, bufferspace);
 629                dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n",
 630                        ep->ep_usb.name, count, is_short ? "/S" : "", req,
 631                        req->usb_req.actual, req->usb_req.length);
 632                bufferspace -= count;
 633                /* Completion */
 634                if ((req->usb_req.actual == req->usb_req.length) || is_short) {
 635                        if (udc->dma_enabled && req->usb_req.length)
 636                                dma_sync_single_for_cpu(udc->dev,
 637                                                        req->usb_req.dma,
 638                                                        req->usb_req.actual,
 639                                                        DMA_FROM_DEVICE);
 640                        xudc_done(ep, req, 0);
 641                        return 0;
 642                }
 643                if (two_pkts) {
 644                        two_pkts = 0;
 645                        goto top;
 646                }
 647                break;
 648        case -EAGAIN:
 649                dev_dbg(udc->dev, "receive busy\n");
 650                break;
 651        case -EINVAL:
 652        case -ETIMEDOUT:
 653                /* DMA error, dequeue the request */
 654                xudc_done(ep, req, -ECONNRESET);
 655                retval = 0;
 656                break;
 657        }
 658
 659        return retval;
 660}
 661
 662/**
 663 * xudc_write_fifo - Writes data into the given endpoint buffer.
 664 * @ep: pointer to the usb device endpoint structure.
 665 * @req: pointer to the usb request structure.
 666 *
 667 * Return: 0 if request is completed and -EAGAIN if not completed.
 668 *
 669 * Loads endpoint buffer for an IN packet.
 670 */
 671static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req)
 672{
 673        u32 max;
 674        u32 length;
 675        int ret;
 676        int retval = -EAGAIN;
 677        struct xusb_udc *udc = ep->udc;
 678        int is_last, is_short = 0;
 679        u8 *buf;
 680
 681        max = le16_to_cpu(ep->desc->wMaxPacketSize);
 682        buf = req->usb_req.buf + req->usb_req.actual;
 683        prefetch(buf);
 684        length = req->usb_req.length - req->usb_req.actual;
 685        length = min(length, max);
 686
 687        ret = xudc_eptxrx(ep, req, buf, length);
 688        switch (ret) {
 689        case 0:
 690                req->usb_req.actual += length;
 691                if (unlikely(length != max)) {
 692                        is_last = is_short = 1;
 693                } else {
 694                        if (likely(req->usb_req.length !=
 695                                   req->usb_req.actual) || req->usb_req.zero)
 696                                is_last = 0;
 697                        else
 698                                is_last = 1;
 699                }
 700                dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n",
 701                        __func__, ep->ep_usb.name, length, is_last ? "/L" : "",
 702                        is_short ? "/S" : "",
 703                        req->usb_req.length - req->usb_req.actual, req);
 704                /* completion */
 705                if (is_last) {
 706                        xudc_done(ep, req, 0);
 707                        retval = 0;
 708                }
 709                break;
 710        case -EAGAIN:
 711                dev_dbg(udc->dev, "Send busy\n");
 712                break;
 713        case -EINVAL:
 714        case -ETIMEDOUT:
 715                /* DMA error, dequeue the request */
 716                xudc_done(ep, req, -ECONNRESET);
 717                retval = 0;
 718                break;
 719        }
 720
 721        return retval;
 722}
 723
 724/**
 725 * xudc_nuke - Cleans up the data transfer message list.
 726 * @ep: pointer to the usb device endpoint structure.
 727 * @status: Status of the data transfer.
 728 */
 729static void xudc_nuke(struct xusb_ep *ep, int status)
 730{
 731        struct xusb_req *req;
 732
 733        while (!list_empty(&ep->queue)) {
 734                req = list_first_entry(&ep->queue, struct xusb_req, queue);
 735                xudc_done(ep, req, status);
 736        }
 737}
 738
 739/**
 740 * xudc_ep_set_halt - Stalls/unstalls the given endpoint.
 741 * @_ep: pointer to the usb device endpoint structure.
 742 * @value: value to indicate stall/unstall.
 743 *
 744 * Return: 0 for success and error value on failure
 745 */
 746static int xudc_ep_set_halt(struct usb_ep *_ep, int value)
 747{
 748        struct xusb_ep *ep = to_xusb_ep(_ep);
 749        struct xusb_udc *udc;
 750        unsigned long flags;
 751        u32 epcfgreg;
 752
 753        if (!_ep || (!ep->desc && ep->epnumber)) {
 754                pr_debug("%s: bad ep or descriptor\n", __func__);
 755                return -EINVAL;
 756        }
 757        udc = ep->udc;
 758
 759        if (ep->is_in && (!list_empty(&ep->queue)) && value) {
 760                dev_dbg(udc->dev, "requests pending can't halt\n");
 761                return -EAGAIN;
 762        }
 763
 764        if (ep->buffer0ready || ep->buffer1ready) {
 765                dev_dbg(udc->dev, "HW buffers busy can't halt\n");
 766                return -EAGAIN;
 767        }
 768
 769        spin_lock_irqsave(&udc->lock, flags);
 770
 771        if (value) {
 772                /* Stall the device.*/
 773                epcfgreg = udc->read_fn(udc->addr + ep->offset);
 774                epcfgreg |= XUSB_EP_CFG_STALL_MASK;
 775                udc->write_fn(udc->addr, ep->offset, epcfgreg);
 776        } else {
 777                /* Unstall the device.*/
 778                epcfgreg = udc->read_fn(udc->addr + ep->offset);
 779                epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
 780                udc->write_fn(udc->addr, ep->offset, epcfgreg);
 781                if (ep->epnumber) {
 782                        /* Reset the toggle bit.*/
 783                        epcfgreg = udc->read_fn(ep->udc->addr + ep->offset);
 784                        epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
 785                        udc->write_fn(udc->addr, ep->offset, epcfgreg);
 786                }
 787        }
 788
 789        spin_unlock_irqrestore(&udc->lock, flags);
 790        return 0;
 791}
 792
 793/**
 794 * __xudc_ep_enable - Enables the given endpoint.
 795 * @ep: pointer to the xusb endpoint structure.
 796 * @desc: pointer to usb endpoint descriptor.
