linux/drivers/usb/host/fotg210-hcd.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/* Faraday FOTG210 EHCI-like driver
   3 *
   4 * Copyright (c) 2013 Faraday Technology Corporation
   5 *
   6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
   7 *         Feng-Hsin Chiang <john453@faraday-tech.com>
   8 *         Po-Yu Chuang <ratbert.chuang@gmail.com>
   9 *
  10 * Most of code borrowed from the Linux-3.7 EHCI driver
  11 */
  12#include <linux/module.h>
  13#include <linux/of.h>
  14#include <linux/device.h>
  15#include <linux/dmapool.h>
  16#include <linux/kernel.h>
  17#include <linux/delay.h>
  18#include <linux/ioport.h>
  19#include <linux/sched.h>
  20#include <linux/vmalloc.h>
  21#include <linux/errno.h>
  22#include <linux/init.h>
  23#include <linux/hrtimer.h>
  24#include <linux/list.h>
  25#include <linux/interrupt.h>
  26#include <linux/usb.h>
  27#include <linux/usb/hcd.h>
  28#include <linux/moduleparam.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/debugfs.h>
  31#include <linux/slab.h>
  32#include <linux/uaccess.h>
  33#include <linux/platform_device.h>
  34#include <linux/io.h>
  35#include <linux/clk.h>
  36
  37#include <asm/byteorder.h>
  38#include <asm/irq.h>
  39#include <asm/unaligned.h>
  40
  41#define DRIVER_AUTHOR "Yuan-Hsin Chen"
  42#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
  43static const char hcd_name[] = "fotg210_hcd";
  44
  45#undef FOTG210_URB_TRACE
  46#define FOTG210_STATS
  47
  48/* magic numbers that can affect system performance */
  49#define FOTG210_TUNE_CERR       3 /* 0-3 qtd retries; 0 == don't stop */
  50#define FOTG210_TUNE_RL_HS      4 /* nak throttle; see 4.9 */
  51#define FOTG210_TUNE_RL_TT      0
  52#define FOTG210_TUNE_MULT_HS    1 /* 1-3 transactions/uframe; 4.10.3 */
  53#define FOTG210_TUNE_MULT_TT    1
  54
  55/* Some drivers think it's safe to schedule isochronous transfers more than 256
  56 * ms into the future (partly as a result of an old bug in the scheduling
  57 * code).  In an attempt to avoid trouble, we will use a minimum scheduling
  58 * length of 512 frames instead of 256.
  59 */
  60#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
  61
  62/* Initial IRQ latency:  faster than hw default */
  63static int log2_irq_thresh; /* 0 to 6 */
  64module_param(log2_irq_thresh, int, S_IRUGO);
  65MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
  66
  67/* initial park setting:  slower than hw default */
  68static unsigned park;
  69module_param(park, uint, S_IRUGO);
  70MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
  71
  72/* for link power management(LPM) feature */
  73static unsigned int hird;
  74module_param(hird, int, S_IRUGO);
  75MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
  76
  77#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
  78
  79#include "fotg210.h"
  80
  81#define fotg210_dbg(fotg210, fmt, args...) \
  82        dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  83#define fotg210_err(fotg210, fmt, args...) \
  84        dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  85#define fotg210_info(fotg210, fmt, args...) \
  86        dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  87#define fotg210_warn(fotg210, fmt, args...) \
  88        dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  89
  90/* check the values in the HCSPARAMS register (host controller _Structural_
  91 * parameters) see EHCI spec, Table 2-4 for each value
  92 */
  93static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
  94{
  95        u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
  96
  97        fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
  98                        HCS_N_PORTS(params));
  99}
 100
 101/* check the values in the HCCPARAMS register (host controller _Capability_
 102 * parameters) see EHCI Spec, Table 2-5 for each value
 103 */
 104static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
 105{
 106        u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
 107
 108        fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
 109                        params,
 110                        HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
 111                        HCC_CANPARK(params) ? " park" : "");
 112}
 113
 114static void __maybe_unused
 115dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
 116{
 117        fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
 118                        hc32_to_cpup(fotg210, &qtd->hw_next),
 119                        hc32_to_cpup(fotg210, &qtd->hw_alt_next),
 120                        hc32_to_cpup(fotg210, &qtd->hw_token),
 121                        hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
 122        if (qtd->hw_buf[1])
 123                fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
 124                                hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
 125                                hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
 126                                hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
 127                                hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
 128}
 129
 130static void __maybe_unused
 131dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
 132{
 133        struct fotg210_qh_hw *hw = qh->hw;
 134
 135        fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
 136                        hw->hw_next, hw->hw_info1, hw->hw_info2,
 137                        hw->hw_current);
 138
 139        dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
 140}
 141
 142static void __maybe_unused
 143dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
 144{
 145        fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
 146                        itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
 147                        itd->urb);
 148
 149        fotg210_dbg(fotg210,
 150                        "  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
 151                        hc32_to_cpu(fotg210, itd->hw_transaction[0]),
 152                        hc32_to_cpu(fotg210, itd->hw_transaction[1]),
 153                        hc32_to_cpu(fotg210, itd->hw_transaction[2]),
 154                        hc32_to_cpu(fotg210, itd->hw_transaction[3]),
 155                        hc32_to_cpu(fotg210, itd->hw_transaction[4]),
 156                        hc32_to_cpu(fotg210, itd->hw_transaction[5]),
 157                        hc32_to_cpu(fotg210, itd->hw_transaction[6]),
 158                        hc32_to_cpu(fotg210, itd->hw_transaction[7]));
 159
 160        fotg210_dbg(fotg210,
 161                        "  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
 162                        hc32_to_cpu(fotg210, itd->hw_bufp[0]),
 163                        hc32_to_cpu(fotg210, itd->hw_bufp[1]),
 164                        hc32_to_cpu(fotg210, itd->hw_bufp[2]),
 165                        hc32_to_cpu(fotg210, itd->hw_bufp[3]),
 166                        hc32_to_cpu(fotg210, itd->hw_bufp[4]),
 167                        hc32_to_cpu(fotg210, itd->hw_bufp[5]),
 168                        hc32_to_cpu(fotg210, itd->hw_bufp[6]));
 169
 170        fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
 171                        itd->index[0], itd->index[1], itd->index[2],
 172                        itd->index[3], itd->index[4], itd->index[5],
 173                        itd->index[6], itd->index[7]);
 174}
 175
 176static int __maybe_unused
 177dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
 178{
 179        return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
 180                        label, label[0] ? " " : "", status,
 181                        (status & STS_ASS) ? " Async" : "",
 182                        (status & STS_PSS) ? " Periodic" : "",
 183                        (status & STS_RECL) ? " Recl" : "",
 184                        (status & STS_HALT) ? " Halt" : "",
 185                        (status & STS_IAA) ? " IAA" : "",
 186                        (status & STS_FATAL) ? " FATAL" : "",
 187                        (status & STS_FLR) ? " FLR" : "",
 188                        (status & STS_PCD) ? " PCD" : "",
 189                        (status & STS_ERR) ? " ERR" : "",
 190                        (status & STS_INT) ? " INT" : "");
 191}
 192
 193static int __maybe_unused
 194dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
 195{
 196        return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
 197                        label, label[0] ? " " : "", enable,
 198                        (enable & STS_IAA) ? " IAA" : "",
 199                        (enable & STS_FATAL) ? " FATAL" : "",
 200                        (enable & STS_FLR) ? " FLR" : "",
 201                        (enable & STS_PCD) ? " PCD" : "",
 202                        (enable & STS_ERR) ? " ERR" : "",
 203                        (enable & STS_INT) ? " INT" : "");
 204}
 205
 206static const char *const fls_strings[] = { "1024", "512", "256", "??" };
 207
 208static int dbg_command_buf(char *buf, unsigned len, const char *label,
 209                u32 command)
 210{
 211        return scnprintf(buf, len,
 212                        "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
 213                        label, label[0] ? " " : "", command,
 214                        (command & CMD_PARK) ? " park" : "(park)",
 215                        CMD_PARK_CNT(command),
 216                        (command >> 16) & 0x3f,
 217                        (command & CMD_IAAD) ? " IAAD" : "",
 218                        (command & CMD_ASE) ? " Async" : "",
 219                        (command & CMD_PSE) ? " Periodic" : "",
 220                        fls_strings[(command >> 2) & 0x3],
 221                        (command & CMD_RESET) ? " Reset" : "",
 222                        (command & CMD_RUN) ? "RUN" : "HALT");
 223}
 224
 225static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
 226                u32 status)
 227{
 228        char *sig;
 229
 230        /* signaling state */
 231        switch (status & (3 << 10)) {
 232        case 0 << 10:
 233                sig = "se0";
 234                break;
 235        case 1 << 10:
 236                sig = "k";
 237                break; /* low speed */
 238        case 2 << 10:
 239                sig = "j";
 240                break;
 241        default:
 242                sig = "?";
 243                break;
 244        }
 245
 246        scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
 247                        label, label[0] ? " " : "", port, status,
 248                        status >> 25, /*device address */
 249                        sig,
 250                        (status & PORT_RESET) ? " RESET" : "",
 251                        (status & PORT_SUSPEND) ? " SUSPEND" : "",
 252                        (status & PORT_RESUME) ? " RESUME" : "",
 253                        (status & PORT_PEC) ? " PEC" : "",
 254                        (status & PORT_PE) ? " PE" : "",
 255                        (status & PORT_CSC) ? " CSC" : "",
 256                        (status & PORT_CONNECT) ? " CONNECT" : "");
 257
 258        return buf;
 259}
 260
 261/* functions have the "wrong" filename when they're output... */
 262#define dbg_status(fotg210, label, status) {                    \
 263        char _buf[80];                                          \
 264        dbg_status_buf(_buf, sizeof(_buf), label, status);      \
 265        fotg210_dbg(fotg210, "%s\n", _buf);                     \
 266}
 267
 268#define dbg_cmd(fotg210, label, command) {                      \
 269        char _buf[80];                                          \
 270        dbg_command_buf(_buf, sizeof(_buf), label, command);    \
 271        fotg210_dbg(fotg210, "%s\n", _buf);                     \
 272}
 273
 274#define dbg_port(fotg210, label, port, status) {                               \
 275        char _buf[80];                                                         \
 276        fotg210_dbg(fotg210, "%s\n",                                           \
 277                        dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
 278}
 279
 280/* troubleshooting help: expose state in debugfs */
 281static int debug_async_open(struct inode *, struct file *);
 282static int debug_periodic_open(struct inode *, struct file *);
 283static int debug_registers_open(struct inode *, struct file *);
 284static int debug_async_open(struct inode *, struct file *);
 285
 286static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
 287static int debug_close(struct inode *, struct file *);
 288
 289static const struct file_operations debug_async_fops = {
 290        .owner          = THIS_MODULE,
 291        .open           = debug_async_open,
 292        .read           = debug_output,
 293        .release        = debug_close,
 294        .llseek         = default_llseek,
 295};
 296static const struct file_operations debug_periodic_fops = {
 297        .owner          = THIS_MODULE,
 298        .open           = debug_periodic_open,
 299        .read           = debug_output,
 300        .release        = debug_close,
 301        .llseek         = default_llseek,
 302};
 303static const struct file_operations debug_registers_fops = {
 304        .owner          = THIS_MODULE,
 305        .open           = debug_registers_open,
 306        .read           = debug_output,
 307        .release        = debug_close,
 308        .llseek         = default_llseek,
 309};
 310
 311static struct dentry *fotg210_debug_root;
 312
 313struct debug_buffer {
 314        ssize_t (*fill_func)(struct debug_buffer *);    /* fill method */
 315        struct usb_bus *bus;
 316        struct mutex mutex;     /* protect filling of buffer */
 317        size_t count;           /* number of characters filled into buffer */
 318        char *output_buf;
 319        size_t alloc_size;
 320};
 321
 322static inline char speed_char(u32 scratch)
 323{
 324        switch (scratch & (3 << 12)) {
 325        case QH_FULL_SPEED:
 326                return 'f';
 327
 328        case QH_LOW_SPEED:
 329                return 'l';
 330
 331        case QH_HIGH_SPEED:
 332                return 'h';
 333
 334        default:
 335                return '?';
 336        }
 337}
 338
 339static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
 340{
 341        __u32 v = hc32_to_cpu(fotg210, token);
 342
 343        if (v & QTD_STS_ACTIVE)
 344                return '*';
 345        if (v & QTD_STS_HALT)
 346                return '-';
 347        if (!IS_SHORT_READ(v))
 348                return ' ';
 349        /* tries to advance through hw_alt_next */
 350        return '/';
 351}
 352
 353static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
 354                char **nextp, unsigned *sizep)
 355{
 356        u32 scratch;
 357        u32 hw_curr;
 358        struct fotg210_qtd *td;
 359        unsigned temp;
 360        unsigned size = *sizep;
 361        char *next = *nextp;
 362        char mark;
 363        __le32 list_end = FOTG210_LIST_END(fotg210);
 364        struct fotg210_qh_hw *hw = qh->hw;
 365
 366        if (hw->hw_qtd_next == list_end) /* NEC does this */
 367                mark = '@';
 368        else
 369                mark = token_mark(fotg210, hw->hw_token);
 370        if (mark == '/') { /* qh_alt_next controls qh advance? */
 371                if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
 372                    fotg210->async->hw->hw_alt_next)
 373                        mark = '#'; /* blocked */
 374                else if (hw->hw_alt_next == list_end)
 375                        mark = '.'; /* use hw_qtd_next */
 376                /* else alt_next points to some other qtd */
 377        }
 378        scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
 379        hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
 380        temp = scnprintf(next, size,
 381                        "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
 382                        qh, scratch & 0x007f,
 383                        speed_char(scratch),
 384                        (scratch >> 8) & 0x000f,
 385                        scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
 386                        hc32_to_cpup(fotg210, &hw->hw_token), mark,
 387                        (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
 388                                ? "data1" : "data0",
 389                        (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
 390        size -= temp;
 391        next += temp;
 392
 393        /* hc may be modifying the list as we read it ... */
 394        list_for_each_entry(td, &qh->qtd_list, qtd_list) {
 395                scratch = hc32_to_cpup(fotg210, &td->hw_token);
 396                mark = ' ';
 397                if (hw_curr == td->qtd_dma)
 398                        mark = '*';
 399                else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
 400                        mark = '+';
 401                else if (QTD_LENGTH(scratch)) {
 402                        if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
 403                                mark = '#';
 404                        else if (td->hw_alt_next != list_end)
 405                                mark = '/';
 406                }
 407                temp = snprintf(next, size,
 408                                "\n\t%p%c%s len=%d %08x urb %p",
 409                                td, mark, ({ char *tmp;
 410                                 switch ((scratch>>8)&0x03) {
 411                                 case 0:
 412                                        tmp = "out";
 413                                        break;
 414                                 case 1:
 415                                        tmp = "in";
 416                                        break;
 417                                 case 2:
 418                                        tmp = "setup";
 419                                        break;
 420                                 default:
 421                                        tmp = "?";
 422                                        break;
 423                                 } tmp; }),
 424                                (scratch >> 16) & 0x7fff,
 425                                scratch,
 426                                td->urb);
 427                if (size < temp)
 428                        temp = size;
 429                size -= temp;
 430                next += temp;
 431                if (temp == size)
 432                        goto done;
 433        }
 434
 435        temp = snprintf(next, size, "\n");
 436        if (size < temp)
 437                temp = size;
 438
 439        size -= temp;
 440        next += temp;
 441
 442done:
 443        *sizep = size;
 444        *nextp = next;
 445}
 446
 447static ssize_t fill_async_buffer(struct debug_buffer *buf)
 448{
 449        struct usb_hcd *hcd;
 450        struct fotg210_hcd *fotg210;
 451        unsigned long flags;
 452        unsigned temp, size;
 453        char *next;
 454        struct fotg210_qh *qh;
 455
 456        hcd = bus_to_hcd(buf->bus);
 457        fotg210 = hcd_to_fotg210(hcd);
 458        next = buf->output_buf;
 459        size = buf->alloc_size;
 460
 461        *next = 0;
 462
 463        /* dumps a snapshot of the async schedule.
 464         * usually empty except for long-term bulk reads, or head.
 465         * one QH per line, and TDs we know about
 466         */
 467        spin_lock_irqsave(&fotg210->lock, flags);
 468        for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
 469                        qh = qh->qh_next.qh)
 470                qh_lines(fotg210, qh, &next, &size);
 471        if (fotg210->async_unlink && size > 0) {
 472                temp = scnprintf(next, size, "\nunlink =\n");
 473                size -= temp;
 474                next += temp;
 475
 476                for (qh = fotg210->async_unlink; size > 0 && qh;
 477                                qh = qh->unlink_next)
 478                        qh_lines(fotg210, qh, &next, &size);
 479        }
 480        spin_unlock_irqrestore(&fotg210->lock, flags);
 481
 482        return strlen(buf->output_buf);
 483}
 484
 485/* count tds, get ep direction */
 486static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
 487                struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
 488{
 489        u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
 490        struct fotg210_qtd *qtd;
 491        char *type = "";
 492        unsigned temp = 0;
 493
 494        /* count tds, get ep direction */
 495        list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
 496                temp++;
 497                switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
 498                case 0:
 499                        type = "out";
 500                        continue;
 501                case 1:
 502                        type = "in";
 503                        continue;
 504                }
 505        }
 506
 507        return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
 508                        speed_char(scratch), scratch & 0x007f,
 509                        (scratch >> 8) & 0x000f, type, qh->usecs,
 510                        qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
 511}
 512
 513#define DBG_SCHED_LIMIT 64
 514static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
 515{
 516        struct usb_hcd *hcd;
 517        struct fotg210_hcd *fotg210;
 518        unsigned long flags;
 519        union fotg210_shadow p, *seen;
 520        unsigned temp, size, seen_count;
 521        char *next;
 522        unsigned i;
 523        __hc32 tag;
 524
 525        seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
 526        if (!seen)
 527                return 0;
 528
 529        seen_count = 0;
 530
 531        hcd = bus_to_hcd(buf->bus);
 532        fotg210 = hcd_to_fotg210(hcd);
 533        next = buf->output_buf;
 534        size = buf->alloc_size;
 535
 536        temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
 537        size -= temp;
 538        next += temp;
 539
 540        /* dump a snapshot of the periodic schedule.
 541         * iso changes, interrupt usually doesn't.
