linux/drivers/usb/host/xhci-mem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/usb.h>
  12#include <linux/pci.h>
  13#include <linux/slab.h>
  14#include <linux/dmapool.h>
  15#include <linux/dma-mapping.h>
  16
  17#include "xhci.h"
  18#include "xhci-trace.h"
  19#include "xhci-debugfs.h"
  20
  21/*
  22 * Allocates a generic ring segment from the ring pool, sets the dma address,
  23 * initializes the segment to zero, and sets the private next pointer to NULL.
  24 *
  25 * Section 4.11.1.1:
  26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  27 */
  28static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  29                                               unsigned int cycle_state,
  30                                               unsigned int max_packet,
  31                                               gfp_t flags)
  32{
  33        struct xhci_segment *seg;
  34        dma_addr_t      dma;
  35        int             i;
  36        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
  37
  38        seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
  39        if (!seg)
  40                return NULL;
  41
  42        seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  43        if (!seg->trbs) {
  44                kfree(seg);
  45                return NULL;
  46        }
  47
  48        if (max_packet) {
  49                seg->bounce_buf = kzalloc_node(max_packet, flags,
  50                                        dev_to_node(dev));
  51                if (!seg->bounce_buf) {
  52                        dma_pool_free(xhci->segment_pool, seg->trbs, dma);
  53                        kfree(seg);
  54                        return NULL;
  55                }
  56        }
  57        /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  58        if (cycle_state == 0) {
  59                for (i = 0; i < TRBS_PER_SEGMENT; i++)
  60                        seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
  61        }
  62        seg->dma = dma;
  63        seg->next = NULL;
  64
  65        return seg;
  66}
  67
  68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  69{
  70        if (seg->trbs) {
  71                dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  72                seg->trbs = NULL;
  73        }
  74        kfree(seg->bounce_buf);
  75        kfree(seg);
  76}
  77
  78static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  79                                struct xhci_segment *first)
  80{
  81        struct xhci_segment *seg;
  82
  83        seg = first->next;
  84        while (seg != first) {
  85                struct xhci_segment *next = seg->next;
  86                xhci_segment_free(xhci, seg);
  87                seg = next;
  88        }
  89        xhci_segment_free(xhci, first);
  90}
  91
  92/*
  93 * Make the prev segment point to the next segment.
  94 *
  95 * Change the last TRB in the prev segment to be a Link TRB which points to the
  96 * DMA address of the next segment.  The caller needs to set any Link TRB
  97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  98 */
  99static void xhci_link_segments(struct xhci_segment *prev,
 100                               struct xhci_segment *next,
 101                               enum xhci_ring_type type, bool chain_links)
 102{
 103        u32 val;
 104
 105        if (!prev || !next)
 106                return;
 107        prev->next = next;
 108        if (type != TYPE_EVENT) {
 109                prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 110                        cpu_to_le64(next->dma);
 111
 112                /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 113                val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 114                val &= ~TRB_TYPE_BITMASK;
 115                val |= TRB_TYPE(TRB_LINK);
 116                if (chain_links)
 117                        val |= TRB_CHAIN;
 118                prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 119        }
 120}
 121
 122/*
 123 * Link the ring to the new segments.
 124 * Set Toggle Cycle for the new ring if needed.
 125 */
 126static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 127                struct xhci_segment *first, struct xhci_segment *last,
 128                unsigned int num_segs)
 129{
 130        struct xhci_segment *next;
 131        bool chain_links;
 132
 133        if (!ring || !first || !last)
 134                return;
 135
 136        /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 137        chain_links = !!(xhci_link_trb_quirk(xhci) ||
 138                         (ring->type == TYPE_ISOC &&
 139                          (xhci->quirks & XHCI_AMD_0x96_HOST)));
 140
 141        next = ring->enq_seg->next;
 142        xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
 143        xhci_link_segments(last, next, ring->type, chain_links);
 144        ring->num_segs += num_segs;
 145        ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 146
 147        if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 148                ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 149                        &= ~cpu_to_le32(LINK_TOGGLE);
 150                last->trbs[TRBS_PER_SEGMENT-1].link.control
 151                        |= cpu_to_le32(LINK_TOGGLE);
 152                ring->last_seg = last;
 153        }
 154}
 155
 156/*
 157 * We need a radix tree for mapping physical addresses of TRBs to which stream
 158 * ID they belong to.  We need to do this because the host controller won't tell
 159 * us which stream ring the TRB came from.  We could store the stream ID in an
 160 * event data TRB, but that doesn't help us for the cancellation case, since the
 161 * endpoint may stop before it reaches that event data TRB.
 162 *
 163 * The radix tree maps the upper portion of the TRB DMA address to a ring
 164 * segment that has the same upper portion of DMA addresses.  For example, say I
 165 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 166 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 167 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 168 * pass the radix tree a key to get the right stream ID:
 169 *
 170 *      0x10c90fff >> 10 = 0x43243
 171 *      0x10c912c0 >> 10 = 0x43244
 172 *      0x10c91400 >> 10 = 0x43245
 173 *
 174 * Obviously, only those TRBs with DMA addresses that are within the segment
 175 * will make the radix tree return the stream ID for that ring.
 176 *
 177 * Caveats for the radix tree:
 178 *
 179 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 181 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 183 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 184 * extended systems (where the DMA address can be bigger than 32-bits),
 185 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 186 */
 187static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 188                struct xhci_ring *ring,
 189                struct xhci_segment *seg,
 190                gfp_t mem_flags)
 191{
 192        unsigned long key;
 193        int ret;
 194
 195        key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 196        /* Skip any segments that were already added. */
 197        if (radix_tree_lookup(trb_address_map, key))
 198                return 0;
 199
 200        ret = radix_tree_maybe_preload(mem_flags);
 201        if (ret)
 202                return ret;
 203        ret = radix_tree_insert(trb_address_map,
 204                        key, ring);
 205        radix_tree_preload_end();
 206        return ret;
 207}
 208
 209static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 210                struct xhci_segment *seg)
 211{
 212        unsigned long key;
 213
 214        key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 215        if (radix_tree_lookup(trb_address_map, key))
 216                radix_tree_delete(trb_address_map, key);
 217}
 218
 219static int xhci_update_stream_segment_mapping(
 220                struct radix_tree_root *trb_address_map,
 221                struct xhci_ring *ring,
 222                struct xhci_segment *first_seg,
 223                struct xhci_segment *last_seg,
 224                gfp_t mem_flags)
 225{
 226        struct xhci_segment *seg;
 227        struct xhci_segment *failed_seg;
 228        int ret;
 229
 230        if (WARN_ON_ONCE(trb_address_map == NULL))
 231                return 0;
 232
 233        seg = first_seg;
 234        do {
 235                ret = xhci_insert_segment_mapping(trb_address_map,
 236                                ring, seg, mem_flags);
 237                if (ret)
 238                        goto remove_streams;
 239                if (seg == last_seg)
 240                        return 0;
 241                seg = seg->next;
 242        } while (seg != first_seg);
 243
 244        return 0;
 245
 246remove_streams:
 247        failed_seg = seg;
 248        seg = first_seg;
 249        do {
 250                xhci_remove_segment_mapping(trb_address_map, seg);
 251                if (seg == failed_seg)
 252                        return ret;
 253                seg = seg->next;
 254        } while (seg != first_seg);
 255
 256        return ret;
 257}
 258
 259static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 260{
 261        struct xhci_segment *seg;
 262
 263        if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 264                return;
 265
 266        seg = ring->first_seg;
 267        do {
 268                xhci_remove_segment_mapping(ring->trb_address_map, seg);
 269                seg = seg->next;
 270        } while (seg != ring->first_seg);
 271}
 272
 273static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 274{
 275        return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 276                        ring->first_seg, ring->last_seg, mem_flags);
 277}
 278
 279/* XXX: Do we need the hcd structure in all these functions? */
 280void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 281{
 282        if (!ring)
 283                return;
 284
 285        trace_xhci_ring_free(ring);
 286
 287        if (ring->first_seg) {
 288                if (ring->type == TYPE_STREAM)
 289                        xhci_remove_stream_mapping(ring);
 290                xhci_free_segments_for_ring(xhci, ring->first_seg);
 291        }
 292
 293        kfree(ring);
 294}
 295
 296void xhci_initialize_ring_info(struct xhci_ring *ring,
 297                               unsigned int cycle_state)
 298{
 299        /* The ring is empty, so the enqueue pointer == dequeue pointer */
 300        ring->enqueue = ring->first_seg->trbs;
 301        ring->enq_seg = ring->first_seg;
 302        ring->dequeue = ring->enqueue;
 303        ring->deq_seg = ring->first_seg;
 304        /* The ring is initialized to 0. The producer must write 1 to the cycle
 305         * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 306         * compare CCS to the cycle bit to check ownership, so CCS = 1.
 307         *
 308         * New rings are initialized with cycle state equal to 1; if we are
 309         * handling ring expansion, set the cycle state equal to the old ring.
 310         */
 311        ring->cycle_state = cycle_state;
 312
 313        /*
 314         * Each segment has a link TRB, and leave an extra TRB for SW
 315         * accounting purpose
 316         */
 317        ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 318}
 319
 320/* Allocate segments and link them for a ring */
 321static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 322                struct xhci_segment **first, struct xhci_segment **last,
 323                unsigned int num_segs, unsigned int cycle_state,
 324                enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 325{
 326        struct xhci_segment *prev;
 327        bool chain_links;
 328
 329        /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 330        chain_links = !!(xhci_link_trb_quirk(xhci) ||
 331                         (type == TYPE_ISOC &&
 332                          (xhci->quirks & XHCI_AMD_0x96_HOST)));
 333
 334        prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 335        if (!prev)
 336                return -ENOMEM;
 337        num_segs--;
 338
 339        *first = prev;
 340        while (num_segs > 0) {
 341                struct xhci_segment     *next;
 342
 343                next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 344                if (!next) {
 345                        prev = *first;
 346                        while (prev) {
 347                                next = prev->next;
 348                                xhci_segment_free(xhci, prev);
 349                                prev = next;
 350                        }
 351                        return -ENOMEM;
 352                }
 353                xhci_link_segments(prev, next, type, chain_links);
 354
 355                prev = next;
 356                num_segs--;
 357        }
 358        xhci_link_segments(prev, *first, type, chain_links);
 359        *last = prev;
 360
 361        return 0;
 362}
 363
 364/*
 365 * Create a new ring with zero or more segments.