 797 *
 798 * Return: 0 for success and error value on failure
 799 */
 800static int __xudc_ep_enable(struct xusb_ep *ep,
 801                            const struct usb_endpoint_descriptor *desc)
 802{
 803        struct xusb_udc *udc = ep->udc;
 804        u32 tmp;
 805        u32 epcfg;
 806        u32 ier;
 807        u16 maxpacket;
 808
 809        ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0);
 810        /* Bit 3...0:endpoint number */
 811        ep->epnumber = (desc->bEndpointAddress & 0x0f);
 812        ep->desc = desc;
 813        ep->ep_usb.desc = desc;
 814        tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
 815        ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize);
 816
 817        switch (tmp) {
 818        case USB_ENDPOINT_XFER_CONTROL:
 819                dev_dbg(udc->dev, "only one control endpoint\n");
 820                /* NON- ISO */
 821                ep->is_iso = 0;
 822                return -EINVAL;
 823        case USB_ENDPOINT_XFER_INT:
 824                /* NON- ISO */
 825                ep->is_iso = 0;
 826                if (maxpacket > 64) {
 827                        dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
 828                        return -EINVAL;
 829                }
 830                break;
 831        case USB_ENDPOINT_XFER_BULK:
 832                /* NON- ISO */
 833                ep->is_iso = 0;
 834                if (!(is_power_of_2(maxpacket) && maxpacket >= 8 &&
 835                                maxpacket <= 512)) {
 836                        dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
 837                        return -EINVAL;
 838                }
 839                break;
 840        case USB_ENDPOINT_XFER_ISOC:
 841                /* ISO */
 842                ep->is_iso = 1;
 843                break;
 844        }
 845
 846        ep->buffer0ready = false;
 847        ep->buffer1ready = false;
 848        ep->curbufnum = 0;
 849        ep->rambase = rambase[ep->epnumber];
 850        xudc_epconfig(ep, udc);
 851
 852        dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n",
 853                ep->epnumber, maxpacket);
 854
 855        /* Enable the End point.*/
 856        epcfg = udc->read_fn(udc->addr + ep->offset);
 857        epcfg |= XUSB_EP_CFG_VALID_MASK;
 858        udc->write_fn(udc->addr, ep->offset, epcfg);
 859        if (ep->epnumber)
 860                ep->rambase <<= 2;
 861
 862        /* Enable buffer completion interrupts for endpoint */
 863        ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
 864        ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber);
 865        udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
 866
 867        /* for OUT endpoint set buffers ready to receive */
 868        if (ep->epnumber && !ep->is_in) {
 869                udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 870                              1 << ep->epnumber);
 871                ep->buffer0ready = true;
 872                udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 873                             (1 << (ep->epnumber +
 874                              XUSB_STATUS_EP_BUFF2_SHIFT)));
 875                ep->buffer1ready = true;
 876        }
 877
 878        return 0;
 879}
 880
 881/**
 882 * xudc_ep_enable - Enables the given endpoint.
 883 * @_ep: pointer to the usb endpoint structure.
 884 * @desc: pointer to usb endpoint descriptor.
 885 *
 886 * Return: 0 for success and error value on failure
 887 */
 888static int xudc_ep_enable(struct usb_ep *_ep,
 889                          const struct usb_endpoint_descriptor *desc)
 890{
 891        struct xusb_ep *ep;
 892        struct xusb_udc *udc;
 893        unsigned long flags;
 894        int ret;
 895
 896        if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) {
 897                pr_debug("%s: bad ep or descriptor\n", __func__);
 898                return -EINVAL;
 899        }
 900
 901        ep = to_xusb_ep(_ep);
 902        udc = ep->udc;
 903
 904        if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
 905                dev_dbg(udc->dev, "bogus device state\n");
 906                return -ESHUTDOWN;
 907        }
 908
 909        spin_lock_irqsave(&udc->lock, flags);
 910        ret = __xudc_ep_enable(ep, desc);
 911        spin_unlock_irqrestore(&udc->lock, flags);
 912
 913        return ret;
 914}
 915
 916/**
 917 * xudc_ep_disable - Disables the given endpoint.
 918 * @_ep: pointer to the usb endpoint structure.
 919 *
 920 * Return: 0 for success and error value on failure
 921 */
 922static int xudc_ep_disable(struct usb_ep *_ep)
 923{
 924        struct xusb_ep *ep;
 925        unsigned long flags;
 926        u32 epcfg;
 927        struct xusb_udc *udc;
 928
 929        if (!_ep) {
 930                pr_debug("%s: invalid ep\n", __func__);
 931                return -EINVAL;
 932        }
 933
 934        ep = to_xusb_ep(_ep);
 935        udc = ep->udc;
 936
 937        spin_lock_irqsave(&udc->lock, flags);
 938
 939        xudc_nuke(ep, -ESHUTDOWN);
 940
 941        /* Restore the endpoint's pristine config */
 942        ep->desc = NULL;
 943        ep->ep_usb.desc = NULL;
 944
 945        dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber);
 946        /* Disable the endpoint.*/
 947        epcfg = udc->read_fn(udc->addr + ep->offset);
 948        epcfg &= ~XUSB_EP_CFG_VALID_MASK;
 949        udc->write_fn(udc->addr, ep->offset, epcfg);
 950
 951        spin_unlock_irqrestore(&udc->lock, flags);
 952        return 0;
 953}
 954
 955/**
 956 * xudc_ep_alloc_request - Initializes the request queue.
 957 * @_ep: pointer to the usb endpoint structure.
 958 * @gfp_flags: Flags related to the request call.
 959 *
 960 * Return: pointer to request structure on success and a NULL on failure.
 961 */
 962static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep,
 963                                                 gfp_t gfp_flags)
 964{
 965        struct xusb_ep *ep = to_xusb_ep(_ep);
 966        struct xusb_req *req;
 967
 968        req = kzalloc(sizeof(*req), gfp_flags);
 969        if (!req)
 970                return NULL;
 971
 972        req->ep = ep;
 973        INIT_LIST_HEAD(&req->queue);
 974        return &req->usb_req;
 975}
 976
 977/**
 978 * xudc_free_request - Releases the request from queue.
 979 * @_ep: pointer to the usb device endpoint structure.
 980 * @_req: pointer to the usb request structure.
 981 */
 982static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req)
 983{
 984        struct xusb_req *req = to_xusb_req(_req);
 985
 986        kfree(req);
 987}
 988
 989/**
 990 * __xudc_ep0_queue - Adds the request to endpoint 0 queue.
 991 * @ep0: pointer to the xusb endpoint 0 structure.
 992 * @req: pointer to the xusb request structure.
