linux/drivers/usb/host/xhci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/pci.h>
  12#include <linux/iopoll.h>
  13#include <linux/irq.h>
  14#include <linux/log2.h>
  15#include <linux/module.h>
  16#include <linux/moduleparam.h>
  17#include <linux/slab.h>
  18#include <linux/dmi.h>
  19#include <linux/dma-mapping.h>
  20
  21#include "xhci.h"
  22#include "xhci-trace.h"
  23#include "xhci-debugfs.h"
  24#include "xhci-dbgcap.h"
  25
  26#define DRIVER_AUTHOR "Sarah Sharp"
  27#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  28
  29#define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  30
  31/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  32static int link_quirk;
  33module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  34MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  35
  36static unsigned long long quirks;
  37module_param(quirks, ullong, S_IRUGO);
  38MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  39
  40static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
  41{
  42        struct xhci_segment *seg = ring->first_seg;
  43
  44        if (!td || !td->start_seg)
  45                return false;
  46        do {
  47                if (seg == td->start_seg)
  48                        return true;
  49                seg = seg->next;
  50        } while (seg && seg != ring->first_seg);
  51
  52        return false;
  53}
  54
  55/*
  56 * xhci_handshake - spin reading hc until handshake completes or fails
  57 * @ptr: address of hc register to be read
  58 * @mask: bits to look at in result of read
  59 * @done: value of those bits when handshake succeeds
  60 * @usec: timeout in microseconds
  61 *
  62 * Returns negative errno, or zero on success
  63 *
  64 * Success happens when the "mask" bits have the specified value (hardware
  65 * handshake done).  There are two failure modes:  "usec" have passed (major
  66 * hardware flakeout), or the register reads as all-ones (hardware removed).
  67 */
  68int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
  69{
  70        u32     result;
  71        int     ret;
  72
  73        ret = readl_poll_timeout_atomic(ptr, result,
  74                                        (result & mask) == done ||
  75                                        result == U32_MAX,
  76                                        1, usec);
  77        if (result == U32_MAX)          /* card removed */
  78                return -ENODEV;
  79
  80        return ret;
  81}
  82
  83/*
  84 * Disable interrupts and begin the xHCI halting process.
  85 */
  86void xhci_quiesce(struct xhci_hcd *xhci)
  87{
  88        u32 halted;
  89        u32 cmd;
  90        u32 mask;
  91
  92        mask = ~(XHCI_IRQS);
  93        halted = readl(&xhci->op_regs->status) & STS_HALT;
  94        if (!halted)
  95                mask &= ~CMD_RUN;
  96
  97        cmd = readl(&xhci->op_regs->command);
  98        cmd &= mask;
  99        writel(cmd, &xhci->op_regs->command);
 100}
 101
 102/*
 103 * Force HC into halt state.
 104 *
 105 * Disable any IRQs and clear the run/stop bit.
 106 * HC will complete any current and actively pipelined transactions, and
 107 * should halt within 16 ms of the run/stop bit being cleared.
 108 * Read HC Halted bit in the status register to see when the HC is finished.
 109 */
 110int xhci_halt(struct xhci_hcd *xhci)
 111{
 112        int ret;
 113        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 114        xhci_quiesce(xhci);
 115
 116        ret = xhci_handshake(&xhci->op_regs->status,
 117                        STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 118        if (ret) {
 119                xhci_warn(xhci, "Host halt failed, %d\n", ret);
 120                return ret;
 121        }
 122        xhci->xhc_state |= XHCI_STATE_HALTED;
 123        xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 124        return ret;
 125}
 126
 127/*
 128 * Set the run bit and wait for the host to be running.
 129 */
 130int xhci_start(struct xhci_hcd *xhci)
 131{
 132        u32 temp;
 133        int ret;
 134
 135        temp = readl(&xhci->op_regs->command);
 136        temp |= (CMD_RUN);
 137        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 138                        temp);
 139        writel(temp, &xhci->op_regs->command);
 140
 141        /*
 142         * Wait for the HCHalted Status bit to be 0 to indicate the host is
 143         * running.
 144         */
 145        ret = xhci_handshake(&xhci->op_regs->status,
 146                        STS_HALT, 0, XHCI_MAX_HALT_USEC);
 147        if (ret == -ETIMEDOUT)
 148                xhci_err(xhci, "Host took too long to start, "
 149                                "waited %u microseconds.\n",
 150                                XHCI_MAX_HALT_USEC);
 151        if (!ret)
 152                /* clear state flags. Including dying, halted or removing */
 153                xhci->xhc_state = 0;
 154
 155        return ret;
 156}
 157
 158/*
 159 * Reset a halted HC.
 160 *
 161 * This resets pipelines, timers, counters, state machines, etc.
 162 * Transactions will be terminated immediately, and operational registers
 163 * will be set to their defaults.
 164 */
 165int xhci_reset(struct xhci_hcd *xhci)
 166{
 167        u32 command;
 168        u32 state;
 169        int ret;
 170
 171        state = readl(&xhci->op_regs->status);
 172
 173        if (state == ~(u32)0) {
 174                xhci_warn(xhci, "Host not accessible, reset failed.\n");
 175                return -ENODEV;
 176        }
 177
 178        if ((state & STS_HALT) == 0) {
 179                xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 180                return 0;
 181        }
 182
 183        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 184        command = readl(&xhci->op_regs->command);
 185        command |= CMD_RESET;
 186        writel(command, &xhci->op_regs->command);
 187
 188        /* Existing Intel xHCI controllers require a delay of 1 mS,
 189         * after setting the CMD_RESET bit, and before accessing any
 190         * HC registers. This allows the HC to complete the
 191         * reset operation and be ready for HC register access.
 192         * Without this delay, the subsequent HC register access,
 193         * may result in a system hang very rarely.
 194         */
 195        if (xhci->quirks & XHCI_INTEL_HOST)
 196                udelay(1000);
 197
 198        ret = xhci_handshake(&xhci->op_regs->command,
 199                        CMD_RESET, 0, 10 * 1000 * 1000);
 200        if (ret)
 201                return ret;
 202
 203        if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
 204                usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
 205
 206        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 207                         "Wait for controller to be ready for doorbell rings");
 208        /*
 209         * xHCI cannot write to any doorbells or operational registers other
 210         * than status until the "Controller Not Ready" flag is cleared.
 211         */
 212        ret = xhci_handshake(&xhci->op_regs->status,
 213                        STS_CNR, 0, 10 * 1000 * 1000);
 214
 215        xhci->usb2_rhub.bus_state.port_c_suspend = 0;
 216        xhci->usb2_rhub.bus_state.suspended_ports = 0;
 217        xhci->usb2_rhub.bus_state.resuming_ports = 0;
 218        xhci->usb3_rhub.bus_state.port_c_suspend = 0;
 219        xhci->usb3_rhub.bus_state.suspended_ports = 0;
 220        xhci->usb3_rhub.bus_state.resuming_ports = 0;
 221
 222        return ret;
 223}
 224
 225static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
 226{
 227        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 228        int err, i;
 229        u64 val;
 230        u32 intrs;
 231
 232        /*
 233         * Some Renesas controllers get into a weird state if they are
 234         * reset while programmed with 64bit addresses (they will preserve
 235         * the top half of the address in internal, non visible
 236         * registers). You end up with half the address coming from the
 237         * kernel, and the other half coming from the firmware. Also,
 238         * changing the programming leads to extra accesses even if the
 239         * controller is supposed to be halted. The controller ends up with
 240         * a fatal fault, and is then ripe for being properly reset.
 241         *
 242         * Special care is taken to only apply this if the device is behind
 243         * an iommu. Doing anything when there is no iommu is definitely
 244         * unsafe...
 245         */
 246        if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
 247                return;
 248
 249        xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
 250
 251        /* Clear HSEIE so that faults do not get signaled */
 252        val = readl(&xhci->op_regs->command);
 253        val &= ~CMD_HSEIE;
 254        writel(val, &xhci->op_regs->command);
 255
 256        /* Clear HSE (aka FATAL) */
 257        val = readl(&xhci->op_regs->status);
 258        val |= STS_FATAL;
 259        writel(val, &xhci->op_regs->status);
 260
 261        /* Now zero the registers, and brace for impact */
 262        val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 263        if (upper_32_bits(val))
 264                xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
 265        val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 266        if (upper_32_bits(val))
 267                xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 268
 269        intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
 270                      ARRAY_SIZE(xhci->run_regs->ir_set));
 271
 272        for (i = 0; i < intrs; i++) {
 273                struct xhci_intr_reg __iomem *ir;
 274
 275                ir = &xhci->run_regs->ir_set[i];
 276                val = xhci_read_64(xhci, &ir->erst_base);
 277                if (upper_32_bits(val))
 278                        xhci_write_64(xhci, 0, &ir->erst_base);
 279                val= xhci_read_64(xhci, &ir->erst_dequeue);
 280                if (upper_32_bits(val))
 281                        xhci_write_64(xhci, 0, &ir->erst_dequeue);
 282        }
 283
 284        /* Wait for the fault to appear. It will be cleared on reset */
 285        err = xhci_handshake(&xhci->op_regs->status,
 286                             STS_FATAL, STS_FATAL,
 287                             XHCI_MAX_HALT_USEC);
 288        if (!err)
 289                xhci_info(xhci, "Fault detected\n");
 290}
 291
 292#ifdef CONFIG_USB_PCI
 293/*
 294 * Set up MSI
 295 */
 296static int xhci_setup_msi(struct xhci_hcd *xhci)
 297{
 298        int ret;
 299        /*
 300         * TODO:Check with MSI Soc for sysdev
 301         */
 302        struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 303
 304        ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
 305        if (ret < 0) {
 306                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 307                                "failed to allocate MSI entry");
 308                return ret;
 309        }
 310
 311        ret = request_irq(pdev->irq, xhci_msi_irq,
 312                                0, "xhci_hcd", xhci_to_hcd(xhci));
 313        if (ret) {
 314                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 315                                "disable MSI interrupt");
 316                pci_free_irq_vectors(pdev);
 317        }
 318
 319        return ret;
 320}
 321
 322/*
 323 * Set up MSI-X
 324 */
 325static int xhci_setup_msix(struct xhci_hcd *xhci)
 326{
 327        int i, ret = 0;
 328        struct usb_hcd *hcd = xhci_to_hcd(xhci);
 329        struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 330
 331        /*
 332         * calculate number of msi-x vectors supported.
 333         * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 334         *   with max number of interrupters based on the xhci HCSPARAMS1.
 335         * - num_online_cpus: maximum msi-x vectors per CPUs core.
 336         *   Add additional 1 vector to ensure always available interrupt.