 366 *
 367 * Link each segment together into a ring.
 368 * Set the end flag and the cycle toggle bit on the last segment.
 369 * See section 4.9.1 and figures 15 and 16.
 370 */
 371struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 372                unsigned int num_segs, unsigned int cycle_state,
 373                enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 374{
 375        struct xhci_ring        *ring;
 376        int ret;
 377        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 378
 379        ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
 380        if (!ring)
 381                return NULL;
 382
 383        ring->num_segs = num_segs;
 384        ring->bounce_buf_len = max_packet;
 385        INIT_LIST_HEAD(&ring->td_list);
 386        ring->type = type;
 387        if (num_segs == 0)
 388                return ring;
 389
 390        ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 391                        &ring->last_seg, num_segs, cycle_state, type,
 392                        max_packet, flags);
 393        if (ret)
 394                goto fail;
 395
 396        /* Only event ring does not use link TRB */
 397        if (type != TYPE_EVENT) {
 398                /* See section 4.9.2.1 and 6.4.4.1 */
 399                ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 400                        cpu_to_le32(LINK_TOGGLE);
 401        }
 402        xhci_initialize_ring_info(ring, cycle_state);
 403        trace_xhci_ring_alloc(ring);
 404        return ring;
 405
 406fail:
 407        kfree(ring);
 408        return NULL;
 409}
 410
 411void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
 412                struct xhci_virt_device *virt_dev,
 413                unsigned int ep_index)
 414{
 415        xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 416        virt_dev->eps[ep_index].ring = NULL;
 417}
 418
 419/*
 420 * Expand an existing ring.
 421 * Allocate a new ring which has same segment numbers and link the two rings.
 422 */
 423int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 424                                unsigned int num_trbs, gfp_t flags)
 425{
 426        struct xhci_segment     *first;
 427        struct xhci_segment     *last;
 428        unsigned int            num_segs;
 429        unsigned int            num_segs_needed;
 430        int                     ret;
 431
 432        num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 433                                (TRBS_PER_SEGMENT - 1);
 434
 435        /* Allocate number of segments we needed, or double the ring size */
 436        num_segs = ring->num_segs > num_segs_needed ?
 437                        ring->num_segs : num_segs_needed;
 438
 439        ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 440                        num_segs, ring->cycle_state, ring->type,
 441                        ring->bounce_buf_len, flags);
 442        if (ret)
 443                return -ENOMEM;
 444
 445        if (ring->type == TYPE_STREAM)
 446                ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 447                                                ring, first, last, flags);
 448        if (ret) {
 449                struct xhci_segment *next;
 450                do {
 451                        next = first->next;
 452                        xhci_segment_free(xhci, first);
 453                        if (first == last)
 454                                break;
 455                        first = next;
 456                } while (true);
 457                return ret;
 458        }
 459
 460        xhci_link_rings(xhci, ring, first, last, num_segs);
 461        trace_xhci_ring_expansion(ring);
 462        xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 463                        "ring expansion succeed, now has %d segments",
 464                        ring->num_segs);
 465
 466        return 0;
 467}
 468
 469struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 470                                                    int type, gfp_t flags)
 471{
 472        struct xhci_container_ctx *ctx;
 473        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 474
 475        if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 476                return NULL;
 477
 478        ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
 479        if (!ctx)
 480                return NULL;
 481
 482        ctx->type = type;
 483        ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 484        if (type == XHCI_CTX_TYPE_INPUT)
 485                ctx->size += CTX_SIZE(xhci->hcc_params);
 486
 487        ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 488        if (!ctx->bytes) {
 489                kfree(ctx);
 490                return NULL;
 491        }
 492        return ctx;
 493}
 494
 495void xhci_free_container_ctx(struct xhci_hcd *xhci,
 496                             struct xhci_container_ctx *ctx)
 497{
 498        if (!ctx)
 499                return;
 500        dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 501        kfree(ctx);
 502}
 503
 504struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 505                                              struct xhci_container_ctx *ctx)
 506{
 507        if (ctx->type != XHCI_CTX_TYPE_INPUT)
 508                return NULL;
 509
 510        return (struct xhci_input_control_ctx *)ctx->bytes;
 511}
 512
 513struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 514                                        struct xhci_container_ctx *ctx)
 515{
 516        if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 517                return (struct xhci_slot_ctx *)ctx->bytes;
 518
 519        return (struct xhci_slot_ctx *)
 520                (ctx->bytes + CTX_SIZE(xhci->hcc_params));
 521}
 522
 523struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 524                                    struct xhci_container_ctx *ctx,
 525                                    unsigned int ep_index)
 526{
 527        /* increment ep index by offset of start of ep ctx array */
 528        ep_index++;
 529        if (ctx->type == XHCI_CTX_TYPE_INPUT)
 530                ep_index++;
 531
 532        return (struct xhci_ep_ctx *)
 533                (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 534}
 535EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
 536
 537/***************** Streams structures manipulation *************************/
 538
 539static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 540                unsigned int num_stream_ctxs,
 541                struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 542{
 543        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 544        size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 545
 546        if (size > MEDIUM_STREAM_ARRAY_SIZE)
 547                dma_free_coherent(dev, size,
 548                                stream_ctx, dma);
 549        else if (size <= SMALL_STREAM_ARRAY_SIZE)
 550                return dma_pool_free(xhci->small_streams_pool,
 551                                stream_ctx, dma);
 552        else
 553                return dma_pool_free(xhci->medium_streams_pool,
 554                                stream_ctx, dma);
 555}
 556
 557/*
 558 * The stream context array for each endpoint with bulk streams enabled can
 559 * vary in size, based on:
 560 *  - how many streams the endpoint supports,
 561 *  - the maximum primary stream array size the host controller supports,
 562 *  - and how many streams the device driver asks for.
 563 *
 564 * The stream context array must be a power of 2, and can be as small as
 565 * 64 bytes or as large as 1MB.
 566 */
 567static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 568                unsigned int num_stream_ctxs, dma_addr_t *dma,
 569                gfp_t mem_flags)
 570{
 571        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 572        size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 573
 574        if (size > MEDIUM_STREAM_ARRAY_SIZE)
 575                return dma_alloc_coherent(dev, size,
 576                                dma, mem_flags);
 577        else if (size <= SMALL_STREAM_ARRAY_SIZE)
 578                return dma_pool_alloc(xhci->small_streams_pool,
 579                                mem_flags, dma);
 580        else
 581                return dma_pool_alloc(xhci->medium_streams_pool,
 582                                mem_flags, dma);
 583}
 584
 585struct xhci_ring *xhci_dma_to_transfer_ring(
 586                struct xhci_virt_ep *ep,
 587                u64 address)
 588{
 589        if (ep->ep_state & EP_HAS_STREAMS)
 590                return radix_tree_lookup(&ep->stream_info->trb_address_map,
 591                                address >> TRB_SEGMENT_SHIFT);
 592        return ep->ring;
 593}
 594
 595/*
 596 * Change an endpoint's internal structure so it supports stream IDs.  The
 597 * number of requested streams includes stream 0, which cannot be used by device
 598 * drivers.
 599 *
 600 * The number of stream contexts in the stream context array may be bigger than
 601 * the number of streams the driver wants to use.  This is because the number of
 602 * stream context array entries must be a power of two.
 603 */
 604struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 605                unsigned int num_stream_ctxs,
 606                unsigned int num_streams,
 607                unsigned int max_packet, gfp_t mem_flags)
 608{
 609        struct xhci_stream_info *stream_info;
 610        u32 cur_stream;
 611        struct xhci_ring *cur_ring;
 612        u64 addr;
 613        int ret;
 614        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 615
 616        xhci_dbg(xhci, "Allocating %u streams and %u "
 617                        "stream context array entries.\n",
 618                        num_streams, num_stream_ctxs);
 619        if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 620                xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 621                return NULL;
 622        }
 623        xhci->cmd_ring_reserved_trbs++;
 624
 625        stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
 626                        dev_to_node(dev));
 627        if (!stream_info)
 628                goto cleanup_trbs;
 629
 630        stream_info->num_streams = num_streams;
 631        stream_info->num_stream_ctxs = num_stream_ctxs;
 632
 633        /* Initialize the array of virtual pointers to stream rings. */
 634        stream_info->stream_rings = kcalloc_node(
 635                        num_streams, sizeof(struct xhci_ring *), mem_flags,
 636                        dev_to_node(dev));
 637        if (!stream_info->stream_rings)
 638                goto cleanup_info;
 639
 640        /* Initialize the array of DMA addresses for stream rings for the HW. */
 641        stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 642                        num_stream_ctxs, &stream_info->ctx_array_dma,
 643                        mem_flags);
 644        if (!stream_info->stream_ctx_array)
 645                goto cleanup_ctx;
 646        memset(stream_info->stream_ctx_array, 0,
 647                        sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 648
 649        /* Allocate everything needed to free the stream rings later */
 650        stream_info->free_streams_command =
 651                xhci_alloc_command_with_ctx(xhci, true, mem_flags);
 652        if (!stream_info->free_streams_command)
 653                goto cleanup_ctx;
 654
 655        INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 656
 657        /* Allocate rings for all the streams that the driver will use,
 658         * and add their segment DMA addresses to the radix tree.
 659         * Stream 0 is reserved.
 660         */
 661
 662        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 663                stream_info->stream_rings[cur_stream] =
 664                        xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
 665                                        mem_flags);
 666                cur_ring = stream_info->stream_rings[cur_stream];
 667                if (!cur_ring)
 668                        goto cleanup_rings;
 669                cur_ring->stream_id = cur_stream;
 670                cur_ring->trb_address_map = &stream_info->trb_address_map;
 671                /* Set deq ptr, cycle bit, and stream context type */
 672                addr = cur_ring->first_seg->dma |
 673                        SCT_FOR_CTX(SCT_PRI_TR) |
 674                        cur_ring->cycle_state;
 675                stream_info->stream_ctx_array[cur_stream].stream_ring =
 676                        cpu_to_le64(addr);
 677                xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 678                                cur_stream, (unsigned long long) addr);
 679
 680                ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 681                if (ret) {
 682                        xhci_ring_free(xhci, cur_ring);
 683                        stream_info->stream_rings[cur_stream] = NULL;
 684                        goto cleanup_rings;
 685                }
 686        }
 687        /* Leave the other unused stream ring pointers in the stream context
 688         * array initialized to zero.  This will cause the xHC to give us an
 689         * error if the device asks for a stream ID we don't have setup (if it
 690         * was any other way, the host controller would assume the ring is
 691         * "empty" and wait forever for data to be queued to that stream ID).