 542         */
 543        spin_lock_irqsave(&fotg210->lock, flags);
 544        for (i = 0; i < fotg210->periodic_size; i++) {
 545                p = fotg210->pshadow[i];
 546                if (likely(!p.ptr))
 547                        continue;
 548
 549                tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
 550
 551                temp = scnprintf(next, size, "%4d: ", i);
 552                size -= temp;
 553                next += temp;
 554
 555                do {
 556                        struct fotg210_qh_hw *hw;
 557
 558                        switch (hc32_to_cpu(fotg210, tag)) {
 559                        case Q_TYPE_QH:
 560                                hw = p.qh->hw;
 561                                temp = scnprintf(next, size, " qh%d-%04x/%p",
 562                                                p.qh->period,
 563                                                hc32_to_cpup(fotg210,
 564                                                        &hw->hw_info2)
 565                                                        /* uframe masks */
 566                                                        & (QH_CMASK | QH_SMASK),
 567                                                p.qh);
 568                                size -= temp;
 569                                next += temp;
 570                                /* don't repeat what follows this qh */
 571                                for (temp = 0; temp < seen_count; temp++) {
 572                                        if (seen[temp].ptr != p.ptr)
 573                                                continue;
 574                                        if (p.qh->qh_next.ptr) {
 575                                                temp = scnprintf(next, size,
 576                                                                " ...");
 577                                                size -= temp;
 578                                                next += temp;
 579                                        }
 580                                        break;
 581                                }
 582                                /* show more info the first time around */
 583                                if (temp == seen_count) {
 584                                        temp = output_buf_tds_dir(next,
 585                                                        fotg210, hw,
 586                                                        p.qh, size);
 587
 588                                        if (seen_count < DBG_SCHED_LIMIT)
 589                                                seen[seen_count++].qh = p.qh;
 590                                } else
 591                                        temp = 0;
 592                                tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
 593                                p = p.qh->qh_next;
 594                                break;
 595                        case Q_TYPE_FSTN:
 596                                temp = scnprintf(next, size,
 597                                                " fstn-%8x/%p",
 598                                                p.fstn->hw_prev, p.fstn);
 599                                tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
 600                                p = p.fstn->fstn_next;
 601                                break;
 602                        case Q_TYPE_ITD:
 603                                temp = scnprintf(next, size,
 604                                                " itd/%p", p.itd);
 605                                tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
 606                                p = p.itd->itd_next;
 607                                break;
 608                        }
 609                        size -= temp;
 610                        next += temp;
 611                } while (p.ptr);
 612
 613                temp = scnprintf(next, size, "\n");
 614                size -= temp;
 615                next += temp;
 616        }
 617        spin_unlock_irqrestore(&fotg210->lock, flags);
 618        kfree(seen);
 619
 620        return buf->alloc_size - size;
 621}
 622#undef DBG_SCHED_LIMIT
 623
 624static const char *rh_state_string(struct fotg210_hcd *fotg210)
 625{
 626        switch (fotg210->rh_state) {
 627        case FOTG210_RH_HALTED:
 628                return "halted";
 629        case FOTG210_RH_SUSPENDED:
 630                return "suspended";
 631        case FOTG210_RH_RUNNING:
 632                return "running";
 633        case FOTG210_RH_STOPPING:
 634                return "stopping";
 635        }
 636        return "?";
 637}
 638
 639static ssize_t fill_registers_buffer(struct debug_buffer *buf)
 640{
 641        struct usb_hcd *hcd;
 642        struct fotg210_hcd *fotg210;
 643        unsigned long flags;
 644        unsigned temp, size, i;
 645        char *next, scratch[80];
 646        static const char fmt[] = "%*s\n";
 647        static const char label[] = "";
 648
 649        hcd = bus_to_hcd(buf->bus);
 650        fotg210 = hcd_to_fotg210(hcd);
 651        next = buf->output_buf;
 652        size = buf->alloc_size;
 653
 654        spin_lock_irqsave(&fotg210->lock, flags);
 655
 656        if (!HCD_HW_ACCESSIBLE(hcd)) {
 657                size = scnprintf(next, size,
 658                                "bus %s, device %s\n"
 659                                "%s\n"
 660                                "SUSPENDED(no register access)\n",
 661                                hcd->self.controller->bus->name,
 662                                dev_name(hcd->self.controller),
 663                                hcd->product_desc);
 664                goto done;
 665        }
 666
 667        /* Capability Registers */
 668        i = HC_VERSION(fotg210, fotg210_readl(fotg210,
 669                        &fotg210->caps->hc_capbase));
 670        temp = scnprintf(next, size,
 671                        "bus %s, device %s\n"
 672                        "%s\n"
 673                        "EHCI %x.%02x, rh state %s\n",
 674                        hcd->self.controller->bus->name,
 675                        dev_name(hcd->self.controller),
 676                        hcd->product_desc,
 677                        i >> 8, i & 0x0ff, rh_state_string(fotg210));
 678        size -= temp;
 679        next += temp;
 680
 681        /* FIXME interpret both types of params */
 682        i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
 683        temp = scnprintf(next, size, "structural params 0x%08x\n", i);
 684        size -= temp;
 685        next += temp;
 686
 687        i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
 688        temp = scnprintf(next, size, "capability params 0x%08x\n", i);
 689        size -= temp;
 690        next += temp;
 691
 692        /* Operational Registers */
 693        temp = dbg_status_buf(scratch, sizeof(scratch), label,
 694                        fotg210_readl(fotg210, &fotg210->regs->status));
 695        temp = scnprintf(next, size, fmt, temp, scratch);
 696        size -= temp;
 697        next += temp;
 698
 699        temp = dbg_command_buf(scratch, sizeof(scratch), label,
 700                        fotg210_readl(fotg210, &fotg210->regs->command));
 701        temp = scnprintf(next, size, fmt, temp, scratch);
 702        size -= temp;
 703        next += temp;
 704
 705        temp = dbg_intr_buf(scratch, sizeof(scratch), label,
 706                        fotg210_readl(fotg210, &fotg210->regs->intr_enable));
 707        temp = scnprintf(next, size, fmt, temp, scratch);
 708        size -= temp;
 709        next += temp;
 710
 711        temp = scnprintf(next, size, "uframe %04x\n",
 712                        fotg210_read_frame_index(fotg210));
 713        size -= temp;
 714        next += temp;
 715
 716        if (fotg210->async_unlink) {
 717                temp = scnprintf(next, size, "async unlink qh %p\n",
 718                                fotg210->async_unlink);
 719                size -= temp;
 720                next += temp;
 721        }
 722
 723#ifdef FOTG210_STATS
 724        temp = scnprintf(next, size,
 725                        "irq normal %ld err %ld iaa %ld(lost %ld)\n",
 726                        fotg210->stats.normal, fotg210->stats.error,
 727                        fotg210->stats.iaa, fotg210->stats.lost_iaa);
 728        size -= temp;
 729        next += temp;
 730
 731        temp = scnprintf(next, size, "complete %ld unlink %ld\n",
 732                        fotg210->stats.complete, fotg210->stats.unlink);
 733        size -= temp;
 734        next += temp;
 735#endif
 736
 737done:
 738        spin_unlock_irqrestore(&fotg210->lock, flags);
 739
 740        return buf->alloc_size - size;
 741}
 742
 743static struct debug_buffer
 744*alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
 745{
 746        struct debug_buffer *buf;
 747
 748        buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
 749
 750        if (buf) {
 751                buf->bus = bus;
 752                buf->fill_func = fill_func;
 753                mutex_init(&buf->mutex);
 754                buf->alloc_size = PAGE_SIZE;
 755        }
 756
 757        return buf;
 758}
 759
 760static int fill_buffer(struct debug_buffer *buf)
 761{
 762        int ret = 0;
 763
 764        if (!buf->output_buf)
 765                buf->output_buf = vmalloc(buf->alloc_size);
 766
 767        if (!buf->output_buf) {
 768                ret = -ENOMEM;
 769                goto out;
 770        }
 771
 772        ret = buf->fill_func(buf);
 773
 774        if (ret >= 0) {
 775                buf->count = ret;
 776                ret = 0;
 777        }
 778
 779out:
 780        return ret;
 781}
 782
 783static ssize_t debug_output(struct file *file, char __user *user_buf,
 784                size_t len, loff_t *offset)
 785{
 786        struct debug_buffer *buf = file->private_data;
 787        int ret = 0;
 788
 789        mutex_lock(&buf->mutex);
 790        if (buf->count == 0) {
 791                ret = fill_buffer(buf);
 792                if (ret != 0) {
 793                        mutex_unlock(&buf->mutex);
 794                        goto out;
 795                }
 796        }
 797        mutex_unlock(&buf->mutex);
 798
 799        ret = simple_read_from_buffer(user_buf, len, offset,
 800                        buf->output_buf, buf->count);
 801
 802out:
 803        return ret;
 804
 805}
 806
 807static int debug_close(struct inode *inode, struct file *file)
 808{
 809        struct debug_buffer *buf = file->private_data;
 810
 811        if (buf) {
 812                vfree(buf->output_buf);
 813                kfree(buf);
 814        }
 815
 816        return 0;
 817}
 818static int debug_async_open(struct inode *inode, struct file *file)
 819{
 820        file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
 821
 822        return file->private_data ? 0 : -ENOMEM;
 823}
 824
 825static int debug_periodic_open(struct inode *inode, struct file *file)
 826{
 827        struct debug_buffer *buf;
 828
 829        buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
 830        if (!buf)
 831                return -ENOMEM;
 832
 833        buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
 834        file->private_data = buf;
 835        return 0;
 836}
 837
 838static int debug_registers_open(struct inode *inode, struct file *file)
 839{
 840        file->private_data = alloc_buffer(inode->i_private,
 841                        fill_registers_buffer);
 842
 843        return file->private_data ? 0 : -ENOMEM;
 844}
 845
 846static inline void create_debug_files(struct fotg210_hcd *fotg210)
 847{
 848        struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
 849        struct dentry *root;
 850
 851        root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
 852        fotg210->debug_dir = root;
 853
 854        debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
 855        debugfs_create_file("periodic", S_IRUGO, root, bus,
 856                            &debug_periodic_fops);
 857        debugfs_create_file("registers", S_IRUGO, root, bus,
 858                            &debug_registers_fops);
 859}
 860
 861static inline void remove_debug_files(struct fotg210_hcd *fotg210)
 862{
 863        debugfs_remove_recursive(fotg210->debug_dir);
 864}
 865
 866/* handshake - spin reading hc until handshake completes or fails
 867 * @ptr: address of hc register to be read
 868 * @mask: bits to look at in result of read
 869 * @done: value of those bits when handshake succeeds
 870 * @usec: timeout in microseconds
 871 *
 872 * Returns negative errno, or zero on success
 873 *
 874 * Success happens when the "mask" bits have the specified value (hardware
 875 * handshake done).  There are two failure modes:  "usec" have passed (major
 876 * hardware flakeout), or the register reads as all-ones (hardware removed).
 877 *
 878 * That last failure should_only happen in cases like physical cardbus eject
 879 * before driver shutdown. But it also seems to be caused by bugs in cardbus
 880 * bridge shutdown:  shutting down the bridge before the devices using it.
 881 */
 882static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
 883                u32 mask, u32 done, int usec)
 884{
 885        u32 result;
 886
 887        do {
 888                result = fotg210_readl(fotg210, ptr);
 889                if (result == ~(u32)0)          /* card removed */
 890                        return -ENODEV;
 891                result &= mask;
 892                if (result == done)
 893                        return 0;
 894                udelay(1);
 895                usec--;
 896        } while (usec > 0);
 897        return -ETIMEDOUT;
 898}
 899
 900/* Force HC to halt state from unknown (EHCI spec section 2.3).
 901 * Must be called with interrupts enabled and the lock not held.
 902 */
 903static int fotg210_halt(struct fotg210_hcd *fotg210)
 904{
 905        u32 temp;
 906
 907        spin_lock_irq(&fotg210->lock);
 908
 909        /* disable any irqs left enabled by previous code */
 910        fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
 911
 912        /*
 913         * This routine gets called during probe before fotg210->command
 914         * has been initialized, so we can't rely on its value.
 915         */
 916        fotg210->command &= ~CMD_RUN;
 917        temp = fotg210_readl(fotg210, &fotg210->regs->command);
 918        temp &= ~(CMD_RUN | CMD_IAAD);
 919        fotg210_writel(fotg210, temp, &fotg210->regs->command);
 920
 921        spin_unlock_irq(&fotg210->lock);
 922        synchronize_irq(fotg210_to_hcd(fotg210)->irq);
 923
 924        return handshake(fotg210, &fotg210->regs->status,
 925                        STS_HALT, STS_HALT, 16 * 125);
 926}
 927
 928/* Reset a non-running (STS_HALT == 1) controller.
 929 * Must be called with interrupts enabled and the lock not held.
 930 */
 931static int fotg210_reset(struct fotg210_hcd *fotg210)
 932{
 933        int retval;
 934        u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
 935
 936        /* If the EHCI debug controller is active, special care must be
 937         * taken before and after a host controller reset
 938         */
 939        if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
 940                fotg210->debug = NULL;
 941
 942        command |= CMD_RESET;
 943        dbg_cmd(fotg210, "reset", command);
 944        fotg210_writel(fotg210, command, &fotg210->regs->command);
 945        fotg210->rh_state = FOTG210_RH_HALTED;
 946        fotg210->next_statechange = jiffies;
 947        retval = handshake(fotg210, &fotg210->regs->command,
 948                        CMD_RESET, 0, 250 * 1000);
 949
 950        if (retval)
 951                return retval;
 952
 953        if (fotg210->debug)
 954                dbgp_external_startup(fotg210_to_hcd(fotg210));
 955
 956        fotg210->port_c_suspend = fotg210->suspended_ports =
 957                        fotg210->resuming_ports = 0;
 958        return retval;
 959}
 960
 961/* Idle the controller (turn off the schedules).
 962 * Must be called with interrupts enabled and the lock not held.
 963 */
 964static void fotg210_quiesce(struct fotg210_hcd *fotg210)
 965{
 966        u32 temp;
 967
 968        if (fotg210->rh_state != FOTG210_RH_RUNNING)
 969                return;
 970
 971        /* wait for any schedule enables/disables to take effect */
 972        temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
 973        handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
 974                        16 * 125);
 975
 976        /* then disable anything that's still active */
 977        spin_lock_irq(&fotg210->lock);
 978        fotg210->command &= ~(CMD_ASE | CMD_PSE);
 979        fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
 980        spin_unlock_irq(&fotg210->lock);
 981
 982        /* hardware can take 16 microframes to turn off ... */
 983        handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
 984                        16 * 125);
 985}
 986
 987static void end_unlink_async(struct fotg210_hcd *fotg210);
 988static void unlink_empty_async(struct fotg210_hcd *fotg210);
 989static void fotg210_work(struct fotg210_hcd *fotg210);
 990static void start_unlink_intr(struct fotg210_hcd *fotg210,
 991                              struct fotg210_qh *qh);
 992static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
 993
 994/* Set a bit in the USBCMD register */
 995static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
 996{
 997        fotg210->command |= bit;
 998        fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
 999
1000        /* unblock posted write */
1001        fotg210_readl(fotg210, &fotg210->regs->command);
1002}
1003
1004/* Clear a bit in the USBCMD register */
1005static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1006{
1007        fotg210->command &= ~bit;
1008        fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1009
1010        /* unblock posted write */
1011        fotg210_readl(fotg210, &fotg210->regs->command);
1012}
1013
1014/* EHCI timer support...  Now using hrtimers.
1015 *
1016 * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1017 * the timer routine runs, it checks each possible event; events that are
1018 * currently enabled and whose expiration time has passed get handled.
1019 * The set of enabled events is stored as a collection of bitflags in
1020 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1021 * increasing delay values (ranging between 1 ms and 100 ms).
1022 *
1023 * Rather than implementing a sorted list or tree of all pending events,
1024 * we keep track only of the lowest-numbered pending event, in
1025 * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1026 * expiration time is set to the timeout value for this event.
1027 *
1028 * As a result, events might not get handled right away; the actual delay
1029 * could be anywhere up to twice the requested delay.  This doesn't
1030 * matter, because none of the events are especially time-critical.  The
1031 * ones that matter most all have a delay of 1 ms, so they will be
1032 * handled after 2 ms at most, which is okay.  In addition to this, we
1033 * allow for an expiration range of 1 ms.
1034 */
1035
1036/* Delay lengths for the hrtimer event types.
1037 * Keep this list sorted by delay length, in the same order as
1038 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1039 */
1040static unsigned event_delays_ns[] = {
1041        1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_ASS */
1042        1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_PSS */
1043        1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_DEAD */
1044        1125 * NSEC_PER_USEC,   /* FOTG210_HRTIMER_UNLINK_INTR */
1045        2 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_FREE_ITDS */
1046        6 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1047        10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_IAA_WATCHDOG */
1048        10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1049        15 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_ASYNC */
1050        100 * NSEC_PER_MSEC,    /* FOTG210_HRTIMER_IO_WATCHDOG */
1051};
1052
1053/* Enable a pending hrtimer event */
1054static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1055                bool resched)
1056{
1057        ktime_t *timeout = &fotg210->hr_timeouts[event];
1058
1059        if (resched)
1060                *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1061        fotg210->enabled_hrtimer_events |= (1 << event);
1062
1063        /* Track only the lowest-numbered pending event */
1064        if (event < fotg210->next_hrtimer_event) {
1065                fotg210->next_hrtimer_event = event;
1066                hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1067                                NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1068        }
1069}
1070
1071
1072/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1073static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1074{
1075        unsigned actual, want;
1076
1077        /* Don't enable anything if the controller isn't running (e.g., died) */
1078        if (fotg210->rh_state != FOTG210_RH_RUNNING)
1079                return;
1080
1081        want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1082        actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1083
1084        if (want != actual) {
1085
1086                /* Poll again later, but give up after about 20 ms */
1087                if (fotg210->ASS_poll_count++ < 20) {
1088                        fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1089                                        true);
1090                        return;
1091                }
1092                fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1093                                want, actual);
1094        }
1095        fotg210->ASS_poll_count = 0;
1096
1097        /* The status is up-to-date; restart or stop the schedule as needed */
1098        if (want == 0) {        /* Stopped */
1099                if (fotg210->async_count > 0)
1100                        fotg210_set_command_bit(fotg210, CMD_ASE);
1101
1102        } else {                /* Running */
1103                if (fotg210->async_count == 0) {
1104
1105                        /* Turn off the schedule after a while */
1106                        fotg210_enable_event(fotg210,
1107                                        FOTG210_HRTIMER_DISABLE_ASYNC,
1108                                        true);
1109                }
1110        }
1111}
1112
1113/* Turn off the async schedule after a brief delay */
1114static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1115{
1116        fotg210_clear_command_bit(fotg210, CMD_ASE);
1117}
1118
1119
1120/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1121static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1122{
1123        unsigned actual, want;
1124
1125        /* Don't do anything if the controller isn't running (e.g., died) */
1126        if (fotg210->rh_state != FOTG210_RH_RUNNING)
1127                return;
1128
1129        want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1130        actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1131
1132        if (want != actual) {
1133
1134                /* Poll again later, but give up after about 20 ms */
1135                if (fotg210->PSS_poll_count++ < 20) {
1136                        fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1137                                        true);
1138                        return;
1139                }
1140                fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1141                                want, actual);
1142        }
1143        fotg210->PSS_poll_count = 0;
1144
1145        /* The status is up-to-date; restart or stop the schedule as needed */
1146        if (want == 0) {        /* Stopped */
1147                if (fotg210->periodic_count > 0)
1148                        fotg210_set_command_bit(fotg210, CMD_PSE);
1149
1150        } else {                /* Running */
1151                if (fotg210->periodic_count == 0) {
1152
1153                        /* Turn off the schedule after a while */
1154                        fotg210_enable_event(fotg210,
1155                                        FOTG210_HRTIMER_DISABLE_PERIODIC,
1156                                        true);
1157                }
1158        }
1159}
1160
1161/* Turn off the periodic schedule after a brief delay */
1162static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1163{
1164        fotg210_clear_command_bit(fotg210, CMD_PSE);
1165}
1166
1167
1168/* Poll the STS_HALT status bit; see when a dead controller stops */
1169static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1170{
1171        if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1172
1173                /* Give up after a few milliseconds */
1174                if (fotg210->died_poll_count++ < 5) {
1175                        /* Try again later */
1176                        fotg210_enable_event(fotg210,
1177                                        FOTG210_HRTIMER_POLL_DEAD, true);
1178                        return;
1179                }
1180                fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1181        }
1182
1183        /* Clean up the mess */
1184        fotg210->rh_state = FOTG210_RH_HALTED;
1185        fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1186        fotg210_work(fotg210);
1187        end_unlink_async(fotg210);
1188
1189        /* Not in process context, so don't try to reset the controller */
1190}
1191
1192
1193/* Handle unlinked interrupt QHs once they are gone from the hardware */
1194static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1195{
1196        bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1197
1198        /*
1199         * Process all the QHs on the intr_unlink list that were added
1200         * before the current unlink cycle began.  The list is in
1201         * temporal order, so stop when we reach the first entry in the
1202         * current cycle.  But if the root hub isn't running then
1203         * process all the QHs on the list.
1204         */
1205        fotg210->intr_unlinking = true;
1206        while (fotg210->intr_unlink) {
1207                struct fotg210_qh *qh = fotg210->intr_unlink;
1208
1209                if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1210                        break;
1211                fotg210->intr_unlink = qh->unlink_next;
1212                qh->unlink_next = NULL;
1213                end_unlink_intr(fotg210, qh);
1214        }
1215
1216        /* Handle remaining entries later */
1217        if (fotg210->intr_unlink) {
1218                fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1219                                true);
1220                ++fotg210->intr_unlink_cycle;
1221        }
1222        fotg210->intr_unlinking = false;
1223}
1224
1225
1226/* Start another free-iTDs/siTDs cycle */
1227static void start_free_itds(struct fotg210_hcd *fotg210)
1228{
1229        if (!(fotg210->enabled_hrtimer_events &
1230                        BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1231                fotg210->last_itd_to_free = list_entry(
1232                                fotg210->cached_itd_list.prev,
1233                                struct fotg210_itd, itd_list);
1234                fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1235        }
1236}
1237
1238/* Wait for controller to stop using old iTDs and siTDs */
1239static void end_free_itds(struct fotg210_hcd *fotg210)
1240{
1241        struct fotg210_itd *itd, *n;
1242
1243        if (fotg210->rh_state < FOTG210_RH_RUNNING)
1244                fotg210->last_itd_to_free = NULL;
1245
1246        list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1247                list_del(&itd->itd_list);
1248                dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1249                if (itd == fotg210->last_itd_to_free)
1250                        break;
1251        }
1252
1253        if (!list_empty(&fotg210->cached_itd_list))
1254                start_free_itds(fotg210);
1255}
1256
1257
1258/* Handle lost (or very late) IAA interrupts */
1259static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1260{
1261        if (fotg210->rh_state != FOTG210_RH_RUNNING)
1262                return;
1263
1264        /*
1265         * Lost IAA irqs wedge things badly; seen first with a vt8235.
1266         * So we need this watchdog, but must protect it against both
1267         * (a) SMP races against real IAA firing and retriggering, and
1268         * (b) clean HC shutdown, when IAA watchdog was pending.
1269         */
1270        if (fotg210->async_iaa) {
1271                u32 cmd, status;
1272
1273                /* If we get here, IAA is *REALLY* late.  It's barely
1274                 * conceivable that the system is so busy that CMD_IAAD
1275                 * is still legitimately set, so let's be sure it's
1276                 * clear before we read STS_IAA.  (The HC should clear
1277                 * CMD_IAAD when it sets STS_IAA.)
1278                 */
1279                cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1280
1281                /*
1282                 * If IAA is set here it either legitimately triggered
1283                 * after the watchdog timer expired (_way_ late, so we'll
1284                 * still count it as lost) ... or a silicon erratum:
1285                 * - VIA seems to set IAA without triggering the IRQ;
1286                 * - IAAD potentially cleared without setting IAA.
1287                 */
1288                status = fotg210_readl(fotg210, &fotg210->regs->status);
1289                if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1290                        INCR(fotg210->stats.lost_iaa);
1291                        fotg210_writel(fotg210, STS_IAA,
1292                                        &fotg210->regs->status);
1293                }
1294
1295                fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1296                                status, cmd);
1297                end_unlink_async(fotg210);
1298        }
1299}
1300
1301
1302/* Enable the I/O watchdog, if appropriate */
1303static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1304{
1305        /* Not needed if the controller isn't running or it's already enabled */
1306        if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1307                        (fotg210->enabled_hrtimer_events &
1308                        BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1309                return;
1310
1311        /*
1312         * Isochronous transfers always need the watchdog.