 337         */
 338        xhci->msix_count = min(num_online_cpus() + 1,
 339                                HCS_MAX_INTRS(xhci->hcs_params1));
 340
 341        ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
 342                        PCI_IRQ_MSIX);
 343        if (ret < 0) {
 344                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 345                                "Failed to enable MSI-X");
 346                return ret;
 347        }
 348
 349        for (i = 0; i < xhci->msix_count; i++) {
 350                ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
 351                                "xhci_hcd", xhci_to_hcd(xhci));
 352                if (ret)
 353                        goto disable_msix;
 354        }
 355
 356        hcd->msix_enabled = 1;
 357        return ret;
 358
 359disable_msix:
 360        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 361        while (--i >= 0)
 362                free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 363        pci_free_irq_vectors(pdev);
 364        return ret;
 365}
 366
 367/* Free any IRQs and disable MSI-X */
 368static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 369{
 370        struct usb_hcd *hcd = xhci_to_hcd(xhci);
 371        struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 372
 373        if (xhci->quirks & XHCI_PLAT)
 374                return;
 375
 376        /* return if using legacy interrupt */
 377        if (hcd->irq > 0)
 378                return;
 379
 380        if (hcd->msix_enabled) {
 381                int i;
 382
 383                for (i = 0; i < xhci->msix_count; i++)
 384                        free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 385        } else {
 386                free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
 387        }
 388
 389        pci_free_irq_vectors(pdev);
 390        hcd->msix_enabled = 0;
 391}
 392
 393static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 394{
 395        struct usb_hcd *hcd = xhci_to_hcd(xhci);
 396
 397        if (hcd->msix_enabled) {
 398                struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 399                int i;
 400
 401                for (i = 0; i < xhci->msix_count; i++)
 402                        synchronize_irq(pci_irq_vector(pdev, i));
 403        }
 404}
 405
 406static int xhci_try_enable_msi(struct usb_hcd *hcd)
 407{
 408        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 409        struct pci_dev  *pdev;
 410        int ret;
 411
 412        /* The xhci platform device has set up IRQs through usb_add_hcd. */
 413        if (xhci->quirks & XHCI_PLAT)
 414                return 0;
 415
 416        pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 417        /*
 418         * Some Fresco Logic host controllers advertise MSI, but fail to
 419         * generate interrupts.  Don't even try to enable MSI.
 420         */
 421        if (xhci->quirks & XHCI_BROKEN_MSI)
 422                goto legacy_irq;
 423
 424        /* unregister the legacy interrupt */
 425        if (hcd->irq)
 426                free_irq(hcd->irq, hcd);
 427        hcd->irq = 0;
 428
 429        ret = xhci_setup_msix(xhci);
 430        if (ret)
 431                /* fall back to msi*/
 432                ret = xhci_setup_msi(xhci);
 433
 434        if (!ret) {
 435                hcd->msi_enabled = 1;
 436                return 0;
 437        }
 438
 439        if (!pdev->irq) {
 440                xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 441                return -EINVAL;
 442        }
 443
 444 legacy_irq:
 445        if (!strlen(hcd->irq_descr))
 446                snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 447                         hcd->driver->description, hcd->self.busnum);
 448
 449        /* fall back to legacy interrupt*/
 450        ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 451                        hcd->irq_descr, hcd);
 452        if (ret) {
 453                xhci_err(xhci, "request interrupt %d failed\n",
 454                                pdev->irq);
 455                return ret;
 456        }
 457        hcd->irq = pdev->irq;
 458        return 0;
 459}
 460
 461#else
 462
 463static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 464{
 465        return 0;
 466}
 467
 468static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 469{
 470}
 471
 472static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 473{
 474}
 475
 476#endif
 477
 478static void compliance_mode_recovery(struct timer_list *t)
 479{
 480        struct xhci_hcd *xhci;
 481        struct usb_hcd *hcd;
 482        struct xhci_hub *rhub;
 483        u32 temp;
 484        int i;
 485
 486        xhci = from_timer(xhci, t, comp_mode_recovery_timer);
 487        rhub = &xhci->usb3_rhub;
 488
 489        for (i = 0; i < rhub->num_ports; i++) {
 490                temp = readl(rhub->ports[i]->addr);
 491                if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 492                        /*
 493                         * Compliance Mode Detected. Letting USB Core
 494                         * handle the Warm Reset
 495                         */
 496                        xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 497                                        "Compliance mode detected->port %d",
 498                                        i + 1);
 499                        xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 500                                        "Attempting compliance mode recovery");
 501                        hcd = xhci->shared_hcd;
 502
 503                        if (hcd->state == HC_STATE_SUSPENDED)
 504                                usb_hcd_resume_root_hub(hcd);
 505
 506                        usb_hcd_poll_rh_status(hcd);
 507                }
 508        }
 509
 510        if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
 511                mod_timer(&xhci->comp_mode_recovery_timer,
 512                        jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 513}
 514
 515/*
 516 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 517 * that causes ports behind that hardware to enter compliance mode sometimes.
 518 * The quirk creates a timer that polls every 2 seconds the link state of
 519 * each host controller's port and recovers it by issuing a Warm reset
 520 * if Compliance mode is detected, otherwise the port will become "dead" (no
 521 * device connections or disconnections will be detected anymore). Becasue no
 522 * status event is generated when entering compliance mode (per xhci spec),
 523 * this quirk is needed on systems that have the failing hardware installed.
 524 */
 525static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 526{
 527        xhci->port_status_u0 = 0;
 528        timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
 529                    0);
 530        xhci->comp_mode_recovery_timer.expires = jiffies +
 531                        msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 532
 533        add_timer(&xhci->comp_mode_recovery_timer);
 534        xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 535                        "Compliance mode recovery timer initialized");
 536}
 537
 538/*
 539 * This function identifies the systems that have installed the SN65LVPE502CP
 540 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 541 * Systems:
 542 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 543 */
 544static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 545{
 546        const char *dmi_product_name, *dmi_sys_vendor;
 547
 548        dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 549        dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 550        if (!dmi_product_name || !dmi_sys_vendor)
 551                return false;
 552
 553        if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 554                return false;
 555
 556        if (strstr(dmi_product_name, "Z420") ||
 557                        strstr(dmi_product_name, "Z620") ||
 558                        strstr(dmi_product_name, "Z820") ||
 559                        strstr(dmi_product_name, "Z1 Workstation"))
 560                return true;
 561
 562        return false;
 563}
 564
 565static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 566{
 567        return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
 568}
 569
 570
 571/*
 572 * Initialize memory for HCD and xHC (one-time init).
 573 *
 574 * Program the PAGESIZE register, initialize the device context array, create
 575 * device contexts (?), set up a command ring segment (or two?), create event
 576 * ring (one for now).
 577 */
 578static int xhci_init(struct usb_hcd *hcd)
 579{
 580        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 581        int retval = 0;
 582
 583        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 584        spin_lock_init(&xhci->lock);
 585        if (xhci->hci_version == 0x95 && link_quirk) {
 586                xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 587                                "QUIRK: Not clearing Link TRB chain bits.");
 588                xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 589        } else {
 590                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 591                                "xHCI doesn't need link TRB QUIRK");
 592        }
 593        retval = xhci_mem_init(xhci, GFP_KERNEL);
 594        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 595
 596        /* Initializing Compliance Mode Recovery Data If Needed */
 597        if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 598                xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 599                compliance_mode_recovery_timer_init(xhci);
 600        }
 601
 602        return retval;
 603}
 604
 605/*-------------------------------------------------------------------------*/
 606
 607
 608static int xhci_run_finished(struct xhci_hcd *xhci)
 609{
 610        if (xhci_start(xhci)) {
 611                xhci_halt(xhci);
 612                return -ENODEV;
 613        }
 614        xhci->shared_hcd->state = HC_STATE_RUNNING;
 615        xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 616
 617        if (xhci->quirks & XHCI_NEC_HOST)
 618                xhci_ring_cmd_db(xhci);
 619
 620        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 621                        "Finished xhci_run for USB3 roothub");
 622        return 0;
 623}
 624
 625/*
 626 * Start the HC after it was halted.
 627 *
 628 * This function is called by the USB core when the HC driver is added.
 629 * Its opposite is xhci_stop().
 630 *
 631 * xhci_init() must be called once before this function can be called.
 632 * Reset the HC, enable device slot contexts, program DCBAAP, and
 633 * set command ring pointer and event ring pointer.
 634 *
 635 * Setup MSI-X vectors and enable interrupts.
 636 */
 637int xhci_run(struct usb_hcd *hcd)
 638{
 639        u32 temp;
 640        u64 temp_64;
 641        int ret;
 642        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 643
 644        /* Start the xHCI host controller running only after the USB 2.0 roothub
 645         * is setup.
 646         */
 647
 648        hcd->uses_new_polling = 1;
 649        if (!usb_hcd_is_primary_hcd(hcd))
 650                return xhci_run_finished(xhci);
 651
 652        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 653
 654        ret = xhci_try_enable_msi(hcd);
 655        if (ret)
 656                return ret;
 657
 658        temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 659        temp_64 &= ~ERST_PTR_MASK;
 660        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 661                        "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 662
 663        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 664                        "// Set the interrupt modulation register");
 665        temp = readl(&xhci->ir_set->irq_control);
 666        temp &= ~ER_IRQ_INTERVAL_MASK;
 667        temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
 668        writel(temp, &xhci->ir_set->irq_control);
 669
 670        /* Set the HCD state before we enable the irqs */
 671        temp = readl(&xhci->op_regs->command);
 672        temp |= (CMD_EIE);
 673        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 674                        "// Enable interrupts, cmd = 0x%x.", temp);
 675        writel(temp, &xhci->op_regs->command);
 676
 677        temp = readl(&xhci->ir_set->irq_pending);
 678        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 679                        "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
 680                        xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 681        writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 682
 683        if (xhci->quirks & XHCI_NEC_HOST) {
 684                struct xhci_command *command;
 685
 686                command = xhci_alloc_command(xhci, false, GFP_KERNEL);
 687                if (!command)
 688                        return -ENOMEM;
 689
 690                ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 691                                TRB_TYPE(TRB_NEC_GET_FW));
 692                if (ret)
 693                        xhci_free_command(xhci, command);
 694        }
 695        set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
 696        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 697                        "Finished xhci_run for USB2 roothub");
 698
 699        xhci_dbc_init(xhci);
 700
 701        xhci_debugfs_init(xhci);
 702
 703        return 0;
 704}
 705EXPORT_SYMBOL_GPL(xhci_run);
 706
 707/*
 708 * Stop xHCI driver.
 709 *
 710 * This function is called by the USB core when the HC driver is removed.
 711 * Its opposite is xhci_run().
 712 *
 713 * Disable device contexts, disable IRQs, and quiesce the HC.
 714 * Reset the HC, finish any completed transactions, and cleanup memory.