 993 *
 994 * Return: 0 for success and error value on failure
 995 */
 996static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req)
 997{
 998        struct xusb_udc *udc = ep0->udc;
 999        u32 length;
1000        u8 *corebuf;
1001
1002        if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1003                dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1004                return -EINVAL;
1005        }
1006        if (!list_empty(&ep0->queue)) {
1007                dev_dbg(udc->dev, "%s:ep0 busy\n", __func__);
1008                return -EBUSY;
1009        }
1010
1011        req->usb_req.status = -EINPROGRESS;
1012        req->usb_req.actual = 0;
1013
1014        list_add_tail(&req->queue, &ep0->queue);
1015
1016        if (udc->setup.bRequestType & USB_DIR_IN) {
1017                prefetch(req->usb_req.buf);
1018                length = req->usb_req.length;
1019                corebuf = (void __force *) ((ep0->rambase << 2) +
1020                           udc->addr);
1021                length = req->usb_req.actual = min_t(u32, length,
1022                                                     EP0_MAX_PACKET);
1023                memcpy(corebuf, req->usb_req.buf, length);
1024                udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length);
1025                udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1026        } else {
1027                if (udc->setup.wLength) {
1028                        /* Enable EP0 buffer to receive data */
1029                        udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1030                        udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1031                } else {
1032                        xudc_wrstatus(udc);
1033                }
1034        }
1035
1036        return 0;
1037}
1038
1039/**
1040 * xudc_ep0_queue - Adds the request to endpoint 0 queue.
1041 * @_ep: pointer to the usb endpoint 0 structure.
1042 * @_req: pointer to the usb request structure.
1043 * @gfp_flags: Flags related to the request call.
1044 *
1045 * Return: 0 for success and error value on failure
1046 */
1047static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req,
1048                          gfp_t gfp_flags)
1049{
1050        struct xusb_req *req    = to_xusb_req(_req);
1051        struct xusb_ep  *ep0    = to_xusb_ep(_ep);
1052        struct xusb_udc *udc    = ep0->udc;
1053        unsigned long flags;
1054        int ret;
1055
1056        spin_lock_irqsave(&udc->lock, flags);
1057        ret = __xudc_ep0_queue(ep0, req);
1058        spin_unlock_irqrestore(&udc->lock, flags);
1059
1060        return ret;
1061}
1062
1063/**
1064 * xudc_ep_queue - Adds the request to endpoint queue.
1065 * @_ep: pointer to the usb endpoint structure.
1066 * @_req: pointer to the usb request structure.
1067 * @gfp_flags: Flags related to the request call.
1068 *
1069 * Return: 0 for success and error value on failure
1070 */
1071static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1072                         gfp_t gfp_flags)
1073{
1074        struct xusb_req *req = to_xusb_req(_req);
1075        struct xusb_ep  *ep  = to_xusb_ep(_ep);
1076        struct xusb_udc *udc = ep->udc;
1077        int  ret;
1078        unsigned long flags;
1079
1080        if (!ep->desc) {
1081                dev_dbg(udc->dev, "%s: queuing request to disabled %s\n",
1082                        __func__, ep->name);
1083                return -ESHUTDOWN;
1084        }
1085
1086        if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1087                dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1088                return -EINVAL;
1089        }
1090
1091        spin_lock_irqsave(&udc->lock, flags);
1092
1093        _req->status = -EINPROGRESS;
1094        _req->actual = 0;
1095
1096        if (udc->dma_enabled) {
1097                ret = usb_gadget_map_request(&udc->gadget, &req->usb_req,
1098                                             ep->is_in);
1099                if (ret) {
1100                        dev_dbg(udc->dev, "gadget_map failed ep%d\n",
1101                                ep->epnumber);
1102                        spin_unlock_irqrestore(&udc->lock, flags);
1103                        return -EAGAIN;
1104                }
1105        }
1106
1107        if (list_empty(&ep->queue)) {
1108                if (ep->is_in) {
1109                        dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n");
1110                        if (!xudc_write_fifo(ep, req))
1111                                req = NULL;
1112                } else {
1113                        dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n");
1114                        if (!xudc_read_fifo(ep, req))
1115                                req = NULL;
1116                }
1117        }
1118
1119        if (req != NULL)
1120                list_add_tail(&req->queue, &ep->queue);
1121
1122        spin_unlock_irqrestore(&udc->lock, flags);
1123        return 0;
1124}
1125
1126/**
1127 * xudc_ep_dequeue - Removes the request from the queue.
1128 * @_ep: pointer to the usb device endpoint structure.
1129 * @_req: pointer to the usb request structure.
1130 *
1131 * Return: 0 for success and error value on failure
1132 */
1133static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1134{
1135        struct xusb_ep *ep      = to_xusb_ep(_ep);
1136        struct xusb_req *req    = to_xusb_req(_req);
1137        struct xusb_udc *udc    = ep->udc;
1138        unsigned long flags;
1139
1140        spin_lock_irqsave(&udc->lock, flags);
1141        /* Make sure it's actually queued on this endpoint */
1142        list_for_each_entry(req, &ep->queue, queue) {
1143                if (&req->usb_req == _req)
1144                        break;
1145        }
1146        if (&req->usb_req != _req) {
1147                spin_unlock_irqrestore(&udc->lock, flags);
1148                return -EINVAL;
1149        }
1150        xudc_done(ep, req, -ECONNRESET);
1151        spin_unlock_irqrestore(&udc->lock, flags);
1152
1153        return 0;
1154}
1155
1156/**
1157 * xudc_ep0_enable - Enables the given endpoint.
1158 * @ep: pointer to the usb endpoint structure.
1159 * @desc: pointer to usb endpoint descriptor.
1160 *
1161 * Return: error always.
1162 *
1163 * endpoint 0 enable should not be called by gadget layer.
1164 */
1165static int xudc_ep0_enable(struct usb_ep *ep,
1166                           const struct usb_endpoint_descriptor *desc)
1167{
1168        return -EINVAL;
1169}
1170
1171/**
1172 * xudc_ep0_disable - Disables the given endpoint.
1173 * @ep: pointer to the usb endpoint structure.
1174 *
1175 * Return: error always.
1176 *
1177 * endpoint 0 disable should not be called by gadget layer.
1178 */
1179static int xudc_ep0_disable(struct usb_ep *ep)
1180{
1181        return -EINVAL;
1182}
1183
1184static const struct usb_ep_ops xusb_ep0_ops = {
1185        .enable         = xudc_ep0_enable,
1186        .disable        = xudc_ep0_disable,
1187        .alloc_request  = xudc_ep_alloc_request,
1188        .free_request   = xudc_free_request,
1189        .queue          = xudc_ep0_queue,
1190        .dequeue        = xudc_ep_dequeue,
1191        .set_halt       = xudc_ep_set_halt,
1192};
1193
1194static const struct usb_ep_ops xusb_ep_ops = {
1195        .enable         = xudc_ep_enable,
1196        .disable        = xudc_ep_disable,
1197        .alloc_request  = xudc_ep_alloc_request,
1198        .free_request   = xudc_free_request,
1199        .queue          = xudc_ep_queue,
1200        .dequeue        = xudc_ep_dequeue,
1201        .set_halt       = xudc_ep_set_halt,
1202};
1203
1204/**
1205 * xudc_get_frame - Reads the current usb frame number.