1313         * For other sorts we use it only if the flag is set.
1314         */
1315        if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1316                        fotg210->async_count + fotg210->intr_count > 0))
1317                fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1318                                true);
1319}
1320
1321
1322/* Handler functions for the hrtimer event types.
1323 * Keep this array in the same order as the event types indexed by
1324 * enum fotg210_hrtimer_event in fotg210.h.
1325 */
1326static void (*event_handlers[])(struct fotg210_hcd *) = {
1327        fotg210_poll_ASS,                       /* FOTG210_HRTIMER_POLL_ASS */
1328        fotg210_poll_PSS,                       /* FOTG210_HRTIMER_POLL_PSS */
1329        fotg210_handle_controller_death,        /* FOTG210_HRTIMER_POLL_DEAD */
1330        fotg210_handle_intr_unlinks,    /* FOTG210_HRTIMER_UNLINK_INTR */
1331        end_free_itds,                  /* FOTG210_HRTIMER_FREE_ITDS */
1332        unlink_empty_async,             /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1333        fotg210_iaa_watchdog,           /* FOTG210_HRTIMER_IAA_WATCHDOG */
1334        fotg210_disable_PSE,            /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1335        fotg210_disable_ASE,            /* FOTG210_HRTIMER_DISABLE_ASYNC */
1336        fotg210_work,                   /* FOTG210_HRTIMER_IO_WATCHDOG */
1337};
1338
1339static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1340{
1341        struct fotg210_hcd *fotg210 =
1342                        container_of(t, struct fotg210_hcd, hrtimer);
1343        ktime_t now;
1344        unsigned long events;
1345        unsigned long flags;
1346        unsigned e;
1347
1348        spin_lock_irqsave(&fotg210->lock, flags);
1349
1350        events = fotg210->enabled_hrtimer_events;
1351        fotg210->enabled_hrtimer_events = 0;
1352        fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1353
1354        /*
1355         * Check each pending event.  If its time has expired, handle
1356         * the event; otherwise re-enable it.
1357         */
1358        now = ktime_get();
1359        for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1360                if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1361                        event_handlers[e](fotg210);
1362                else
1363                        fotg210_enable_event(fotg210, e, false);
1364        }
1365
1366        spin_unlock_irqrestore(&fotg210->lock, flags);
1367        return HRTIMER_NORESTART;
1368}
1369
1370#define fotg210_bus_suspend NULL
1371#define fotg210_bus_resume NULL
1372
1373static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1374                u32 __iomem *status_reg, int port_status)
1375{
1376        if (!(port_status & PORT_CONNECT))
1377                return port_status;
1378
1379        /* if reset finished and it's still not enabled -- handoff */
1380        if (!(port_status & PORT_PE))
1381                /* with integrated TT, there's nobody to hand it to! */
1382                fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1383                                index + 1);
1384        else
1385                fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1386                                index + 1);
1387
1388        return port_status;
1389}
1390
1391
1392/* build "status change" packet (one or two bytes) from HC registers */
1393
1394static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1395{
1396        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1397        u32 temp, status;
1398        u32 mask;
1399        int retval = 1;
1400        unsigned long flags;
1401
1402        /* init status to no-changes */
1403        buf[0] = 0;
1404
1405        /* Inform the core about resumes-in-progress by returning
1406         * a non-zero value even if there are no status changes.
1407         */
1408        status = fotg210->resuming_ports;
1409
1410        mask = PORT_CSC | PORT_PEC;
1411        /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1412
1413        /* no hub change reports (bit 0) for now (power, ...) */
1414
1415        /* port N changes (bit N)? */
1416        spin_lock_irqsave(&fotg210->lock, flags);
1417
1418        temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1419
1420        /*
1421         * Return status information even for ports with OWNER set.
1422         * Otherwise hub_wq wouldn't see the disconnect event when a
1423         * high-speed device is switched over to the companion
1424         * controller by the user.
1425         */
1426
1427        if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1428                        (fotg210->reset_done[0] &&
1429                        time_after_eq(jiffies, fotg210->reset_done[0]))) {
1430                buf[0] |= 1 << 1;
1431                status = STS_PCD;
1432        }
1433        /* FIXME autosuspend idle root hubs */
1434        spin_unlock_irqrestore(&fotg210->lock, flags);
1435        return status ? retval : 0;
1436}
1437
1438static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1439                struct usb_hub_descriptor *desc)
1440{
1441        int ports = HCS_N_PORTS(fotg210->hcs_params);
1442        u16 temp;
1443
1444        desc->bDescriptorType = USB_DT_HUB;
1445        desc->bPwrOn2PwrGood = 10;      /* fotg210 1.0, 2.3.9 says 20ms max */
1446        desc->bHubContrCurrent = 0;
1447
1448        desc->bNbrPorts = ports;
1449        temp = 1 + (ports / 8);
1450        desc->bDescLength = 7 + 2 * temp;
1451
1452        /* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1453        memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1454        memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1455
1456        temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1457        temp |= HUB_CHAR_NO_LPSM;       /* no power switching */
1458        desc->wHubCharacteristics = cpu_to_le16(temp);
1459}
1460
1461static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1462                u16 wIndex, char *buf, u16 wLength)
1463{
1464        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1465        int ports = HCS_N_PORTS(fotg210->hcs_params);
1466        u32 __iomem *status_reg = &fotg210->regs->port_status;
1467        u32 temp, temp1, status;
1468        unsigned long flags;
1469        int retval = 0;
1470        unsigned selector;
1471
1472        /*
1473         * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1474         * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1475         * (track current state ourselves) ... blink for diagnostics,
1476         * power, "this is the one", etc.  EHCI spec supports this.
1477         */
1478
1479        spin_lock_irqsave(&fotg210->lock, flags);
1480        switch (typeReq) {
1481        case ClearHubFeature:
1482                switch (wValue) {
1483                case C_HUB_LOCAL_POWER:
1484                case C_HUB_OVER_CURRENT:
1485                        /* no hub-wide feature/status flags */
1486                        break;
1487                default:
1488                        goto error;
1489                }
1490                break;
1491        case ClearPortFeature:
1492                if (!wIndex || wIndex > ports)
1493                        goto error;
1494                wIndex--;
1495                temp = fotg210_readl(fotg210, status_reg);
1496                temp &= ~PORT_RWC_BITS;
1497
1498                /*
1499                 * Even if OWNER is set, so the port is owned by the
1500                 * companion controller, hub_wq needs to be able to clear
1501                 * the port-change status bits (especially
1502                 * USB_PORT_STAT_C_CONNECTION).
1503                 */
1504
1505                switch (wValue) {
1506                case USB_PORT_FEAT_ENABLE:
1507                        fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1508                        break;
1509                case USB_PORT_FEAT_C_ENABLE:
1510                        fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1511                        break;
1512                case USB_PORT_FEAT_SUSPEND:
1513                        if (temp & PORT_RESET)
1514                                goto error;
1515                        if (!(temp & PORT_SUSPEND))
1516                                break;
1517                        if ((temp & PORT_PE) == 0)
1518                                goto error;
1519
1520                        /* resume signaling for 20 msec */
1521                        fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1522                        fotg210->reset_done[wIndex] = jiffies
1523                                        + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1524                        break;
1525                case USB_PORT_FEAT_C_SUSPEND:
1526                        clear_bit(wIndex, &fotg210->port_c_suspend);
1527                        break;
1528                case USB_PORT_FEAT_C_CONNECTION:
1529                        fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1530                        break;
1531                case USB_PORT_FEAT_C_OVER_CURRENT:
1532                        fotg210_writel(fotg210, temp | OTGISR_OVC,
1533                                        &fotg210->regs->otgisr);
1534                        break;
1535                case USB_PORT_FEAT_C_RESET:
1536                        /* GetPortStatus clears reset */
1537                        break;
1538                default:
1539                        goto error;
1540                }
1541                fotg210_readl(fotg210, &fotg210->regs->command);
1542                break;
1543        case GetHubDescriptor:
1544                fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1545                                buf);
1546                break;
1547        case GetHubStatus:
1548                /* no hub-wide feature/status flags */
1549                memset(buf, 0, 4);
1550                /*cpu_to_le32s ((u32 *) buf); */
1551                break;
1552        case GetPortStatus:
1553                if (!wIndex || wIndex > ports)
1554                        goto error;
1555                wIndex--;
1556                status = 0;
1557                temp = fotg210_readl(fotg210, status_reg);
1558
1559                /* wPortChange bits */
1560                if (temp & PORT_CSC)
1561                        status |= USB_PORT_STAT_C_CONNECTION << 16;
1562                if (temp & PORT_PEC)
1563                        status |= USB_PORT_STAT_C_ENABLE << 16;
1564
1565                temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1566                if (temp1 & OTGISR_OVC)
1567                        status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1568
1569                /* whoever resumes must GetPortStatus to complete it!! */
1570                if (temp & PORT_RESUME) {
1571
1572                        /* Remote Wakeup received? */
1573                        if (!fotg210->reset_done[wIndex]) {
1574                                /* resume signaling for 20 msec */
1575                                fotg210->reset_done[wIndex] = jiffies
1576                                                + msecs_to_jiffies(20);
1577                                /* check the port again */
1578                                mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1579                                                fotg210->reset_done[wIndex]);
1580                        }
1581
1582                        /* resume completed? */
1583                        else if (time_after_eq(jiffies,
1584                                        fotg210->reset_done[wIndex])) {
1585                                clear_bit(wIndex, &fotg210->suspended_ports);
1586                                set_bit(wIndex, &fotg210->port_c_suspend);
1587                                fotg210->reset_done[wIndex] = 0;
1588
1589                                /* stop resume signaling */
1590                                temp = fotg210_readl(fotg210, status_reg);
1591                                fotg210_writel(fotg210, temp &
1592                                                ~(PORT_RWC_BITS | PORT_RESUME),
1593                                                status_reg);
1594                                clear_bit(wIndex, &fotg210->resuming_ports);
1595                                retval = handshake(fotg210, status_reg,
1596                                                PORT_RESUME, 0, 2000);/* 2ms */
1597                                if (retval != 0) {
1598                                        fotg210_err(fotg210,
1599                                                        "port %d resume error %d\n",
1600                                                        wIndex + 1, retval);
1601                                        goto error;
1602                                }
1603                                temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1604                        }
1605                }
1606
1607                /* whoever resets must GetPortStatus to complete it!! */
1608                if ((temp & PORT_RESET) && time_after_eq(jiffies,
1609                                fotg210->reset_done[wIndex])) {
1610                        status |= USB_PORT_STAT_C_RESET << 16;
1611                        fotg210->reset_done[wIndex] = 0;
1612                        clear_bit(wIndex, &fotg210->resuming_ports);
1613
1614                        /* force reset to complete */
1615                        fotg210_writel(fotg210,
1616                                        temp & ~(PORT_RWC_BITS | PORT_RESET),
1617                                        status_reg);
1618                        /* REVISIT:  some hardware needs 550+ usec to clear
1619                         * this bit; seems too long to spin routinely...
1620                         */
1621                        retval = handshake(fotg210, status_reg,
1622                                        PORT_RESET, 0, 1000);
1623                        if (retval != 0) {
1624                                fotg210_err(fotg210, "port %d reset error %d\n",
1625                                                wIndex + 1, retval);
1626                                goto error;
1627                        }
1628
1629                        /* see what we found out */
1630                        temp = check_reset_complete(fotg210, wIndex, status_reg,
1631                                        fotg210_readl(fotg210, status_reg));
1632
1633                        /* restart schedule */
1634                        fotg210->command |= CMD_RUN;
1635                        fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1636                }
1637
1638                if (!(temp & (PORT_RESUME|PORT_RESET))) {
1639                        fotg210->reset_done[wIndex] = 0;
1640                        clear_bit(wIndex, &fotg210->resuming_ports);
1641                }
1642
1643                /* transfer dedicated ports to the companion hc */
1644                if ((temp & PORT_CONNECT) &&
1645                                test_bit(wIndex, &fotg210->companion_ports)) {
1646                        temp &= ~PORT_RWC_BITS;
1647                        fotg210_writel(fotg210, temp, status_reg);
1648                        fotg210_dbg(fotg210, "port %d --> companion\n",
1649                                        wIndex + 1);
1650                        temp = fotg210_readl(fotg210, status_reg);
1651                }
1652
1653                /*
1654                 * Even if OWNER is set, there's no harm letting hub_wq
1655                 * see the wPortStatus values (they should all be 0 except
1656                 * for PORT_POWER anyway).
1657                 */
1658
1659                if (temp & PORT_CONNECT) {
1660                        status |= USB_PORT_STAT_CONNECTION;
1661                        status |= fotg210_port_speed(fotg210, temp);
1662                }
1663                if (temp & PORT_PE)
1664                        status |= USB_PORT_STAT_ENABLE;
1665
1666                /* maybe the port was unsuspended without our knowledge */
1667                if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1668                        status |= USB_PORT_STAT_SUSPEND;
1669                } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1670                        clear_bit(wIndex, &fotg210->suspended_ports);
1671                        clear_bit(wIndex, &fotg210->resuming_ports);
1672                        fotg210->reset_done[wIndex] = 0;
1673                        if (temp & PORT_PE)
1674                                set_bit(wIndex, &fotg210->port_c_suspend);
1675                }
1676
1677                temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1678                if (temp1 & OTGISR_OVC)
1679                        status |= USB_PORT_STAT_OVERCURRENT;
1680                if (temp & PORT_RESET)
1681                        status |= USB_PORT_STAT_RESET;
1682                if (test_bit(wIndex, &fotg210->port_c_suspend))
1683                        status |= USB_PORT_STAT_C_SUSPEND << 16;
1684
1685                if (status & ~0xffff)   /* only if wPortChange is interesting */
1686                        dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1687                put_unaligned_le32(status, buf);
1688                break;
1689        case SetHubFeature:
1690                switch (wValue) {
1691                case C_HUB_LOCAL_POWER:
1692                case C_HUB_OVER_CURRENT:
1693                        /* no hub-wide feature/status flags */
1694                        break;
1695                default:
1696                        goto error;
1697                }
1698                break;
1699        case SetPortFeature:
1700                selector = wIndex >> 8;
1701                wIndex &= 0xff;
1702
1703                if (!wIndex || wIndex > ports)
1704                        goto error;
1705                wIndex--;
1706                temp = fotg210_readl(fotg210, status_reg);
1707                temp &= ~PORT_RWC_BITS;
1708                switch (wValue) {
1709                case USB_PORT_FEAT_SUSPEND:
1710                        if ((temp & PORT_PE) == 0
1711                                        || (temp & PORT_RESET) != 0)
1712                                goto error;
1713
1714                        /* After above check the port must be connected.
1715                         * Set appropriate bit thus could put phy into low power
1716                         * mode if we have hostpc feature
1717                         */
1718                        fotg210_writel(fotg210, temp | PORT_SUSPEND,
1719                                        status_reg);
1720                        set_bit(wIndex, &fotg210->suspended_ports);
1721                        break;
1722                case USB_PORT_FEAT_RESET:
1723                        if (temp & PORT_RESUME)
1724                                goto error;
1725                        /* line status bits may report this as low speed,
1726                         * which can be fine if this root hub has a
1727                         * transaction translator built in.
1728                         */
1729                        fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1730                        temp |= PORT_RESET;
1731                        temp &= ~PORT_PE;
1732
1733                        /*
1734                         * caller must wait, then call GetPortStatus
1735                         * usb 2.0 spec says 50 ms resets on root
1736                         */
1737                        fotg210->reset_done[wIndex] = jiffies
1738                                        + msecs_to_jiffies(50);
1739                        fotg210_writel(fotg210, temp, status_reg);
1740                        break;
1741
1742                /* For downstream facing ports (these):  one hub port is put
1743                 * into test mode according to USB2 11.24.2.13, then the hub
1744                 * must be reset (which for root hub now means rmmod+modprobe,
1745                 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1746                 * about the EHCI-specific stuff.
1747                 */
1748                case USB_PORT_FEAT_TEST:
1749                        if (!selector || selector > 5)
1750                                goto error;
1751                        spin_unlock_irqrestore(&fotg210->lock, flags);
1752                        fotg210_quiesce(fotg210);
1753                        spin_lock_irqsave(&fotg210->lock, flags);
1754
1755                        /* Put all enabled ports into suspend */
1756                        temp = fotg210_readl(fotg210, status_reg) &
1757                                ~PORT_RWC_BITS;
1758                        if (temp & PORT_PE)
1759                                fotg210_writel(fotg210, temp | PORT_SUSPEND,
1760                                                status_reg);
1761
1762                        spin_unlock_irqrestore(&fotg210->lock, flags);
1763                        fotg210_halt(fotg210);
1764                        spin_lock_irqsave(&fotg210->lock, flags);
1765
1766                        temp = fotg210_readl(fotg210, status_reg);
1767                        temp |= selector << 16;
1768                        fotg210_writel(fotg210, temp, status_reg);
1769                        break;
1770
1771                default:
1772                        goto error;
1773                }
1774                fotg210_readl(fotg210, &fotg210->regs->command);
1775                break;
1776
1777        default:
1778error:
1779                /* "stall" on error */
1780                retval = -EPIPE;
1781        }
1782        spin_unlock_irqrestore(&fotg210->lock, flags);
1783        return retval;
1784}
1785
1786static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1787                int portnum)
1788{
1789        return;
1790}
1791
1792static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1793                int portnum)
1794{
1795        return 0;
1796}
1797
1798/* There's basically three types of memory:
1799 *      - data used only by the HCD ... kmalloc is fine
1800 *      - async and periodic schedules, shared by HC and HCD ... these
1801 *        need to use dma_pool or dma_alloc_coherent
1802 *      - driver buffers, read/written by HC ... single shot DMA mapped
1803 *
1804 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1805 * No memory seen by this driver is pageable.
1806 */
1807
1808/* Allocate the key transfer structures from the previously allocated pool */
1809static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1810                struct fotg210_qtd *qtd, dma_addr_t dma)
1811{
1812        memset(qtd, 0, sizeof(*qtd));
1813        qtd->qtd_dma = dma;
1814        qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1815        qtd->hw_next = FOTG210_LIST_END(fotg210);
1816        qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1817        INIT_LIST_HEAD(&qtd->qtd_list);
1818}
1819
1820static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1821                gfp_t flags)
1822{
1823        struct fotg210_qtd *qtd;
1824        dma_addr_t dma;
1825
1826        qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1827        if (qtd != NULL)
1828                fotg210_qtd_init(fotg210, qtd, dma);
1829
1830        return qtd;
1831}
1832
1833static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1834                struct fotg210_qtd *qtd)
1835{
1836        dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1837}
1838
1839
1840static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1841{
1842        /* clean qtds first, and know this is not linked */
1843        if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1844                fotg210_dbg(fotg210, "unused qh not empty!\n");
1845                BUG();
1846        }
1847        if (qh->dummy)
1848                fotg210_qtd_free(fotg210, qh->dummy);
1849        dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1850        kfree(qh);
1851}
1852
1853static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1854                gfp_t flags)
1855{
1856        struct fotg210_qh *qh;
1857        dma_addr_t dma;
1858
1859        qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1860        if (!qh)
1861                goto done;
1862        qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1863        if (!qh->hw)
1864                goto fail;
1865        qh->qh_dma = dma;
1866        INIT_LIST_HEAD(&qh->qtd_list);
1867
1868        /* dummy td enables safe urb queuing */
1869        qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1870        if (qh->dummy == NULL) {
1871                fotg210_dbg(fotg210, "no dummy td\n");
1872                goto fail1;
1873        }
1874done:
1875        return qh;
1876fail1:
1877        dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1878fail:
1879        kfree(qh);
1880        return NULL;
1881}
1882
1883/* The queue heads and transfer descriptors are managed from pools tied
1884 * to each of the "per device" structures.
1885 * This is the initialisation and cleanup code.