 715 */
 716static void xhci_stop(struct usb_hcd *hcd)
 717{
 718        u32 temp;
 719        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 720
 721        mutex_lock(&xhci->mutex);
 722
 723        /* Only halt host and free memory after both hcds are removed */
 724        if (!usb_hcd_is_primary_hcd(hcd)) {
 725                mutex_unlock(&xhci->mutex);
 726                return;
 727        }
 728
 729        xhci_dbc_exit(xhci);
 730
 731        spin_lock_irq(&xhci->lock);
 732        xhci->xhc_state |= XHCI_STATE_HALTED;
 733        xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 734        xhci_halt(xhci);
 735        xhci_reset(xhci);
 736        spin_unlock_irq(&xhci->lock);
 737
 738        xhci_cleanup_msix(xhci);
 739
 740        /* Deleting Compliance Mode Recovery Timer */
 741        if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 742                        (!(xhci_all_ports_seen_u0(xhci)))) {
 743                del_timer_sync(&xhci->comp_mode_recovery_timer);
 744                xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 745                                "%s: compliance mode recovery timer deleted",
 746                                __func__);
 747        }
 748
 749        if (xhci->quirks & XHCI_AMD_PLL_FIX)
 750                usb_amd_dev_put();
 751
 752        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 753                        "// Disabling event ring interrupts");
 754        temp = readl(&xhci->op_regs->status);
 755        writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
 756        temp = readl(&xhci->ir_set->irq_pending);
 757        writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 758
 759        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 760        xhci_mem_cleanup(xhci);
 761        xhci_debugfs_exit(xhci);
 762        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 763                        "xhci_stop completed - status = %x",
 764                        readl(&xhci->op_regs->status));
 765        mutex_unlock(&xhci->mutex);
 766}
 767
 768/*
 769 * Shutdown HC (not bus-specific)
 770 *
 771 * This is called when the machine is rebooting or halting.  We assume that the
 772 * machine will be powered off, and the HC's internal state will be reset.
 773 * Don't bother to free memory.
 774 *
 775 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 776 */
 777void xhci_shutdown(struct usb_hcd *hcd)
 778{
 779        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 780
 781        if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 782                usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
 783
 784        spin_lock_irq(&xhci->lock);
 785        xhci_halt(xhci);
 786        /* Workaround for spurious wakeups at shutdown with HSW */
 787        if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 788                xhci_reset(xhci);
 789        spin_unlock_irq(&xhci->lock);
 790
 791        xhci_cleanup_msix(xhci);
 792
 793        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 794                        "xhci_shutdown completed - status = %x",
 795                        readl(&xhci->op_regs->status));
 796}
 797EXPORT_SYMBOL_GPL(xhci_shutdown);
 798
 799#ifdef CONFIG_PM
 800static void xhci_save_registers(struct xhci_hcd *xhci)
 801{
 802        xhci->s3.command = readl(&xhci->op_regs->command);
 803        xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 804        xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 805        xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 806        xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 807        xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 808        xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 809        xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 810        xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 811}
 812
 813static void xhci_restore_registers(struct xhci_hcd *xhci)
 814{
 815        writel(xhci->s3.command, &xhci->op_regs->command);
 816        writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 817        xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 818        writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 819        writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 820        xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 821        xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 822        writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 823        writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 824}
 825
 826static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 827{
 828        u64     val_64;
 829
 830        /* step 2: initialize command ring buffer */
 831        val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 832        val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 833                (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 834                                      xhci->cmd_ring->dequeue) &
 835                 (u64) ~CMD_RING_RSVD_BITS) |
 836                xhci->cmd_ring->cycle_state;
 837        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 838                        "// Setting command ring address to 0x%llx",
 839                        (long unsigned long) val_64);
 840        xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 841}
 842
 843/*
 844 * The whole command ring must be cleared to zero when we suspend the host.
 845 *
 846 * The host doesn't save the command ring pointer in the suspend well, so we
 847 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 848 * aligned, because of the reserved bits in the command ring dequeue pointer
 849 * register.  Therefore, we can't just set the dequeue pointer back in the
 850 * middle of the ring (TRBs are 16-byte aligned).
 851 */
 852static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 853{
 854        struct xhci_ring *ring;
 855        struct xhci_segment *seg;
 856
 857        ring = xhci->cmd_ring;
 858        seg = ring->deq_seg;
 859        do {
 860                memset(seg->trbs, 0,
 861                        sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 862                seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 863                        cpu_to_le32(~TRB_CYCLE);
 864                seg = seg->next;
 865        } while (seg != ring->deq_seg);
 866
 867        /* Reset the software enqueue and dequeue pointers */
 868        ring->deq_seg = ring->first_seg;
 869        ring->dequeue = ring->first_seg->trbs;
 870        ring->enq_seg = ring->deq_seg;
 871        ring->enqueue = ring->dequeue;
 872
 873        ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 874        /*
 875         * Ring is now zeroed, so the HW should look for change of ownership
 876         * when the cycle bit is set to 1.
 877         */
 878        ring->cycle_state = 1;
 879
 880        /*
 881         * Reset the hardware dequeue pointer.
 882         * Yes, this will need to be re-written after resume, but we're paranoid
 883         * and want to make sure the hardware doesn't access bogus memory
 884         * because, say, the BIOS or an SMI started the host without changing
 885         * the command ring pointers.
 886         */
 887        xhci_set_cmd_ring_deq(xhci);
 888}
 889
 890/*
 891 * Disable port wake bits if do_wakeup is not set.
 892 *
 893 * Also clear a possible internal port wake state left hanging for ports that
 894 * detected termination but never successfully enumerated (trained to 0U).
 895 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
 896 * at enumeration clears this wake, force one here as well for unconnected ports
 897 */
 898
 899static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
 900                                       struct xhci_hub *rhub,
 901                                       bool do_wakeup)
 902{
 903        unsigned long flags;
 904        u32 t1, t2, portsc;
 905        int i;
 906
 907        spin_lock_irqsave(&xhci->lock, flags);
 908
 909        for (i = 0; i < rhub->num_ports; i++) {
 910                portsc = readl(rhub->ports[i]->addr);
 911                t1 = xhci_port_state_to_neutral(portsc);
 912                t2 = t1;
 913
 914                /* clear wake bits if do_wake is not set */
 915                if (!do_wakeup)
 916                        t2 &= ~PORT_WAKE_BITS;
 917
 918                /* Don't touch csc bit if connected or connect change is set */
 919                if (!(portsc & (PORT_CSC | PORT_CONNECT)))
 920                        t2 |= PORT_CSC;
 921
 922                if (t1 != t2) {
 923                        writel(t2, rhub->ports[i]->addr);
 924                        xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
 925                                 rhub->hcd->self.busnum, i + 1, portsc, t2);
 926                }
 927        }
 928        spin_unlock_irqrestore(&xhci->lock, flags);
 929}
 930
 931static bool xhci_pending_portevent(struct xhci_hcd *xhci)
 932{
 933        struct xhci_port        **ports;
 934        int                     port_index;
 935        u32                     status;
 936        u32                     portsc;
 937
 938        status = readl(&xhci->op_regs->status);
 939        if (status & STS_EINT)
 940                return true;
 941        /*
 942         * Checking STS_EINT is not enough as there is a lag between a change
 943         * bit being set and the Port Status Change Event that it generated
 944         * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
 945         */
 946
 947        port_index = xhci->usb2_rhub.num_ports;
 948        ports = xhci->usb2_rhub.ports;
 949        while (port_index--) {
 950                portsc = readl(ports[port_index]->addr);
 951                if (portsc & PORT_CHANGE_MASK ||
 952                    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 953                        return true;
 954        }
 955        port_index = xhci->usb3_rhub.num_ports;
 956        ports = xhci->usb3_rhub.ports;
 957        while (port_index--) {
 958                portsc = readl(ports[port_index]->addr);
 959                if (portsc & PORT_CHANGE_MASK ||
 960                    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 961                        return true;
 962        }
 963        return false;
 964}
 965
 966/*
 967 * Stop HC (not bus-specific)
 968 *
 969 * This is called when the machine transition into S3/S4 mode.
 970 *
 971 */
 972int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 973{
 974        int                     rc = 0;
 975        unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
 976        struct usb_hcd          *hcd = xhci_to_hcd(xhci);
 977        u32                     command;
 978        u32                     res;
 979
 980        if (!hcd->state)
 981                return 0;
 982
 983        if (hcd->state != HC_STATE_SUSPENDED ||
 984                        xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 985                return -EINVAL;
 986
 987        /* Clear root port wake on bits if wakeup not allowed. */
 988        xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
 989        xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
 990
 991        if (!HCD_HW_ACCESSIBLE(hcd))
 992                return 0;
 993
 994        xhci_dbc_suspend(xhci);
 995
 996        /* Don't poll the roothubs on bus suspend. */
 997        xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
 998                 __func__, hcd->self.busnum);
 999        clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1000        del_timer_sync(&hcd->rh_timer);
1001        clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1002        del_timer_sync(&xhci->shared_hcd->rh_timer);
1003
1004        if (xhci->quirks & XHCI_SUSPEND_DELAY)
1005                usleep_range(1000, 1500);
1006
1007        spin_lock_irq(&xhci->lock);
1008        clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1009        clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1010        /* step 1: stop endpoint */
1011        /* skipped assuming that port suspend has done */
1012
1013        /* step 2: clear Run/Stop bit */
1014        command = readl(&xhci->op_regs->command);
1015        command &= ~CMD_RUN;
1016        writel(command, &xhci->op_regs->command);
1017
1018        /* Some chips from Fresco Logic need an extraordinary delay */
1019        delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1020
1021        if (xhci_handshake(&xhci->op_regs->status,
1022                      STS_HALT, STS_HALT, delay)) {
1023                xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1024                spin_unlock_irq(&xhci->lock);
1025                return -ETIMEDOUT;
1026        }
1027        xhci_clear_command_ring(xhci);
1028
1029        /* step 3: save registers */
1030        xhci_save_registers(xhci);
1031
1032        /* step 4: set CSS flag */
1033        command = readl(&xhci->op_regs->command);
1034        command |= CMD_CSS;
1035        writel(command, &xhci->op_regs->command);
1036        xhci->broken_suspend = 0;
1037        if (xhci_handshake(&xhci->op_regs->status,
1038                                STS_SAVE, 0, 20 * 1000)) {
1039        /*
1040         * AMD SNPS xHC 3.0 occasionally does not clear the
1041         * SSS bit of USBSTS and when driver tries to poll
1042         * to see if the xHC clears BIT(8) which never happens
1043         * and driver assumes that controller is not responding
1044         * and times out. To workaround this, its good to check
1045         * if SRE and HCE bits are not set (as per xhci
1046         * Section 5.4.2) and bypass the timeout.
1047         */
1048                res = readl(&xhci->op_regs->status);
1049                if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1050                    (((res & STS_SRE) == 0) &&
1051                                ((res & STS_HCE) == 0))) {
1052                        xhci->broken_suspend = 1;
1053                } else {
1054                        xhci_warn(xhci, "WARN: xHC save state timeout\n");
1055                        spin_unlock_irq(&xhci->lock);
1056                        return -ETIMEDOUT;
1057                }
1058        }
1059        spin_unlock_irq(&xhci->lock);
1060
1061        /*
1062         * Deleting Compliance Mode Recovery Timer because the xHCI Host
1063         * is about to be suspended.