1206 * @gadget: pointer to the usb gadget structure.
1207 *
1208 * Return: current frame number for success and error value on failure.
1209 */
1210static int xudc_get_frame(struct usb_gadget *gadget)
1211{
1212        struct xusb_udc *udc;
1213        int frame;
1214
1215        if (!gadget)
1216                return -ENODEV;
1217
1218        udc = to_udc(gadget);
1219        frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET);
1220        return frame;
1221}
1222
1223/**
1224 * xudc_wakeup - Send remote wakeup signal to host
1225 * @gadget: pointer to the usb gadget structure.
1226 *
1227 * Return: 0 on success and error on failure
1228 */
1229static int xudc_wakeup(struct usb_gadget *gadget)
1230{
1231        struct xusb_udc *udc = to_udc(gadget);
1232        u32 crtlreg;
1233        int status = -EINVAL;
1234        unsigned long flags;
1235
1236        spin_lock_irqsave(&udc->lock, flags);
1237
1238        /* Remote wake up not enabled by host */
1239        if (!udc->remote_wkp)
1240                goto done;
1241
1242        crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1243        crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK;
1244        /* set remote wake up bit */
1245        udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1246        /*
1247         * wait for a while and reset remote wake up bit since this bit
1248         * is not cleared by HW after sending remote wakeup to host.
1249         */
1250        mdelay(2);
1251
1252        crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK;
1253        udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1254        status = 0;
1255done:
1256        spin_unlock_irqrestore(&udc->lock, flags);
1257        return status;
1258}
1259
1260/**
1261 * xudc_pullup - start/stop USB traffic
1262 * @gadget: pointer to the usb gadget structure.
1263 * @is_on: flag to start or stop
1264 *
1265 * Return: 0 always
1266 *
1267 * This function starts/stops SIE engine of IP based on is_on.
1268 */
1269static int xudc_pullup(struct usb_gadget *gadget, int is_on)
1270{
1271        struct xusb_udc *udc = to_udc(gadget);
1272        unsigned long flags;
1273        u32 crtlreg;
1274
1275        spin_lock_irqsave(&udc->lock, flags);
1276
1277        crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1278        if (is_on)
1279                crtlreg |= XUSB_CONTROL_USB_READY_MASK;
1280        else
1281                crtlreg &= ~XUSB_CONTROL_USB_READY_MASK;
1282
1283        udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1284
1285        spin_unlock_irqrestore(&udc->lock, flags);
1286
1287        return 0;
1288}
1289
1290/**
1291 * xudc_eps_init - initialize endpoints.
1292 * @udc: pointer to the usb device controller structure.
1293 */
1294static void xudc_eps_init(struct xusb_udc *udc)
1295{
1296        u32 ep_number;
1297
1298        INIT_LIST_HEAD(&udc->gadget.ep_list);
1299
1300        for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) {
1301                struct xusb_ep *ep = &udc->ep[ep_number];
1302
1303                if (ep_number) {
1304                        list_add_tail(&ep->ep_usb.ep_list,
1305                                      &udc->gadget.ep_list);
1306                        usb_ep_set_maxpacket_limit(&ep->ep_usb,
1307                                                  (unsigned short) ~0);
1308                        snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number);
1309                        ep->ep_usb.name = ep->name;
1310                        ep->ep_usb.ops = &xusb_ep_ops;
1311
1312                        ep->ep_usb.caps.type_iso = true;
1313                        ep->ep_usb.caps.type_bulk = true;
1314                        ep->ep_usb.caps.type_int = true;
1315                } else {
1316                        ep->ep_usb.name = ep0name;
1317                        usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET);
1318                        ep->ep_usb.ops = &xusb_ep0_ops;
1319
1320                        ep->ep_usb.caps.type_control = true;
1321                }
1322
1323                ep->ep_usb.caps.dir_in = true;
1324                ep->ep_usb.caps.dir_out = true;
1325
1326                ep->udc = udc;
1327                ep->epnumber = ep_number;
1328                ep->desc = NULL;
1329                /*
1330                 * The configuration register address offset between
1331                 * each endpoint is 0x10.
1332                 */
1333                ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10);
1334                ep->is_in = 0;
1335                ep->is_iso = 0;
1336                ep->maxpacket = 0;
1337                xudc_epconfig(ep, udc);
1338
1339                /* Initialize one queue per endpoint */
1340                INIT_LIST_HEAD(&ep->queue);
1341        }
1342}
1343
1344/**
1345 * xudc_stop_activity - Stops any further activity on the device.
1346 * @udc: pointer to the usb device controller structure.
1347 */
1348static void xudc_stop_activity(struct xusb_udc *udc)
1349{
1350        int i;
1351        struct xusb_ep *ep;
1352
1353        for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1354                ep = &udc->ep[i];
1355                xudc_nuke(ep, -ESHUTDOWN);
1356        }
1357}
1358
1359/**
1360 * xudc_start - Starts the device.
1361 * @gadget: pointer to the usb gadget structure
1362 * @driver: pointer to gadget driver structure
1363 *
1364 * Return: zero on success and error on failure
1365 */
1366static int xudc_start(struct usb_gadget *gadget,
1367                      struct usb_gadget_driver *driver)
1368{
1369        struct xusb_udc *udc    = to_udc(gadget);
1370        struct xusb_ep *ep0     = &udc->ep[XUSB_EP_NUMBER_ZERO];
1371        const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc;
1372        unsigned long flags;
1373        int ret = 0;
1374
1375        spin_lock_irqsave(&udc->lock, flags);
1376
1377        if (udc->driver) {
1378                dev_err(udc->dev, "%s is already bound to %s\n",
1379                        udc->gadget.name, udc->driver->driver.name);
1380                ret = -EBUSY;
1381                goto err;
1382        }
1383
1384        /* hook up the driver */
1385        udc->driver = driver;
1386        udc->gadget.speed = driver->max_speed;
1387
1388        /* Enable the control endpoint. */
1389        ret = __xudc_ep_enable(ep0, desc);
1390
1391        /* Set device address and remote wakeup to 0 */
1392        udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1393        udc->remote_wkp = 0;
1394err:
1395        spin_unlock_irqrestore(&udc->lock, flags);
1396        return ret;
1397}
1398
1399/**
1400 * xudc_stop - stops the device.