1886 */
1887
1888static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1889{
1890        if (fotg210->async)
1891                qh_destroy(fotg210, fotg210->async);
1892        fotg210->async = NULL;
1893
1894        if (fotg210->dummy)
1895                qh_destroy(fotg210, fotg210->dummy);
1896        fotg210->dummy = NULL;
1897
1898        /* DMA consistent memory and pools */
1899        dma_pool_destroy(fotg210->qtd_pool);
1900        fotg210->qtd_pool = NULL;
1901
1902        dma_pool_destroy(fotg210->qh_pool);
1903        fotg210->qh_pool = NULL;
1904
1905        dma_pool_destroy(fotg210->itd_pool);
1906        fotg210->itd_pool = NULL;
1907
1908        if (fotg210->periodic)
1909                dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1910                                fotg210->periodic_size * sizeof(u32),
1911                                fotg210->periodic, fotg210->periodic_dma);
1912        fotg210->periodic = NULL;
1913
1914        /* shadow periodic table */
1915        kfree(fotg210->pshadow);
1916        fotg210->pshadow = NULL;
1917}
1918
1919/* remember to add cleanup code (above) if you add anything here */
1920static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1921{
1922        int i;
1923
1924        /* QTDs for control/bulk/intr transfers */
1925        fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1926                        fotg210_to_hcd(fotg210)->self.controller,
1927                        sizeof(struct fotg210_qtd),
1928                        32 /* byte alignment (for hw parts) */,
1929                        4096 /* can't cross 4K */);
1930        if (!fotg210->qtd_pool)
1931                goto fail;
1932
1933        /* QHs for control/bulk/intr transfers */
1934        fotg210->qh_pool = dma_pool_create("fotg210_qh",
1935                        fotg210_to_hcd(fotg210)->self.controller,
1936                        sizeof(struct fotg210_qh_hw),
1937                        32 /* byte alignment (for hw parts) */,
1938                        4096 /* can't cross 4K */);
1939        if (!fotg210->qh_pool)
1940                goto fail;
1941
1942        fotg210->async = fotg210_qh_alloc(fotg210, flags);
1943        if (!fotg210->async)
1944                goto fail;
1945
1946        /* ITD for high speed ISO transfers */
1947        fotg210->itd_pool = dma_pool_create("fotg210_itd",
1948                        fotg210_to_hcd(fotg210)->self.controller,
1949                        sizeof(struct fotg210_itd),
1950                        64 /* byte alignment (for hw parts) */,
1951                        4096 /* can't cross 4K */);
1952        if (!fotg210->itd_pool)
1953                goto fail;
1954
1955        /* Hardware periodic table */
1956        fotg210->periodic = (__le32 *)
1957                dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1958                                fotg210->periodic_size * sizeof(__le32),
1959                                &fotg210->periodic_dma, 0);
1960        if (fotg210->periodic == NULL)
1961                goto fail;
1962
1963        for (i = 0; i < fotg210->periodic_size; i++)
1964                fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1965
1966        /* software shadow of hardware table */
1967        fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1968                        flags);
1969        if (fotg210->pshadow != NULL)
1970                return 0;
1971
1972fail:
1973        fotg210_dbg(fotg210, "couldn't init memory\n");
1974        fotg210_mem_cleanup(fotg210);
1975        return -ENOMEM;
1976}
1977/* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1978 *
1979 * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
1980 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1981 * buffers needed for the larger number).  We use one QH per endpoint, queue
1982 * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
1983 *
1984 * ISO traffic uses "ISO TD" (itd) records, and (along with
1985 * interrupts) needs careful scheduling.  Performance improvements can be
1986 * an ongoing challenge.  That's in "ehci-sched.c".
1987 *
1988 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1989 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1990 * (b) special fields in qh entries or (c) split iso entries.  TTs will
1991 * buffer low/full speed data so the host collects it at high speed.
1992 */
1993
1994/* fill a qtd, returning how much of the buffer we were able to queue up */
1995static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1996                dma_addr_t buf, size_t len, int token, int maxpacket)
1997{
1998        int i, count;
1999        u64 addr = buf;
2000
2001        /* one buffer entry per 4K ... first might be short or unaligned */
2002        qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2003        qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2004        count = 0x1000 - (buf & 0x0fff);        /* rest of that page */
2005        if (likely(len < count))                /* ... iff needed */
2006                count = len;
2007        else {
2008                buf +=  0x1000;
2009                buf &= ~0x0fff;
2010
2011                /* per-qtd limit: from 16K to 20K (best alignment) */
2012                for (i = 1; count < len && i < 5; i++) {
2013                        addr = buf;
2014                        qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2015                        qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2016                                        (u32)(addr >> 32));
2017                        buf += 0x1000;
2018                        if ((count + 0x1000) < len)
2019                                count += 0x1000;
2020                        else
2021                                count = len;
2022                }
2023
2024                /* short packets may only terminate transfers */
2025                if (count != len)
2026                        count -= (count % maxpacket);
2027        }
2028        qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2029        qtd->length = count;
2030
2031        return count;
2032}
2033
2034static inline void qh_update(struct fotg210_hcd *fotg210,
2035                struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2036{
2037        struct fotg210_qh_hw *hw = qh->hw;
2038
2039        /* writes to an active overlay are unsafe */
2040        BUG_ON(qh->qh_state != QH_STATE_IDLE);
2041
2042        hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2043        hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2044
2045        /* Except for control endpoints, we make hardware maintain data
2046         * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2047         * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2048         * ever clear it.
2049         */
2050        if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2051                unsigned is_out, epnum;
2052
2053                is_out = qh->is_out;
2054                epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2055                if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2056                        hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2057                        usb_settoggle(qh->dev, epnum, is_out, 1);
2058                }
2059        }
2060
2061        hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2062}
2063
2064/* if it weren't for a common silicon quirk (writing the dummy into the qh
2065 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2066 * recovery (including urb dequeue) would need software changes to a QH...
2067 */
2068static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2069{
2070        struct fotg210_qtd *qtd;
2071
2072        if (list_empty(&qh->qtd_list))
2073                qtd = qh->dummy;
2074        else {
2075                qtd = list_entry(qh->qtd_list.next,
2076                                struct fotg210_qtd, qtd_list);
2077                /*
2078                 * first qtd may already be partially processed.
2079                 * If we come here during unlink, the QH overlay region
2080                 * might have reference to the just unlinked qtd. The
2081                 * qtd is updated in qh_completions(). Update the QH
2082                 * overlay here.
2083                 */
2084                if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2085                        qh->hw->hw_qtd_next = qtd->hw_next;
2086                        qtd = NULL;
2087                }
2088        }
2089
2090        if (qtd)
2091                qh_update(fotg210, qh, qtd);
2092}
2093
2094static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2095
2096static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2097                struct usb_host_endpoint *ep)
2098{
2099        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2100        struct fotg210_qh *qh = ep->hcpriv;
2101        unsigned long flags;
2102
2103        spin_lock_irqsave(&fotg210->lock, flags);
2104        qh->clearing_tt = 0;
2105        if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2106                        && fotg210->rh_state == FOTG210_RH_RUNNING)
2107                qh_link_async(fotg210, qh);
2108        spin_unlock_irqrestore(&fotg210->lock, flags);
2109}
2110
2111static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2112                struct fotg210_qh *qh, struct urb *urb, u32 token)
2113{
2114
2115        /* If an async split transaction gets an error or is unlinked,
2116         * the TT buffer may be left in an indeterminate state.  We
2117         * have to clear the TT buffer.
2118         *
2119         * Note: this routine is never called for Isochronous transfers.
2120         */
2121        if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2122                struct usb_device *tt = urb->dev->tt->hub;
2123
2124                dev_dbg(&tt->dev,
2125                                "clear tt buffer port %d, a%d ep%d t%08x\n",
2126                                urb->dev->ttport, urb->dev->devnum,
2127                                usb_pipeendpoint(urb->pipe), token);
2128
2129                if (urb->dev->tt->hub !=
2130                                fotg210_to_hcd(fotg210)->self.root_hub) {
2131                        if (usb_hub_clear_tt_buffer(urb) == 0)
2132                                qh->clearing_tt = 1;
2133                }
2134        }
2135}
2136
2137static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2138                size_t length, u32 token)
2139{
2140        int status = -EINPROGRESS;
2141
2142        /* count IN/OUT bytes, not SETUP (even short packets) */
2143        if (likely(QTD_PID(token) != 2))
2144                urb->actual_length += length - QTD_LENGTH(token);
2145
2146        /* don't modify error codes */
2147        if (unlikely(urb->unlinked))
2148                return status;
2149
2150        /* force cleanup after short read; not always an error */
2151        if (unlikely(IS_SHORT_READ(token)))
2152                status = -EREMOTEIO;
2153
2154        /* serious "can't proceed" faults reported by the hardware */
2155        if (token & QTD_STS_HALT) {
2156                if (token & QTD_STS_BABBLE) {
2157                        /* FIXME "must" disable babbling device's port too */
2158                        status = -EOVERFLOW;
2159                /* CERR nonzero + halt --> stall */
2160                } else if (QTD_CERR(token)) {
2161                        status = -EPIPE;
2162
2163                /* In theory, more than one of the following bits can be set
2164                 * since they are sticky and the transaction is retried.
2165                 * Which to test first is rather arbitrary.
2166                 */
2167                } else if (token & QTD_STS_MMF) {
2168                        /* fs/ls interrupt xfer missed the complete-split */
2169                        status = -EPROTO;
2170                } else if (token & QTD_STS_DBE) {
2171                        status = (QTD_PID(token) == 1) /* IN ? */
2172                                ? -ENOSR  /* hc couldn't read data */
2173                                : -ECOMM; /* hc couldn't write data */
2174                } else if (token & QTD_STS_XACT) {
2175                        /* timeout, bad CRC, wrong PID, etc */
2176                        fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2177                                        urb->dev->devpath,
2178                                        usb_pipeendpoint(urb->pipe),
2179                                        usb_pipein(urb->pipe) ? "in" : "out");
2180                        status = -EPROTO;
2181                } else {        /* unknown */
2182                        status = -EPROTO;
2183                }
2184
2185                fotg210_dbg(fotg210,
2186                                "dev%d ep%d%s qtd token %08x --> status %d\n",
2187                                usb_pipedevice(urb->pipe),
2188                                usb_pipeendpoint(urb->pipe),
2189                                usb_pipein(urb->pipe) ? "in" : "out",
2190                                token, status);
2191        }
2192
2193        return status;
2194}
2195
2196static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2197                int status)
2198__releases(fotg210->lock)
2199__acquires(fotg210->lock)
2200{
2201        if (likely(urb->hcpriv != NULL)) {
2202                struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2203
2204                /* S-mask in a QH means it's an interrupt urb */
2205                if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2206
2207                        /* ... update hc-wide periodic stats (for usbfs) */
2208                        fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2209                }
2210        }
2211
2212        if (unlikely(urb->unlinked)) {
2213                INCR(fotg210->stats.unlink);
2214        } else {
2215                /* report non-error and short read status as zero */
2216                if (status == -EINPROGRESS || status == -EREMOTEIO)
2217                        status = 0;
2218                INCR(fotg210->stats.complete);
2219        }
2220
2221#ifdef FOTG210_URB_TRACE
2222        fotg210_dbg(fotg210,
2223                        "%s %s urb %p ep%d%s status %d len %d/%d\n",
2224                        __func__, urb->dev->devpath, urb,
2225                        usb_pipeendpoint(urb->pipe),
2226                        usb_pipein(urb->pipe) ? "in" : "out",
2227                        status,
2228                        urb->actual_length, urb->transfer_buffer_length);
2229#endif
2230
2231        /* complete() can reenter this HCD */
2232        usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2233        spin_unlock(&fotg210->lock);
2234        usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2235        spin_lock(&fotg210->lock);
2236}
2237
2238static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2239
2240/* Process and free completed qtds for a qh, returning URBs to drivers.
2241 * Chases up to qh->hw_current.  Returns number of completions called,
2242 * indicating how much "real" work we did.
2243 */
2244static unsigned qh_completions(struct fotg210_hcd *fotg210,
2245                struct fotg210_qh *qh)
2246{
2247        struct fotg210_qtd *last, *end = qh->dummy;
2248        struct fotg210_qtd *qtd, *tmp;
2249        int last_status;
2250        int stopped;
2251        unsigned count = 0;
2252        u8 state;
2253        struct fotg210_qh_hw *hw = qh->hw;
2254
2255        if (unlikely(list_empty(&qh->qtd_list)))
2256                return count;
2257
2258        /* completions (or tasks on other cpus) must never clobber HALT
2259         * till we've gone through and cleaned everything up, even when
2260         * they add urbs to this qh's queue or mark them for unlinking.
2261         *
2262         * NOTE:  unlinking expects to be done in queue order.
2263         *
2264         * It's a bug for qh->qh_state to be anything other than
2265         * QH_STATE_IDLE, unless our caller is scan_async() or
2266         * scan_intr().
2267         */
2268        state = qh->qh_state;
2269        qh->qh_state = QH_STATE_COMPLETING;
2270        stopped = (state == QH_STATE_IDLE);
2271
2272rescan:
2273        last = NULL;
2274        last_status = -EINPROGRESS;
2275        qh->needs_rescan = 0;
2276
2277        /* remove de-activated QTDs from front of queue.
2278         * after faults (including short reads), cleanup this urb
2279         * then let the queue advance.
2280         * if queue is stopped, handles unlinks.
2281         */
2282        list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2283                struct urb *urb;
2284                u32 token = 0;
2285
2286                urb = qtd->urb;
2287
2288                /* clean up any state from previous QTD ...*/
2289                if (last) {
2290                        if (likely(last->urb != urb)) {
2291                                fotg210_urb_done(fotg210, last->urb,
2292                                                last_status);
2293                                count++;
2294                                last_status = -EINPROGRESS;
2295                        }
2296                        fotg210_qtd_free(fotg210, last);
2297                        last = NULL;
2298                }
2299
2300                /* ignore urbs submitted during completions we reported */
2301                if (qtd == end)
2302                        break;
2303
2304                /* hardware copies qtd out of qh overlay */
2305                rmb();
2306                token = hc32_to_cpu(fotg210, qtd->hw_token);
2307
2308                /* always clean up qtds the hc de-activated */
2309retry_xacterr:
2310                if ((token & QTD_STS_ACTIVE) == 0) {
2311
2312                        /* Report Data Buffer Error: non-fatal but useful */
2313                        if (token & QTD_STS_DBE)
2314                                fotg210_dbg(fotg210,
2315                                        "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2316                                        urb, usb_endpoint_num(&urb->ep->desc),
2317                                        usb_endpoint_dir_in(&urb->ep->desc)
2318                                                ? "in" : "out",
2319                                        urb->transfer_buffer_length, qtd, qh);
2320
2321                        /* on STALL, error, and short reads this urb must
2322                         * complete and all its qtds must be recycled.
2323                         */
2324                        if ((token & QTD_STS_HALT) != 0) {
2325
2326                                /* retry transaction errors until we
2327                                 * reach the software xacterr limit
2328                                 */
2329                                if ((token & QTD_STS_XACT) &&
2330                                                QTD_CERR(token) == 0 &&
2331                                                ++qh->xacterrs < QH_XACTERR_MAX &&
2332                                                !urb->unlinked) {
2333                                        fotg210_dbg(fotg210,
2334                                                "detected XactErr len %zu/%zu retry %d\n",
2335                                                qtd->length - QTD_LENGTH(token),
2336                                                qtd->length,
2337                                                qh->xacterrs);
2338
2339                                        /* reset the token in the qtd and the
2340                                         * qh overlay (which still contains
2341                                         * the qtd) so that we pick up from
2342                                         * where we left off
2343                                         */
2344                                        token &= ~QTD_STS_HALT;
2345                                        token |= QTD_STS_ACTIVE |
2346                                                 (FOTG210_TUNE_CERR << 10);
2347                                        qtd->hw_token = cpu_to_hc32(fotg210,
2348                                                        token);
2349                                        wmb();
2350                                        hw->hw_token = cpu_to_hc32(fotg210,
2351                                                        token);
2352                                        goto retry_xacterr;
2353                                }
2354                                stopped = 1;
2355
2356                        /* magic dummy for some short reads; qh won't advance.
2357                         * that silicon quirk can kick in with this dummy too.
2358                         *
2359                         * other short reads won't stop the queue, including
2360                         * control transfers (status stage handles that) or
2361                         * most other single-qtd reads ... the queue stops if
2362                         * URB_SHORT_NOT_OK was set so the driver submitting
2363                         * the urbs could clean it up.
2364                         */
2365                        } else if (IS_SHORT_READ(token) &&
2366                                        !(qtd->hw_alt_next &
2367                                        FOTG210_LIST_END(fotg210))) {
2368                                stopped = 1;
2369                        }
2370
2371                /* stop scanning when we reach qtds the hc is using */
2372                } else if (likely(!stopped
2373                                && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2374                        break;
2375
2376                /* scan the whole queue for unlinks whenever it stops */
2377                } else {
2378                        stopped = 1;
2379
2380                        /* cancel everything if we halt, suspend, etc */
2381                        if (fotg210->rh_state < FOTG210_RH_RUNNING)
2382                                last_status = -ESHUTDOWN;
2383
2384                        /* this qtd is active; skip it unless a previous qtd
2385                         * for its urb faulted, or its urb was canceled.
2386                         */
2387                        else if (last_status == -EINPROGRESS && !urb->unlinked)
2388                                continue;
2389
2390                        /* qh unlinked; token in overlay may be most current */
2391                        if (state == QH_STATE_IDLE &&
2392                                        cpu_to_hc32(fotg210, qtd->qtd_dma)
2393                                        == hw->hw_current) {
2394                                token = hc32_to_cpu(fotg210, hw->hw_token);
2395
2396                                /* An unlink may leave an incomplete
2397                                 * async transaction in the TT buffer.
2398                                 * We have to clear it.
2399                                 */
2400                                fotg210_clear_tt_buffer(fotg210, qh, urb,
2401                                                token);
2402                        }
2403                }
2404
2405                /* unless we already know the urb's status, collect qtd status
2406                 * and update count of bytes transferred.  in common short read
2407                 * cases with only one data qtd (including control transfers),
2408                 * queue processing won't halt.  but with two or more qtds (for
2409                 * example, with a 32 KB transfer), when the first qtd gets a
2410                 * short read the second must be removed by hand.
2411                 */
2412                if (last_status == -EINPROGRESS) {
2413                        last_status = qtd_copy_status(fotg210, urb,
2414                                        qtd->length, token);
2415                        if (last_status == -EREMOTEIO &&
2416                                        (qtd->hw_alt_next &
2417                                        FOTG210_LIST_END(fotg210)))
2418                                last_status = -EINPROGRESS;
2419
2420                        /* As part of low/full-speed endpoint-halt processing
2421                         * we must clear the TT buffer (11.17.5).
2422                         */
2423                        if (unlikely(last_status != -EINPROGRESS &&
2424                                        last_status != -EREMOTEIO)) {
2425                                /* The TT's in some hubs malfunction when they
2426                                 * receive this request following a STALL (they
2427                                 * stop sending isochronous packets).  Since a
2428                                 * STALL can't leave the TT buffer in a busy
2429                                 * state (if you believe Figures 11-48 - 11-51
2430                                 * in the USB 2.0 spec), we won't clear the TT
2431                                 * buffer in this case.  Strictly speaking this
2432                                 * is a violation of the spec.
2433                                 */
2434                                if (last_status != -EPIPE)
2435                                        fotg210_clear_tt_buffer(fotg210, qh,
2436                                                        urb, token);
2437                        }
2438                }
2439
2440                /* if we're removing something not at the queue head,
2441                 * patch the hardware queue pointer.
2442                 */
2443                if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2444                        last = list_entry(qtd->qtd_list.prev,
2445                                        struct fotg210_qtd, qtd_list);
2446                        last->hw_next = qtd->hw_next;
2447                }
2448
2449                /* remove qtd; it's recycled after possible urb completion */
2450                list_del(&qtd->qtd_list);
2451                last = qtd;
2452
2453                /* reinit the xacterr counter for the next qtd */
2454                qh->xacterrs = 0;
2455        }
2456
2457        /* last urb's completion might still need calling */
2458        if (likely(last != NULL)) {
2459                fotg210_urb_done(fotg210, last->urb, last_status);
2460                count++;
2461                fotg210_qtd_free(fotg210, last);
2462        }
2463
2464        /* Do we need to rescan for URBs dequeued during a giveback? */
2465        if (unlikely(qh->needs_rescan)) {
2466                /* If the QH is already unlinked, do the rescan now. */
2467                if (state == QH_STATE_IDLE)
2468                        goto rescan;
2469
2470                /* Otherwise we have to wait until the QH is fully unlinked.
2471                 * Our caller will start an unlink if qh->needs_rescan is
2472                 * set.  But if an unlink has already started, nothing needs
2473                 * to be done.
2474                 */
2475                if (state != QH_STATE_LINKED)
2476                        qh->needs_rescan = 0;
2477        }
2478
2479        /* restore original state; caller must unlink or relink */
2480        qh->qh_state = state;
2481
2482        /* be sure the hardware's done with the qh before refreshing
2483         * it after fault cleanup, or recovering from silicon wrongly
2484         * overlaying the dummy qtd (which reduces DMA chatter).
2485         */
2486        if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2487                switch (state) {
2488                case QH_STATE_IDLE:
2489                        qh_refresh(fotg210, qh);
2490                        break;
2491                case QH_STATE_LINKED:
2492                        /* We won't refresh a QH that's linked (after the HC
2493                         * stopped the queue).  That avoids a race:
2494                         *  - HC reads first part of QH;
2495                         *  - CPU updates that first part and the token;
2496                         *  - HC reads rest of that QH, including token
2497                         * Result:  HC gets an inconsistent image, and then
2498                         * DMAs to/from the wrong memory (corrupting it).
2499                         *
2500                         * That should be rare for interrupt transfers,
2501                         * except maybe high bandwidth ...
2502                         */
2503
2504                        /* Tell the caller to start an unlink */
2505                        qh->needs_rescan = 1;
2506                        break;
2507                /* otherwise, unlink already started */
2508                }
2509        }
2510
2511        return count;
2512}
2513
2514/* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2515#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2516/* ... and packet size, for any kind of endpoint descriptor */
2517#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2518
2519/* reverse of qh_urb_transaction:  free a list of TDs.
2520 * used for cleanup after errors, before HC sees an URB's TDs.
2521 */
2522static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2523                struct list_head *head)
2524{
2525        struct fotg210_qtd *qtd, *temp;
2526
2527        list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2528                list_del(&qtd->qtd_list);
2529                fotg210_qtd_free(fotg210, qtd);
2530        }
2531}
2532
2533/* create a list of filled qtds for this URB; won't link into qh.