1064         */
1065        if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1066                        (!(xhci_all_ports_seen_u0(xhci)))) {
1067                del_timer_sync(&xhci->comp_mode_recovery_timer);
1068                xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1069                                "%s: compliance mode recovery timer deleted",
1070                                __func__);
1071        }
1072
1073        /* step 5: remove core well power */
1074        /* synchronize irq when using MSI-X */
1075        xhci_msix_sync_irqs(xhci);
1076
1077        return rc;
1078}
1079EXPORT_SYMBOL_GPL(xhci_suspend);
1080
1081/*
1082 * start xHC (not bus-specific)
1083 *
1084 * This is called when the machine transition from S3/S4 mode.
1085 *
1086 */
1087int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1088{
1089        u32                     command, temp = 0;
1090        struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1091        struct usb_hcd          *secondary_hcd;
1092        int                     retval = 0;
1093        bool                    comp_timer_running = false;
1094        bool                    pending_portevent = false;
1095
1096        if (!hcd->state)
1097                return 0;
1098
1099        /* Wait a bit if either of the roothubs need to settle from the
1100         * transition into bus suspend.
1101         */
1102
1103        if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1104            time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1105                msleep(100);
1106
1107        set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1108        set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1109
1110        spin_lock_irq(&xhci->lock);
1111        if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1112                hibernated = true;
1113
1114        if (!hibernated) {
1115                /*
1116                 * Some controllers might lose power during suspend, so wait
1117                 * for controller not ready bit to clear, just as in xHC init.
1118                 */
1119                retval = xhci_handshake(&xhci->op_regs->status,
1120                                        STS_CNR, 0, 10 * 1000 * 1000);
1121                if (retval) {
1122                        xhci_warn(xhci, "Controller not ready at resume %d\n",
1123                                  retval);
1124                        spin_unlock_irq(&xhci->lock);
1125                        return retval;
1126                }
1127                /* step 1: restore register */
1128                xhci_restore_registers(xhci);
1129                /* step 2: initialize command ring buffer */
1130                xhci_set_cmd_ring_deq(xhci);
1131                /* step 3: restore state and start state*/
1132                /* step 3: set CRS flag */
1133                command = readl(&xhci->op_regs->command);
1134                command |= CMD_CRS;
1135                writel(command, &xhci->op_regs->command);
1136                /*
1137                 * Some controllers take up to 55+ ms to complete the controller
1138                 * restore so setting the timeout to 100ms. Xhci specification
1139                 * doesn't mention any timeout value.
1140                 */
1141                if (xhci_handshake(&xhci->op_regs->status,
1142                              STS_RESTORE, 0, 100 * 1000)) {
1143                        xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1144                        spin_unlock_irq(&xhci->lock);
1145                        return -ETIMEDOUT;
1146                }
1147                temp = readl(&xhci->op_regs->status);
1148        }
1149
1150        /* If restore operation fails, re-initialize the HC during resume */
1151        if ((temp & STS_SRE) || hibernated) {
1152
1153                if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1154                                !(xhci_all_ports_seen_u0(xhci))) {
1155                        del_timer_sync(&xhci->comp_mode_recovery_timer);
1156                        xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1157                                "Compliance Mode Recovery Timer deleted!");
1158                }
1159
1160                /* Let the USB core know _both_ roothubs lost power. */
1161                usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1162                usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1163
1164                xhci_dbg(xhci, "Stop HCD\n");
1165                xhci_halt(xhci);
1166                xhci_zero_64b_regs(xhci);
1167                retval = xhci_reset(xhci);
1168                spin_unlock_irq(&xhci->lock);
1169                if (retval)
1170                        return retval;
1171                xhci_cleanup_msix(xhci);
1172
1173                xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1174                temp = readl(&xhci->op_regs->status);
1175                writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1176                temp = readl(&xhci->ir_set->irq_pending);
1177                writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1178
1179                xhci_dbg(xhci, "cleaning up memory\n");
1180                xhci_mem_cleanup(xhci);
1181                xhci_debugfs_exit(xhci);
1182                xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1183                            readl(&xhci->op_regs->status));
1184
1185                /* USB core calls the PCI reinit and start functions twice:
1186                 * first with the primary HCD, and then with the secondary HCD.
1187                 * If we don't do the same, the host will never be started.
1188                 */
1189                if (!usb_hcd_is_primary_hcd(hcd))
1190                        secondary_hcd = hcd;
1191                else
1192                        secondary_hcd = xhci->shared_hcd;
1193
1194                xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1195                retval = xhci_init(hcd->primary_hcd);
1196                if (retval)
1197                        return retval;
1198                comp_timer_running = true;
1199
1200                xhci_dbg(xhci, "Start the primary HCD\n");
1201                retval = xhci_run(hcd->primary_hcd);
1202                if (!retval) {
1203                        xhci_dbg(xhci, "Start the secondary HCD\n");
1204                        retval = xhci_run(secondary_hcd);
1205                }
1206                hcd->state = HC_STATE_SUSPENDED;
1207                xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1208                goto done;
1209        }
1210
1211        /* step 4: set Run/Stop bit */
1212        command = readl(&xhci->op_regs->command);
1213        command |= CMD_RUN;
1214        writel(command, &xhci->op_regs->command);
1215        xhci_handshake(&xhci->op_regs->status, STS_HALT,
1216                  0, 250 * 1000);
1217
1218        /* step 5: walk topology and initialize portsc,
1219         * portpmsc and portli
1220         */
1221        /* this is done in bus_resume */
1222
1223        /* step 6: restart each of the previously
1224         * Running endpoints by ringing their doorbells
1225         */
1226
1227        spin_unlock_irq(&xhci->lock);
1228
1229        xhci_dbc_resume(xhci);
1230
1231 done:
1232        if (retval == 0) {
1233                /*
1234                 * Resume roothubs only if there are pending events.
1235                 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1236                 * the first wake signalling failed, give it that chance.
1237                 */
1238                pending_portevent = xhci_pending_portevent(xhci);
1239                if (!pending_portevent) {
1240                        msleep(120);
1241                        pending_portevent = xhci_pending_portevent(xhci);
1242                }
1243
1244                if (pending_portevent) {
1245                        usb_hcd_resume_root_hub(xhci->shared_hcd);
1246                        usb_hcd_resume_root_hub(hcd);
1247                }
1248        }
1249        /*
1250         * If system is subject to the Quirk, Compliance Mode Timer needs to
1251         * be re-initialized Always after a system resume. Ports are subject
1252         * to suffer the Compliance Mode issue again. It doesn't matter if
1253         * ports have entered previously to U0 before system's suspension.
1254         */
1255        if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1256                compliance_mode_recovery_timer_init(xhci);
1257
1258        if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1259                usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1260
1261        /* Re-enable port polling. */
1262        xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1263                 __func__, hcd->self.busnum);
1264        set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1265        usb_hcd_poll_rh_status(xhci->shared_hcd);
1266        set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1267        usb_hcd_poll_rh_status(hcd);
1268
1269        return retval;
1270}
1271EXPORT_SYMBOL_GPL(xhci_resume);
1272#endif  /* CONFIG_PM */
1273
1274/*-------------------------------------------------------------------------*/
1275
1276static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1277{
1278        void *temp;
1279        int ret = 0;
1280        unsigned int buf_len;
1281        enum dma_data_direction dir;
1282
1283        dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1284        buf_len = urb->transfer_buffer_length;
1285
1286        temp = kzalloc_node(buf_len, GFP_ATOMIC,
1287                            dev_to_node(hcd->self.sysdev));
1288
1289        if (usb_urb_dir_out(urb))
1290                sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1291                                   temp, buf_len, 0);
1292
1293        urb->transfer_buffer = temp;
1294        urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1295                                           urb->transfer_buffer,
1296                                           urb->transfer_buffer_length,
1297                                           dir);
1298
1299        if (dma_mapping_error(hcd->self.sysdev,
1300                              urb->transfer_dma)) {
1301                ret = -EAGAIN;
1302                kfree(temp);
1303        } else {
1304                urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1305        }
1306
1307        return ret;
1308}
1309
1310static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1311                                          struct urb *urb)
1312{
1313        bool ret = false;
1314        unsigned int i;
1315        unsigned int len = 0;
1316        unsigned int trb_size;
1317        unsigned int max_pkt;
1318        struct scatterlist *sg;
1319        struct scatterlist *tail_sg;
1320
1321        tail_sg = urb->sg;
1322        max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1323
1324        if (!urb->num_sgs)
1325                return ret;
1326
1327        if (urb->dev->speed >= USB_SPEED_SUPER)
1328                trb_size = TRB_CACHE_SIZE_SS;
1329        else
1330                trb_size = TRB_CACHE_SIZE_HS;
1331
1332        if (urb->transfer_buffer_length != 0 &&
1333            !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1334                for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1335                        len = len + sg->length;
1336                        if (i > trb_size - 2) {
1337                                len = len - tail_sg->length;
1338                                if (len < max_pkt) {
1339                                        ret = true;
1340                                        break;
1341                                }
1342
1343                                tail_sg = sg_next(tail_sg);
1344                        }
1345                }
1346        }
1347        return ret;
1348}
1349
1350static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1351{
1352        unsigned int len;
1353        unsigned int buf_len;
1354        enum dma_data_direction dir;
1355
1356        dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1357
1358        buf_len = urb->transfer_buffer_length;
1359
1360        if (IS_ENABLED(CONFIG_HAS_DMA) &&
1361            (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1362                dma_unmap_single(hcd->self.sysdev,
1363                                 urb->transfer_dma,
1364                                 urb->transfer_buffer_length,
1365                                 dir);
1366
1367        if (usb_urb_dir_in(urb)) {
1368                len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1369                                           urb->transfer_buffer,
1370                                           buf_len,
1371                                           0);
1372                if (len != buf_len) {
1373                        xhci_dbg(hcd_to_xhci(hcd),
1374                                 "Copy from tmp buf to urb sg list failed\n");
1375                        urb->actual_length = len;
1376                }
1377        }
1378        urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1379        kfree(urb->transfer_buffer);
1380        urb->transfer_buffer = NULL;
1381}
1382
1383/*
1384 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1385 * we'll copy the actual data into the TRB address register. This is limited to
1386 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1387 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1388 */
1389static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1390                                gfp_t mem_flags)
1391{
1392        struct xhci_hcd *xhci;
1393
1394        xhci = hcd_to_xhci(hcd);
1395
1396        if (xhci_urb_suitable_for_idt(urb))
1397                return 0;
1398
1399        if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1400                if (xhci_urb_temp_buffer_required(hcd, urb))
1401                        return xhci_map_temp_buffer(hcd, urb);
1402        }
1403        return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1404}
1405
1406static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1407{
1408        struct xhci_hcd *xhci;
1409        bool unmap_temp_buf = false;
1410
1411        xhci = hcd_to_xhci(hcd);
1412
1413        if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1414                unmap_temp_buf = true;
1415
1416        if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1417                xhci_unmap_temp_buf(hcd, urb);
1418        else
1419                usb_hcd_unmap_urb_for_dma(hcd, urb);
1420}
1421
1422/**
1423 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1424 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1425 * value to right shift 1 for the bitmask.