 692         */
 693
 694        return stream_info;
 695
 696cleanup_rings:
 697        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 698                cur_ring = stream_info->stream_rings[cur_stream];
 699                if (cur_ring) {
 700                        xhci_ring_free(xhci, cur_ring);
 701                        stream_info->stream_rings[cur_stream] = NULL;
 702                }
 703        }
 704        xhci_free_command(xhci, stream_info->free_streams_command);
 705cleanup_ctx:
 706        kfree(stream_info->stream_rings);
 707cleanup_info:
 708        kfree(stream_info);
 709cleanup_trbs:
 710        xhci->cmd_ring_reserved_trbs--;
 711        return NULL;
 712}
 713/*
 714 * Sets the MaxPStreams field and the Linear Stream Array field.
 715 * Sets the dequeue pointer to the stream context array.
 716 */
 717void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 718                struct xhci_ep_ctx *ep_ctx,
 719                struct xhci_stream_info *stream_info)
 720{
 721        u32 max_primary_streams;
 722        /* MaxPStreams is the number of stream context array entries, not the
 723         * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 724         * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 725         */
 726        max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 727        xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 728                        "Setting number of stream ctx array entries to %u",
 729                        1 << (max_primary_streams + 1));
 730        ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 731        ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 732                                       | EP_HAS_LSA);
 733        ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 734}
 735
 736/*
 737 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 738 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 739 * not at the beginning of the ring).
 740 */
 741void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 742                struct xhci_virt_ep *ep)
 743{
 744        dma_addr_t addr;
 745        ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 746        addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 747        ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 748}
 749
 750/* Frees all stream contexts associated with the endpoint,
 751 *
 752 * Caller should fix the endpoint context streams fields.
 753 */
 754void xhci_free_stream_info(struct xhci_hcd *xhci,
 755                struct xhci_stream_info *stream_info)
 756{
 757        int cur_stream;
 758        struct xhci_ring *cur_ring;
 759
 760        if (!stream_info)
 761                return;
 762
 763        for (cur_stream = 1; cur_stream < stream_info->num_streams;
 764                        cur_stream++) {
 765                cur_ring = stream_info->stream_rings[cur_stream];
 766                if (cur_ring) {
 767                        xhci_ring_free(xhci, cur_ring);
 768                        stream_info->stream_rings[cur_stream] = NULL;
 769                }
 770        }
 771        xhci_free_command(xhci, stream_info->free_streams_command);
 772        xhci->cmd_ring_reserved_trbs--;
 773        if (stream_info->stream_ctx_array)
 774                xhci_free_stream_ctx(xhci,
 775                                stream_info->num_stream_ctxs,
 776                                stream_info->stream_ctx_array,
 777                                stream_info->ctx_array_dma);
 778
 779        kfree(stream_info->stream_rings);
 780        kfree(stream_info);
 781}
 782
 783
 784/***************** Device context manipulation *************************/
 785
 786static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 787                struct xhci_virt_ep *ep)
 788{
 789        timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
 790                    0);
 791        ep->xhci = xhci;
 792}
 793
 794static void xhci_free_tt_info(struct xhci_hcd *xhci,
 795                struct xhci_virt_device *virt_dev,
 796                int slot_id)
 797{
 798        struct list_head *tt_list_head;
 799        struct xhci_tt_bw_info *tt_info, *next;
 800        bool slot_found = false;
 801
 802        /* If the device never made it past the Set Address stage,
 803         * it may not have the real_port set correctly.
 804         */
 805        if (virt_dev->real_port == 0 ||
 806                        virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 807                xhci_dbg(xhci, "Bad real port.\n");
 808                return;
 809        }
 810
 811        tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 812        list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 813                /* Multi-TT hubs will have more than one entry */
 814                if (tt_info->slot_id == slot_id) {
 815                        slot_found = true;
 816                        list_del(&tt_info->tt_list);
 817                        kfree(tt_info);
 818                } else if (slot_found) {
 819                        break;
 820                }
 821        }
 822}
 823
 824int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 825                struct xhci_virt_device *virt_dev,
 826                struct usb_device *hdev,
 827                struct usb_tt *tt, gfp_t mem_flags)
 828{
 829        struct xhci_tt_bw_info          *tt_info;
 830        unsigned int                    num_ports;
 831        int                             i, j;
 832        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 833
 834        if (!tt->multi)
 835                num_ports = 1;
 836        else
 837                num_ports = hdev->maxchild;
 838
 839        for (i = 0; i < num_ports; i++, tt_info++) {
 840                struct xhci_interval_bw_table *bw_table;
 841
 842                tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
 843                                dev_to_node(dev));
 844                if (!tt_info)
 845                        goto free_tts;
 846                INIT_LIST_HEAD(&tt_info->tt_list);
 847                list_add(&tt_info->tt_list,
 848                                &xhci->rh_bw[virt_dev->real_port - 1].tts);
 849                tt_info->slot_id = virt_dev->udev->slot_id;
 850                if (tt->multi)
 851                        tt_info->ttport = i+1;
 852                bw_table = &tt_info->bw_table;
 853                for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 854                        INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 855        }
 856        return 0;
 857
 858free_tts:
 859        xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 860        return -ENOMEM;
 861}
 862
 863
 864/* All the xhci_tds in the ring's TD list should be freed at this point.
 865 * Should be called with xhci->lock held if there is any chance the TT lists
 866 * will be manipulated by the configure endpoint, allocate device, or update
 867 * hub functions while this function is removing the TT entries from the list.
 868 */
 869void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 870{
 871        struct xhci_virt_device *dev;
 872        int i;
 873        int old_active_eps = 0;
 874
 875        /* Slot ID 0 is reserved */
 876        if (slot_id == 0 || !xhci->devs[slot_id])
 877                return;
 878
 879        dev = xhci->devs[slot_id];
 880
 881        xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 882        if (!dev)
 883                return;
 884
 885        trace_xhci_free_virt_device(dev);
 886
 887        if (dev->tt_info)
 888                old_active_eps = dev->tt_info->active_eps;
 889
 890        for (i = 0; i < 31; i++) {
 891                if (dev->eps[i].ring)
 892                        xhci_ring_free(xhci, dev->eps[i].ring);
 893                if (dev->eps[i].stream_info)
 894                        xhci_free_stream_info(xhci,
 895                                        dev->eps[i].stream_info);
 896                /* Endpoints on the TT/root port lists should have been removed
 897                 * when usb_disable_device() was called for the device.
 898                 * We can't drop them anyway, because the udev might have gone
 899                 * away by this point, and we can't tell what speed it was.
 900                 */
 901                if (!list_empty(&dev->eps[i].bw_endpoint_list))
 902                        xhci_warn(xhci, "Slot %u endpoint %u "
 903                                        "not removed from BW list!\n",
 904                                        slot_id, i);
 905        }
 906        /* If this is a hub, free the TT(s) from the TT list */
 907        xhci_free_tt_info(xhci, dev, slot_id);
 908        /* If necessary, update the number of active TTs on this root port */
 909        xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 910
 911        if (dev->in_ctx)
 912                xhci_free_container_ctx(xhci, dev->in_ctx);
 913        if (dev->out_ctx)
 914                xhci_free_container_ctx(xhci, dev->out_ctx);
 915
 916        if (dev->udev && dev->udev->slot_id)
 917                dev->udev->slot_id = 0;
 918        kfree(xhci->devs[slot_id]);
 919        xhci->devs[slot_id] = NULL;
 920}
 921
 922/*
 923 * Free a virt_device structure.
 924 * If the virt_device added a tt_info (a hub) and has children pointing to
 925 * that tt_info, then free the child first. Recursive.
 926 * We can't rely on udev at this point to find child-parent relationships.
 927 */
 928static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
 929{
 930        struct xhci_virt_device *vdev;
 931        struct list_head *tt_list_head;
 932        struct xhci_tt_bw_info *tt_info, *next;
 933        int i;
 934
 935        vdev = xhci->devs[slot_id];
 936        if (!vdev)
 937                return;
 938
 939        if (vdev->real_port == 0 ||
 940                        vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 941                xhci_dbg(xhci, "Bad vdev->real_port.\n");
 942                goto out;
 943        }
 944
 945        tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
 946        list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 947                /* is this a hub device that added a tt_info to the tts list */
 948                if (tt_info->slot_id == slot_id) {
 949                        /* are any devices using this tt_info? */
 950                        for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
 951                                vdev = xhci->devs[i];
 952                                if (vdev && (vdev->tt_info == tt_info))
 953                                        xhci_free_virt_devices_depth_first(
 954                                                xhci, i);
 955                        }
 956                }
 957        }
 958out:
 959        /* we are now at a leaf device */
 960        xhci_debugfs_remove_slot(xhci, slot_id);
 961        xhci_free_virt_device(xhci, slot_id);
 962}
 963
 964int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 965                struct usb_device *udev, gfp_t flags)
 966{
 967        struct xhci_virt_device *dev;
 968        int i;
 969
 970        /* Slot ID 0 is reserved */
 971        if (slot_id == 0 || xhci->devs[slot_id]) {
 972                xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 973                return 0;
 974        }
 975
 976        dev = kzalloc(sizeof(*dev), flags);
 977        if (!dev)
 978                return 0;
 979
 980        dev->slot_id = slot_id;
 981
 982        /* Allocate the (output) device context that will be used in the HC. */
 983        dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 984        if (!dev->out_ctx)
 985                goto fail;
 986
 987        xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 988                        (unsigned long long)dev->out_ctx->dma);
 989
 990        /* Allocate the (input) device context for address device command */
 991        dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 992        if (!dev->in_ctx)
 993                goto fail;
 994
 995        xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 996                        (unsigned long long)dev->in_ctx->dma);
 997
 998        /* Initialize the cancellation list and watchdog timers for each ep */
 999        for (i = 0; i < 31; i++) {
1000                dev->eps[i].ep_index = i;
1001                dev->eps[i].vdev = dev;
1002                xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1003                INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1004                INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1005        }
1006
1007        /* Allocate endpoint 0 ring */
1008        dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1009        if (!dev->eps[0].ring)
1010                goto fail;
1011
1012        dev->udev = udev;
1013
1014        /* Point to output device context in dcbaa. */
1015        xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1016        xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1017                 slot_id,
1018                 &xhci->dcbaa->dev_context_ptrs[slot_id],
1019                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1020
1021        trace_xhci_alloc_virt_device(dev);
1022
1023        xhci->devs[slot_id] = dev;
1024
1025        return 1;
1026fail:
1027
1028        if (dev->in_ctx)
1029                xhci_free_container_ctx(xhci, dev->in_ctx);
1030        if (dev->out_ctx)
1031                xhci_free_container_ctx(xhci, dev->out_ctx);
1032        kfree(dev);
1033
1034        return 0;
1035}
1036
1037void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1038                struct usb_device *udev)
1039{
1040        struct xhci_virt_device *virt_dev;
1041        struct xhci_ep_ctx      *ep0_ctx;
1042        struct xhci_ring        *ep_ring;
1043
1044        virt_dev = xhci->devs[udev->slot_id];
1045        ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1046        ep_ring = virt_dev->eps[0].ring;
1047        /*
1048         * FIXME we don't keep track of the dequeue pointer very well after a
1049         * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1050         * host to our enqueue pointer.  This should only be called after a
1051         * configured device has reset, so all control transfers should have
1052         * been completed or cancelled before the reset.