2534 */
2535static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2536                struct urb *urb, struct list_head *head, gfp_t flags)
2537{
2538        struct fotg210_qtd *qtd, *qtd_prev;
2539        dma_addr_t buf;
2540        int len, this_sg_len, maxpacket;
2541        int is_input;
2542        u32 token;
2543        int i;
2544        struct scatterlist *sg;
2545
2546        /*
2547         * URBs map to sequences of QTDs:  one logical transaction
2548         */
2549        qtd = fotg210_qtd_alloc(fotg210, flags);
2550        if (unlikely(!qtd))
2551                return NULL;
2552        list_add_tail(&qtd->qtd_list, head);
2553        qtd->urb = urb;
2554
2555        token = QTD_STS_ACTIVE;
2556        token |= (FOTG210_TUNE_CERR << 10);
2557        /* for split transactions, SplitXState initialized to zero */
2558
2559        len = urb->transfer_buffer_length;
2560        is_input = usb_pipein(urb->pipe);
2561        if (usb_pipecontrol(urb->pipe)) {
2562                /* SETUP pid */
2563                qtd_fill(fotg210, qtd, urb->setup_dma,
2564                                sizeof(struct usb_ctrlrequest),
2565                                token | (2 /* "setup" */ << 8), 8);
2566
2567                /* ... and always at least one more pid */
2568                token ^= QTD_TOGGLE;
2569                qtd_prev = qtd;
2570                qtd = fotg210_qtd_alloc(fotg210, flags);
2571                if (unlikely(!qtd))
2572                        goto cleanup;
2573                qtd->urb = urb;
2574                qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2575                list_add_tail(&qtd->qtd_list, head);
2576
2577                /* for zero length DATA stages, STATUS is always IN */
2578                if (len == 0)
2579                        token |= (1 /* "in" */ << 8);
2580        }
2581
2582        /*
2583         * data transfer stage:  buffer setup
2584         */
2585        i = urb->num_mapped_sgs;
2586        if (len > 0 && i > 0) {
2587                sg = urb->sg;
2588                buf = sg_dma_address(sg);
2589
2590                /* urb->transfer_buffer_length may be smaller than the
2591                 * size of the scatterlist (or vice versa)
2592                 */
2593                this_sg_len = min_t(int, sg_dma_len(sg), len);
2594        } else {
2595                sg = NULL;
2596                buf = urb->transfer_dma;
2597                this_sg_len = len;
2598        }
2599
2600        if (is_input)
2601                token |= (1 /* "in" */ << 8);
2602        /* else it's already initted to "out" pid (0 << 8) */
2603
2604        maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2605
2606        /*
2607         * buffer gets wrapped in one or more qtds;
2608         * last one may be "short" (including zero len)
2609         * and may serve as a control status ack
2610         */
2611        for (;;) {
2612                int this_qtd_len;
2613
2614                this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2615                                maxpacket);
2616                this_sg_len -= this_qtd_len;
2617                len -= this_qtd_len;
2618                buf += this_qtd_len;
2619
2620                /*
2621                 * short reads advance to a "magic" dummy instead of the next
2622                 * qtd ... that forces the queue to stop, for manual cleanup.
2623                 * (this will usually be overridden later.)
2624                 */
2625                if (is_input)
2626                        qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2627
2628                /* qh makes control packets use qtd toggle; maybe switch it */
2629                if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2630                        token ^= QTD_TOGGLE;
2631
2632                if (likely(this_sg_len <= 0)) {
2633                        if (--i <= 0 || len <= 0)
2634                                break;
2635                        sg = sg_next(sg);
2636                        buf = sg_dma_address(sg);
2637                        this_sg_len = min_t(int, sg_dma_len(sg), len);
2638                }
2639
2640                qtd_prev = qtd;
2641                qtd = fotg210_qtd_alloc(fotg210, flags);
2642                if (unlikely(!qtd))
2643                        goto cleanup;
2644                qtd->urb = urb;
2645                qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2646                list_add_tail(&qtd->qtd_list, head);
2647        }
2648
2649        /*
2650         * unless the caller requires manual cleanup after short reads,
2651         * have the alt_next mechanism keep the queue running after the
2652         * last data qtd (the only one, for control and most other cases).
2653         */
2654        if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2655                        usb_pipecontrol(urb->pipe)))
2656                qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2657
2658        /*
2659         * control requests may need a terminating data "status" ack;
2660         * other OUT ones may need a terminating short packet
2661         * (zero length).
2662         */
2663        if (likely(urb->transfer_buffer_length != 0)) {
2664                int one_more = 0;
2665
2666                if (usb_pipecontrol(urb->pipe)) {
2667                        one_more = 1;
2668                        token ^= 0x0100;        /* "in" <--> "out"  */
2669                        token |= QTD_TOGGLE;    /* force DATA1 */
2670                } else if (usb_pipeout(urb->pipe)
2671                                && (urb->transfer_flags & URB_ZERO_PACKET)
2672                                && !(urb->transfer_buffer_length % maxpacket)) {
2673                        one_more = 1;
2674                }
2675                if (one_more) {
2676                        qtd_prev = qtd;
2677                        qtd = fotg210_qtd_alloc(fotg210, flags);
2678                        if (unlikely(!qtd))
2679                                goto cleanup;
2680                        qtd->urb = urb;
2681                        qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2682                        list_add_tail(&qtd->qtd_list, head);
2683
2684                        /* never any data in such packets */
2685                        qtd_fill(fotg210, qtd, 0, 0, token, 0);
2686                }
2687        }
2688
2689        /* by default, enable interrupt on urb completion */
2690        if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2691                qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2692        return head;
2693
2694cleanup:
2695        qtd_list_free(fotg210, urb, head);
2696        return NULL;
2697}
2698
2699/* Would be best to create all qh's from config descriptors,
2700 * when each interface/altsetting is established.  Unlink
2701 * any previous qh and cancel its urbs first; endpoints are
2702 * implicitly reset then (data toggle too).
2703 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2704*/
2705
2706
2707/* Each QH holds a qtd list; a QH is used for everything except iso.
2708 *
2709 * For interrupt urbs, the scheduler must set the microframe scheduling
2710 * mask(s) each time the QH gets scheduled.  For highspeed, that's
2711 * just one microframe in the s-mask.  For split interrupt transactions
2712 * there are additional complications: c-mask, maybe FSTNs.
2713 */
2714static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2715                gfp_t flags)
2716{
2717        struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2718        u32 info1 = 0, info2 = 0;
2719        int is_input, type;
2720        int maxp = 0;
2721        struct usb_tt *tt = urb->dev->tt;
2722        struct fotg210_qh_hw *hw;
2723
2724        if (!qh)
2725                return qh;
2726
2727        /*
2728         * init endpoint/device data for this QH
2729         */
2730        info1 |= usb_pipeendpoint(urb->pipe) << 8;
2731        info1 |= usb_pipedevice(urb->pipe) << 0;
2732
2733        is_input = usb_pipein(urb->pipe);
2734        type = usb_pipetype(urb->pipe);
2735        maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2736
2737        /* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2738         * acts like up to 3KB, but is built from smaller packets.
2739         */
2740        if (max_packet(maxp) > 1024) {
2741                fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2742                                max_packet(maxp));
2743                goto done;
2744        }
2745
2746        /* Compute interrupt scheduling parameters just once, and save.
2747         * - allowing for high bandwidth, how many nsec/uframe are used?
2748         * - split transactions need a second CSPLIT uframe; same question
2749         * - splits also need a schedule gap (for full/low speed I/O)
2750         * - qh has a polling interval
2751         *
2752         * For control/bulk requests, the HC or TT handles these.
2753         */
2754        if (type == PIPE_INTERRUPT) {
2755                qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2756                                is_input, 0,
2757                                hb_mult(maxp) * max_packet(maxp)));
2758                qh->start = NO_FRAME;
2759
2760                if (urb->dev->speed == USB_SPEED_HIGH) {
2761                        qh->c_usecs = 0;
2762                        qh->gap_uf = 0;
2763
2764                        qh->period = urb->interval >> 3;
2765                        if (qh->period == 0 && urb->interval != 1) {
2766                                /* NOTE interval 2 or 4 uframes could work.
2767                                 * But interval 1 scheduling is simpler, and
2768                                 * includes high bandwidth.
2769                                 */
2770                                urb->interval = 1;
2771                        } else if (qh->period > fotg210->periodic_size) {
2772                                qh->period = fotg210->periodic_size;
2773                                urb->interval = qh->period << 3;
2774                        }
2775                } else {
2776                        int think_time;
2777
2778                        /* gap is f(FS/LS transfer times) */
2779                        qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2780                                        is_input, 0, maxp) / (125 * 1000);
2781
2782                        /* FIXME this just approximates SPLIT/CSPLIT times */
2783                        if (is_input) {         /* SPLIT, gap, CSPLIT+DATA */
2784                                qh->c_usecs = qh->usecs + HS_USECS(0);
2785                                qh->usecs = HS_USECS(1);
2786                        } else {                /* SPLIT+DATA, gap, CSPLIT */
2787                                qh->usecs += HS_USECS(1);
2788                                qh->c_usecs = HS_USECS(0);
2789                        }
2790
2791                        think_time = tt ? tt->think_time : 0;
2792                        qh->tt_usecs = NS_TO_US(think_time +
2793                                        usb_calc_bus_time(urb->dev->speed,
2794                                        is_input, 0, max_packet(maxp)));
2795                        qh->period = urb->interval;
2796                        if (qh->period > fotg210->periodic_size) {
2797                                qh->period = fotg210->periodic_size;
2798                                urb->interval = qh->period;
2799                        }
2800                }
2801        }
2802
2803        /* support for tt scheduling, and access to toggles */
2804        qh->dev = urb->dev;
2805
2806        /* using TT? */
2807        switch (urb->dev->speed) {
2808        case USB_SPEED_LOW:
2809                info1 |= QH_LOW_SPEED;
2810                /* FALL THROUGH */
2811
2812        case USB_SPEED_FULL:
2813                /* EPS 0 means "full" */
2814                if (type != PIPE_INTERRUPT)
2815                        info1 |= (FOTG210_TUNE_RL_TT << 28);
2816                if (type == PIPE_CONTROL) {
2817                        info1 |= QH_CONTROL_EP;         /* for TT */
2818                        info1 |= QH_TOGGLE_CTL;         /* toggle from qtd */
2819                }
2820                info1 |= maxp << 16;
2821
2822                info2 |= (FOTG210_TUNE_MULT_TT << 30);
2823
2824                /* Some Freescale processors have an erratum in which the
2825                 * port number in the queue head was 0..N-1 instead of 1..N.
2826                 */
2827                if (fotg210_has_fsl_portno_bug(fotg210))
2828                        info2 |= (urb->dev->ttport-1) << 23;
2829                else
2830                        info2 |= urb->dev->ttport << 23;
2831
2832                /* set the address of the TT; for TDI's integrated
2833                 * root hub tt, leave it zeroed.
2834                 */
2835                if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2836                        info2 |= tt->hub->devnum << 16;
2837
2838                /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2839
2840                break;
2841
2842        case USB_SPEED_HIGH:            /* no TT involved */
2843                info1 |= QH_HIGH_SPEED;
2844                if (type == PIPE_CONTROL) {
2845                        info1 |= (FOTG210_TUNE_RL_HS << 28);
2846                        info1 |= 64 << 16;      /* usb2 fixed maxpacket */
2847                        info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2848                        info2 |= (FOTG210_TUNE_MULT_HS << 30);
2849                } else if (type == PIPE_BULK) {
2850                        info1 |= (FOTG210_TUNE_RL_HS << 28);
2851                        /* The USB spec says that high speed bulk endpoints
2852                         * always use 512 byte maxpacket.  But some device
2853                         * vendors decided to ignore that, and MSFT is happy
2854                         * to help them do so.  So now people expect to use
2855                         * such nonconformant devices with Linux too; sigh.
2856                         */
2857                        info1 |= max_packet(maxp) << 16;
2858                        info2 |= (FOTG210_TUNE_MULT_HS << 30);
2859                } else {                /* PIPE_INTERRUPT */
2860                        info1 |= max_packet(maxp) << 16;
2861                        info2 |= hb_mult(maxp) << 30;
2862                }
2863                break;
2864        default:
2865                fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2866                                urb->dev->speed);
2867done:
2868                qh_destroy(fotg210, qh);
2869                return NULL;
2870        }
2871
2872        /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2873
2874        /* init as live, toggle clear, advance to dummy */
2875        qh->qh_state = QH_STATE_IDLE;
2876        hw = qh->hw;
2877        hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2878        hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2879        qh->is_out = !is_input;
2880        usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2881        qh_refresh(fotg210, qh);
2882        return qh;
2883}
2884
2885static void enable_async(struct fotg210_hcd *fotg210)
2886{
2887        if (fotg210->async_count++)
2888                return;
2889
2890        /* Stop waiting to turn off the async schedule */
2891        fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2892
2893        /* Don't start the schedule until ASS is 0 */
2894        fotg210_poll_ASS(fotg210);
2895        turn_on_io_watchdog(fotg210);
2896}
2897
2898static void disable_async(struct fotg210_hcd *fotg210)
2899{
2900        if (--fotg210->async_count)
2901                return;
2902
2903        /* The async schedule and async_unlink list are supposed to be empty */
2904        WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2905
2906        /* Don't turn off the schedule until ASS is 1 */
2907        fotg210_poll_ASS(fotg210);
2908}
2909
2910/* move qh (and its qtds) onto async queue; maybe enable queue.  */
2911
2912static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2913{
2914        __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2915        struct fotg210_qh *head;
2916
2917        /* Don't link a QH if there's a Clear-TT-Buffer pending */
2918        if (unlikely(qh->clearing_tt))
2919                return;
2920
2921        WARN_ON(qh->qh_state != QH_STATE_IDLE);
2922
2923        /* clear halt and/or toggle; and maybe recover from silicon quirk */
2924        qh_refresh(fotg210, qh);
2925
2926        /* splice right after start */
2927        head = fotg210->async;
2928        qh->qh_next = head->qh_next;
2929        qh->hw->hw_next = head->hw->hw_next;
2930        wmb();
2931
2932        head->qh_next.qh = qh;
2933        head->hw->hw_next = dma;
2934
2935        qh->xacterrs = 0;
2936        qh->qh_state = QH_STATE_LINKED;
2937        /* qtd completions reported later by interrupt */
2938
2939        enable_async(fotg210);
2940}
2941
2942/* For control/bulk/interrupt, return QH with these TDs appended.
2943 * Allocates and initializes the QH if necessary.
2944 * Returns null if it can't allocate a QH it needs to.
2945 * If the QH has TDs (urbs) already, that's great.
2946 */
2947static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2948                struct urb *urb, struct list_head *qtd_list,
2949                int epnum, void **ptr)
2950{
2951        struct fotg210_qh *qh = NULL;
2952        __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2953
2954        qh = (struct fotg210_qh *) *ptr;
2955        if (unlikely(qh == NULL)) {
2956                /* can't sleep here, we have fotg210->lock... */
2957                qh = qh_make(fotg210, urb, GFP_ATOMIC);
2958                *ptr = qh;
2959        }
2960        if (likely(qh != NULL)) {
2961                struct fotg210_qtd *qtd;
2962
2963                if (unlikely(list_empty(qtd_list)))
2964                        qtd = NULL;
2965                else
2966                        qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2967                                        qtd_list);
2968
2969                /* control qh may need patching ... */
2970                if (unlikely(epnum == 0)) {
2971                        /* usb_reset_device() briefly reverts to address 0 */
2972                        if (usb_pipedevice(urb->pipe) == 0)
2973                                qh->hw->hw_info1 &= ~qh_addr_mask;
2974                }
2975
2976                /* just one way to queue requests: swap with the dummy qtd.
2977                 * only hc or qh_refresh() ever modify the overlay.
2978                 */
2979                if (likely(qtd != NULL)) {
2980                        struct fotg210_qtd *dummy;
2981                        dma_addr_t dma;
2982                        __hc32 token;
2983
2984                        /* to avoid racing the HC, use the dummy td instead of
2985                         * the first td of our list (becomes new dummy).  both
2986                         * tds stay deactivated until we're done, when the
2987                         * HC is allowed to fetch the old dummy (4.10.2).
2988                         */
2989                        token = qtd->hw_token;
2990                        qtd->hw_token = HALT_BIT(fotg210);
2991
2992                        dummy = qh->dummy;
2993
2994                        dma = dummy->qtd_dma;
2995                        *dummy = *qtd;
2996                        dummy->qtd_dma = dma;
2997
2998                        list_del(&qtd->qtd_list);
2999                        list_add(&dummy->qtd_list, qtd_list);
3000                        list_splice_tail(qtd_list, &qh->qtd_list);
3001
3002                        fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3003                        qh->dummy = qtd;
3004
3005                        /* hc must see the new dummy at list end */
3006                        dma = qtd->qtd_dma;
3007                        qtd = list_entry(qh->qtd_list.prev,
3008                                        struct fotg210_qtd, qtd_list);
3009                        qtd->hw_next = QTD_NEXT(fotg210, dma);
3010
3011                        /* let the hc process these next qtds */
3012                        wmb();
3013                        dummy->hw_token = token;
3014
3015                        urb->hcpriv = qh;
3016                }
3017        }
3018        return qh;
3019}
3020
3021static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3022                struct list_head *qtd_list, gfp_t mem_flags)
3023{
3024        int epnum;
3025        unsigned long flags;
3026        struct fotg210_qh *qh = NULL;
3027        int rc;
3028
3029        epnum = urb->ep->desc.bEndpointAddress;
3030
3031#ifdef FOTG210_URB_TRACE
3032        {
3033                struct fotg210_qtd *qtd;
3034
3035                qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3036                fotg210_dbg(fotg210,
3037                                "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3038                                __func__, urb->dev->devpath, urb,
3039                                epnum & 0x0f, (epnum & USB_DIR_IN)
3040                                        ? "in" : "out",
3041                                urb->transfer_buffer_length,
3042                                qtd, urb->ep->hcpriv);
3043        }
3044#endif
3045
3046        spin_lock_irqsave(&fotg210->lock, flags);
3047        if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3048                rc = -ESHUTDOWN;
3049                goto done;
3050        }
3051        rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3052        if (unlikely(rc))
3053                goto done;
3054
3055        qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3056        if (unlikely(qh == NULL)) {
3057                usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3058                rc = -ENOMEM;
3059                goto done;
3060        }
3061
3062        /* Control/bulk operations through TTs don't need scheduling,
3063         * the HC and TT handle it when the TT has a buffer ready.
3064         */
3065        if (likely(qh->qh_state == QH_STATE_IDLE))
3066                qh_link_async(fotg210, qh);
3067done:
3068        spin_unlock_irqrestore(&fotg210->lock, flags);
3069        if (unlikely(qh == NULL))
3070                qtd_list_free(fotg210, urb, qtd_list);
3071        return rc;
3072}
3073
3074static void single_unlink_async(struct fotg210_hcd *fotg210,
3075                struct fotg210_qh *qh)
3076{
3077        struct fotg210_qh *prev;
3078
3079        /* Add to the end of the list of QHs waiting for the next IAAD */
3080        qh->qh_state = QH_STATE_UNLINK;
3081        if (fotg210->async_unlink)
3082                fotg210->async_unlink_last->unlink_next = qh;
3083        else
3084                fotg210->async_unlink = qh;
3085        fotg210->async_unlink_last = qh;
3086
3087        /* Unlink it from the schedule */
3088        prev = fotg210->async;
3089        while (prev->qh_next.qh != qh)
3090                prev = prev->qh_next.qh;
3091
3092        prev->hw->hw_next = qh->hw->hw_next;
3093        prev->qh_next = qh->qh_next;
3094        if (fotg210->qh_scan_next == qh)
3095                fotg210->qh_scan_next = qh->qh_next.qh;
3096}
3097
3098static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3099{
3100        /*
3101         * Do nothing if an IAA cycle is already running or
3102         * if one will be started shortly.