1426 *
1427 * Index  = (epnum * 2) + direction - 1,
1428 * where direction = 0 for OUT, 1 for IN.
1429 * For control endpoints, the IN index is used (OUT index is unused), so
1430 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1431 */
1432unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1433{
1434        unsigned int index;
1435        if (usb_endpoint_xfer_control(desc))
1436                index = (unsigned int) (usb_endpoint_num(desc)*2);
1437        else
1438                index = (unsigned int) (usb_endpoint_num(desc)*2) +
1439                        (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1440        return index;
1441}
1442EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1443
1444/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1445 * address from the XHCI endpoint index.
1446 */
1447unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1448{
1449        unsigned int number = DIV_ROUND_UP(ep_index, 2);
1450        unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1451        return direction | number;
1452}
1453
1454/* Find the flag for this endpoint (for use in the control context).  Use the
1455 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1456 * bit 1, etc.
1457 */
1458static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1459{
1460        return 1 << (xhci_get_endpoint_index(desc) + 1);
1461}
1462
1463/* Compute the last valid endpoint context index.  Basically, this is the
1464 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1465 * we find the most significant bit set in the added contexts flags.
1466 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1467 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1468 */
1469unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1470{
1471        return fls(added_ctxs) - 1;
1472}
1473
1474/* Returns 1 if the arguments are OK;
1475 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1476 */
1477static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1478                struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1479                const char *func) {
1480        struct xhci_hcd *xhci;
1481        struct xhci_virt_device *virt_dev;
1482
1483        if (!hcd || (check_ep && !ep) || !udev) {
1484                pr_debug("xHCI %s called with invalid args\n", func);
1485                return -EINVAL;
1486        }
1487        if (!udev->parent) {
1488                pr_debug("xHCI %s called for root hub\n", func);
1489                return 0;
1490        }
1491
1492        xhci = hcd_to_xhci(hcd);
1493        if (check_virt_dev) {
1494                if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1495                        xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1496                                        func);
1497                        return -EINVAL;
1498                }
1499
1500                virt_dev = xhci->devs[udev->slot_id];
1501                if (virt_dev->udev != udev) {
1502                        xhci_dbg(xhci, "xHCI %s called with udev and "
1503                                          "virt_dev does not match\n", func);
1504                        return -EINVAL;
1505                }
1506        }
1507
1508        if (xhci->xhc_state & XHCI_STATE_HALTED)
1509                return -ENODEV;
1510
1511        return 1;
1512}
1513
1514static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1515                struct usb_device *udev, struct xhci_command *command,
1516                bool ctx_change, bool must_succeed);
1517
1518/*
1519 * Full speed devices may have a max packet size greater than 8 bytes, but the
1520 * USB core doesn't know that until it reads the first 8 bytes of the
1521 * descriptor.  If the usb_device's max packet size changes after that point,
1522 * we need to issue an evaluate context command and wait on it.
1523 */
1524static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1525                unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1526{
1527        struct xhci_container_ctx *out_ctx;
1528        struct xhci_input_control_ctx *ctrl_ctx;
1529        struct xhci_ep_ctx *ep_ctx;
1530        struct xhci_command *command;
1531        int max_packet_size;
1532        int hw_max_packet_size;
1533        int ret = 0;
1534
1535        out_ctx = xhci->devs[slot_id]->out_ctx;
1536        ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1537        hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1538        max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1539        if (hw_max_packet_size != max_packet_size) {
1540                xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1541                                "Max Packet Size for ep 0 changed.");
1542                xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1543                                "Max packet size in usb_device = %d",
1544                                max_packet_size);
1545                xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1546                                "Max packet size in xHCI HW = %d",
1547                                hw_max_packet_size);
1548                xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1549                                "Issuing evaluate context command.");
1550
1551                /* Set up the input context flags for the command */
1552                /* FIXME: This won't work if a non-default control endpoint
1553                 * changes max packet sizes.
1554                 */
1555
1556                command = xhci_alloc_command(xhci, true, mem_flags);
1557                if (!command)
1558                        return -ENOMEM;
1559
1560                command->in_ctx = xhci->devs[slot_id]->in_ctx;
1561                ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1562                if (!ctrl_ctx) {
1563                        xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1564                                        __func__);
1565                        ret = -ENOMEM;
1566                        goto command_cleanup;
1567                }
1568                /* Set up the modified control endpoint 0 */
1569                xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1570                                xhci->devs[slot_id]->out_ctx, ep_index);
1571
1572                ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1573                ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1574                ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1575                ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1576
1577                ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1578                ctrl_ctx->drop_flags = 0;
1579
1580                ret = xhci_configure_endpoint(xhci, urb->dev, command,
1581                                true, false);
1582
1583                /* Clean up the input context for later use by bandwidth
1584                 * functions.
1585                 */
1586                ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1587command_cleanup:
1588                kfree(command->completion);
1589                kfree(command);
1590        }
1591        return ret;
1592}
1593
1594/*
1595 * non-error returns are a promise to giveback() the urb later
1596 * we drop ownership so next owner (or urb unlink) can get it
1597 */
1598static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1599{
1600        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1601        unsigned long flags;
1602        int ret = 0;
1603        unsigned int slot_id, ep_index;
1604        unsigned int *ep_state;
1605        struct urb_priv *urb_priv;
1606        int num_tds;
1607
1608        if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1609                                        true, true, __func__) <= 0)
1610                return -EINVAL;
1611
1612        slot_id = urb->dev->slot_id;
1613        ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1614        ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1615
1616        if (!HCD_HW_ACCESSIBLE(hcd))
1617                return -ESHUTDOWN;
1618
1619        if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1620                xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1621                return -ENODEV;
1622        }
1623
1624        if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1625                num_tds = urb->number_of_packets;
1626        else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1627            urb->transfer_buffer_length > 0 &&
1628            urb->transfer_flags & URB_ZERO_PACKET &&
1629            !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1630                num_tds = 2;
1631        else
1632                num_tds = 1;
1633
1634        urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1635        if (!urb_priv)
1636                return -ENOMEM;
1637
1638        urb_priv->num_tds = num_tds;
1639        urb_priv->num_tds_done = 0;
1640        urb->hcpriv = urb_priv;
1641
1642        trace_xhci_urb_enqueue(urb);
1643
1644        if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1645                /* Check to see if the max packet size for the default control
1646                 * endpoint changed during FS device enumeration
1647                 */
1648                if (urb->dev->speed == USB_SPEED_FULL) {
1649                        ret = xhci_check_maxpacket(xhci, slot_id,
1650                                        ep_index, urb, mem_flags);
1651                        if (ret < 0) {
1652                                xhci_urb_free_priv(urb_priv);
1653                                urb->hcpriv = NULL;
1654                                return ret;
1655                        }
1656                }
1657        }
1658
1659        spin_lock_irqsave(&xhci->lock, flags);
1660
1661        if (xhci->xhc_state & XHCI_STATE_DYING) {
1662                xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1663                         urb->ep->desc.bEndpointAddress, urb);
1664                ret = -ESHUTDOWN;
1665                goto free_priv;
1666        }
1667        if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1668                xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1669                          *ep_state);
1670                ret = -EINVAL;
1671                goto free_priv;
1672        }
1673        if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1674                xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1675                ret = -EINVAL;
1676                goto free_priv;
1677        }
1678
1679        switch (usb_endpoint_type(&urb->ep->desc)) {
1680
1681        case USB_ENDPOINT_XFER_CONTROL:
1682                ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1683                                         slot_id, ep_index);
1684                break;
1685        case USB_ENDPOINT_XFER_BULK:
1686                ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1687                                         slot_id, ep_index);
1688                break;
1689        case USB_ENDPOINT_XFER_INT:
1690                ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1691                                slot_id, ep_index);
1692                break;
1693        case USB_ENDPOINT_XFER_ISOC:
1694                ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1695                                slot_id, ep_index);
1696        }
1697
1698        if (ret) {
1699free_priv:
1700                xhci_urb_free_priv(urb_priv);
1701                urb->hcpriv = NULL;
1702        }
1703        spin_unlock_irqrestore(&xhci->lock, flags);
1704        return ret;
1705}
1706
1707/*
1708 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1709 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1710 * should pick up where it left off in the TD, unless a Set Transfer Ring
1711 * Dequeue Pointer is issued.
1712 *
1713 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1714 * the ring.  Since the ring is a contiguous structure, they can't be physically
1715 * removed.  Instead, there are two options:
1716 *
1717 *  1) If the HC is in the middle of processing the URB to be canceled, we
1718 *     simply move the ring's dequeue pointer past those TRBs using the Set
1719 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1720 *     when drivers timeout on the last submitted URB and attempt to cancel.
1721 *
1722 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1723 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1724 *     HC will need to invalidate the any TRBs it has cached after the stop
1725 *     endpoint command, as noted in the xHCI 0.95 errata.
1726 *
1727 *  3) The TD may have completed by the time the Stop Endpoint Command
1728 *     completes, so software needs to handle that case too.
1729 *
1730 * This function should protect against the TD enqueueing code ringing the
1731 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1732 * It also needs to account for multiple cancellations on happening at the same
1733 * time for the same endpoint.