1053         */
1054        ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1055                                                        ep_ring->enqueue)
1056                                   | ep_ring->cycle_state);
1057}
1058
1059/*
1060 * The xHCI roothub may have ports of differing speeds in any order in the port
1061 * status registers.
1062 *
1063 * The xHCI hardware wants to know the roothub port number that the USB device
1064 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1065 * know is the index of that port under either the USB 2.0 or the USB 3.0
1066 * roothub, but that doesn't give us the real index into the HW port status
1067 * registers. Call xhci_find_raw_port_number() to get real index.
1068 */
1069static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1070                struct usb_device *udev)
1071{
1072        struct usb_device *top_dev;
1073        struct usb_hcd *hcd;
1074
1075        if (udev->speed >= USB_SPEED_SUPER)
1076                hcd = xhci->shared_hcd;
1077        else
1078                hcd = xhci->main_hcd;
1079
1080        for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1081                        top_dev = top_dev->parent)
1082                /* Found device below root hub */;
1083
1084        return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1085}
1086
1087/* Setup an xHCI virtual device for a Set Address command */
1088int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1089{
1090        struct xhci_virt_device *dev;
1091        struct xhci_ep_ctx      *ep0_ctx;
1092        struct xhci_slot_ctx    *slot_ctx;
1093        u32                     port_num;
1094        u32                     max_packets;
1095        struct usb_device *top_dev;
1096
1097        dev = xhci->devs[udev->slot_id];
1098        /* Slot ID 0 is reserved */
1099        if (udev->slot_id == 0 || !dev) {
1100                xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1101                                udev->slot_id);
1102                return -EINVAL;
1103        }
1104        ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1105        slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1106
1107        /* 3) Only the control endpoint is valid - one endpoint context */
1108        slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1109        switch (udev->speed) {
1110        case USB_SPEED_SUPER_PLUS:
1111                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1112                max_packets = MAX_PACKET(512);
1113                break;
1114        case USB_SPEED_SUPER:
1115                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1116                max_packets = MAX_PACKET(512);
1117                break;
1118        case USB_SPEED_HIGH:
1119                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1120                max_packets = MAX_PACKET(64);
1121                break;
1122        /* USB core guesses at a 64-byte max packet first for FS devices */
1123        case USB_SPEED_FULL:
1124                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1125                max_packets = MAX_PACKET(64);
1126                break;
1127        case USB_SPEED_LOW:
1128                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1129                max_packets = MAX_PACKET(8);
1130                break;
1131        case USB_SPEED_WIRELESS:
1132                xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1133                return -EINVAL;
1134        default:
1135                /* Speed was set earlier, this shouldn't happen. */
1136                return -EINVAL;
1137        }
1138        /* Find the root hub port this device is under */
1139        port_num = xhci_find_real_port_number(xhci, udev);
1140        if (!port_num)
1141                return -EINVAL;
1142        slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1143        /* Set the port number in the virtual_device to the faked port number */
1144        for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1145                        top_dev = top_dev->parent)
1146                /* Found device below root hub */;
1147        dev->fake_port = top_dev->portnum;
1148        dev->real_port = port_num;
1149        xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1150        xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1151
1152        /* Find the right bandwidth table that this device will be a part of.
1153         * If this is a full speed device attached directly to a root port (or a
1154         * decendent of one), it counts as a primary bandwidth domain, not a
1155         * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1156         * will never be created for the HS root hub.
1157         */
1158        if (!udev->tt || !udev->tt->hub->parent) {
1159                dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1160        } else {
1161                struct xhci_root_port_bw_info *rh_bw;
1162                struct xhci_tt_bw_info *tt_bw;
1163
1164                rh_bw = &xhci->rh_bw[port_num - 1];
1165                /* Find the right TT. */
1166                list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1167                        if (tt_bw->slot_id != udev->tt->hub->slot_id)
1168                                continue;
1169
1170                        if (!dev->udev->tt->multi ||
1171                                        (udev->tt->multi &&
1172                                         tt_bw->ttport == dev->udev->ttport)) {
1173                                dev->bw_table = &tt_bw->bw_table;
1174                                dev->tt_info = tt_bw;
1175                                break;
1176                        }
1177                }
1178                if (!dev->tt_info)
1179                        xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1180        }
1181
1182        /* Is this a LS/FS device under an external HS hub? */
1183        if (udev->tt && udev->tt->hub->parent) {
1184                slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1185                                                (udev->ttport << 8));
1186                if (udev->tt->multi)
1187                        slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1188        }
1189        xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1190        xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1191
1192        /* Step 4 - ring already allocated */
1193        /* Step 5 */
1194        ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1195
1196        /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1197        ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1198                                         max_packets);
1199
1200        ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1201                                   dev->eps[0].ring->cycle_state);
1202
1203        trace_xhci_setup_addressable_virt_device(dev);
1204
1205        /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1206
1207        return 0;
1208}
1209
1210/*
1211 * Convert interval expressed as 2^(bInterval - 1) == interval into
1212 * straight exponent value 2^n == interval.
1213 *
1214 */
1215static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1216                struct usb_host_endpoint *ep)
1217{
1218        unsigned int interval;
1219
1220        interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1221        if (interval != ep->desc.bInterval - 1)
1222                dev_warn(&udev->dev,
1223                         "ep %#x - rounding interval to %d %sframes\n",
1224                         ep->desc.bEndpointAddress,
1225                         1 << interval,
1226                         udev->speed == USB_SPEED_FULL ? "" : "micro");
1227
1228        if (udev->speed == USB_SPEED_FULL) {
1229                /*
1230                 * Full speed isoc endpoints specify interval in frames,
1231                 * not microframes. We are using microframes everywhere,
1232                 * so adjust accordingly.
1233                 */
1234                interval += 3;  /* 1 frame = 2^3 uframes */
1235        }
1236
1237        return interval;
1238}
1239
1240/*
1241 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1242 * microframes, rounded down to nearest power of 2.
1243 */
1244static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1245                struct usb_host_endpoint *ep, unsigned int desc_interval,
1246                unsigned int min_exponent, unsigned int max_exponent)
1247{
1248        unsigned int interval;
1249
1250        interval = fls(desc_interval) - 1;
1251        interval = clamp_val(interval, min_exponent, max_exponent);
1252        if ((1 << interval) != desc_interval)
1253                dev_dbg(&udev->dev,
1254                         "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1255                         ep->desc.bEndpointAddress,
1256                         1 << interval,
1257                         desc_interval);
1258
1259        return interval;
1260}
1261
1262static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1263                struct usb_host_endpoint *ep)
1264{
1265        if (ep->desc.bInterval == 0)
1266                return 0;
1267        return xhci_microframes_to_exponent(udev, ep,
1268                        ep->desc.bInterval, 0, 15);
1269}
1270
1271
1272static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1273                struct usb_host_endpoint *ep)
1274{
1275        return xhci_microframes_to_exponent(udev, ep,
1276                        ep->desc.bInterval * 8, 3, 10);
1277}
1278
1279/* Return the polling or NAK interval.
1280 *
1281 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1282 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1283 *
1284 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1285 * is set to 0.
1286 */
1287static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1288                struct usb_host_endpoint *ep)
1289{
1290        unsigned int interval = 0;
1291
1292        switch (udev->speed) {
1293        case USB_SPEED_HIGH:
1294                /* Max NAK rate */
1295                if (usb_endpoint_xfer_control(&ep->desc) ||
1296                    usb_endpoint_xfer_bulk(&ep->desc)) {
1297                        interval = xhci_parse_microframe_interval(udev, ep);
1298                        break;
1299                }
1300                fallthrough;    /* SS and HS isoc/int have same decoding */
1301
1302        case USB_SPEED_SUPER_PLUS:
1303        case USB_SPEED_SUPER:
1304                if (usb_endpoint_xfer_int(&ep->desc) ||
1305                    usb_endpoint_xfer_isoc(&ep->desc)) {
1306                        interval = xhci_parse_exponent_interval(udev, ep);
1307                }
1308                break;
1309
1310        case USB_SPEED_FULL:
1311                if (usb_endpoint_xfer_isoc(&ep->desc)) {
1312                        interval = xhci_parse_exponent_interval(udev, ep);
1313                        break;
1314                }
1315                /*
1316                 * Fall through for interrupt endpoint interval decoding
1317                 * since it uses the same rules as low speed interrupt
1318                 * endpoints.
1319                 */
1320                fallthrough;
1321
1322        case USB_SPEED_LOW:
1323                if (usb_endpoint_xfer_int(&ep->desc) ||
1324                    usb_endpoint_xfer_isoc(&ep->desc)) {
1325
1326                        interval = xhci_parse_frame_interval(udev, ep);
1327                }
1328                break;
1329
1330        default:
1331                BUG();
1332        }
1333        return interval;
1334}
1335
1336/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1337 * High speed endpoint descriptors can define "the number of additional
1338 * transaction opportunities per microframe", but that goes in the Max Burst
1339 * endpoint context field.