1401 * @gadget: pointer to the usb gadget structure
1402 *
1403 * Return: zero always
1404 */
1405static int xudc_stop(struct usb_gadget *gadget)
1406{
1407        struct xusb_udc *udc = to_udc(gadget);
1408        unsigned long flags;
1409
1410        spin_lock_irqsave(&udc->lock, flags);
1411
1412        udc->gadget.speed = USB_SPEED_UNKNOWN;
1413        udc->driver = NULL;
1414
1415        /* Set device address and remote wakeup to 0 */
1416        udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1417        udc->remote_wkp = 0;
1418
1419        xudc_stop_activity(udc);
1420
1421        spin_unlock_irqrestore(&udc->lock, flags);
1422
1423        return 0;
1424}
1425
1426static const struct usb_gadget_ops xusb_udc_ops = {
1427        .get_frame      = xudc_get_frame,
1428        .wakeup         = xudc_wakeup,
1429        .pullup         = xudc_pullup,
1430        .udc_start      = xudc_start,
1431        .udc_stop       = xudc_stop,
1432};
1433
1434/**
1435 * xudc_clear_stall_all_ep - clears stall of every endpoint.
1436 * @udc: pointer to the udc structure.
1437 */
1438static void xudc_clear_stall_all_ep(struct xusb_udc *udc)
1439{
1440        struct xusb_ep *ep;
1441        u32 epcfgreg;
1442        int i;
1443
1444        for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1445                ep = &udc->ep[i];
1446                epcfgreg = udc->read_fn(udc->addr + ep->offset);
1447                epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1448                udc->write_fn(udc->addr, ep->offset, epcfgreg);
1449                if (ep->epnumber) {
1450                        /* Reset the toggle bit.*/
1451                        epcfgreg = udc->read_fn(udc->addr + ep->offset);
1452                        epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
1453                        udc->write_fn(udc->addr, ep->offset, epcfgreg);
1454                }
1455        }
1456}
1457
1458/**
1459 * xudc_startup_handler - The usb device controller interrupt handler.
1460 * @udc: pointer to the udc structure.
1461 * @intrstatus: The mask value containing the interrupt sources.
1462 *
1463 * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts.
1464 */
1465static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus)
1466{
1467        u32 intrreg;
1468
1469        if (intrstatus & XUSB_STATUS_RESET_MASK) {
1470
1471                dev_dbg(udc->dev, "Reset\n");
1472
1473                if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK)
1474                        udc->gadget.speed = USB_SPEED_HIGH;
1475                else
1476                        udc->gadget.speed = USB_SPEED_FULL;
1477
1478                xudc_stop_activity(udc);
1479                xudc_clear_stall_all_ep(udc);
1480                udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
1481
1482                /* Set device address and remote wakeup to 0 */
1483                udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1484                udc->remote_wkp = 0;
1485
1486                /* Enable the suspend, resume and disconnect */
1487                intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1488                intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK |
1489                           XUSB_STATUS_DISCONNECT_MASK;
1490                udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1491        }
1492        if (intrstatus & XUSB_STATUS_SUSPEND_MASK) {
1493
1494                dev_dbg(udc->dev, "Suspend\n");
1495
1496                /* Enable the reset, resume and disconnect */
1497                intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1498                intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1499                           XUSB_STATUS_DISCONNECT_MASK;
1500                udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1501
1502                udc->usb_state = USB_STATE_SUSPENDED;
1503
1504                if (udc->driver->suspend) {
1505                        spin_unlock(&udc->lock);
1506                        udc->driver->suspend(&udc->gadget);
1507                        spin_lock(&udc->lock);
1508                }
1509        }
1510        if (intrstatus & XUSB_STATUS_RESUME_MASK) {
1511                bool condition = (udc->usb_state != USB_STATE_SUSPENDED);
1512
1513                dev_WARN_ONCE(udc->dev, condition,
1514                                "Resume IRQ while not suspended\n");
1515
1516                dev_dbg(udc->dev, "Resume\n");
1517
1518                /* Enable the reset, suspend and disconnect */
1519                intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1520                intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK |
1521                           XUSB_STATUS_DISCONNECT_MASK;
1522                udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1523
1524                udc->usb_state = 0;
1525
1526                if (udc->driver->resume) {
1527                        spin_unlock(&udc->lock);
1528                        udc->driver->resume(&udc->gadget);
1529                        spin_lock(&udc->lock);
1530                }
1531        }
1532        if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) {
1533
1534                dev_dbg(udc->dev, "Disconnect\n");
1535
1536                /* Enable the reset, resume and suspend */
1537                intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1538                intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1539                           XUSB_STATUS_SUSPEND_MASK;
1540                udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1541
1542                if (udc->driver && udc->driver->disconnect) {
1543                        spin_unlock(&udc->lock);
1544                        udc->driver->disconnect(&udc->gadget);
1545                        spin_lock(&udc->lock);
1546                }
1547        }
1548}
1549
1550/**
1551 * xudc_ep0_stall - Stall endpoint zero.
1552 * @udc: pointer to the udc structure.
1553 *
1554 * This function stalls endpoint zero.
1555 */
1556static void xudc_ep0_stall(struct xusb_udc *udc)
1557{
1558        u32 epcfgreg;
1559        struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
1560
1561        epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1562        epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1563        udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1564}
1565
1566/**
1567 * xudc_setaddress - executes SET_ADDRESS command
1568 * @udc: pointer to the udc structure.
1569 *
1570 * This function executes USB SET_ADDRESS command
1571 */
1572static void xudc_setaddress(struct xusb_udc *udc)
1573{
1574        struct xusb_ep *ep0     = &udc->ep[0];
1575        struct xusb_req *req    = udc->req;
1576        int ret;
1577
1578        req->usb_req.length = 0;
1579        ret = __xudc_ep0_queue(ep0, req);
1580        if (ret == 0)
1581                return;
1582
1583        dev_err(udc->dev, "Can't respond to SET ADDRESS request\n");
1584        xudc_ep0_stall(udc);
1585}
1586
1587/**
1588 * xudc_getstatus - executes GET_STATUS command
1589 * @udc: pointer to the udc structure.