1734 *
1735 * Note that this function can be called in any context, or so says
1736 * usb_hcd_unlink_urb()
1737 */
1738static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1739{
1740        unsigned long flags;
1741        int ret, i;
1742        u32 temp;
1743        struct xhci_hcd *xhci;
1744        struct urb_priv *urb_priv;
1745        struct xhci_td *td;
1746        unsigned int ep_index;
1747        struct xhci_ring *ep_ring;
1748        struct xhci_virt_ep *ep;
1749        struct xhci_command *command;
1750        struct xhci_virt_device *vdev;
1751
1752        xhci = hcd_to_xhci(hcd);
1753        spin_lock_irqsave(&xhci->lock, flags);
1754
1755        trace_xhci_urb_dequeue(urb);
1756
1757        /* Make sure the URB hasn't completed or been unlinked already */
1758        ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1759        if (ret)
1760                goto done;
1761
1762        /* give back URB now if we can't queue it for cancel */
1763        vdev = xhci->devs[urb->dev->slot_id];
1764        urb_priv = urb->hcpriv;
1765        if (!vdev || !urb_priv)
1766                goto err_giveback;
1767
1768        ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1769        ep = &vdev->eps[ep_index];
1770        ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1771        if (!ep || !ep_ring)
1772                goto err_giveback;
1773
1774        /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1775        temp = readl(&xhci->op_regs->status);
1776        if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1777                xhci_hc_died(xhci);
1778                goto done;
1779        }
1780
1781        /*
1782         * check ring is not re-allocated since URB was enqueued. If it is, then
1783         * make sure none of the ring related pointers in this URB private data
1784         * are touched, such as td_list, otherwise we overwrite freed data
1785         */
1786        if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1787                xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1788                for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1789                        td = &urb_priv->td[i];
1790                        if (!list_empty(&td->cancelled_td_list))
1791                                list_del_init(&td->cancelled_td_list);
1792                }
1793                goto err_giveback;
1794        }
1795
1796        if (xhci->xhc_state & XHCI_STATE_HALTED) {
1797                xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1798                                "HC halted, freeing TD manually.");
1799                for (i = urb_priv->num_tds_done;
1800                     i < urb_priv->num_tds;
1801                     i++) {
1802                        td = &urb_priv->td[i];
1803                        if (!list_empty(&td->td_list))
1804                                list_del_init(&td->td_list);
1805                        if (!list_empty(&td->cancelled_td_list))
1806                                list_del_init(&td->cancelled_td_list);
1807                }
1808                goto err_giveback;
1809        }
1810
1811        i = urb_priv->num_tds_done;
1812        if (i < urb_priv->num_tds)
1813                xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1814                                "Cancel URB %p, dev %s, ep 0x%x, "
1815                                "starting at offset 0x%llx",
1816                                urb, urb->dev->devpath,
1817                                urb->ep->desc.bEndpointAddress,
1818                                (unsigned long long) xhci_trb_virt_to_dma(
1819                                        urb_priv->td[i].start_seg,
1820                                        urb_priv->td[i].first_trb));
1821
1822        for (; i < urb_priv->num_tds; i++) {
1823                td = &urb_priv->td[i];
1824                /* TD can already be on cancelled list if ep halted on it */
1825                if (list_empty(&td->cancelled_td_list)) {
1826                        td->cancel_status = TD_DIRTY;
1827                        list_add_tail(&td->cancelled_td_list,
1828                                      &ep->cancelled_td_list);
1829                }
1830        }
1831
1832        /* Queue a stop endpoint command, but only if this is
1833         * the first cancellation to be handled.
1834         */
1835        if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1836                command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1837                if (!command) {
1838                        ret = -ENOMEM;
1839                        goto done;
1840                }
1841                ep->ep_state |= EP_STOP_CMD_PENDING;
1842                ep->stop_cmd_timer.expires = jiffies +
1843                        XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1844                add_timer(&ep->stop_cmd_timer);
1845                xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1846                                         ep_index, 0);
1847                xhci_ring_cmd_db(xhci);
1848        }
1849done:
1850        spin_unlock_irqrestore(&xhci->lock, flags);
1851        return ret;
1852
1853err_giveback:
1854        if (urb_priv)
1855                xhci_urb_free_priv(urb_priv);
1856        usb_hcd_unlink_urb_from_ep(hcd, urb);
1857        spin_unlock_irqrestore(&xhci->lock, flags);
1858        usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1859        return ret;
1860}
1861
1862/* Drop an endpoint from a new bandwidth configuration for this device.
1863 * Only one call to this function is allowed per endpoint before
1864 * check_bandwidth() or reset_bandwidth() must be called.
1865 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1866 * add the endpoint to the schedule with possibly new parameters denoted by a
1867 * different endpoint descriptor in usb_host_endpoint.
1868 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1869 * not allowed.
1870 *
1871 * The USB core will not allow URBs to be queued to an endpoint that is being
1872 * disabled, so there's no need for mutual exclusion to protect
1873 * the xhci->devs[slot_id] structure.
1874 */
1875int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1876                       struct usb_host_endpoint *ep)
1877{
1878        struct xhci_hcd *xhci;
1879        struct xhci_container_ctx *in_ctx, *out_ctx;
1880        struct xhci_input_control_ctx *ctrl_ctx;
1881        unsigned int ep_index;
1882        struct xhci_ep_ctx *ep_ctx;
1883        u32 drop_flag;
1884        u32 new_add_flags, new_drop_flags;
1885        int ret;
1886
1887        ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1888        if (ret <= 0)
1889                return ret;
1890        xhci = hcd_to_xhci(hcd);
1891        if (xhci->xhc_state & XHCI_STATE_DYING)
1892                return -ENODEV;
1893
1894        xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1895        drop_flag = xhci_get_endpoint_flag(&ep->desc);
1896        if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1897                xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1898                                __func__, drop_flag);
1899                return 0;
1900        }
1901
1902        in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1903        out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1904        ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1905        if (!ctrl_ctx) {
1906                xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1907                                __func__);
1908                return 0;
1909        }
1910
1911        ep_index = xhci_get_endpoint_index(&ep->desc);
1912        ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1913        /* If the HC already knows the endpoint is disabled,
1914         * or the HCD has noted it is disabled, ignore this request
1915         */
1916        if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1917            le32_to_cpu(ctrl_ctx->drop_flags) &
1918            xhci_get_endpoint_flag(&ep->desc)) {
1919                /* Do not warn when called after a usb_device_reset */
1920                if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1921                        xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1922                                  __func__, ep);
1923                return 0;
1924        }
1925
1926        ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1927        new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1928
1929        ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1930        new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1931
1932        xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1933
1934        xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1935
1936        xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1937                        (unsigned int) ep->desc.bEndpointAddress,
1938                        udev->slot_id,
1939                        (unsigned int) new_drop_flags,
1940                        (unsigned int) new_add_flags);
1941        return 0;
1942}
1943EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1944
1945/* Add an endpoint to a new possible bandwidth configuration for this device.
1946 * Only one call to this function is allowed per endpoint before
1947 * check_bandwidth() or reset_bandwidth() must be called.
1948 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1949 * add the endpoint to the schedule with possibly new parameters denoted by a
1950 * different endpoint descriptor in usb_host_endpoint.
1951 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1952 * not allowed.
1953 *
1954 * The USB core will not allow URBs to be queued to an endpoint until the
1955 * configuration or alt setting is installed in the device, so there's no need
1956 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1957 */
1958int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1959                      struct usb_host_endpoint *ep)
1960{
1961        struct xhci_hcd *xhci;
1962        struct xhci_container_ctx *in_ctx;
1963        unsigned int ep_index;
1964        struct xhci_input_control_ctx *ctrl_ctx;
1965        struct xhci_ep_ctx *ep_ctx;
1966        u32 added_ctxs;
1967        u32 new_add_flags, new_drop_flags;
1968        struct xhci_virt_device *virt_dev;
1969        int ret = 0;
1970
1971        ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1972        if (ret <= 0) {
1973                /* So we won't queue a reset ep command for a root hub */
1974                ep->hcpriv = NULL;
1975                return ret;
1976        }
1977        xhci = hcd_to_xhci(hcd);
1978        if (xhci->xhc_state & XHCI_STATE_DYING)
1979                return -ENODEV;
1980
1981        added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1982        if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1983                /* FIXME when we have to issue an evaluate endpoint command to
1984                 * deal with ep0 max packet size changing once we get the
1985                 * descriptors
1986                 */
1987                xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1988                                __func__, added_ctxs);
1989                return 0;
1990        }
1991
1992        virt_dev = xhci->devs[udev->slot_id];
1993        in_ctx = virt_dev->in_ctx;
1994        ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1995        if (!ctrl_ctx) {
1996                xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1997                                __func__);
1998                return 0;
1999        }
2000
2001        ep_index = xhci_get_endpoint_index(&ep->desc);
2002        /* If this endpoint is already in use, and the upper layers are trying
2003         * to add it again without dropping it, reject the addition.
2004         */
2005        if (virt_dev->eps[ep_index].ring &&
2006                        !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2007                xhci_warn(xhci, "Trying to add endpoint 0x%x "
2008                                "without dropping it.\n",
2009                                (unsigned int) ep->desc.bEndpointAddress);
2010                return -EINVAL;
2011        }
2012
2013        /* If the HCD has already noted the endpoint is enabled,
2014         * ignore this request.
2015         */
2016        if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2017                xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2018                                __func__, ep);
2019                return 0;
2020        }
2021
2022        /*
2023         * Configuration and alternate setting changes must be done in
2024         * process context, not interrupt context (or so documenation
2025         * for usb_set_interface() and usb_set_configuration() claim).
2026         */
2027        if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2028                dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2029                                __func__, ep->desc.bEndpointAddress);
2030                return -ENOMEM;
2031        }
2032
2033        ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2034        new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2035
2036        /* If xhci_endpoint_disable() was called for this endpoint, but the
2037         * xHC hasn't been notified yet through the check_bandwidth() call,
2038         * this re-adds a new state for the endpoint from the new endpoint
2039         * descriptors.  We must drop and re-add this endpoint, so we leave the
2040         * drop flags alone.
2041         */
2042        new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2043
2044        /* Store the usb_device pointer for later use */
2045        ep->hcpriv = udev;
2046
2047        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2048        trace_xhci_add_endpoint(ep_ctx);
2049
2050        xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2051                        (unsigned int) ep->desc.bEndpointAddress,
2052                        udev->slot_id,
2053                        (unsigned int) new_drop_flags,
2054                        (unsigned int) new_add_flags);
2055        return 0;
2056}
2057EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2058
2059static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2060{
2061        struct xhci_input_control_ctx *ctrl_ctx;
2062        struct xhci_ep_ctx *ep_ctx;
2063        struct xhci_slot_ctx *slot_ctx;
2064        int i;
2065
2066        ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2067        if (!ctrl_ctx) {
2068                xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2069                                __func__);
2070                return;
2071        }
2072
2073        /* When a device's add flag and drop flag are zero, any subsequent
2074         * configure endpoint command will leave that endpoint's state
2075         * untouched.  Make sure we don't leave any old state in the input
2076         * endpoint contexts.