1340 */
1341static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1342                struct usb_host_endpoint *ep)
1343{
1344        if (udev->speed < USB_SPEED_SUPER ||
1345                        !usb_endpoint_xfer_isoc(&ep->desc))
1346                return 0;
1347        return ep->ss_ep_comp.bmAttributes;
1348}
1349
1350static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1351                                       struct usb_host_endpoint *ep)
1352{
1353        /* Super speed and Plus have max burst in ep companion desc */
1354        if (udev->speed >= USB_SPEED_SUPER)
1355                return ep->ss_ep_comp.bMaxBurst;
1356
1357        if (udev->speed == USB_SPEED_HIGH &&
1358            (usb_endpoint_xfer_isoc(&ep->desc) ||
1359             usb_endpoint_xfer_int(&ep->desc)))
1360                return usb_endpoint_maxp_mult(&ep->desc) - 1;
1361
1362        return 0;
1363}
1364
1365static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1366{
1367        int in;
1368
1369        in = usb_endpoint_dir_in(&ep->desc);
1370
1371        switch (usb_endpoint_type(&ep->desc)) {
1372        case USB_ENDPOINT_XFER_CONTROL:
1373                return CTRL_EP;
1374        case USB_ENDPOINT_XFER_BULK:
1375                return in ? BULK_IN_EP : BULK_OUT_EP;
1376        case USB_ENDPOINT_XFER_ISOC:
1377                return in ? ISOC_IN_EP : ISOC_OUT_EP;
1378        case USB_ENDPOINT_XFER_INT:
1379                return in ? INT_IN_EP : INT_OUT_EP;
1380        }
1381        return 0;
1382}
1383
1384/* Return the maximum endpoint service interval time (ESIT) payload.
1385 * Basically, this is the maxpacket size, multiplied by the burst size
1386 * and mult size.
1387 */
1388static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1389                struct usb_host_endpoint *ep)
1390{
1391        int max_burst;
1392        int max_packet;
1393
1394        /* Only applies for interrupt or isochronous endpoints */
1395        if (usb_endpoint_xfer_control(&ep->desc) ||
1396                        usb_endpoint_xfer_bulk(&ep->desc))
1397                return 0;
1398
1399        /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1400        if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1401            USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1402                return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1403        /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1404        else if (udev->speed >= USB_SPEED_SUPER)
1405                return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1406
1407        max_packet = usb_endpoint_maxp(&ep->desc);
1408        max_burst = usb_endpoint_maxp_mult(&ep->desc);
1409        /* A 0 in max burst means 1 transfer per ESIT */
1410        return max_packet * max_burst;
1411}
1412
1413/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1414 * Drivers will have to call usb_alloc_streams() to do that.
1415 */
1416int xhci_endpoint_init(struct xhci_hcd *xhci,
1417                struct xhci_virt_device *virt_dev,
1418                struct usb_device *udev,
1419                struct usb_host_endpoint *ep,
1420                gfp_t mem_flags)
1421{
1422        unsigned int ep_index;
1423        struct xhci_ep_ctx *ep_ctx;
1424        struct xhci_ring *ep_ring;
1425        unsigned int max_packet;
1426        enum xhci_ring_type ring_type;
1427        u32 max_esit_payload;
1428        u32 endpoint_type;
1429        unsigned int max_burst;
1430        unsigned int interval;
1431        unsigned int mult;
1432        unsigned int avg_trb_len;
1433        unsigned int err_count = 0;
1434
1435        ep_index = xhci_get_endpoint_index(&ep->desc);
1436        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1437
1438        endpoint_type = xhci_get_endpoint_type(ep);
1439        if (!endpoint_type)
1440                return -EINVAL;
1441
1442        ring_type = usb_endpoint_type(&ep->desc);
1443
1444        /*
1445         * Get values to fill the endpoint context, mostly from ep descriptor.
1446         * The average TRB buffer lengt for bulk endpoints is unclear as we
1447         * have no clue on scatter gather list entry size. For Isoc and Int,
1448         * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1449         */
1450        max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1451        interval = xhci_get_endpoint_interval(udev, ep);
1452
1453        /* Periodic endpoint bInterval limit quirk */
1454        if (usb_endpoint_xfer_int(&ep->desc) ||
1455            usb_endpoint_xfer_isoc(&ep->desc)) {
1456                if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1457                    udev->speed >= USB_SPEED_HIGH &&
1458                    interval >= 7) {
1459                        interval = 6;
1460                }
1461        }
1462
1463        mult = xhci_get_endpoint_mult(udev, ep);
1464        max_packet = usb_endpoint_maxp(&ep->desc);
1465        max_burst = xhci_get_endpoint_max_burst(udev, ep);
1466        avg_trb_len = max_esit_payload;
1467
1468        /* FIXME dig Mult and streams info out of ep companion desc */
1469
1470        /* Allow 3 retries for everything but isoc, set CErr = 3 */
1471        if (!usb_endpoint_xfer_isoc(&ep->desc))
1472                err_count = 3;
1473        /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1474        if (usb_endpoint_xfer_bulk(&ep->desc)) {
1475                if (udev->speed == USB_SPEED_HIGH)
1476                        max_packet = 512;
1477                if (udev->speed == USB_SPEED_FULL) {
1478                        max_packet = rounddown_pow_of_two(max_packet);
1479                        max_packet = clamp_val(max_packet, 8, 64);
1480                }
1481        }
1482        /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1483        if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1484                avg_trb_len = 8;
1485        /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1486        if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1487                mult = 0;
1488
1489        /* Set up the endpoint ring */
1490        virt_dev->eps[ep_index].new_ring =
1491                xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1492        if (!virt_dev->eps[ep_index].new_ring)
1493                return -ENOMEM;
1494
1495        virt_dev->eps[ep_index].skip = false;
1496        ep_ring = virt_dev->eps[ep_index].new_ring;
1497
1498        /* Fill the endpoint context */
1499        ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1500                                      EP_INTERVAL(interval) |
1501                                      EP_MULT(mult));
1502        ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1503                                       MAX_PACKET(max_packet) |
1504                                       MAX_BURST(max_burst) |
1505                                       ERROR_COUNT(err_count));
1506        ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1507                                  ep_ring->cycle_state);
1508
1509        ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1510                                      EP_AVG_TRB_LENGTH(avg_trb_len));
1511
1512        return 0;
1513}
1514
1515void xhci_endpoint_zero(struct xhci_hcd *xhci,
1516                struct xhci_virt_device *virt_dev,
1517                struct usb_host_endpoint *ep)
1518{
1519        unsigned int ep_index;
1520        struct xhci_ep_ctx *ep_ctx;
1521
1522        ep_index = xhci_get_endpoint_index(&ep->desc);
1523        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1524
1525        ep_ctx->ep_info = 0;
1526        ep_ctx->ep_info2 = 0;
1527        ep_ctx->deq = 0;
1528        ep_ctx->tx_info = 0;
1529        /* Don't free the endpoint ring until the set interface or configuration
1530         * request succeeds.
1531         */
1532}
1533
1534void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1535{
1536        bw_info->ep_interval = 0;
1537        bw_info->mult = 0;
1538        bw_info->num_packets = 0;
1539        bw_info->max_packet_size = 0;
1540        bw_info->type = 0;
1541        bw_info->max_esit_payload = 0;
1542}
1543
1544void xhci_update_bw_info(struct xhci_hcd *xhci,
1545                struct xhci_container_ctx *in_ctx,
1546                struct xhci_input_control_ctx *ctrl_ctx,
1547                struct xhci_virt_device *virt_dev)
1548{
1549        struct xhci_bw_info *bw_info;
1550        struct xhci_ep_ctx *ep_ctx;
1551        unsigned int ep_type;
1552        int i;
1553
1554        for (i = 1; i < 31; i++) {
1555                bw_info = &virt_dev->eps[i].bw_info;
1556
1557                /* We can't tell what endpoint type is being dropped, but
1558                 * unconditionally clearing the bandwidth info for non-periodic
1559                 * endpoints should be harmless because the info will never be
1560                 * set in the first place.
1561                 */
1562                if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1563                        /* Dropped endpoint */
1564                        xhci_clear_endpoint_bw_info(bw_info);
1565                        continue;
1566                }
1567
1568                if (EP_IS_ADDED(ctrl_ctx, i)) {
1569                        ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1570                        ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1571
1572                        /* Ignore non-periodic endpoints */
1573                        if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1574                                        ep_type != ISOC_IN_EP &&
1575                                        ep_type != INT_IN_EP)
1576                                continue;
1577
1578                        /* Added or changed endpoint */
1579                        bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1580                                        le32_to_cpu(ep_ctx->ep_info));
1581                        /* Number of packets and mult are zero-based in the
1582                         * input context, but we want one-based for the
1583                         * interval table.
1584                         */
1585                        bw_info->mult = CTX_TO_EP_MULT(
1586                                        le32_to_cpu(ep_ctx->ep_info)) + 1;
1587                        bw_info->num_packets = CTX_TO_MAX_BURST(
1588                                        le32_to_cpu(ep_ctx->ep_info2)) + 1;
1589                        bw_info->max_packet_size = MAX_PACKET_DECODED(
1590                                        le32_to_cpu(ep_ctx->ep_info2));
1591                        bw_info->type = ep_type;
1592                        bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1593                                        le32_to_cpu(ep_ctx->tx_info));
1594                }
1595        }
1596}
1597
1598/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1599 * Useful when you want to change one particular aspect of the endpoint and then
1600 * issue a configure endpoint command.
1601 */
1602void xhci_endpoint_copy(struct xhci_hcd *xhci,
1603                struct xhci_container_ctx *in_ctx,
1604                struct xhci_container_ctx *out_ctx,
1605                unsigned int ep_index)
1606{
1607        struct xhci_ep_ctx *out_ep_ctx;
1608        struct xhci_ep_ctx *in_ep_ctx;
1609
1610        out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1611        in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1612
1613        in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1614        in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1615        in_ep_ctx->deq = out_ep_ctx->deq;
1616        in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1617        if (xhci->quirks & XHCI_MTK_HOST) {
1618                in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1619                in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1620        }
1621}
1622
1623/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1624 * Useful when you want to change one particular aspect of the endpoint and then
1625 * issue a configure endpoint command.  Only the context entries field matters,
1626 * but we'll copy the whole thing anyway.