1590 *
1591 * This function executes USB GET_STATUS command
1592 */
1593static void xudc_getstatus(struct xusb_udc *udc)
1594{
1595        struct xusb_ep *ep0     = &udc->ep[0];
1596        struct xusb_req *req    = udc->req;
1597        struct xusb_ep *target_ep;
1598        u16 status = 0;
1599        u32 epcfgreg;
1600        int epnum;
1601        u32 halt;
1602        int ret;
1603
1604        switch (udc->setup.bRequestType & USB_RECIP_MASK) {
1605        case USB_RECIP_DEVICE:
1606                /* Get device status */
1607                status = 1 << USB_DEVICE_SELF_POWERED;
1608                if (udc->remote_wkp)
1609                        status |= (1 << USB_DEVICE_REMOTE_WAKEUP);
1610                break;
1611        case USB_RECIP_INTERFACE:
1612                break;
1613        case USB_RECIP_ENDPOINT:
1614                epnum = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1615                target_ep = &udc->ep[epnum];
1616                epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1617                halt = epcfgreg & XUSB_EP_CFG_STALL_MASK;
1618                if (udc->setup.wIndex & USB_DIR_IN) {
1619                        if (!target_ep->is_in)
1620                                goto stall;
1621                } else {
1622                        if (target_ep->is_in)
1623                                goto stall;
1624                }
1625                if (halt)
1626                        status = 1 << USB_ENDPOINT_HALT;
1627                break;
1628        default:
1629                goto stall;
1630        }
1631
1632        req->usb_req.length = 2;
1633        *(u16 *)req->usb_req.buf = cpu_to_le16(status);
1634        ret = __xudc_ep0_queue(ep0, req);
1635        if (ret == 0)
1636                return;
1637stall:
1638        dev_err(udc->dev, "Can't respond to getstatus request\n");
1639        xudc_ep0_stall(udc);
1640}
1641
1642/**
1643 * xudc_set_clear_feature - Executes the set feature and clear feature commands.
1644 * @udc: pointer to the usb device controller structure.
1645 *
1646 * Processes the SET_FEATURE and CLEAR_FEATURE commands.
1647 */
1648static void xudc_set_clear_feature(struct xusb_udc *udc)
1649{
1650        struct xusb_ep *ep0     = &udc->ep[0];
1651        struct xusb_req *req    = udc->req;
1652        struct xusb_ep *target_ep;
1653        u8 endpoint;
1654        u8 outinbit;
1655        u32 epcfgreg;
1656        int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0);
1657        int ret;
1658
1659        switch (udc->setup.bRequestType) {
1660        case USB_RECIP_DEVICE:
1661                switch (udc->setup.wValue) {
1662                case USB_DEVICE_TEST_MODE:
1663                        /*
1664                         * The Test Mode will be executed
1665                         * after the status phase.
1666                         */
1667                        break;
1668                case USB_DEVICE_REMOTE_WAKEUP:
1669                        if (flag)
1670                                udc->remote_wkp = 1;
1671                        else
1672                                udc->remote_wkp = 0;
1673                        break;
1674                default:
1675                        xudc_ep0_stall(udc);
1676                        break;
1677                }
1678                break;
1679        case USB_RECIP_ENDPOINT:
1680                if (!udc->setup.wValue) {
1681                        endpoint = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1682                        target_ep = &udc->ep[endpoint];
1683                        outinbit = udc->setup.wIndex & USB_ENDPOINT_DIR_MASK;
1684                        outinbit = outinbit >> 7;
1685
1686                        /* Make sure direction matches.*/
1687                        if (outinbit != target_ep->is_in) {
1688                                xudc_ep0_stall(udc);
1689                                return;
1690                        }
1691                        epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1692                        if (!endpoint) {
1693                                /* Clear the stall.*/
1694                                epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1695                                udc->write_fn(udc->addr,
1696                                              target_ep->offset, epcfgreg);
1697                        } else {
1698                                if (flag) {
1699                                        epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1700                                        udc->write_fn(udc->addr,
1701                                                      target_ep->offset,
1702                                                      epcfgreg);
1703                                } else {
1704                                        /* Unstall the endpoint.*/
1705                                        epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK |
1706                                                XUSB_EP_CFG_DATA_TOGGLE_MASK);
1707                                        udc->write_fn(udc->addr,
1708                                                      target_ep->offset,
1709                                                      epcfgreg);
1710                                }
1711                        }
1712                }
1713                break;
1714        default:
1715                xudc_ep0_stall(udc);
1716                return;
1717        }
1718
1719        req->usb_req.length = 0;
1720        ret = __xudc_ep0_queue(ep0, req);
1721        if (ret == 0)
1722                return;
1723
1724        dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n");
1725        xudc_ep0_stall(udc);
1726}
1727
1728/**
1729 * xudc_handle_setup - Processes the setup packet.
1730 * @udc: pointer to the usb device controller structure.
1731 *
1732 * Process setup packet and delegate to gadget layer.
1733 */
1734static void xudc_handle_setup(struct xusb_udc *udc)
1735        __must_hold(&udc->lock)
1736{
1737        struct xusb_ep *ep0 = &udc->ep[0];
1738        struct usb_ctrlrequest setup;
1739        u32 *ep0rambase;
1740
1741        /* Load up the chapter 9 command buffer.*/
1742        ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET);
1743        memcpy(&setup, ep0rambase, 8);
1744
1745        udc->setup = setup;
1746        udc->setup.wValue = cpu_to_le16(setup.wValue);
1747        udc->setup.wIndex = cpu_to_le16(setup.wIndex);
1748        udc->setup.wLength = cpu_to_le16(setup.wLength);
1749
1750        /* Clear previous requests */
1751        xudc_nuke(ep0, -ECONNRESET);
1752
1753        if (udc->setup.bRequestType & USB_DIR_IN) {
1754                /* Execute the get command.*/
1755                udc->setupseqrx = STATUS_PHASE;
1756                udc->setupseqtx = DATA_PHASE;
1757        } else {
1758                /* Execute the put command.*/
1759                udc->setupseqrx = DATA_PHASE;
1760                udc->setupseqtx = STATUS_PHASE;
1761        }
1762
1763        switch (udc->setup.bRequest) {
1764        case USB_REQ_GET_STATUS:
1765                /* Data+Status phase form udc */
1766                if ((udc->setup.bRequestType &
1767                                (USB_DIR_IN | USB_TYPE_MASK)) !=
1768                                (USB_DIR_IN | USB_TYPE_STANDARD))
1769                        break;
1770                xudc_getstatus(udc);
1771                return;
1772        case USB_REQ_SET_ADDRESS:
1773                /* Status phase from udc */
1774                if (udc->setup.bRequestType != (USB_DIR_OUT |
1775                                USB_TYPE_STANDARD | USB_RECIP_DEVICE))
1776                        break;
1777                xudc_setaddress(udc);
1778                return;
1779        case USB_REQ_CLEAR_FEATURE:
1780        case USB_REQ_SET_FEATURE:
1781                /* Requests with no data phase, status phase from udc */
1782                if ((udc->setup.bRequestType & USB_TYPE_MASK)
1783                                != USB_TYPE_STANDARD)
1784                        break;
1785                xudc_set_clear_feature(udc);
1786                return;
1787        default:
1788                break;
1789        }
1790
1791        spin_unlock(&udc->lock);
1792        if (udc->driver->setup(&udc->gadget, &setup) < 0)
1793                xudc_ep0_stall(udc);
1794        spin_lock(&udc->lock);
1795}
1796
1797/**
1798 * xudc_ep0_out - Processes the endpoint 0 OUT token.