2077         */
2078        ctrl_ctx->drop_flags = 0;
2079        ctrl_ctx->add_flags = 0;
2080        slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2081        slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2082        /* Endpoint 0 is always valid */
2083        slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2084        for (i = 1; i < 31; i++) {
2085                ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2086                ep_ctx->ep_info = 0;
2087                ep_ctx->ep_info2 = 0;
2088                ep_ctx->deq = 0;
2089                ep_ctx->tx_info = 0;
2090        }
2091}
2092
2093static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2094                struct usb_device *udev, u32 *cmd_status)
2095{
2096        int ret;
2097
2098        switch (*cmd_status) {
2099        case COMP_COMMAND_ABORTED:
2100        case COMP_COMMAND_RING_STOPPED:
2101                xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2102                ret = -ETIME;
2103                break;
2104        case COMP_RESOURCE_ERROR:
2105                dev_warn(&udev->dev,
2106                         "Not enough host controller resources for new device state.\n");
2107                ret = -ENOMEM;
2108                /* FIXME: can we allocate more resources for the HC? */
2109                break;
2110        case COMP_BANDWIDTH_ERROR:
2111        case COMP_SECONDARY_BANDWIDTH_ERROR:
2112                dev_warn(&udev->dev,
2113                         "Not enough bandwidth for new device state.\n");
2114                ret = -ENOSPC;
2115                /* FIXME: can we go back to the old state? */
2116                break;
2117        case COMP_TRB_ERROR:
2118                /* the HCD set up something wrong */
2119                dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2120                                "add flag = 1, "
2121                                "and endpoint is not disabled.\n");
2122                ret = -EINVAL;
2123                break;
2124        case COMP_INCOMPATIBLE_DEVICE_ERROR:
2125                dev_warn(&udev->dev,
2126                         "ERROR: Incompatible device for endpoint configure command.\n");
2127                ret = -ENODEV;
2128                break;
2129        case COMP_SUCCESS:
2130                xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2131                                "Successful Endpoint Configure command");
2132                ret = 0;
2133                break;
2134        default:
2135                xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2136                                *cmd_status);
2137                ret = -EINVAL;
2138                break;
2139        }
2140        return ret;
2141}
2142
2143static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2144                struct usb_device *udev, u32 *cmd_status)
2145{
2146        int ret;
2147
2148        switch (*cmd_status) {
2149        case COMP_COMMAND_ABORTED:
2150        case COMP_COMMAND_RING_STOPPED:
2151                xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2152                ret = -ETIME;
2153                break;
2154        case COMP_PARAMETER_ERROR:
2155                dev_warn(&udev->dev,
2156                         "WARN: xHCI driver setup invalid evaluate context command.\n");
2157                ret = -EINVAL;
2158                break;
2159        case COMP_SLOT_NOT_ENABLED_ERROR:
2160                dev_warn(&udev->dev,
2161                        "WARN: slot not enabled for evaluate context command.\n");
2162                ret = -EINVAL;
2163                break;
2164        case COMP_CONTEXT_STATE_ERROR:
2165                dev_warn(&udev->dev,
2166                        "WARN: invalid context state for evaluate context command.\n");
2167                ret = -EINVAL;
2168                break;
2169        case COMP_INCOMPATIBLE_DEVICE_ERROR:
2170                dev_warn(&udev->dev,
2171                        "ERROR: Incompatible device for evaluate context command.\n");
2172                ret = -ENODEV;
2173                break;
2174        case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2175                /* Max Exit Latency too large error */
2176                dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2177                ret = -EINVAL;
2178                break;
2179        case COMP_SUCCESS:
2180                xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2181                                "Successful evaluate context command");
2182                ret = 0;
2183                break;
2184        default:
2185                xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2186                        *cmd_status);
2187                ret = -EINVAL;
2188                break;
2189        }
2190        return ret;
2191}
2192
2193static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2194                struct xhci_input_control_ctx *ctrl_ctx)
2195{
2196        u32 valid_add_flags;
2197        u32 valid_drop_flags;
2198
2199        /* Ignore the slot flag (bit 0), and the default control endpoint flag
2200         * (bit 1).  The default control endpoint is added during the Address
2201         * Device command and is never removed until the slot is disabled.
2202         */
2203        valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2204        valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2205
2206        /* Use hweight32 to count the number of ones in the add flags, or
2207         * number of endpoints added.  Don't count endpoints that are changed
2208         * (both added and dropped).
2209         */
2210        return hweight32(valid_add_flags) -
2211                hweight32(valid_add_flags & valid_drop_flags);
2212}
2213
2214static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2215                struct xhci_input_control_ctx *ctrl_ctx)
2216{
2217        u32 valid_add_flags;
2218        u32 valid_drop_flags;
2219
2220        valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2221        valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2222
2223        return hweight32(valid_drop_flags) -
2224                hweight32(valid_add_flags & valid_drop_flags);
2225}
2226
2227/*
2228 * We need to reserve the new number of endpoints before the configure endpoint
2229 * command completes.  We can't subtract the dropped endpoints from the number
2230 * of active endpoints until the command completes because we can oversubscribe
2231 * the host in this case:
2232 *
2233 *  - the first configure endpoint command drops more endpoints than it adds
2234 *  - a second configure endpoint command that adds more endpoints is queued
2235 *  - the first configure endpoint command fails, so the config is unchanged
2236 *  - the second command may succeed, even though there isn't enough resources
2237 *
2238 * Must be called with xhci->lock held.
2239 */
2240static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2241                struct xhci_input_control_ctx *ctrl_ctx)
2242{
2243        u32 added_eps;
2244
2245        added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2246        if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2247                xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2248                                "Not enough ep ctxs: "
2249                                "%u active, need to add %u, limit is %u.",
2250                                xhci->num_active_eps, added_eps,
2251                                xhci->limit_active_eps);
2252                return -ENOMEM;
2253        }
2254        xhci->num_active_eps += added_eps;
2255        xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2256                        "Adding %u ep ctxs, %u now active.", added_eps,
2257                        xhci->num_active_eps);
2258        return 0;
2259}
2260
2261/*
2262 * The configure endpoint was failed by the xHC for some other reason, so we
2263 * need to revert the resources that failed configuration would have used.
2264 *
2265 * Must be called with xhci->lock held.
2266 */
2267static void xhci_free_host_resources(struct xhci_hcd *xhci,
2268                struct xhci_input_control_ctx *ctrl_ctx)
2269{
2270        u32 num_failed_eps;
2271
2272        num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2273        xhci->num_active_eps -= num_failed_eps;
2274        xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2275                        "Removing %u failed ep ctxs, %u now active.",
2276                        num_failed_eps,
2277                        xhci->num_active_eps);
2278}
2279
2280/*
2281 * Now that the command has completed, clean up the active endpoint count by
2282 * subtracting out the endpoints that were dropped (but not changed).
2283 *
2284 * Must be called with xhci->lock held.
2285 */
2286static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2287                struct xhci_input_control_ctx *ctrl_ctx)
2288{
2289        u32 num_dropped_eps;
2290
2291        num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2292        xhci->num_active_eps -= num_dropped_eps;
2293        if (num_dropped_eps)
2294                xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2295                                "Removing %u dropped ep ctxs, %u now active.",
2296                                num_dropped_eps,
2297                                xhci->num_active_eps);
2298}
2299
2300static unsigned int xhci_get_block_size(struct usb_device *udev)
2301{
2302        switch (udev->speed) {
2303        case USB_SPEED_LOW:
2304        case USB_SPEED_FULL:
2305                return FS_BLOCK;
2306        case USB_SPEED_HIGH:
2307                return HS_BLOCK;
2308        case USB_SPEED_SUPER:
2309        case USB_SPEED_SUPER_PLUS:
2310                return SS_BLOCK;
2311        case USB_SPEED_UNKNOWN:
2312        case USB_SPEED_WIRELESS:
2313        default:
2314                /* Should never happen */
2315                return 1;
2316        }
2317}
2318
2319static unsigned int
2320xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2321{
2322        if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2323                return LS_OVERHEAD;
2324        if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2325                return FS_OVERHEAD;
2326        return HS_OVERHEAD;
2327}
2328
2329/* If we are changing a LS/FS device under a HS hub,
2330 * make sure (if we are activating a new TT) that the HS bus has enough
2331 * bandwidth for this new TT.
2332 */
2333static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2334                struct xhci_virt_device *virt_dev,
2335                int old_active_eps)
2336{
2337        struct xhci_interval_bw_table *bw_table;
2338        struct xhci_tt_bw_info *tt_info;
2339
2340        /* Find the bandwidth table for the root port this TT is attached to. */
2341        bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2342        tt_info = virt_dev->tt_info;
2343        /* If this TT already had active endpoints, the bandwidth for this TT
2344         * has already been added.  Removing all periodic endpoints (and thus
2345         * making the TT enactive) will only decrease the bandwidth used.
2346         */
2347        if (old_active_eps)
2348                return 0;
2349        if (old_active_eps == 0 && tt_info->active_eps != 0) {
2350                if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2351                        return -ENOMEM;
2352                return 0;
2353        }
2354        /* Not sure why we would have no new active endpoints...
2355         *
2356         * Maybe because of an Evaluate Context change for a hub update or a
2357         * control endpoint 0 max packet size change?
2358         * FIXME: skip the bandwidth calculation in that case.
2359         */
2360        return 0;
2361}
2362
2363static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2364                struct xhci_virt_device *virt_dev)
2365{
2366        unsigned int bw_reserved;
2367
2368        bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2369        if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2370                return -ENOMEM;
2371
2372        bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2373        if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2374                return -ENOMEM;
2375
2376        return 0;
2377}
2378
2379/*
2380 * This algorithm is a very conservative estimate of the worst-case scheduling
2381 * scenario for any one interval.  The hardware dynamically schedules the
2382 * packets, so we can't tell which microframe could be the limiting factor in
2383 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2384 *
2385 * Obviously, we can't solve an NP complete problem to find the minimum worst
2386 * case scenario.  Instead, we come up with an estimate that is no less than
2387 * the worst case bandwidth used for any one microframe, but may be an
2388 * over-estimate.
2389 *
2390 * We walk the requirements for each endpoint by interval, starting with the
2391 * smallest interval, and place packets in the schedule where there is only one
2392 * possible way to schedule packets for that interval.  In order to simplify
2393 * this algorithm, we record the largest max packet size for each interval, and
2394 * assume all packets will be that size.
2395 *
2396 * For interval 0, we obviously must schedule all packets for each interval.
2397 * The bandwidth for interval 0 is just the amount of data to be transmitted
2398 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2399 * the number of packets).
2400 *
2401 * For interval 1, we have two possible microframes to schedule those packets
2402 * in.  For this algorithm, if we can schedule the same number of packets for
2403 * each possible scheduling opportunity (each microframe), we will do so.  The
2404 * remaining number of packets will be saved to be transmitted in the gaps in
2405 * the next interval's scheduling sequence.
2406 *
2407 * As we move those remaining packets to be scheduled with interval 2 packets,
2408 * we have to double the number of remaining packets to transmit.  This is
2409 * because the intervals are actually powers of 2, and we would be transmitting
2410 * the previous interval's packets twice in this interval.  We also have to be
2411 * sure that when we look at the largest max packet size for this interval, we
2412 * also look at the largest max packet size for the remaining packets and take
2413 * the greater of the two.
2414 *
2415 * The algorithm continues to evenly distribute packets in each scheduling
2416 * opportunity, and push the remaining packets out, until we get to the last
2417 * interval.  Then those packets and their associated overhead are just added
2418 * to the bandwidth used.