3103         */
3104        if (fotg210->async_iaa || fotg210->async_unlinking)
3105                return;
3106
3107        /* Do all the waiting QHs at once */
3108        fotg210->async_iaa = fotg210->async_unlink;
3109        fotg210->async_unlink = NULL;
3110
3111        /* If the controller isn't running, we don't have to wait for it */
3112        if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3113                if (!nested)            /* Avoid recursion */
3114                        end_unlink_async(fotg210);
3115
3116        /* Otherwise start a new IAA cycle */
3117        } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3118                /* Make sure the unlinks are all visible to the hardware */
3119                wmb();
3120
3121                fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3122                                &fotg210->regs->command);
3123                fotg210_readl(fotg210, &fotg210->regs->command);
3124                fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3125                                true);
3126        }
3127}
3128
3129/* the async qh for the qtds being unlinked are now gone from the HC */
3130
3131static void end_unlink_async(struct fotg210_hcd *fotg210)
3132{
3133        struct fotg210_qh *qh;
3134
3135        /* Process the idle QHs */
3136restart:
3137        fotg210->async_unlinking = true;
3138        while (fotg210->async_iaa) {
3139                qh = fotg210->async_iaa;
3140                fotg210->async_iaa = qh->unlink_next;
3141                qh->unlink_next = NULL;
3142
3143                qh->qh_state = QH_STATE_IDLE;
3144                qh->qh_next.qh = NULL;
3145
3146                qh_completions(fotg210, qh);
3147                if (!list_empty(&qh->qtd_list) &&
3148                                fotg210->rh_state == FOTG210_RH_RUNNING)
3149                        qh_link_async(fotg210, qh);
3150                disable_async(fotg210);
3151        }
3152        fotg210->async_unlinking = false;
3153
3154        /* Start a new IAA cycle if any QHs are waiting for it */
3155        if (fotg210->async_unlink) {
3156                start_iaa_cycle(fotg210, true);
3157                if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3158                        goto restart;
3159        }
3160}
3161
3162static void unlink_empty_async(struct fotg210_hcd *fotg210)
3163{
3164        struct fotg210_qh *qh, *next;
3165        bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3166        bool check_unlinks_later = false;
3167
3168        /* Unlink all the async QHs that have been empty for a timer cycle */
3169        next = fotg210->async->qh_next.qh;
3170        while (next) {
3171                qh = next;
3172                next = qh->qh_next.qh;
3173
3174                if (list_empty(&qh->qtd_list) &&
3175                                qh->qh_state == QH_STATE_LINKED) {
3176                        if (!stopped && qh->unlink_cycle ==
3177                                        fotg210->async_unlink_cycle)
3178                                check_unlinks_later = true;
3179                        else
3180                                single_unlink_async(fotg210, qh);
3181                }
3182        }
3183
3184        /* Start a new IAA cycle if any QHs are waiting for it */
3185        if (fotg210->async_unlink)
3186                start_iaa_cycle(fotg210, false);
3187
3188        /* QHs that haven't been empty for long enough will be handled later */
3189        if (check_unlinks_later) {
3190                fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3191                                true);
3192                ++fotg210->async_unlink_cycle;
3193        }
3194}
3195
3196/* makes sure the async qh will become idle */
3197/* caller must own fotg210->lock */
3198
3199static void start_unlink_async(struct fotg210_hcd *fotg210,
3200                struct fotg210_qh *qh)
3201{
3202        /*
3203         * If the QH isn't linked then there's nothing we can do
3204         * unless we were called during a giveback, in which case
3205         * qh_completions() has to deal with it.
3206         */
3207        if (qh->qh_state != QH_STATE_LINKED) {
3208                if (qh->qh_state == QH_STATE_COMPLETING)
3209                        qh->needs_rescan = 1;
3210                return;
3211        }
3212
3213        single_unlink_async(fotg210, qh);
3214        start_iaa_cycle(fotg210, false);
3215}
3216
3217static void scan_async(struct fotg210_hcd *fotg210)
3218{
3219        struct fotg210_qh *qh;
3220        bool check_unlinks_later = false;
3221
3222        fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3223        while (fotg210->qh_scan_next) {
3224                qh = fotg210->qh_scan_next;
3225                fotg210->qh_scan_next = qh->qh_next.qh;
3226rescan:
3227                /* clean any finished work for this qh */
3228                if (!list_empty(&qh->qtd_list)) {
3229                        int temp;
3230
3231                        /*
3232                         * Unlinks could happen here; completion reporting
3233                         * drops the lock.  That's why fotg210->qh_scan_next
3234                         * always holds the next qh to scan; if the next qh
3235                         * gets unlinked then fotg210->qh_scan_next is adjusted
3236                         * in single_unlink_async().
3237                         */
3238                        temp = qh_completions(fotg210, qh);
3239                        if (qh->needs_rescan) {
3240                                start_unlink_async(fotg210, qh);
3241                        } else if (list_empty(&qh->qtd_list)
3242                                        && qh->qh_state == QH_STATE_LINKED) {
3243                                qh->unlink_cycle = fotg210->async_unlink_cycle;
3244                                check_unlinks_later = true;
3245                        } else if (temp != 0)
3246                                goto rescan;
3247                }
3248        }
3249
3250        /*
3251         * Unlink empty entries, reducing DMA usage as well
3252         * as HCD schedule-scanning costs.  Delay for any qh
3253         * we just scanned, there's a not-unusual case that it
3254         * doesn't stay idle for long.
3255         */
3256        if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3257                        !(fotg210->enabled_hrtimer_events &
3258                        BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3259                fotg210_enable_event(fotg210,
3260                                FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3261                ++fotg210->async_unlink_cycle;
3262        }
3263}
3264/* EHCI scheduled transaction support:  interrupt, iso, split iso
3265 * These are called "periodic" transactions in the EHCI spec.
3266 *
3267 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3268 * with the "asynchronous" transaction support (control/bulk transfers).
3269 * The only real difference is in how interrupt transfers are scheduled.
3270 *
3271 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3272 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3273 * pre-calculated schedule data to make appending to the queue be quick.
3274 */
3275static int fotg210_get_frame(struct usb_hcd *hcd);
3276
3277/* periodic_next_shadow - return "next" pointer on shadow list
3278 * @periodic: host pointer to qh/itd
3279 * @tag: hardware tag for type of this record
3280 */
3281static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3282                union fotg210_shadow *periodic, __hc32 tag)
3283{
3284        switch (hc32_to_cpu(fotg210, tag)) {
3285        case Q_TYPE_QH:
3286                return &periodic->qh->qh_next;
3287        case Q_TYPE_FSTN:
3288                return &periodic->fstn->fstn_next;
3289        default:
3290                return &periodic->itd->itd_next;
3291        }
3292}
3293
3294static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3295                union fotg210_shadow *periodic, __hc32 tag)
3296{
3297        switch (hc32_to_cpu(fotg210, tag)) {
3298        /* our fotg210_shadow.qh is actually software part */
3299        case Q_TYPE_QH:
3300                return &periodic->qh->hw->hw_next;
3301        /* others are hw parts */
3302        default:
3303                return periodic->hw_next;
3304        }
3305}
3306
3307/* caller must hold fotg210->lock */
3308static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3309                void *ptr)
3310{
3311        union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3312        __hc32 *hw_p = &fotg210->periodic[frame];
3313        union fotg210_shadow here = *prev_p;
3314
3315        /* find predecessor of "ptr"; hw and shadow lists are in sync */
3316        while (here.ptr && here.ptr != ptr) {
3317                prev_p = periodic_next_shadow(fotg210, prev_p,
3318                                Q_NEXT_TYPE(fotg210, *hw_p));
3319                hw_p = shadow_next_periodic(fotg210, &here,
3320                                Q_NEXT_TYPE(fotg210, *hw_p));
3321                here = *prev_p;
3322        }
3323        /* an interrupt entry (at list end) could have been shared */
3324        if (!here.ptr)
3325                return;
3326
3327        /* update shadow and hardware lists ... the old "next" pointers
3328         * from ptr may still be in use, the caller updates them.
3329         */
3330        *prev_p = *periodic_next_shadow(fotg210, &here,
3331                        Q_NEXT_TYPE(fotg210, *hw_p));
3332
3333        *hw_p = *shadow_next_periodic(fotg210, &here,
3334                        Q_NEXT_TYPE(fotg210, *hw_p));
3335}
3336
3337/* how many of the uframe's 125 usecs are allocated? */
3338static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3339                unsigned frame, unsigned uframe)
3340{
3341        __hc32 *hw_p = &fotg210->periodic[frame];
3342        union fotg210_shadow *q = &fotg210->pshadow[frame];
3343        unsigned usecs = 0;
3344        struct fotg210_qh_hw *hw;
3345
3346        while (q->ptr) {
3347                switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3348                case Q_TYPE_QH:
3349                        hw = q->qh->hw;
3350                        /* is it in the S-mask? */
3351                        if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3352                                usecs += q->qh->usecs;
3353                        /* ... or C-mask? */
3354                        if (hw->hw_info2 & cpu_to_hc32(fotg210,
3355                                        1 << (8 + uframe)))
3356                                usecs += q->qh->c_usecs;
3357                        hw_p = &hw->hw_next;
3358                        q = &q->qh->qh_next;
3359                        break;
3360                /* case Q_TYPE_FSTN: */
3361                default:
3362                        /* for "save place" FSTNs, count the relevant INTR
3363                         * bandwidth from the previous frame
3364                         */
3365                        if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3366                                fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3367
3368                        hw_p = &q->fstn->hw_next;
3369                        q = &q->fstn->fstn_next;
3370                        break;
3371                case Q_TYPE_ITD:
3372                        if (q->itd->hw_transaction[uframe])
3373                                usecs += q->itd->stream->usecs;
3374                        hw_p = &q->itd->hw_next;
3375                        q = &q->itd->itd_next;
3376                        break;
3377                }
3378        }
3379        if (usecs > fotg210->uframe_periodic_max)
3380                fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3381                                frame * 8 + uframe, usecs);
3382        return usecs;
3383}
3384
3385static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3386{
3387        if (!dev1->tt || !dev2->tt)
3388                return 0;
3389        if (dev1->tt != dev2->tt)
3390                return 0;
3391        if (dev1->tt->multi)
3392                return dev1->ttport == dev2->ttport;
3393        else
3394                return 1;
3395}
3396
3397/* return true iff the device's transaction translator is available
3398 * for a periodic transfer starting at the specified frame, using
3399 * all the uframes in the mask.
3400 */
3401static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3402                struct usb_device *dev, unsigned frame, u32 uf_mask)
3403{
3404        if (period == 0)        /* error */
3405                return 0;
3406
3407        /* note bandwidth wastage:  split never follows csplit
3408         * (different dev or endpoint) until the next uframe.
3409         * calling convention doesn't make that distinction.
3410         */
3411        for (; frame < fotg210->periodic_size; frame += period) {
3412                union fotg210_shadow here;
3413                __hc32 type;
3414                struct fotg210_qh_hw *hw;
3415
3416                here = fotg210->pshadow[frame];
3417                type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3418                while (here.ptr) {
3419                        switch (hc32_to_cpu(fotg210, type)) {
3420                        case Q_TYPE_ITD:
3421                                type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3422                                here = here.itd->itd_next;
3423                                continue;
3424                        case Q_TYPE_QH:
3425                                hw = here.qh->hw;
3426                                if (same_tt(dev, here.qh->dev)) {
3427                                        u32 mask;
3428
3429                                        mask = hc32_to_cpu(fotg210,
3430                                                        hw->hw_info2);
3431                                        /* "knows" no gap is needed */
3432                                        mask |= mask >> 8;
3433                                        if (mask & uf_mask)
3434                                                break;
3435                                }
3436                                type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3437                                here = here.qh->qh_next;
3438                                continue;
3439                        /* case Q_TYPE_FSTN: */
3440                        default:
3441                                fotg210_dbg(fotg210,
3442                                                "periodic frame %d bogus type %d\n",
3443                                                frame, type);
3444                        }
3445
3446                        /* collision or error */
3447                        return 0;
3448                }
3449        }
3450
3451        /* no collision */
3452        return 1;
3453}
3454
3455static void enable_periodic(struct fotg210_hcd *fotg210)
3456{
3457        if (fotg210->periodic_count++)
3458                return;
3459
3460        /* Stop waiting to turn off the periodic schedule */
3461        fotg210->enabled_hrtimer_events &=
3462                ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3463
3464        /* Don't start the schedule until PSS is 0 */
3465        fotg210_poll_PSS(fotg210);
3466        turn_on_io_watchdog(fotg210);
3467}
3468
3469static void disable_periodic(struct fotg210_hcd *fotg210)
3470{
3471        if (--fotg210->periodic_count)
3472                return;
3473
3474        /* Don't turn off the schedule until PSS is 1 */
3475        fotg210_poll_PSS(fotg210);
3476}
3477
3478/* periodic schedule slots have iso tds (normal or split) first, then a
3479 * sparse tree for active interrupt transfers.
3480 *
3481 * this just links in a qh; caller guarantees uframe masks are set right.
3482 * no FSTN support (yet; fotg210 0.96+)
3483 */
3484static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3485{
3486        unsigned i;
3487        unsigned period = qh->period;
3488
3489        dev_dbg(&qh->dev->dev,
3490                        "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3491                        hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3492                        (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3493                        qh->c_usecs);
3494
3495        /* high bandwidth, or otherwise every microframe */
3496        if (period == 0)
3497                period = 1;
3498
3499        for (i = qh->start; i < fotg210->periodic_size; i += period) {
3500                union fotg210_shadow *prev = &fotg210->pshadow[i];
3501                __hc32 *hw_p = &fotg210->periodic[i];
3502                union fotg210_shadow here = *prev;
3503                __hc32 type = 0;
3504
3505                /* skip the iso nodes at list head */
3506                while (here.ptr) {
3507                        type = Q_NEXT_TYPE(fotg210, *hw_p);
3508                        if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3509                                break;
3510                        prev = periodic_next_shadow(fotg210, prev, type);
3511                        hw_p = shadow_next_periodic(fotg210, &here, type);
3512                        here = *prev;
3513                }
3514
3515                /* sorting each branch by period (slow-->fast)
3516                 * enables sharing interior tree nodes
3517                 */
3518                while (here.ptr && qh != here.qh) {
3519                        if (qh->period > here.qh->period)
3520                                break;
3521                        prev = &here.qh->qh_next;
3522                        hw_p = &here.qh->hw->hw_next;
3523                        here = *prev;
3524                }
3525                /* link in this qh, unless some earlier pass did that */
3526                if (qh != here.qh) {
3527                        qh->qh_next = here;
3528                        if (here.qh)
3529                                qh->hw->hw_next = *hw_p;
3530                        wmb();
3531                        prev->qh = qh;
3532                        *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3533                }
3534        }
3535        qh->qh_state = QH_STATE_LINKED;
3536        qh->xacterrs = 0;
3537
3538        /* update per-qh bandwidth for usbfs */
3539        fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3540                ? ((qh->usecs + qh->c_usecs) / qh->period)
3541                : (qh->usecs * 8);
3542
3543        list_add(&qh->intr_node, &fotg210->intr_qh_list);
3544
3545        /* maybe enable periodic schedule processing */
3546        ++fotg210->intr_count;
3547        enable_periodic(fotg210);
3548}
3549
3550static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3551                struct fotg210_qh *qh)
3552{
3553        unsigned i;
3554        unsigned period;
3555
3556        /*
3557         * If qh is for a low/full-speed device, simply unlinking it
3558         * could interfere with an ongoing split transaction.  To unlink
3559         * it safely would require setting the QH_INACTIVATE bit and
3560         * waiting at least one frame, as described in EHCI 4.12.2.5.
3561         *
3562         * We won't bother with any of this.  Instead, we assume that the
3563         * only reason for unlinking an interrupt QH while the current URB
3564         * is still active is to dequeue all the URBs (flush the whole
3565         * endpoint queue).
3566         *
3567         * If rebalancing the periodic schedule is ever implemented, this
3568         * approach will no longer be valid.
3569         */
3570
3571        /* high bandwidth, or otherwise part of every microframe */
3572        period = qh->period;
3573        if (!period)
3574                period = 1;
3575
3576        for (i = qh->start; i < fotg210->periodic_size; i += period)
3577                periodic_unlink(fotg210, i, qh);
3578
3579        /* update per-qh bandwidth for usbfs */
3580        fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3581                ? ((qh->usecs + qh->c_usecs) / qh->period)
3582                : (qh->usecs * 8);
3583
3584        dev_dbg(&qh->dev->dev,
3585                        "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3586                        qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3587                        (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3588                        qh->c_usecs);
3589
3590        /* qh->qh_next still "live" to HC */
3591        qh->qh_state = QH_STATE_UNLINK;
3592        qh->qh_next.ptr = NULL;
3593
3594        if (fotg210->qh_scan_next == qh)
3595                fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3596                                struct fotg210_qh, intr_node);
3597        list_del(&qh->intr_node);
3598}
3599
3600static void start_unlink_intr(struct fotg210_hcd *fotg210,
3601                struct fotg210_qh *qh)
3602{
3603        /* If the QH isn't linked then there's nothing we can do
3604         * unless we were called during a giveback, in which case
3605         * qh_completions() has to deal with it.
3606         */
3607        if (qh->qh_state != QH_STATE_LINKED) {
3608                if (qh->qh_state == QH_STATE_COMPLETING)
3609                        qh->needs_rescan = 1;
3610                return;
3611        }
3612
3613        qh_unlink_periodic(fotg210, qh);
3614
3615        /* Make sure the unlinks are visible before starting the timer */
3616        wmb();
3617
3618        /*
3619         * The EHCI spec doesn't say how long it takes the controller to
3620         * stop accessing an unlinked interrupt QH.  The timer delay is
3621         * 9 uframes; presumably that will be long enough.
3622         */
3623        qh->unlink_cycle = fotg210->intr_unlink_cycle;
3624
3625        /* New entries go at the end of the intr_unlink list */
3626        if (fotg210->intr_unlink)
3627                fotg210->intr_unlink_last->unlink_next = qh;
3628        else
3629                fotg210->intr_unlink = qh;
3630        fotg210->intr_unlink_last = qh;
3631
3632        if (fotg210->intr_unlinking)
3633                ;       /* Avoid recursive calls */
3634        else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3635                fotg210_handle_intr_unlinks(fotg210);
3636        else if (fotg210->intr_unlink == qh) {
3637                fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3638                                true);
3639                ++fotg210->intr_unlink_cycle;
3640        }
3641}
3642
3643static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3644{
3645        struct fotg210_qh_hw *hw = qh->hw;
3646        int rc;
3647
3648        qh->qh_state = QH_STATE_IDLE;
3649        hw->hw_next = FOTG210_LIST_END(fotg210);
3650
3651        qh_completions(fotg210, qh);
3652
3653        /* reschedule QH iff another request is queued */
3654        if (!list_empty(&qh->qtd_list) &&
3655                        fotg210->rh_state == FOTG210_RH_RUNNING) {
3656                rc = qh_schedule(fotg210, qh);
3657
3658                /* An error here likely indicates handshake failure
3659                 * or no space left in the schedule.  Neither fault
3660                 * should happen often ...
3661                 *
3662                 * FIXME kill the now-dysfunctional queued urbs
3663                 */
3664                if (rc != 0)
3665                        fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3666                                        qh, rc);
3667        }
3668
3669        /* maybe turn off periodic schedule */
3670        --fotg210->intr_count;
3671        disable_periodic(fotg210);
3672}
3673
3674static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3675                unsigned uframe, unsigned period, unsigned usecs)
3676{
3677        int claimed;
3678
3679        /* complete split running into next frame?
3680         * given FSTN support, we could sometimes check...
3681         */
3682        if (uframe >= 8)
3683                return 0;
3684
3685        /* convert "usecs we need" to "max already claimed" */
3686        usecs = fotg210->uframe_periodic_max - usecs;
3687
3688        /* we "know" 2 and 4 uframe intervals were rejected; so
3689         * for period 0, check _every_ microframe in the schedule.
3690         */
3691        if (unlikely(period == 0)) {
3692                do {
3693                        for (uframe = 0; uframe < 7; uframe++) {
3694                                claimed = periodic_usecs(fotg210, frame,
3695                                                uframe);
3696                                if (claimed > usecs)
3697                                        return 0;
3698                        }
3699                } while ((frame += 1) < fotg210->periodic_size);
3700
3701        /* just check the specified uframe, at that period */
3702        } else {
3703                do {
3704                        claimed = periodic_usecs(fotg210, frame, uframe);
3705                        if (claimed > usecs)
3706                                return 0;
3707                } while ((frame += period) < fotg210->periodic_size);
3708        }
3709
3710        /* success! */
3711        return 1;
3712}
3713
3714static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3715                unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3716{
3717        int retval = -ENOSPC;
3718        u8 mask = 0;
3719
3720        if (qh->c_usecs && uframe >= 6)         /* FSTN territory? */
3721                goto done;
3722
3723        if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3724                goto done;
3725        if (!qh->c_usecs) {
3726                retval = 0;
3727                *c_maskp = 0;
3728                goto done;
3729        }
3730
3731        /* Make sure this tt's buffer is also available for CSPLITs.
3732         * We pessimize a bit; probably the typical full speed case
3733         * doesn't need the second CSPLIT.
3734         *
3735         * NOTE:  both SPLIT and CSPLIT could be checked in just
3736         * one smart pass...
3737         */
3738        mask = 0x03 << (uframe + qh->gap_uf);
3739        *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3740
3741        mask |= 1 << uframe;
3742        if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3743                if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3744                                qh->period, qh->c_usecs))
3745                        goto done;
3746                if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3747                                qh->period, qh->c_usecs))
3748                        goto done;
3749                retval = 0;
3750        }
3751done:
3752        return retval;
3753}
3754
3755/* "first fit" scheduling policy used the first time through,
3756 * or when the previous schedule slot can't be re-used.
3757 */
3758static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3759{
3760        int status;
3761        unsigned uframe;
3762        __hc32 c_mask;
3763        unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3764        struct fotg210_qh_hw *hw = qh->hw;
3765
3766        qh_refresh(fotg210, qh);
3767        hw->hw_next = FOTG210_LIST_END(fotg210);
3768        frame = qh->start;
3769
3770        /* reuse the previous schedule slots, if we can */
3771        if (frame < qh->period) {
3772                uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3773                status = check_intr_schedule(fotg210, frame, --uframe,
3774                                qh, &c_mask);
3775        } else {
3776                uframe = 0;
3777                c_mask = 0;
3778                status = -ENOSPC;
3779        }
3780
3781        /* else scan the schedule to find a group of slots such that all
3782         * uframes have enough periodic bandwidth available.