1799 * @udc: pointer to the usb device controller structure.
1800 */
1801static void xudc_ep0_out(struct xusb_udc *udc)
1802{
1803        struct xusb_ep *ep0 = &udc->ep[0];
1804        struct xusb_req *req;
1805        u8 *ep0rambase;
1806        unsigned int bytes_to_rx;
1807        void *buffer;
1808
1809        req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1810
1811        switch (udc->setupseqrx) {
1812        case STATUS_PHASE:
1813                /*
1814                 * This resets both state machines for the next
1815                 * Setup packet.
1816                 */
1817                udc->setupseqrx = SETUP_PHASE;
1818                udc->setupseqtx = SETUP_PHASE;
1819                req->usb_req.actual = req->usb_req.length;
1820                xudc_done(ep0, req, 0);
1821                break;
1822        case DATA_PHASE:
1823                bytes_to_rx = udc->read_fn(udc->addr +
1824                                           XUSB_EP_BUF0COUNT_OFFSET);
1825                /* Copy the data to be received from the DPRAM. */
1826                ep0rambase = (u8 __force *) (udc->addr +
1827                             (ep0->rambase << 2));
1828                buffer = req->usb_req.buf + req->usb_req.actual;
1829                req->usb_req.actual = req->usb_req.actual + bytes_to_rx;
1830                memcpy(buffer, ep0rambase, bytes_to_rx);
1831
1832                if (req->usb_req.length == req->usb_req.actual) {
1833                        /* Data transfer completed get ready for Status stage */
1834                        xudc_wrstatus(udc);
1835                } else {
1836                        /* Enable EP0 buffer to receive data */
1837                        udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1838                        udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1839                }
1840                break;
1841        default:
1842                break;
1843        }
1844}
1845
1846/**
1847 * xudc_ep0_in - Processes the endpoint 0 IN token.
1848 * @udc: pointer to the usb device controller structure.
1849 */
1850static void xudc_ep0_in(struct xusb_udc *udc)
1851{
1852        struct xusb_ep *ep0 = &udc->ep[0];
1853        struct xusb_req *req;
1854        unsigned int bytes_to_tx;
1855        void *buffer;
1856        u32 epcfgreg;
1857        u16 count = 0;
1858        u16 length;
1859        u8 *ep0rambase;
1860        u8 test_mode = udc->setup.wIndex >> 8;
1861
1862        req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1863        bytes_to_tx = req->usb_req.length - req->usb_req.actual;
1864
1865        switch (udc->setupseqtx) {
1866        case STATUS_PHASE:
1867                switch (udc->setup.bRequest) {
1868                case USB_REQ_SET_ADDRESS:
1869                        /* Set the address of the device.*/
1870                        udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET,
1871                                      udc->setup.wValue);
1872                        break;
1873                case USB_REQ_SET_FEATURE:
1874                        if (udc->setup.bRequestType ==
1875                                        USB_RECIP_DEVICE) {
1876                                if (udc->setup.wValue ==
1877                                                USB_DEVICE_TEST_MODE)
1878                                        udc->write_fn(udc->addr,
1879                                                      XUSB_TESTMODE_OFFSET,
1880                                                      test_mode);
1881                        }
1882                        break;
1883                }
1884                req->usb_req.actual = req->usb_req.length;
1885                xudc_done(ep0, req, 0);
1886                break;
1887        case DATA_PHASE:
1888                if (!bytes_to_tx) {
1889                        /*
1890                         * We're done with data transfer, next
1891                         * will be zero length OUT with data toggle of
1892                         * 1. Setup data_toggle.
1893                         */
1894                        epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1895                        epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK;
1896                        udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1897                        udc->setupseqtx = STATUS_PHASE;
1898                } else {
1899                        length = count = min_t(u32, bytes_to_tx,
1900                                               EP0_MAX_PACKET);
1901                        /* Copy the data to be transmitted into the DPRAM. */
1902                        ep0rambase = (u8 __force *) (udc->addr +
1903                                     (ep0->rambase << 2));
1904                        buffer = req->usb_req.buf + req->usb_req.actual;
1905                        req->usb_req.actual = req->usb_req.actual + length;
1906                        memcpy(ep0rambase, buffer, length);
1907                }
1908                udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count);
1909                udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1910                break;
1911        default:
1912                break;
1913        }
1914}
1915
1916/**
1917 * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler.
1918 * @udc: pointer to the udc structure.
1919 * @intrstatus: It's the mask value for the interrupt sources on endpoint 0.
1920 *
1921 * Processes the commands received during enumeration phase.
1922 */
1923static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus)
1924{
1925
1926        if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) {
1927                xudc_handle_setup(udc);
1928        } else {
1929                if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK)
1930                        xudc_ep0_out(udc);
1931                else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK)
1932                        xudc_ep0_in(udc);
1933        }
1934}
1935
1936/**
1937 * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler.
1938 * @udc: pointer to the udc structure.
1939 * @epnum: End point number for which the interrupt is to be processed
1940 * @intrstatus: mask value for interrupt sources of endpoints other
1941 *              than endpoint 0.
1942 *
1943 * Processes the buffer completion interrupts.
1944 */
1945static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum,
1946                                    u32 intrstatus)
1947{
1948
1949        struct xusb_req *req;
1950        struct xusb_ep *ep;
1951
1952        ep = &udc->ep[epnum];
1953        /* Process the End point interrupts.*/
1954        if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum))
1955                ep->buffer0ready = 0;
1956        if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum))
1957                ep->buffer1ready = false;
1958
1959        if (list_empty(&ep->queue))
1960                return;
1961
1962        req = list_first_entry(&ep->queue, struct xusb_req, queue);
1963
1964        if (ep->is_in)
1965                xudc_write_fifo(ep, req);
1966        else
1967                xudc_read_fifo(ep, req);
1968}
1969
1970/**
1971 * xudc_irq - The main interrupt handler.