1627 */
1628void xhci_slot_copy(struct xhci_hcd *xhci,
1629                struct xhci_container_ctx *in_ctx,
1630                struct xhci_container_ctx *out_ctx)
1631{
1632        struct xhci_slot_ctx *in_slot_ctx;
1633        struct xhci_slot_ctx *out_slot_ctx;
1634
1635        in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1636        out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1637
1638        in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1639        in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1640        in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1641        in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1642}
1643
1644/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1645static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1646{
1647        int i;
1648        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1649        int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1650
1651        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1652                        "Allocating %d scratchpad buffers", num_sp);
1653
1654        if (!num_sp)
1655                return 0;
1656
1657        xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1658                                dev_to_node(dev));
1659        if (!xhci->scratchpad)
1660                goto fail_sp;
1661
1662        xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1663                                     num_sp * sizeof(u64),
1664                                     &xhci->scratchpad->sp_dma, flags);
1665        if (!xhci->scratchpad->sp_array)
1666                goto fail_sp2;
1667
1668        xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1669                                        flags, dev_to_node(dev));
1670        if (!xhci->scratchpad->sp_buffers)
1671                goto fail_sp3;
1672
1673        xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1674        for (i = 0; i < num_sp; i++) {
1675                dma_addr_t dma;
1676                void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1677                                               flags);
1678                if (!buf)
1679                        goto fail_sp4;
1680
1681                xhci->scratchpad->sp_array[i] = dma;
1682                xhci->scratchpad->sp_buffers[i] = buf;
1683        }
1684
1685        return 0;
1686
1687 fail_sp4:
1688        for (i = i - 1; i >= 0; i--) {
1689                dma_free_coherent(dev, xhci->page_size,
1690                                    xhci->scratchpad->sp_buffers[i],
1691                                    xhci->scratchpad->sp_array[i]);
1692        }
1693
1694        kfree(xhci->scratchpad->sp_buffers);
1695
1696 fail_sp3:
1697        dma_free_coherent(dev, num_sp * sizeof(u64),
1698                            xhci->scratchpad->sp_array,
1699                            xhci->scratchpad->sp_dma);
1700
1701 fail_sp2:
1702        kfree(xhci->scratchpad);
1703        xhci->scratchpad = NULL;
1704
1705 fail_sp:
1706        return -ENOMEM;
1707}
1708
1709static void scratchpad_free(struct xhci_hcd *xhci)
1710{
1711        int num_sp;
1712        int i;
1713        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1714
1715        if (!xhci->scratchpad)
1716                return;
1717
1718        num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1719
1720        for (i = 0; i < num_sp; i++) {
1721                dma_free_coherent(dev, xhci->page_size,
1722                                    xhci->scratchpad->sp_buffers[i],
1723                                    xhci->scratchpad->sp_array[i]);
1724        }
1725        kfree(xhci->scratchpad->sp_buffers);
1726        dma_free_coherent(dev, num_sp * sizeof(u64),
1727                            xhci->scratchpad->sp_array,
1728                            xhci->scratchpad->sp_dma);
1729        kfree(xhci->scratchpad);
1730        xhci->scratchpad = NULL;
1731}
1732
1733struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1734                bool allocate_completion, gfp_t mem_flags)
1735{
1736        struct xhci_command *command;
1737        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1738
1739        command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1740        if (!command)
1741                return NULL;
1742
1743        if (allocate_completion) {
1744                command->completion =
1745                        kzalloc_node(sizeof(struct completion), mem_flags,
1746                                dev_to_node(dev));
1747                if (!command->completion) {
1748                        kfree(command);
1749                        return NULL;
1750                }
1751                init_completion(command->completion);
1752        }
1753
1754        command->status = 0;
1755        INIT_LIST_HEAD(&command->cmd_list);
1756        return command;
1757}
1758
1759struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1760                bool allocate_completion, gfp_t mem_flags)
1761{
1762        struct xhci_command *command;
1763
1764        command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1765        if (!command)
1766                return NULL;
1767
1768        command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1769                                                   mem_flags);
1770        if (!command->in_ctx) {
1771                kfree(command->completion);
1772                kfree(command);
1773                return NULL;
1774        }
1775        return command;
1776}
1777
1778void xhci_urb_free_priv(struct urb_priv *urb_priv)
1779{
1780        kfree(urb_priv);
1781}
1782
1783void xhci_free_command(struct xhci_hcd *xhci,
1784                struct xhci_command *command)
1785{
1786        xhci_free_container_ctx(xhci,
1787                        command->in_ctx);
1788        kfree(command->completion);
1789        kfree(command);
1790}
1791
1792int xhci_alloc_erst(struct xhci_hcd *xhci,
1793                    struct xhci_ring *evt_ring,
1794                    struct xhci_erst *erst,
1795                    gfp_t flags)
1796{
1797        size_t size;
1798        unsigned int val;
1799        struct xhci_segment *seg;
1800        struct xhci_erst_entry *entry;
1801
1802        size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1803        erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1804                                           size, &erst->erst_dma_addr, flags);
1805        if (!erst->entries)
1806                return -ENOMEM;
1807
1808        erst->num_entries = evt_ring->num_segs;
1809
1810        seg = evt_ring->first_seg;
1811        for (val = 0; val < evt_ring->num_segs; val++) {
1812                entry = &erst->entries[val];
1813                entry->seg_addr = cpu_to_le64(seg->dma);
1814                entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1815                entry->rsvd = 0;
1816                seg = seg->next;
1817        }
1818
1819        return 0;
1820}
1821
1822void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1823{
1824        size_t size;
1825        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1826
1827        size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1828        if (erst->entries)
1829                dma_free_coherent(dev, size,
1830                                erst->entries,
1831                                erst->erst_dma_addr);
1832        erst->entries = NULL;
1833}
1834
1835void xhci_mem_cleanup(struct xhci_hcd *xhci)
1836{
1837        struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1838        int i, j, num_ports;
1839
1840        cancel_delayed_work_sync(&xhci->cmd_timer);
1841
1842        xhci_free_erst(xhci, &xhci->erst);
1843
1844        if (xhci->event_ring)
1845                xhci_ring_free(xhci, xhci->event_ring);
1846        xhci->event_ring = NULL;
1847        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1848
1849        if (xhci->lpm_command)
1850                xhci_free_command(xhci, xhci->lpm_command);
1851        xhci->lpm_command = NULL;
1852        if (xhci->cmd_ring)
1853                xhci_ring_free(xhci, xhci->cmd_ring);
1854        xhci->cmd_ring = NULL;
1855        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1856        xhci_cleanup_command_queue(xhci);
1857
1858        num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1859        for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1860                struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1861                for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1862                        struct list_head *ep = &bwt->interval_bw[j].endpoints;
1863                        while (!list_empty(ep))
1864                                list_del_init(ep->next);
1865                }
1866        }
1867
1868        for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1869                xhci_free_virt_devices_depth_first(xhci, i);
1870
1871        dma_pool_destroy(xhci->segment_pool);
1872        xhci->segment_pool = NULL;
1873        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1874
1875        dma_pool_destroy(xhci->device_pool);
1876        xhci->device_pool = NULL;
1877        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1878
1879        dma_pool_destroy(xhci->small_streams_pool);
1880        xhci->small_streams_pool = NULL;
1881        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1882                        "Freed small stream array pool");
1883
1884        dma_pool_destroy(xhci->medium_streams_pool);
1885        xhci->medium_streams_pool = NULL;
1886        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1887                        "Freed medium stream array pool");
1888
1889        if (xhci->dcbaa)
1890                dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1891                                xhci->dcbaa, xhci->dcbaa->dma);
1892        xhci->dcbaa = NULL;
1893
1894        scratchpad_free(xhci);
1895
1896        if (!xhci->rh_bw)
1897                goto no_bw;
1898
1899        for (i = 0; i < num_ports; i++) {
1900                struct xhci_tt_bw_info *tt, *n;
1901                list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1902                        list_del(&tt->tt_list);
1903                        kfree(tt);
1904                }
1905        }
1906
1907no_bw:
1908        xhci->cmd_ring_reserved_trbs = 0;
1909        xhci->usb2_rhub.num_ports = 0;
1910        xhci->usb3_rhub.num_ports = 0;
1911        xhci->num_active_eps = 0;
1912        kfree(xhci->usb2_rhub.ports);
1913        kfree(xhci->usb3_rhub.ports);
1914        kfree(xhci->hw_ports);
1915        kfree(xhci->rh_bw);
1916        kfree(xhci->ext_caps);
1917        for (i = 0; i < xhci->num_port_caps; i++)
1918                kfree(xhci->port_caps[i].psi);
1919        kfree(xhci->port_caps);
1920        xhci->num_port_caps = 0;
1921
1922        xhci->usb2_rhub.ports = NULL;
1923        xhci->usb3_rhub.ports = NULL;
1924        xhci->hw_ports = NULL;
1925        xhci->rh_bw = NULL;
1926        xhci->ext_caps = NULL;
1927        xhci->port_caps = NULL;
1928
1929        xhci->page_size = 0;
1930        xhci->page_shift = 0;
1931        xhci->usb2_rhub.bus_state.bus_suspended = 0;
1932        xhci->usb3_rhub.bus_state.bus_suspended = 0;
1933}
1934
1935static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1936                struct xhci_segment *input_seg,
1937                union xhci_trb *start_trb,
1938                union xhci_trb *end_trb,
1939                dma_addr_t input_dma,
1940                struct xhci_segment *result_seg,
1941                char *test_name, int test_number)
1942{
1943        unsigned long long start_dma;
1944        unsigned long long end_dma;
1945        struct xhci_segment *seg;
1946
1947        start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1948        end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1949
1950        seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1951        if (seg != result_seg) {
1952                xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1953                                test_name, test_number);
1954                xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1955                                "input DMA 0x%llx\n",
1956                                input_seg,
1957                                (unsigned long long) input_dma);
1958                xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1959                                "ending TRB %p (0x%llx DMA)\n",
1960                                start_trb, start_dma,
1961                                end_trb, end_dma);
1962                xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1963                                result_seg, seg);
1964                trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1965                          true);
1966                return -1;
1967        }
1968        return 0;
1969}
1970
1971/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1972static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1973{
1974        struct {
1975                dma_addr_t              input_dma;
1976                struct xhci_segment     *result_seg;
1977        } simple_test_vector [] = {
1978                /* A zeroed DMA field should fail */
1979                { 0, NULL },
1980                /* One TRB before the ring start should fail */
1981                { xhci->event_ring->first_seg->dma - 16, NULL },
1982                /* One byte before the ring start should fail */
1983                { xhci->event_ring->first_seg->dma - 1, NULL },
1984                /* Starting TRB should succeed */
1985                { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1986                /* Ending TRB should succeed */
1987                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1988                        xhci->event_ring->first_seg },
1989                /* One byte after the ring end should fail */
1990                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1991                /* One TRB after the ring end should fail */
1992                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1993                /* An address of all ones should fail */