3783         */
3784        if (status) {
3785                /* "normal" case, uframing flexible except with splits */
3786                if (qh->period) {
3787                        int i;
3788
3789                        for (i = qh->period; status && i > 0; --i) {
3790                                frame = ++fotg210->random_frame % qh->period;
3791                                for (uframe = 0; uframe < 8; uframe++) {
3792                                        status = check_intr_schedule(fotg210,
3793                                                        frame, uframe, qh,
3794                                                        &c_mask);
3795                                        if (status == 0)
3796                                                break;
3797                                }
3798                        }
3799
3800                /* qh->period == 0 means every uframe */
3801                } else {
3802                        frame = 0;
3803                        status = check_intr_schedule(fotg210, 0, 0, qh,
3804                                        &c_mask);
3805                }
3806                if (status)
3807                        goto done;
3808                qh->start = frame;
3809
3810                /* reset S-frame and (maybe) C-frame masks */
3811                hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3812                hw->hw_info2 |= qh->period
3813                        ? cpu_to_hc32(fotg210, 1 << uframe)
3814                        : cpu_to_hc32(fotg210, QH_SMASK);
3815                hw->hw_info2 |= c_mask;
3816        } else
3817                fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3818
3819        /* stuff into the periodic schedule */
3820        qh_link_periodic(fotg210, qh);
3821done:
3822        return status;
3823}
3824
3825static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3826                struct list_head *qtd_list, gfp_t mem_flags)
3827{
3828        unsigned epnum;
3829        unsigned long flags;
3830        struct fotg210_qh *qh;
3831        int status;
3832        struct list_head empty;
3833
3834        /* get endpoint and transfer/schedule data */
3835        epnum = urb->ep->desc.bEndpointAddress;
3836
3837        spin_lock_irqsave(&fotg210->lock, flags);
3838
3839        if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3840                status = -ESHUTDOWN;
3841                goto done_not_linked;
3842        }
3843        status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3844        if (unlikely(status))
3845                goto done_not_linked;
3846
3847        /* get qh and force any scheduling errors */
3848        INIT_LIST_HEAD(&empty);
3849        qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3850        if (qh == NULL) {
3851                status = -ENOMEM;
3852                goto done;
3853        }
3854        if (qh->qh_state == QH_STATE_IDLE) {
3855                status = qh_schedule(fotg210, qh);
3856                if (status)
3857                        goto done;
3858        }
3859
3860        /* then queue the urb's tds to the qh */
3861        qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3862        BUG_ON(qh == NULL);
3863
3864        /* ... update usbfs periodic stats */
3865        fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3866
3867done:
3868        if (unlikely(status))
3869                usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3870done_not_linked:
3871        spin_unlock_irqrestore(&fotg210->lock, flags);
3872        if (status)
3873                qtd_list_free(fotg210, urb, qtd_list);
3874
3875        return status;
3876}
3877
3878static void scan_intr(struct fotg210_hcd *fotg210)
3879{
3880        struct fotg210_qh *qh;
3881
3882        list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3883                        &fotg210->intr_qh_list, intr_node) {
3884rescan:
3885                /* clean any finished work for this qh */
3886                if (!list_empty(&qh->qtd_list)) {
3887                        int temp;
3888
3889                        /*
3890                         * Unlinks could happen here; completion reporting
3891                         * drops the lock.  That's why fotg210->qh_scan_next
3892                         * always holds the next qh to scan; if the next qh
3893                         * gets unlinked then fotg210->qh_scan_next is adjusted
3894                         * in qh_unlink_periodic().
3895                         */
3896                        temp = qh_completions(fotg210, qh);
3897                        if (unlikely(qh->needs_rescan ||
3898                                        (list_empty(&qh->qtd_list) &&
3899                                        qh->qh_state == QH_STATE_LINKED)))
3900                                start_unlink_intr(fotg210, qh);
3901                        else if (temp != 0)
3902                                goto rescan;
3903                }
3904        }
3905}
3906
3907/* fotg210_iso_stream ops work with both ITD and SITD */
3908
3909static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3910{
3911        struct fotg210_iso_stream *stream;
3912
3913        stream = kzalloc(sizeof(*stream), mem_flags);
3914        if (likely(stream != NULL)) {
3915                INIT_LIST_HEAD(&stream->td_list);
3916                INIT_LIST_HEAD(&stream->free_list);
3917                stream->next_uframe = -1;
3918        }
3919        return stream;
3920}
3921
3922static void iso_stream_init(struct fotg210_hcd *fotg210,
3923                struct fotg210_iso_stream *stream, struct usb_device *dev,
3924                int pipe, unsigned interval)
3925{
3926        u32 buf1;
3927        unsigned epnum, maxp;
3928        int is_input;
3929        long bandwidth;
3930        unsigned multi;
3931
3932        /*
3933         * this might be a "high bandwidth" highspeed endpoint,
3934         * as encoded in the ep descriptor's wMaxPacket field
3935         */
3936        epnum = usb_pipeendpoint(pipe);
3937        is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3938        maxp = usb_maxpacket(dev, pipe, !is_input);
3939        if (is_input)
3940                buf1 = (1 << 11);
3941        else
3942                buf1 = 0;
3943
3944        maxp = max_packet(maxp);
3945        multi = hb_mult(maxp);
3946        buf1 |= maxp;
3947        maxp *= multi;
3948
3949        stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3950        stream->buf1 = cpu_to_hc32(fotg210, buf1);
3951        stream->buf2 = cpu_to_hc32(fotg210, multi);
3952
3953        /* usbfs wants to report the average usecs per frame tied up
3954         * when transfers on this endpoint are scheduled ...
3955         */
3956        if (dev->speed == USB_SPEED_FULL) {
3957                interval <<= 3;
3958                stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3959                                is_input, 1, maxp));
3960                stream->usecs /= 8;
3961        } else {
3962                stream->highspeed = 1;
3963                stream->usecs = HS_USECS_ISO(maxp);
3964        }
3965        bandwidth = stream->usecs * 8;
3966        bandwidth /= interval;
3967
3968        stream->bandwidth = bandwidth;
3969        stream->udev = dev;
3970        stream->bEndpointAddress = is_input | epnum;
3971        stream->interval = interval;
3972        stream->maxp = maxp;
3973}
3974
3975static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3976                struct urb *urb)
3977{
3978        unsigned epnum;
3979        struct fotg210_iso_stream *stream;
3980        struct usb_host_endpoint *ep;
3981        unsigned long flags;
3982
3983        epnum = usb_pipeendpoint(urb->pipe);
3984        if (usb_pipein(urb->pipe))
3985                ep = urb->dev->ep_in[epnum];
3986        else
3987                ep = urb->dev->ep_out[epnum];
3988
3989        spin_lock_irqsave(&fotg210->lock, flags);
3990        stream = ep->hcpriv;
3991
3992        if (unlikely(stream == NULL)) {
3993                stream = iso_stream_alloc(GFP_ATOMIC);
3994                if (likely(stream != NULL)) {
3995                        ep->hcpriv = stream;
3996                        stream->ep = ep;
3997                        iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3998                                        urb->interval);
3999                }
4000
4001        /* if dev->ep[epnum] is a QH, hw is set */
4002        } else if (unlikely(stream->hw != NULL)) {
4003                fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4004                                urb->dev->devpath, epnum,
4005                                usb_pipein(urb->pipe) ? "in" : "out");
4006                stream = NULL;
4007        }
4008
4009        spin_unlock_irqrestore(&fotg210->lock, flags);
4010        return stream;
4011}
4012
4013/* fotg210_iso_sched ops can be ITD-only or SITD-only */
4014
4015static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4016                gfp_t mem_flags)
4017{
4018        struct fotg210_iso_sched *iso_sched;
4019        int size = sizeof(*iso_sched);
4020
4021        size += packets * sizeof(struct fotg210_iso_packet);
4022        iso_sched = kzalloc(size, mem_flags);
4023        if (likely(iso_sched != NULL))
4024                INIT_LIST_HEAD(&iso_sched->td_list);
4025
4026        return iso_sched;
4027}
4028
4029static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4030                struct fotg210_iso_sched *iso_sched,
4031                struct fotg210_iso_stream *stream, struct urb *urb)
4032{
4033        unsigned i;
4034        dma_addr_t dma = urb->transfer_dma;
4035
4036        /* how many uframes are needed for these transfers */
4037        iso_sched->span = urb->number_of_packets * stream->interval;
4038
4039        /* figure out per-uframe itd fields that we'll need later
4040         * when we fit new itds into the schedule.
4041         */
4042        for (i = 0; i < urb->number_of_packets; i++) {
4043                struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4044                unsigned length;
4045                dma_addr_t buf;
4046                u32 trans;
4047
4048                length = urb->iso_frame_desc[i].length;
4049                buf = dma + urb->iso_frame_desc[i].offset;
4050
4051                trans = FOTG210_ISOC_ACTIVE;
4052                trans |= buf & 0x0fff;
4053                if (unlikely(((i + 1) == urb->number_of_packets))
4054                                && !(urb->transfer_flags & URB_NO_INTERRUPT))
4055                        trans |= FOTG210_ITD_IOC;
4056                trans |= length << 16;
4057                uframe->transaction = cpu_to_hc32(fotg210, trans);
4058
4059                /* might need to cross a buffer page within a uframe */
4060                uframe->bufp = (buf & ~(u64)0x0fff);
4061                buf += length;
4062                if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4063                        uframe->cross = 1;
4064        }
4065}
4066
4067static void iso_sched_free(struct fotg210_iso_stream *stream,
4068                struct fotg210_iso_sched *iso_sched)
4069{
4070        if (!iso_sched)
4071                return;
4072        /* caller must hold fotg210->lock!*/
4073        list_splice(&iso_sched->td_list, &stream->free_list);
4074        kfree(iso_sched);
4075}
4076
4077static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4078                struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4079{
4080        struct fotg210_itd *itd;
4081        dma_addr_t itd_dma;
4082        int i;
4083        unsigned num_itds;
4084        struct fotg210_iso_sched *sched;
4085        unsigned long flags;
4086
4087        sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4088        if (unlikely(sched == NULL))
4089                return -ENOMEM;
4090
4091        itd_sched_init(fotg210, sched, stream, urb);
4092
4093        if (urb->interval < 8)
4094                num_itds = 1 + (sched->span + 7) / 8;
4095        else
4096                num_itds = urb->number_of_packets;
4097
4098        /* allocate/init ITDs */
4099        spin_lock_irqsave(&fotg210->lock, flags);
4100        for (i = 0; i < num_itds; i++) {
4101
4102                /*
4103                 * Use iTDs from the free list, but not iTDs that may
4104                 * still be in use by the hardware.
4105                 */
4106                if (likely(!list_empty(&stream->free_list))) {
4107                        itd = list_first_entry(&stream->free_list,
4108                                        struct fotg210_itd, itd_list);
4109                        if (itd->frame == fotg210->now_frame)
4110                                goto alloc_itd;
4111                        list_del(&itd->itd_list);
4112                        itd_dma = itd->itd_dma;
4113                } else {
4114alloc_itd:
4115                        spin_unlock_irqrestore(&fotg210->lock, flags);
4116                        itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4117                                        &itd_dma);
4118                        spin_lock_irqsave(&fotg210->lock, flags);
4119                        if (!itd) {
4120                                iso_sched_free(stream, sched);
4121                                spin_unlock_irqrestore(&fotg210->lock, flags);
4122                                return -ENOMEM;
4123                        }
4124                }
4125
4126                itd->itd_dma = itd_dma;
4127                list_add(&itd->itd_list, &sched->td_list);
4128        }
4129        spin_unlock_irqrestore(&fotg210->lock, flags);
4130
4131        /* temporarily store schedule info in hcpriv */
4132        urb->hcpriv = sched;
4133        urb->error_count = 0;
4134        return 0;
4135}
4136
4137static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4138                u8 usecs, u32 period)
4139{
4140        uframe %= period;
4141        do {
4142                /* can't commit more than uframe_periodic_max usec */
4143                if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4144                                > (fotg210->uframe_periodic_max - usecs))
4145                        return 0;
4146
4147                /* we know urb->interval is 2^N uframes */
4148                uframe += period;
4149        } while (uframe < mod);
4150        return 1;
4151}
4152
4153/* This scheduler plans almost as far into the future as it has actual
4154 * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4155 * "as small as possible" to be cache-friendlier.)  That limits the size
4156 * transfers you can stream reliably; avoid more than 64 msec per urb.
4157 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4158 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4159 * and other factors); or more than about 230 msec total (for portability,
4160 * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4161 */
4162
4163#define SCHEDULE_SLOP 80 /* microframes */
4164
4165static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4166                struct fotg210_iso_stream *stream)
4167{
4168        u32 now, next, start, period, span;
4169        int status;
4170        unsigned mod = fotg210->periodic_size << 3;
4171        struct fotg210_iso_sched *sched = urb->hcpriv;
4172
4173        period = urb->interval;
4174        span = sched->span;
4175
4176        if (span > mod - SCHEDULE_SLOP) {
4177                fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4178                status = -EFBIG;
4179                goto fail;
4180        }
4181
4182        now = fotg210_read_frame_index(fotg210) & (mod - 1);
4183
4184        /* Typical case: reuse current schedule, stream is still active.
4185         * Hopefully there are no gaps from the host falling behind
4186         * (irq delays etc), but if there are we'll take the next
4187         * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4188         */
4189        if (likely(!list_empty(&stream->td_list))) {
4190                u32 excess;
4191
4192                /* For high speed devices, allow scheduling within the
4193                 * isochronous scheduling threshold.  For full speed devices
4194                 * and Intel PCI-based controllers, don't (work around for
4195                 * Intel ICH9 bug).
4196                 */
4197                if (!stream->highspeed && fotg210->fs_i_thresh)
4198                        next = now + fotg210->i_thresh;
4199                else
4200                        next = now;
4201
4202                /* Fell behind (by up to twice the slop amount)?
4203                 * We decide based on the time of the last currently-scheduled
4204                 * slot, not the time of the next available slot.
4205                 */
4206                excess = (stream->next_uframe - period - next) & (mod - 1);
4207                if (excess >= mod - 2 * SCHEDULE_SLOP)
4208                        start = next + excess - mod + period *
4209                                        DIV_ROUND_UP(mod - excess, period);
4210                else
4211                        start = next + excess + period;
4212                if (start - now >= mod) {
4213                        fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4214                                        urb, start - now - period, period,
4215                                        mod);
4216                        status = -EFBIG;
4217                        goto fail;
4218                }
4219        }
4220
4221        /* need to schedule; when's the next (u)frame we could start?
4222         * this is bigger than fotg210->i_thresh allows; scheduling itself
4223         * isn't free, the slop should handle reasonably slow cpus.  it
4224         * can also help high bandwidth if the dma and irq loads don't
4225         * jump until after the queue is primed.
4226         */
4227        else {
4228                int done = 0;
4229
4230                start = SCHEDULE_SLOP + (now & ~0x07);
4231
4232                /* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4233
4234                /* find a uframe slot with enough bandwidth.
4235                 * Early uframes are more precious because full-speed
4236                 * iso IN transfers can't use late uframes,
4237                 * and therefore they should be allocated last.
4238                 */
4239                next = start;
4240                start += period;
4241                do {
4242                        start--;
4243                        /* check schedule: enough space? */
4244                        if (itd_slot_ok(fotg210, mod, start,
4245                                        stream->usecs, period))
4246                                done = 1;
4247                } while (start > next && !done);
4248
4249                /* no room in the schedule */
4250                if (!done) {
4251                        fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4252                                        urb, now, now + mod);
4253                        status = -ENOSPC;
4254                        goto fail;
4255                }
4256        }
4257
4258        /* Tried to schedule too far into the future? */
4259        if (unlikely(start - now + span - period >=
4260                        mod - 2 * SCHEDULE_SLOP)) {
4261                fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4262                                urb, start - now, span - period,
4263                                mod - 2 * SCHEDULE_SLOP);
4264                status = -EFBIG;
4265                goto fail;
4266        }
4267
4268        stream->next_uframe = start & (mod - 1);
4269
4270        /* report high speed start in uframes; full speed, in frames */
4271        urb->start_frame = stream->next_uframe;
4272        if (!stream->highspeed)
4273                urb->start_frame >>= 3;
4274
4275        /* Make sure scan_isoc() sees these */
4276        if (fotg210->isoc_count == 0)
4277                fotg210->next_frame = now >> 3;
4278        return 0;
4279
4280fail:
4281        iso_sched_free(stream, sched);
4282        urb->hcpriv = NULL;
4283        return status;
4284}
4285
4286static inline void itd_init(struct fotg210_hcd *fotg210,
4287                struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4288{
4289        int i;
4290
4291        /* it's been recently zeroed */
4292        itd->hw_next = FOTG210_LIST_END(fotg210);
4293        itd->hw_bufp[0] = stream->buf0;
4294        itd->hw_bufp[1] = stream->buf1;
4295        itd->hw_bufp[2] = stream->buf2;
4296
4297        for (i = 0; i < 8; i++)
4298                itd->index[i] = -1;
4299
4300        /* All other fields are filled when scheduling */
4301}
4302
4303static inline void itd_patch(struct fotg210_hcd *fotg210,
4304                struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4305                unsigned index, u16 uframe)
4306{
4307        struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4308        unsigned pg = itd->pg;
4309
4310        uframe &= 0x07;
4311        itd->index[uframe] = index;
4312
4313        itd->hw_transaction[uframe] = uf->transaction;
4314        itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4315        itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4316        itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4317
4318        /* iso_frame_desc[].offset must be strictly increasing */
4319        if (unlikely(uf->cross)) {
4320                u64 bufp = uf->bufp + 4096;
4321
4322                itd->pg = ++pg;
4323                itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4324                itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4325        }
4326}
4327
4328static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4329                struct fotg210_itd *itd)
4330{
4331        union fotg210_shadow *prev = &fotg210->pshadow[frame];
4332        __hc32 *hw_p = &fotg210->periodic[frame];
4333        union fotg210_shadow here = *prev;
4334        __hc32 type = 0;
4335
4336        /* skip any iso nodes which might belong to previous microframes */
4337        while (here.ptr) {
4338                type = Q_NEXT_TYPE(fotg210, *hw_p);
4339                if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4340                        break;
4341                prev = periodic_next_shadow(fotg210, prev, type);
4342                hw_p = shadow_next_periodic(fotg210, &here, type);
4343                here = *prev;
4344        }
4345
4346        itd->itd_next = here;
4347        itd->hw_next = *hw_p;
4348        prev->itd = itd;
4349        itd->frame = frame;
4350        wmb();
4351        *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4352}
4353
4354/* fit urb's itds into the selected schedule slot; activate as needed */
4355static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4356                unsigned mod, struct fotg210_iso_stream *stream)
4357{
4358        int packet;
4359        unsigned next_uframe, uframe, frame;
4360        struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4361        struct fotg210_itd *itd;
4362
4363        next_uframe = stream->next_uframe & (mod - 1);
4364
4365        if (unlikely(list_empty(&stream->td_list))) {
4366                fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4367                                += stream->bandwidth;
4368                fotg210_dbg(fotg210,
4369                        "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4370                        urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4371                        (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4372                        urb->interval,
4373                        next_uframe >> 3, next_uframe & 0x7);
4374        }
4375
4376        /* fill iTDs uframe by uframe */
4377        for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4378                if (itd == NULL) {
4379                        /* ASSERT:  we have all necessary itds */
4380
4381                        /* ASSERT:  no itds for this endpoint in this uframe */
4382
4383                        itd = list_entry(iso_sched->td_list.next,
4384                                        struct fotg210_itd, itd_list);
4385                        list_move_tail(&itd->itd_list, &stream->td_list);
4386                        itd->stream = stream;
4387                        itd->urb = urb;
4388                        itd_init(fotg210, stream, itd);
4389                }
4390
4391                uframe = next_uframe & 0x07;
4392                frame = next_uframe >> 3;
4393
4394                itd_patch(fotg210, itd, iso_sched, packet, uframe);
4395
4396                next_uframe += stream->interval;
4397                next_uframe &= mod - 1;
4398                packet++;
4399
4400                /* link completed itds into the schedule */
4401                if (((next_uframe >> 3) != frame)
4402                                || packet == urb->number_of_packets) {
4403                        itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4404                                        itd);
4405                        itd = NULL;
4406                }
4407        }
4408        stream->next_uframe = next_uframe;
4409
4410        /* don't need that schedule data any more */
4411        iso_sched_free(stream, iso_sched);
4412        urb->hcpriv = NULL;
4413
4414        ++fotg210->isoc_count;
4415        enable_periodic(fotg210);
4416}
4417
4418#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4419                FOTG210_ISOC_XACTERR)
4420
4421/* Process and recycle a completed ITD.  Return true iff its urb completed,
4422 * and hence its completion callback probably added things to the hardware
4423 * schedule.
4424 *
4425 * Note that we carefully avoid recycling this descriptor until after any
4426 * completion callback runs, so that it won't be reused quickly.  That is,
4427 * assuming (a) no more than two urbs per frame on this endpoint, and also
4428 * (b) only this endpoint's completions submit URBs.  It seems some silicon
4429 * corrupts things if you reuse completed descriptors very quickly...