1972 * @irq: The interrupt number.
1973 * @_udc: pointer to the usb device controller structure.
1974 *
1975 * Return: IRQ_HANDLED after the interrupt is handled.
1976 */
1977static irqreturn_t xudc_irq(int irq, void *_udc)
1978{
1979        struct xusb_udc *udc = _udc;
1980        u32 intrstatus;
1981        u32 ier;
1982        u8 index;
1983        u32 bufintr;
1984        unsigned long flags;
1985
1986        spin_lock_irqsave(&udc->lock, flags);
1987
1988        /*
1989         * Event interrupts are level sensitive hence first disable
1990         * IER, read ISR and figure out active interrupts.
1991         */
1992        ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1993        ier &= ~XUSB_STATUS_INTR_EVENT_MASK;
1994        udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
1995
1996        /* Read the Interrupt Status Register.*/
1997        intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET);
1998
1999        /* Call the handler for the event interrupt.*/
2000        if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) {
2001                /*
2002                 * Check if there is any action to be done for :
2003                 * - USB Reset received {XUSB_STATUS_RESET_MASK}
2004                 * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK}
2005                 * - USB Resume received {XUSB_STATUS_RESUME_MASK}
2006                 * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK}
2007                 */
2008                xudc_startup_handler(udc, intrstatus);
2009        }
2010
2011        /* Check the buffer completion interrupts */
2012        if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) {
2013                /* Enable Reset, Suspend, Resume and Disconnect  */
2014                ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2015                ier |= XUSB_STATUS_INTR_EVENT_MASK;
2016                udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2017
2018                if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK)
2019                        xudc_ctrl_ep_handler(udc, intrstatus);
2020
2021                for (index = 1; index < 8; index++) {
2022                        bufintr = ((intrstatus &
2023                                  (XUSB_STATUS_EP1_BUFF1_COMP_MASK <<
2024                                  (index - 1))) || (intrstatus &
2025                                  (XUSB_STATUS_EP1_BUFF2_COMP_MASK <<
2026                                  (index - 1))));
2027                        if (bufintr) {
2028                                xudc_nonctrl_ep_handler(udc, index,
2029                                                        intrstatus);
2030                        }
2031                }
2032        }
2033
2034        spin_unlock_irqrestore(&udc->lock, flags);
2035        return IRQ_HANDLED;
2036}
2037
2038/**
2039 * xudc_probe - The device probe function for driver initialization.
2040 * @pdev: pointer to the platform device structure.
2041 *
2042 * Return: 0 for success and error value on failure
2043 */
2044static int xudc_probe(struct platform_device *pdev)
2045{
2046        struct device_node *np = pdev->dev.of_node;
2047        struct resource *res;
2048        struct xusb_udc *udc;
2049        int irq;
2050        int ret;
2051        u32 ier;
2052        u8 *buff;
2053
2054        udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2055        if (!udc)
2056                return -ENOMEM;
2057
2058        /* Create a dummy request for GET_STATUS, SET_ADDRESS */
2059        udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req),
2060                                GFP_KERNEL);
2061        if (!udc->req)
2062                return -ENOMEM;
2063
2064        buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL);
2065        if (!buff)
2066                return -ENOMEM;
2067
2068        udc->req->usb_req.buf = buff;
2069
2070        /* Map the registers */
2071        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2072        udc->addr = devm_ioremap_resource(&pdev->dev, res);
2073        if (IS_ERR(udc->addr))
2074                return PTR_ERR(udc->addr);
2075
2076        irq = platform_get_irq(pdev, 0);
2077        if (irq < 0)
2078                return irq;
2079        ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0,
2080                               dev_name(&pdev->dev), udc);
2081        if (ret < 0) {
2082                dev_dbg(&pdev->dev, "unable to request irq %d", irq);
2083                goto fail;
2084        }
2085
2086        udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma");
2087
2088        /* Setup gadget structure */
2089        udc->gadget.ops = &xusb_udc_ops;
2090        udc->gadget.max_speed = USB_SPEED_HIGH;
2091        udc->gadget.speed = USB_SPEED_UNKNOWN;
2092        udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb;
2093        udc->gadget.name = driver_name;
2094
2095        spin_lock_init(&udc->lock);
2096
2097        /* Check for IP endianness */
2098        udc->write_fn = xudc_write32_be;
2099        udc->read_fn = xudc_read32_be;
2100        udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, USB_TEST_J);
2101        if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET))
2102                        != USB_TEST_J) {
2103                udc->write_fn = xudc_write32;
2104                udc->read_fn = xudc_read32;
2105        }
2106        udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
2107
2108        xudc_eps_init(udc);
2109
2110        /* Set device address to 0.*/
2111        udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
2112
2113        ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2114        if (ret)
2115                goto fail;
2116
2117        udc->dev = &udc->gadget.dev;
2118
2119        /* Enable the interrupts.*/
2120        ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK |
2121              XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK |
2122              XUSB_STATUS_SETUP_PACKET_MASK |
2123              XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK;
2124
2125        udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2126
2127        platform_set_drvdata(pdev, udc);
2128
2129        dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n",
2130                 driver_name, (u32)res->start, udc->addr,
2131                 udc->dma_enabled ? "with DMA" : "without DMA");
2132
2133        return 0;
2134fail:
2135        dev_err(&pdev->dev, "probe failed, %d\n", ret);
2136        return ret;
2137}
2138
2139/**
2140 * xudc_remove - Releases the resources allocated during the initialization.
2141 * @pdev: pointer to the platform device structure.
2142 *
2143 * Return: 0 always
2144 */
2145static int xudc_remove(struct platform_device *pdev)
2146{
2147        struct xusb_udc *udc = platform_get_drvdata(pdev);
2148
2149        usb_del_gadget_udc(&udc->gadget);
2150
2151        return 0;
2152}
2153
2154/* Match table for of_platform binding */
2155static const struct of_device_id usb_of_match[] = {
2156        { .compatible = "xlnx,usb2-device-4.00.a", },
2157        { /* end of list */ },
2158};
2159MODULE_DEVICE_TABLE(of, usb_of_match);
2160
2161static struct platform_driver xudc_driver = {
2162        .driver = {
2163                .name = driver_name,
2164                .of_match_table = usb_of_match,
2165        },
2166        .probe = xudc_probe,
2167        .remove = xudc_remove,
2168};
2169
2170module_platform_driver(xudc_driver);
2171
2172MODULE_DESCRIPTION("Xilinx udc driver");
2173MODULE_AUTHOR("Xilinx, Inc");
2174MODULE_LICENSE("GPL");
2175