1994                { (dma_addr_t) (~0), NULL },
1995        };
1996        struct {
1997                struct xhci_segment     *input_seg;
1998                union xhci_trb          *start_trb;
1999                union xhci_trb          *end_trb;
2000                dma_addr_t              input_dma;
2001                struct xhci_segment     *result_seg;
2002        } complex_test_vector [] = {
2003                /* Test feeding a valid DMA address from a different ring */
2004                {       .input_seg = xhci->event_ring->first_seg,
2005                        .start_trb = xhci->event_ring->first_seg->trbs,
2006                        .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2007                        .input_dma = xhci->cmd_ring->first_seg->dma,
2008                        .result_seg = NULL,
2009                },
2010                /* Test feeding a valid end TRB from a different ring */
2011                {       .input_seg = xhci->event_ring->first_seg,
2012                        .start_trb = xhci->event_ring->first_seg->trbs,
2013                        .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2014                        .input_dma = xhci->cmd_ring->first_seg->dma,
2015                        .result_seg = NULL,
2016                },
2017                /* Test feeding a valid start and end TRB from a different ring */
2018                {       .input_seg = xhci->event_ring->first_seg,
2019                        .start_trb = xhci->cmd_ring->first_seg->trbs,
2020                        .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2021                        .input_dma = xhci->cmd_ring->first_seg->dma,
2022                        .result_seg = NULL,
2023                },
2024                /* TRB in this ring, but after this TD */
2025                {       .input_seg = xhci->event_ring->first_seg,
2026                        .start_trb = &xhci->event_ring->first_seg->trbs[0],
2027                        .end_trb = &xhci->event_ring->first_seg->trbs[3],
2028                        .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2029                        .result_seg = NULL,
2030                },
2031                /* TRB in this ring, but before this TD */
2032                {       .input_seg = xhci->event_ring->first_seg,
2033                        .start_trb = &xhci->event_ring->first_seg->trbs[3],
2034                        .end_trb = &xhci->event_ring->first_seg->trbs[6],
2035                        .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2036                        .result_seg = NULL,
2037                },
2038                /* TRB in this ring, but after this wrapped TD */
2039                {       .input_seg = xhci->event_ring->first_seg,
2040                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2041                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
2042                        .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2043                        .result_seg = NULL,
2044                },
2045                /* TRB in this ring, but before this wrapped TD */
2046                {       .input_seg = xhci->event_ring->first_seg,
2047                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2048                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
2049                        .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2050                        .result_seg = NULL,
2051                },
2052                /* TRB not in this ring, and we have a wrapped TD */
2053                {       .input_seg = xhci->event_ring->first_seg,
2054                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2055                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
2056                        .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2057                        .result_seg = NULL,
2058                },
2059        };
2060
2061        unsigned int num_tests;
2062        int i, ret;
2063
2064        num_tests = ARRAY_SIZE(simple_test_vector);
2065        for (i = 0; i < num_tests; i++) {
2066                ret = xhci_test_trb_in_td(xhci,
2067                                xhci->event_ring->first_seg,
2068                                xhci->event_ring->first_seg->trbs,
2069                                &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2070                                simple_test_vector[i].input_dma,
2071                                simple_test_vector[i].result_seg,
2072                                "Simple", i);
2073                if (ret < 0)
2074                        return ret;
2075        }
2076
2077        num_tests = ARRAY_SIZE(complex_test_vector);
2078        for (i = 0; i < num_tests; i++) {
2079                ret = xhci_test_trb_in_td(xhci,
2080                                complex_test_vector[i].input_seg,
2081                                complex_test_vector[i].start_trb,
2082                                complex_test_vector[i].end_trb,
2083                                complex_test_vector[i].input_dma,
2084                                complex_test_vector[i].result_seg,
2085                                "Complex", i);
2086                if (ret < 0)
2087                        return ret;
2088        }
2089        xhci_dbg(xhci, "TRB math tests passed.\n");
2090        return 0;
2091}
2092
2093static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2094{
2095        u64 temp;
2096        dma_addr_t deq;
2097
2098        deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2099                        xhci->event_ring->dequeue);
2100        if (!deq)
2101                xhci_warn(xhci, "WARN something wrong with SW event ring "
2102                                "dequeue ptr.\n");
2103        /* Update HC event ring dequeue pointer */
2104        temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2105        temp &= ERST_PTR_MASK;
2106        /* Don't clear the EHB bit (which is RW1C) because
2107         * there might be more events to service.
2108         */
2109        temp &= ~ERST_EHB;
2110        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2111                        "// Write event ring dequeue pointer, "
2112                        "preserving EHB bit");
2113        xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2114                        &xhci->ir_set->erst_dequeue);
2115}
2116
2117static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2118                __le32 __iomem *addr, int max_caps)
2119{
2120        u32 temp, port_offset, port_count;
2121        int i;
2122        u8 major_revision, minor_revision;
2123        struct xhci_hub *rhub;
2124        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2125        struct xhci_port_cap *port_cap;
2126
2127        temp = readl(addr);
2128        major_revision = XHCI_EXT_PORT_MAJOR(temp);
2129        minor_revision = XHCI_EXT_PORT_MINOR(temp);
2130
2131        if (major_revision == 0x03) {
2132                rhub = &xhci->usb3_rhub;
2133                /*
2134                 * Some hosts incorrectly use sub-minor version for minor
2135                 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2136                 * for bcdUSB 0x310). Since there is no USB release with sub
2137                 * minor version 0x301 to 0x309, we can assume that they are
2138                 * incorrect and fix it here.
2139                 */
2140                if (minor_revision > 0x00 && minor_revision < 0x10)
2141                        minor_revision <<= 4;
2142        } else if (major_revision <= 0x02) {
2143                rhub = &xhci->usb2_rhub;
2144        } else {
2145                xhci_warn(xhci, "Ignoring unknown port speed, "
2146                                "Ext Cap %p, revision = 0x%x\n",
2147                                addr, major_revision);
2148                /* Ignoring port protocol we can't understand. FIXME */
2149                return;
2150        }
2151        rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2152
2153        if (rhub->min_rev < minor_revision)
2154                rhub->min_rev = minor_revision;
2155
2156        /* Port offset and count in the third dword, see section 7.2 */
2157        temp = readl(addr + 2);
2158        port_offset = XHCI_EXT_PORT_OFF(temp);
2159        port_count = XHCI_EXT_PORT_COUNT(temp);
2160        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2161                        "Ext Cap %p, port offset = %u, "
2162                        "count = %u, revision = 0x%x",
2163                        addr, port_offset, port_count, major_revision);
2164        /* Port count includes the current port offset */
2165        if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2166                /* WTF? "Valid values are ‘1’ to MaxPorts" */
2167                return;
2168
2169        port_cap = &xhci->port_caps[xhci->num_port_caps++];
2170        if (xhci->num_port_caps > max_caps)
2171                return;
2172
2173        port_cap->maj_rev = major_revision;
2174        port_cap->min_rev = minor_revision;
2175        port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2176
2177        if (port_cap->psi_count) {
2178                port_cap->psi = kcalloc_node(port_cap->psi_count,
2179                                             sizeof(*port_cap->psi),
2180                                             GFP_KERNEL, dev_to_node(dev));
2181                if (!port_cap->psi)
2182                        port_cap->psi_count = 0;
2183
2184                port_cap->psi_uid_count++;
2185                for (i = 0; i < port_cap->psi_count; i++) {
2186                        port_cap->psi[i] = readl(addr + 4 + i);
2187
2188                        /* count unique ID values, two consecutive entries can
2189                         * have the same ID if link is assymetric
2190                         */
2191                        if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2192                                  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2193                                port_cap->psi_uid_count++;
2194
2195                        xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2196                                  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2197                                  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2198                                  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2199                                  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2200                                  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2201                                  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2202                }
2203        }
2204        /* cache usb2 port capabilities */
2205        if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2206                xhci->ext_caps[xhci->num_ext_caps++] = temp;
2207
2208        if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2209                 (temp & XHCI_HLC)) {
2210                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2211                               "xHCI 1.0: support USB2 hardware lpm");
2212                xhci->hw_lpm_support = 1;
2213        }
2214
2215        port_offset--;
2216        for (i = port_offset; i < (port_offset + port_count); i++) {
2217                struct xhci_port *hw_port = &xhci->hw_ports[i];
2218                /* Duplicate entry.  Ignore the port if the revisions differ. */
2219                if (hw_port->rhub) {
2220                        xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2221                                        " port %u\n", addr, i);
2222                        xhci_warn(xhci, "Port was marked as USB %u, "
2223                                        "duplicated as USB %u\n",
2224                                        hw_port->rhub->maj_rev, major_revision);
2225                        /* Only adjust the roothub port counts if we haven't
2226                         * found a similar duplicate.
2227                         */
2228                        if (hw_port->rhub != rhub &&
2229                                 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2230                                hw_port->rhub->num_ports--;
2231                                hw_port->hcd_portnum = DUPLICATE_ENTRY;
2232                        }
2233                        continue;
2234                }
2235                hw_port->rhub = rhub;
2236                hw_port->port_cap = port_cap;
2237                rhub->num_ports++;
2238        }
2239        /* FIXME: Should we disable ports not in the Extended Capabilities? */
2240}
2241
2242static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2243                                        struct xhci_hub *rhub, gfp_t flags)
2244{
2245        int port_index = 0;
2246        int i;
2247        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2248
2249        if (!rhub->num_ports)
2250                return;
2251        rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2252                        flags, dev_to_node(dev));
2253        if (!rhub->ports)
2254                return;
2255
2256        for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2257                if (xhci->hw_ports[i].rhub != rhub ||
2258                    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2259                        continue;
2260                xhci->hw_ports[i].hcd_portnum = port_index;
2261                rhub->ports[port_index] = &xhci->hw_ports[i];
2262                port_index++;
2263                if (port_index == rhub->num_ports)
2264                        break;
2265        }
2266}
2267
2268/*
2269 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2270 * specify what speeds each port is supposed to be.  We can't count on the port
2271 * speed bits in the PORTSC register being correct until a device is connected,
2272 * but we need to set up the two fake roothubs with the correct number of USB
2273 * 3.0 and USB 2.0 ports at host controller initialization time.