4430 */
4431static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4432{
4433        struct urb *urb = itd->urb;
4434        struct usb_iso_packet_descriptor *desc;
4435        u32 t;
4436        unsigned uframe;
4437        int urb_index = -1;
4438        struct fotg210_iso_stream *stream = itd->stream;
4439        struct usb_device *dev;
4440        bool retval = false;
4441
4442        /* for each uframe with a packet */
4443        for (uframe = 0; uframe < 8; uframe++) {
4444                if (likely(itd->index[uframe] == -1))
4445                        continue;
4446                urb_index = itd->index[uframe];
4447                desc = &urb->iso_frame_desc[urb_index];
4448
4449                t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4450                itd->hw_transaction[uframe] = 0;
4451
4452                /* report transfer status */
4453                if (unlikely(t & ISO_ERRS)) {
4454                        urb->error_count++;
4455                        if (t & FOTG210_ISOC_BUF_ERR)
4456                                desc->status = usb_pipein(urb->pipe)
4457                                        ? -ENOSR  /* hc couldn't read */
4458                                        : -ECOMM; /* hc couldn't write */
4459                        else if (t & FOTG210_ISOC_BABBLE)
4460                                desc->status = -EOVERFLOW;
4461                        else /* (t & FOTG210_ISOC_XACTERR) */
4462                                desc->status = -EPROTO;
4463
4464                        /* HC need not update length with this error */
4465                        if (!(t & FOTG210_ISOC_BABBLE)) {
4466                                desc->actual_length =
4467                                        fotg210_itdlen(urb, desc, t);
4468                                urb->actual_length += desc->actual_length;
4469                        }
4470                } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4471                        desc->status = 0;
4472                        desc->actual_length = fotg210_itdlen(urb, desc, t);
4473                        urb->actual_length += desc->actual_length;
4474                } else {
4475                        /* URB was too late */
4476                        desc->status = -EXDEV;
4477                }
4478        }
4479
4480        /* handle completion now? */
4481        if (likely((urb_index + 1) != urb->number_of_packets))
4482                goto done;
4483
4484        /* ASSERT: it's really the last itd for this urb
4485         * list_for_each_entry (itd, &stream->td_list, itd_list)
4486         *      BUG_ON (itd->urb == urb);
4487         */
4488
4489        /* give urb back to the driver; completion often (re)submits */
4490        dev = urb->dev;
4491        fotg210_urb_done(fotg210, urb, 0);
4492        retval = true;
4493        urb = NULL;
4494
4495        --fotg210->isoc_count;
4496        disable_periodic(fotg210);
4497
4498        if (unlikely(list_is_singular(&stream->td_list))) {
4499                fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4500                                -= stream->bandwidth;
4501                fotg210_dbg(fotg210,
4502                        "deschedule devp %s ep%d%s-iso\n",
4503                        dev->devpath, stream->bEndpointAddress & 0x0f,
4504                        (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4505        }
4506
4507done:
4508        itd->urb = NULL;
4509
4510        /* Add to the end of the free list for later reuse */
4511        list_move_tail(&itd->itd_list, &stream->free_list);
4512
4513        /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4514        if (list_empty(&stream->td_list)) {
4515                list_splice_tail_init(&stream->free_list,
4516                                &fotg210->cached_itd_list);
4517                start_free_itds(fotg210);
4518        }
4519
4520        return retval;
4521}
4522
4523static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4524                gfp_t mem_flags)
4525{
4526        int status = -EINVAL;
4527        unsigned long flags;
4528        struct fotg210_iso_stream *stream;
4529
4530        /* Get iso_stream head */
4531        stream = iso_stream_find(fotg210, urb);
4532        if (unlikely(stream == NULL)) {
4533                fotg210_dbg(fotg210, "can't get iso stream\n");
4534                return -ENOMEM;
4535        }
4536        if (unlikely(urb->interval != stream->interval &&
4537                        fotg210_port_speed(fotg210, 0) ==
4538                        USB_PORT_STAT_HIGH_SPEED)) {
4539                fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4540                                stream->interval, urb->interval);
4541                goto done;
4542        }
4543
4544#ifdef FOTG210_URB_TRACE
4545        fotg210_dbg(fotg210,
4546                        "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4547                        __func__, urb->dev->devpath, urb,
4548                        usb_pipeendpoint(urb->pipe),
4549                        usb_pipein(urb->pipe) ? "in" : "out",
4550                        urb->transfer_buffer_length,
4551                        urb->number_of_packets, urb->interval,
4552                        stream);
4553#endif
4554
4555        /* allocate ITDs w/o locking anything */
4556        status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4557        if (unlikely(status < 0)) {
4558                fotg210_dbg(fotg210, "can't init itds\n");
4559                goto done;
4560        }
4561
4562        /* schedule ... need to lock */
4563        spin_lock_irqsave(&fotg210->lock, flags);
4564        if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4565                status = -ESHUTDOWN;
4566                goto done_not_linked;
4567        }
4568        status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4569        if (unlikely(status))
4570                goto done_not_linked;
4571        status = iso_stream_schedule(fotg210, urb, stream);
4572        if (likely(status == 0))
4573                itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4574        else
4575                usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4576done_not_linked:
4577        spin_unlock_irqrestore(&fotg210->lock, flags);
4578done:
4579        return status;
4580}
4581
4582static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4583                unsigned now_frame, bool live)
4584{
4585        unsigned uf;
4586        bool modified;
4587        union fotg210_shadow q, *q_p;
4588        __hc32 type, *hw_p;
4589
4590        /* scan each element in frame's queue for completions */
4591        q_p = &fotg210->pshadow[frame];
4592        hw_p = &fotg210->periodic[frame];
4593        q.ptr = q_p->ptr;
4594        type = Q_NEXT_TYPE(fotg210, *hw_p);
4595        modified = false;
4596
4597        while (q.ptr) {
4598                switch (hc32_to_cpu(fotg210, type)) {
4599                case Q_TYPE_ITD:
4600                        /* If this ITD is still active, leave it for
4601                         * later processing ... check the next entry.
4602                         * No need to check for activity unless the
4603                         * frame is current.
4604                         */
4605                        if (frame == now_frame && live) {
4606                                rmb();
4607                                for (uf = 0; uf < 8; uf++) {
4608                                        if (q.itd->hw_transaction[uf] &
4609                                                        ITD_ACTIVE(fotg210))
4610                                                break;
4611                                }
4612                                if (uf < 8) {
4613                                        q_p = &q.itd->itd_next;
4614                                        hw_p = &q.itd->hw_next;
4615                                        type = Q_NEXT_TYPE(fotg210,
4616                                                        q.itd->hw_next);
4617                                        q = *q_p;
4618                                        break;
4619                                }
4620                        }
4621
4622                        /* Take finished ITDs out of the schedule
4623                         * and process them:  recycle, maybe report
4624                         * URB completion.  HC won't cache the
4625                         * pointer for much longer, if at all.
4626                         */
4627                        *q_p = q.itd->itd_next;
4628                        *hw_p = q.itd->hw_next;
4629                        type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4630                        wmb();
4631                        modified = itd_complete(fotg210, q.itd);
4632                        q = *q_p;
4633                        break;
4634                default:
4635                        fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4636                                        type, frame, q.ptr);
4637                        /* FALL THROUGH */
4638                case Q_TYPE_QH:
4639                case Q_TYPE_FSTN:
4640                        /* End of the iTDs and siTDs */
4641                        q.ptr = NULL;
4642                        break;
4643                }
4644
4645                /* assume completion callbacks modify the queue */
4646                if (unlikely(modified && fotg210->isoc_count > 0))
4647                        return -EINVAL;
4648        }
4649        return 0;
4650}
4651
4652static void scan_isoc(struct fotg210_hcd *fotg210)
4653{
4654        unsigned uf, now_frame, frame, ret;
4655        unsigned fmask = fotg210->periodic_size - 1;
4656        bool live;
4657
4658        /*
4659         * When running, scan from last scan point up to "now"
4660         * else clean up by scanning everything that's left.
4661         * Touches as few pages as possible:  cache-friendly.
4662         */
4663        if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4664                uf = fotg210_read_frame_index(fotg210);
4665                now_frame = (uf >> 3) & fmask;
4666                live = true;
4667        } else  {
4668                now_frame = (fotg210->next_frame - 1) & fmask;
4669                live = false;
4670        }
4671        fotg210->now_frame = now_frame;
4672
4673        frame = fotg210->next_frame;
4674        for (;;) {
4675                ret = 1;
4676                while (ret != 0)
4677                        ret = scan_frame_queue(fotg210, frame,
4678                                        now_frame, live);
4679
4680                /* Stop when we have reached the current frame */
4681                if (frame == now_frame)
4682                        break;
4683                frame = (frame + 1) & fmask;
4684        }
4685        fotg210->next_frame = now_frame;
4686}
4687
4688/* Display / Set uframe_periodic_max
4689 */
4690static ssize_t uframe_periodic_max_show(struct device *dev,
4691                struct device_attribute *attr, char *buf)
4692{
4693        struct fotg210_hcd *fotg210;
4694        int n;
4695
4696        fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4697        n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4698        return n;
4699}
4700
4701
4702static ssize_t uframe_periodic_max_store(struct device *dev,
4703                struct device_attribute *attr, const char *buf, size_t count)
4704{
4705        struct fotg210_hcd *fotg210;
4706        unsigned uframe_periodic_max;
4707        unsigned frame, uframe;
4708        unsigned short allocated_max;
4709        unsigned long flags;
4710        ssize_t ret;
4711
4712        fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4713        if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4714                return -EINVAL;
4715
4716        if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4717                fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4718                                uframe_periodic_max);
4719                return -EINVAL;
4720        }
4721
4722        ret = -EINVAL;
4723
4724        /*
4725         * lock, so that our checking does not race with possible periodic
4726         * bandwidth allocation through submitting new urbs.
4727         */
4728        spin_lock_irqsave(&fotg210->lock, flags);
4729
4730        /*
4731         * for request to decrease max periodic bandwidth, we have to check
4732         * every microframe in the schedule to see whether the decrease is
4733         * possible.
4734         */
4735        if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4736                allocated_max = 0;
4737
4738                for (frame = 0; frame < fotg210->periodic_size; ++frame)
4739                        for (uframe = 0; uframe < 7; ++uframe)
4740                                allocated_max = max(allocated_max,
4741                                                periodic_usecs(fotg210, frame,
4742                                                uframe));
4743
4744                if (allocated_max > uframe_periodic_max) {
4745                        fotg210_info(fotg210,
4746                                        "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4747                                        allocated_max, uframe_periodic_max);
4748                        goto out_unlock;
4749                }
4750        }
4751
4752        /* increasing is always ok */
4753
4754        fotg210_info(fotg210,
4755                        "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4756                        100 * uframe_periodic_max/125, uframe_periodic_max);
4757
4758        if (uframe_periodic_max != 100)
4759                fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4760
4761        fotg210->uframe_periodic_max = uframe_periodic_max;
4762        ret = count;
4763
4764out_unlock:
4765        spin_unlock_irqrestore(&fotg210->lock, flags);
4766        return ret;
4767}
4768
4769static DEVICE_ATTR_RW(uframe_periodic_max);
4770
4771static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4772{
4773        struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4774
4775        return device_create_file(controller, &dev_attr_uframe_periodic_max);
4776}
4777
4778static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4779{
4780        struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4781
4782        device_remove_file(controller, &dev_attr_uframe_periodic_max);
4783}
4784/* On some systems, leaving remote wakeup enabled prevents system shutdown.
4785 * The firmware seems to think that powering off is a wakeup event!
4786 * This routine turns off remote wakeup and everything else, on all ports.
4787 */
4788static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4789{
4790        u32 __iomem *status_reg = &fotg210->regs->port_status;
4791
4792        fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4793}
4794
4795/* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4796 * Must be called with interrupts enabled and the lock not held.
4797 */
4798static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4799{
4800        fotg210_halt(fotg210);
4801
4802        spin_lock_irq(&fotg210->lock);
4803        fotg210->rh_state = FOTG210_RH_HALTED;
4804        fotg210_turn_off_all_ports(fotg210);
4805        spin_unlock_irq(&fotg210->lock);
4806}
4807
4808/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4809 * This forcibly disables dma and IRQs, helping kexec and other cases
4810 * where the next system software may expect clean state.
4811 */
4812static void fotg210_shutdown(struct usb_hcd *hcd)
4813{
4814        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4815
4816        spin_lock_irq(&fotg210->lock);
4817        fotg210->shutdown = true;
4818        fotg210->rh_state = FOTG210_RH_STOPPING;
4819        fotg210->enabled_hrtimer_events = 0;
4820        spin_unlock_irq(&fotg210->lock);
4821
4822        fotg210_silence_controller(fotg210);
4823
4824        hrtimer_cancel(&fotg210->hrtimer);
4825}
4826
4827/* fotg210_work is called from some interrupts, timers, and so on.
4828 * it calls driver completion functions, after dropping fotg210->lock.
4829 */
4830static void fotg210_work(struct fotg210_hcd *fotg210)
4831{
4832        /* another CPU may drop fotg210->lock during a schedule scan while
4833         * it reports urb completions.  this flag guards against bogus
4834         * attempts at re-entrant schedule scanning.
4835         */
4836        if (fotg210->scanning) {
4837                fotg210->need_rescan = true;
4838                return;
4839        }
4840        fotg210->scanning = true;
4841
4842rescan:
4843        fotg210->need_rescan = false;
4844        if (fotg210->async_count)
4845                scan_async(fotg210);
4846        if (fotg210->intr_count > 0)
4847                scan_intr(fotg210);
4848        if (fotg210->isoc_count > 0)
4849                scan_isoc(fotg210);
4850        if (fotg210->need_rescan)
4851                goto rescan;
4852        fotg210->scanning = false;
4853
4854        /* the IO watchdog guards against hardware or driver bugs that
4855         * misplace IRQs, and should let us run completely without IRQs.
4856         * such lossage has been observed on both VT6202 and VT8235.
4857         */
4858        turn_on_io_watchdog(fotg210);
4859}
4860
4861/* Called when the fotg210_hcd module is removed.
4862 */
4863static void fotg210_stop(struct usb_hcd *hcd)
4864{
4865        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4866
4867        fotg210_dbg(fotg210, "stop\n");
4868
4869        /* no more interrupts ... */
4870
4871        spin_lock_irq(&fotg210->lock);
4872        fotg210->enabled_hrtimer_events = 0;
4873        spin_unlock_irq(&fotg210->lock);
4874
4875        fotg210_quiesce(fotg210);
4876        fotg210_silence_controller(fotg210);
4877        fotg210_reset(fotg210);
4878
4879        hrtimer_cancel(&fotg210->hrtimer);
4880        remove_sysfs_files(fotg210);
4881        remove_debug_files(fotg210);
4882
4883        /* root hub is shut down separately (first, when possible) */
4884        spin_lock_irq(&fotg210->lock);
4885        end_free_itds(fotg210);
4886        spin_unlock_irq(&fotg210->lock);
4887        fotg210_mem_cleanup(fotg210);
4888
4889#ifdef FOTG210_STATS
4890        fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4891                        fotg210->stats.normal, fotg210->stats.error,
4892                        fotg210->stats.iaa, fotg210->stats.lost_iaa);
4893        fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4894                        fotg210->stats.complete, fotg210->stats.unlink);
4895#endif
4896
4897        dbg_status(fotg210, "fotg210_stop completed",
4898                        fotg210_readl(fotg210, &fotg210->regs->status));
4899}
4900
4901/* one-time init, only for memory state */
4902static int hcd_fotg210_init(struct usb_hcd *hcd)
4903{
4904        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4905        u32 temp;
4906        int retval;
4907        u32 hcc_params;
4908        struct fotg210_qh_hw *hw;
4909
4910        spin_lock_init(&fotg210->lock);
4911
4912        /*
4913         * keep io watchdog by default, those good HCDs could turn off it later
4914         */
4915        fotg210->need_io_watchdog = 1;
4916
4917        hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4918        fotg210->hrtimer.function = fotg210_hrtimer_func;
4919        fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4920
4921        hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4922
4923        /*
4924         * by default set standard 80% (== 100 usec/uframe) max periodic
4925         * bandwidth as required by USB 2.0
4926         */
4927        fotg210->uframe_periodic_max = 100;
4928
4929        /*
4930         * hw default: 1K periodic list heads, one per frame.
4931         * periodic_size can shrink by USBCMD update if hcc_params allows.
4932         */
4933        fotg210->periodic_size = DEFAULT_I_TDPS;
4934        INIT_LIST_HEAD(&fotg210->intr_qh_list);
4935        INIT_LIST_HEAD(&fotg210->cached_itd_list);
4936
4937        if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4938                /* periodic schedule size can be smaller than default */
4939                switch (FOTG210_TUNE_FLS) {
4940                case 0:
4941                        fotg210->periodic_size = 1024;
4942                        break;
4943                case 1:
4944                        fotg210->periodic_size = 512;
4945                        break;
4946                case 2:
4947                        fotg210->periodic_size = 256;
4948                        break;
4949                default:
4950                        BUG();
4951                }
4952        }
4953        retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4954        if (retval < 0)
4955                return retval;
4956
4957        /* controllers may cache some of the periodic schedule ... */
4958        fotg210->i_thresh = 2;
4959
4960        /*
4961         * dedicate a qh for the async ring head, since we couldn't unlink
4962         * a 'real' qh without stopping the async schedule [4.8].  use it
4963         * as the 'reclamation list head' too.
4964         * its dummy is used in hw_alt_next of many tds, to prevent the qh
4965         * from automatically advancing to the next td after short reads.
4966         */
4967        fotg210->async->qh_next.qh = NULL;
4968        hw = fotg210->async->hw;
4969        hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4970        hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4971        hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4972        hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4973        fotg210->async->qh_state = QH_STATE_LINKED;
4974        hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4975
4976        /* clear interrupt enables, set irq latency */
4977        if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4978                log2_irq_thresh = 0;
4979        temp = 1 << (16 + log2_irq_thresh);
4980        if (HCC_CANPARK(hcc_params)) {
4981                /* HW default park == 3, on hardware that supports it (like
4982                 * NVidia and ALI silicon), maximizes throughput on the async
4983                 * schedule by avoiding QH fetches between transfers.
4984                 *
4985                 * With fast usb storage devices and NForce2, "park" seems to
4986                 * make problems:  throughput reduction (!), data errors...
4987                 */
4988                if (park) {
4989                        park = min_t(unsigned, park, 3);
4990                        temp |= CMD_PARK;
4991                        temp |= park << 8;
4992                }
4993                fotg210_dbg(fotg210, "park %d\n", park);
4994        }
4995        if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4996                /* periodic schedule size can be smaller than default */
4997                temp &= ~(3 << 2);
4998                temp |= (FOTG210_TUNE_FLS << 2);
4999        }
5000        fotg210->command = temp;
5001
5002        /* Accept arbitrarily long scatter-gather lists */
5003        if (!hcd->localmem_pool)
5004                hcd->self.sg_tablesize = ~0;
5005        return 0;
5006}
5007
5008/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5009static int fotg210_run(struct usb_hcd *hcd)
5010{
5011        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5012        u32 temp;
5013        u32 hcc_params;
5014
5015        hcd->uses_new_polling = 1;
5016
5017        /* EHCI spec section 4.1 */
5018
5019        fotg210_writel(fotg210, fotg210->periodic_dma,
5020                        &fotg210->regs->frame_list);
5021        fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5022                        &fotg210->regs->async_next);
5023
5024        /*
5025         * hcc_params controls whether fotg210->regs->segment must (!!!)
5026         * be used; it constrains QH/ITD/SITD and QTD locations.
5027         * dma_pool consistent memory always uses segment zero.
5028         * streaming mappings for I/O buffers, like pci_map_single(),
5029         * can return segments above 4GB, if the device allows.
5030         *
5031         * NOTE:  the dma mask is visible through dev->dma_mask, so
5032         * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5033         * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5034         * host side drivers though.
5035         */
5036        hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5037
5038        /*
5039         * Philips, Intel, and maybe others need CMD_RUN before the
5040         * root hub will detect new devices (why?); NEC doesn't
5041         */
5042        fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5043        fotg210->command |= CMD_RUN;
5044        fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5045        dbg_cmd(fotg210, "init", fotg210->command);
5046
5047        /*
5048         * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5049         * are explicitly handed to companion controller(s), so no TT is
5050         * involved with the root hub.  (Except where one is integrated,
5051         * and there's no companion controller unless maybe for USB OTG.)
5052         *
5053         * Turning on the CF flag will transfer ownership of all ports
5054         * from the companions to the EHCI controller.  If any of the
5055         * companions are in the middle of a port reset at the time, it
5056         * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5057         * guarantees that no resets are in progress.  After we set CF,
5058         * a short delay lets the hardware catch up; new resets shouldn't
5059         * be started before the port switching actions could complete.
5060         */
5061        down_write(&ehci_cf_port_reset_rwsem);
5062        fotg210->rh_state = FOTG210_RH_RUNNING;
5063        /* unblock posted writes */
5064        fotg210_readl(fotg210, &fotg210->regs->command);
5065        usleep_range(5000, 10000);
5066        up_write(&ehci_cf_port_reset_rwsem);
5067        fotg210->last_periodic_enable = ktime_get_real();
5068
5069        temp = HC_VERSION(fotg210,
5070                        fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5071        fotg210_info(fotg210,
5072                        "USB %x.%x started, EHCI %x.%02x\n",
5073                        ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5074                        temp >> 8, temp & 0xff);
5075
5076        fotg210_writel(fotg210, INTR_MASK,
5077                        &fotg210->regs->intr_enable); /* Turn On Interrupts */
5078
5079        /* GRR this is run-once init(), being done every time the HC starts.
5080         * So long as they're part of class devices, we can't do it init()
5081         * since the class device isn't created that early.
5082         */
5083        create_debug_files(fotg210);
5084        create_sysfs_files(fotg210);
5085
5086        return 0;
5087}
5088
5089static int fotg210_setup(struct usb_hcd *hcd)
5090{
5091        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5092        int retval;
5093
5094        fotg210->regs = (void __iomem *)fotg210->caps +