2274 */
2275static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2276{
2277        void __iomem *base;
2278        u32 offset;
2279        unsigned int num_ports;
2280        int i, j;
2281        int cap_count = 0;
2282        u32 cap_start;
2283        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2284
2285        num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2286        xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2287                                flags, dev_to_node(dev));
2288        if (!xhci->hw_ports)
2289                return -ENOMEM;
2290
2291        for (i = 0; i < num_ports; i++) {
2292                xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2293                        NUM_PORT_REGS * i;
2294                xhci->hw_ports[i].hw_portnum = i;
2295        }
2296
2297        xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2298                                   dev_to_node(dev));
2299        if (!xhci->rh_bw)
2300                return -ENOMEM;
2301        for (i = 0; i < num_ports; i++) {
2302                struct xhci_interval_bw_table *bw_table;
2303
2304                INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2305                bw_table = &xhci->rh_bw[i].bw_table;
2306                for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2307                        INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2308        }
2309        base = &xhci->cap_regs->hc_capbase;
2310
2311        cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2312        if (!cap_start) {
2313                xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2314                return -ENODEV;
2315        }
2316
2317        offset = cap_start;
2318        /* count extended protocol capability entries for later caching */
2319        while (offset) {
2320                cap_count++;
2321                offset = xhci_find_next_ext_cap(base, offset,
2322                                                      XHCI_EXT_CAPS_PROTOCOL);
2323        }
2324
2325        xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2326                                flags, dev_to_node(dev));
2327        if (!xhci->ext_caps)
2328                return -ENOMEM;
2329
2330        xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2331                                flags, dev_to_node(dev));
2332        if (!xhci->port_caps)
2333                return -ENOMEM;
2334
2335        offset = cap_start;
2336
2337        while (offset) {
2338                xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2339                if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2340                    num_ports)
2341                        break;
2342                offset = xhci_find_next_ext_cap(base, offset,
2343                                                XHCI_EXT_CAPS_PROTOCOL);
2344        }
2345        if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2346                xhci_warn(xhci, "No ports on the roothubs?\n");
2347                return -ENODEV;
2348        }
2349        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2350                       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2351                       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2352
2353        /* Place limits on the number of roothub ports so that the hub
2354         * descriptors aren't longer than the USB core will allocate.
2355         */
2356        if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2357                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2358                                "Limiting USB 3.0 roothub ports to %u.",
2359                                USB_SS_MAXPORTS);
2360                xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2361        }
2362        if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2363                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2364                                "Limiting USB 2.0 roothub ports to %u.",
2365                                USB_MAXCHILDREN);
2366                xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2367        }
2368
2369        /*
2370         * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2371         * Not sure how the USB core will handle a hub with no ports...
2372         */
2373
2374        xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2375        xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2376
2377        return 0;
2378}
2379
2380int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2381{
2382        dma_addr_t      dma;
2383        struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2384        unsigned int    val, val2;
2385        u64             val_64;
2386        u32             page_size, temp;
2387        int             i, ret;
2388
2389        INIT_LIST_HEAD(&xhci->cmd_list);
2390
2391        /* init command timeout work */
2392        INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2393        init_completion(&xhci->cmd_ring_stop_completion);
2394
2395        page_size = readl(&xhci->op_regs->page_size);
2396        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2397                        "Supported page size register = 0x%x", page_size);
2398        for (i = 0; i < 16; i++) {
2399                if ((0x1 & page_size) != 0)
2400                        break;
2401                page_size = page_size >> 1;
2402        }
2403        if (i < 16)
2404                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2405                        "Supported page size of %iK", (1 << (i+12)) / 1024);
2406        else
2407                xhci_warn(xhci, "WARN: no supported page size\n");
2408        /* Use 4K pages, since that's common and the minimum the HC supports */
2409        xhci->page_shift = 12;
2410        xhci->page_size = 1 << xhci->page_shift;
2411        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412                        "HCD page size set to %iK", xhci->page_size / 1024);
2413
2414        /*
2415         * Program the Number of Device Slots Enabled field in the CONFIG
2416         * register with the max value of slots the HC can handle.
2417         */
2418        val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2419        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420                        "// xHC can handle at most %d device slots.", val);
2421        val2 = readl(&xhci->op_regs->config_reg);
2422        val |= (val2 & ~HCS_SLOTS_MASK);
2423        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2424                        "// Setting Max device slots reg = 0x%x.", val);
2425        writel(val, &xhci->op_regs->config_reg);
2426
2427        /*
2428         * xHCI section 5.4.6 - doorbell array must be
2429         * "physically contiguous and 64-byte (cache line) aligned".
2430         */
2431        xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2432                        flags);
2433        if (!xhci->dcbaa)
2434                goto fail;
2435        xhci->dcbaa->dma = dma;
2436        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2437                        "// Device context base array address = 0x%llx (DMA), %p (virt)",
2438                        (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2439        xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2440
2441        /*
2442         * Initialize the ring segment pool.  The ring must be a contiguous
2443         * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2444         * however, the command ring segment needs 64-byte aligned segments
2445         * and our use of dma addresses in the trb_address_map radix tree needs
2446         * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2447         */
2448        xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2449                        TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2450
2451        /* See Table 46 and Note on Figure 55 */
2452        xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2453                        2112, 64, xhci->page_size);
2454        if (!xhci->segment_pool || !xhci->device_pool)
2455                goto fail;
2456
2457        /* Linear stream context arrays don't have any boundary restrictions,
2458         * and only need to be 16-byte aligned.
2459         */
2460        xhci->small_streams_pool =
2461                dma_pool_create("xHCI 256 byte stream ctx arrays",
2462                        dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2463        xhci->medium_streams_pool =
2464                dma_pool_create("xHCI 1KB stream ctx arrays",
2465                        dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2466        /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2467         * will be allocated with dma_alloc_coherent()
2468         */
2469
2470        if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2471                goto fail;
2472
2473        /* Set up the command ring to have one segments for now. */
2474        xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2475        if (!xhci->cmd_ring)
2476                goto fail;
2477        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2478                        "Allocated command ring at %p", xhci->cmd_ring);
2479        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2480                        (unsigned long long)xhci->cmd_ring->first_seg->dma);
2481
2482        /* Set the address in the Command Ring Control register */
2483        val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2484        val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2485                (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2486                xhci->cmd_ring->cycle_state;
2487        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2488                        "// Setting command ring address to 0x%016llx", val_64);
2489        xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2490
2491        xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2492        if (!xhci->lpm_command)
2493                goto fail;
2494
2495        /* Reserve one command ring TRB for disabling LPM.
2496         * Since the USB core grabs the shared usb_bus bandwidth mutex before
2497         * disabling LPM, we only need to reserve one TRB for all devices.
2498         */
2499        xhci->cmd_ring_reserved_trbs++;
2500
2501        val = readl(&xhci->cap_regs->db_off);
2502        val &= DBOFF_MASK;
2503        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2504                        "// Doorbell array is located at offset 0x%x"
2505                        " from cap regs base addr", val);
2506        xhci->dba = (void __iomem *) xhci->cap_regs + val;
2507        /* Set ir_set to interrupt register set 0 */
2508        xhci->ir_set = &xhci->run_regs->ir_set[0];
2509
2510        /*
2511         * Event ring setup: Allocate a normal ring, but also setup
2512         * the event ring segment table (ERST).  Section 4.9.3.
2513         */
2514        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2515        xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2516                                        0, flags);
2517        if (!xhci->event_ring)
2518                goto fail;
2519        if (xhci_check_trb_in_td_math(xhci) < 0)
2520                goto fail;
2521
2522        ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2523        if (ret)
2524                goto fail;
2525
2526        /* set ERST count with the number of entries in the segment table */
2527        val = readl(&xhci->ir_set->erst_size);
2528        val &= ERST_SIZE_MASK;
2529        val |= ERST_NUM_SEGS;
2530        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2531                        "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2532                        val);
2533        writel(val, &xhci->ir_set->erst_size);
2534
2535        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2536                        "// Set ERST entries to point to event ring.");
2537        /* set the segment table base address */
2538        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2539                        "// Set ERST base address for ir_set 0 = 0x%llx",
2540                        (unsigned long long)xhci->erst.erst_dma_addr);
2541        val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2542        val_64 &= ERST_PTR_MASK;
2543        val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2544        xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2545
2546        /* Set the event ring dequeue address */
2547        xhci_set_hc_event_deq(xhci);
2548        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2549                        "Wrote ERST address to ir_set 0.");
2550
2551        xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2552
2553        /*
2554         * XXX: Might need to set the Interrupter Moderation Register to
2555         * something other than the default (~1ms minimum between interrupts).
2556         * See section 5.5.1.2.
2557         */
2558        for (i = 0; i < MAX_HC_SLOTS; i++)
2559                xhci->devs[i] = NULL;
2560        for (i = 0; i < USB_MAXCHILDREN; i++) {
2561                xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2562                xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2563                /* Only the USB 2.0 completions will ever be used. */
2564                init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2565                init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2566        }
2567
2568        if (scratchpad_alloc(xhci, flags))
2569                goto fail;
2570        if (xhci_setup_port_arrays(xhci, flags))
2571                goto fail;
2572
2573        /* Enable USB 3.0 device notifications for function remote wake, which
2574         * is necessary for allowing USB 3.0 devices to do remote wakeup from
2575         * U3 (device suspend).
2576         */
2577        temp = readl(&xhci->op_regs->dev_notification);
2578        temp &= ~DEV_NOTE_MASK;
2579        temp |= DEV_NOTE_FWAKE;
2580        writel(temp, &xhci->op_regs->dev_notification);
2581
2582        return 0;
2583
2584fail:
2585        xhci_halt(xhci);
2586        xhci_reset(xhci);
2587        xhci_mem_cleanup(xhci);
2588        return -ENOMEM;
2589}
2590