2419 */
2420static int xhci_check_bw_table(struct xhci_hcd *xhci,
2421                struct xhci_virt_device *virt_dev,
2422                int old_active_eps)
2423{
2424        unsigned int bw_reserved;
2425        unsigned int max_bandwidth;
2426        unsigned int bw_used;
2427        unsigned int block_size;
2428        struct xhci_interval_bw_table *bw_table;
2429        unsigned int packet_size = 0;
2430        unsigned int overhead = 0;
2431        unsigned int packets_transmitted = 0;
2432        unsigned int packets_remaining = 0;
2433        unsigned int i;
2434
2435        if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2436                return xhci_check_ss_bw(xhci, virt_dev);
2437
2438        if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2439                max_bandwidth = HS_BW_LIMIT;
2440                /* Convert percent of bus BW reserved to blocks reserved */
2441                bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2442        } else {
2443                max_bandwidth = FS_BW_LIMIT;
2444                bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2445        }
2446
2447        bw_table = virt_dev->bw_table;
2448        /* We need to translate the max packet size and max ESIT payloads into
2449         * the units the hardware uses.
2450         */
2451        block_size = xhci_get_block_size(virt_dev->udev);
2452
2453        /* If we are manipulating a LS/FS device under a HS hub, double check
2454         * that the HS bus has enough bandwidth if we are activing a new TT.
2455         */
2456        if (virt_dev->tt_info) {
2457                xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2458                                "Recalculating BW for rootport %u",
2459                                virt_dev->real_port);
2460                if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2461                        xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2462                                        "newly activated TT.\n");
2463                        return -ENOMEM;
2464                }
2465                xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2466                                "Recalculating BW for TT slot %u port %u",
2467                                virt_dev->tt_info->slot_id,
2468                                virt_dev->tt_info->ttport);
2469        } else {
2470                xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2471                                "Recalculating BW for rootport %u",
2472                                virt_dev->real_port);
2473        }
2474
2475        /* Add in how much bandwidth will be used for interval zero, or the
2476         * rounded max ESIT payload + number of packets * largest overhead.
2477         */
2478        bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2479                bw_table->interval_bw[0].num_packets *
2480                xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2481
2482        for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2483                unsigned int bw_added;
2484                unsigned int largest_mps;
2485                unsigned int interval_overhead;
2486
2487                /*
2488                 * How many packets could we transmit in this interval?
2489                 * If packets didn't fit in the previous interval, we will need
2490                 * to transmit that many packets twice within this interval.
2491                 */
2492                packets_remaining = 2 * packets_remaining +
2493                        bw_table->interval_bw[i].num_packets;
2494
2495                /* Find the largest max packet size of this or the previous
2496                 * interval.
2497                 */
2498                if (list_empty(&bw_table->interval_bw[i].endpoints))
2499                        largest_mps = 0;
2500                else {
2501                        struct xhci_virt_ep *virt_ep;
2502                        struct list_head *ep_entry;
2503
2504                        ep_entry = bw_table->interval_bw[i].endpoints.next;
2505                        virt_ep = list_entry(ep_entry,
2506                                        struct xhci_virt_ep, bw_endpoint_list);
2507                        /* Convert to blocks, rounding up */
2508                        largest_mps = DIV_ROUND_UP(
2509                                        virt_ep->bw_info.max_packet_size,
2510                                        block_size);
2511                }
2512                if (largest_mps > packet_size)
2513                        packet_size = largest_mps;
2514
2515                /* Use the larger overhead of this or the previous interval. */
2516                interval_overhead = xhci_get_largest_overhead(
2517                                &bw_table->interval_bw[i]);
2518                if (interval_overhead > overhead)
2519                        overhead = interval_overhead;
2520
2521                /* How many packets can we evenly distribute across
2522                 * (1 << (i + 1)) possible scheduling opportunities?
2523                 */
2524                packets_transmitted = packets_remaining >> (i + 1);
2525
2526                /* Add in the bandwidth used for those scheduled packets */
2527                bw_added = packets_transmitted * (overhead + packet_size);
2528
2529                /* How many packets do we have remaining to transmit? */
2530                packets_remaining = packets_remaining % (1 << (i + 1));
2531
2532                /* What largest max packet size should those packets have? */
2533                /* If we've transmitted all packets, don't carry over the
2534                 * largest packet size.
2535                 */
2536                if (packets_remaining == 0) {
2537                        packet_size = 0;
2538                        overhead = 0;
2539                } else if (packets_transmitted > 0) {
2540                        /* Otherwise if we do have remaining packets, and we've
2541                         * scheduled some packets in this interval, take the
2542                         * largest max packet size from endpoints with this
2543                         * interval.
2544                         */
2545                        packet_size = largest_mps;
2546                        overhead = interval_overhead;
2547                }
2548                /* Otherwise carry over packet_size and overhead from the last
2549                 * time we had a remainder.
2550                 */
2551                bw_used += bw_added;
2552                if (bw_used > max_bandwidth) {
2553                        xhci_warn(xhci, "Not enough bandwidth. "
2554                                        "Proposed: %u, Max: %u\n",
2555                                bw_used, max_bandwidth);
2556                        return -ENOMEM;
2557                }
2558        }
2559        /*
2560         * Ok, we know we have some packets left over after even-handedly
2561         * scheduling interval 15.  We don't know which microframes they will
2562         * fit into, so we over-schedule and say they will be scheduled every
2563         * microframe.
2564         */
2565        if (packets_remaining > 0)
2566                bw_used += overhead + packet_size;
2567
2568        if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2569                unsigned int port_index = virt_dev->real_port - 1;
2570
2571                /* OK, we're manipulating a HS device attached to a
2572                 * root port bandwidth domain.  Include the number of active TTs
2573                 * in the bandwidth used.
2574                 */
2575                bw_used += TT_HS_OVERHEAD *
2576                        xhci->rh_bw[port_index].num_active_tts;
2577        }
2578
2579        xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2580                "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2581                "Available: %u " "percent",
2582                bw_used, max_bandwidth, bw_reserved,
2583                (max_bandwidth - bw_used - bw_reserved) * 100 /
2584                max_bandwidth);
2585
2586        bw_used += bw_reserved;
2587        if (bw_used > max_bandwidth) {
2588                xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2589                                bw_used, max_bandwidth);
2590                return -ENOMEM;
2591        }
2592
2593        bw_table->bw_used = bw_used;
2594        return 0;
2595}
2596
2597static bool xhci_is_async_ep(unsigned int ep_type)
2598{
2599        return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2600                                        ep_type != ISOC_IN_EP &&
2601                                        ep_type != INT_IN_EP);
2602}
2603
2604static bool xhci_is_sync_in_ep(unsigned int ep_type)
2605{
2606        return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2607}
2608
2609static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2610{
2611        unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2612
2613        if (ep_bw->ep_interval == 0)
2614                return SS_OVERHEAD_BURST +
2615                        (ep_bw->mult * ep_bw->num_packets *
2616                                        (SS_OVERHEAD + mps));
2617        return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2618                                (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2619                                1 << ep_bw->ep_interval);
2620
2621}
2622
2623static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2624                struct xhci_bw_info *ep_bw,
2625                struct xhci_interval_bw_table *bw_table,
2626                struct usb_device *udev,
2627                struct xhci_virt_ep *virt_ep,
2628                struct xhci_tt_bw_info *tt_info)
2629{
2630        struct xhci_interval_bw *interval_bw;
2631        int normalized_interval;
2632
2633        if (xhci_is_async_ep(ep_bw->type))
2634                return;
2635
2636        if (udev->speed >= USB_SPEED_SUPER) {
2637                if (xhci_is_sync_in_ep(ep_bw->type))
2638                        xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2639                                xhci_get_ss_bw_consumed(ep_bw);
2640                else
2641                        xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2642                                xhci_get_ss_bw_consumed(ep_bw);
2643                return;
2644        }
2645
2646        /* SuperSpeed endpoints never get added to intervals in the table, so
2647         * this check is only valid for HS/FS/LS devices.
2648         */
2649        if (list_empty(&virt_ep->bw_endpoint_list))
2650                return;
2651        /* For LS/FS devices, we need to translate the interval expressed in
2652         * microframes to frames.
2653         */
2654        if (udev->speed == USB_SPEED_HIGH)
2655                normalized_interval = ep_bw->ep_interval;
2656        else
2657                normalized_interval = ep_bw->ep_interval - 3;
2658
2659        if (normalized_interval == 0)
2660                bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2661        interval_bw = &bw_table->interval_bw[normalized_interval];
2662        interval_bw->num_packets -= ep_bw->num_packets;
2663        switch (udev->speed) {
2664        case USB_SPEED_LOW:
2665                interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2666                break;
2667        case USB_SPEED_FULL:
2668                interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2669                break;
2670        case USB_SPEED_HIGH:
2671                interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2672                break;
2673        case USB_SPEED_SUPER:
2674        case USB_SPEED_SUPER_PLUS:
2675        case USB_SPEED_UNKNOWN:
2676        case USB_SPEED_WIRELESS:
2677                /* Should never happen because only LS/FS/HS endpoints will get
2678                 * added to the endpoint list.
2679                 */
2680                return;
2681        }
2682        if (tt_info)
2683                tt_info->active_eps -= 1;
2684        list_del_init(&virt_ep->bw_endpoint_list);
2685}
2686
2687static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2688                struct xhci_bw_info *ep_bw,
2689                struct xhci_interval_bw_table *bw_table,
2690                struct usb_device *udev,
2691                struct xhci_virt_ep *virt_ep,
2692                struct xhci_tt_bw_info *tt_info)
2693{
2694        struct xhci_interval_bw *interval_bw;
2695        struct xhci_virt_ep *smaller_ep;
2696        int normalized_interval;
2697
2698        if (xhci_is_async_ep(ep_bw->type))
2699                return;
2700
2701        if (udev->speed == USB_SPEED_SUPER) {
2702                if (xhci_is_sync_in_ep(ep_bw->type))
2703                        xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2704                                xhci_get_ss_bw_consumed(ep_bw);
2705                else
2706                        xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2707                                xhci_get_ss_bw_consumed(ep_bw);
2708                return;
2709        }
2710
2711        /* For LS/FS devices, we need to translate the interval expressed in
2712         * microframes to frames.
2713         */
2714        if (udev->speed == USB_SPEED_HIGH)
2715                normalized_interval = ep_bw->ep_interval;
2716        else
2717                normalized_interval = ep_bw->ep_interval - 3;
2718
2719        if (normalized_interval == 0)
2720                bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2721        interval_bw = &bw_table->interval_bw[normalized_interval];
2722        interval_bw->num_packets += ep_bw->num_packets;
2723        switch (udev->speed) {
2724        case USB_SPEED_LOW:
2725                interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2726                break;
2727        case USB_SPEED_FULL:
2728                interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2729                break;
2730        case USB_SPEED_HIGH:
2731                interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2732                break;
2733        case USB_SPEED_SUPER:
2734        case USB_SPEED_SUPER_PLUS:
2735        case USB_SPEED_UNKNOWN:
2736        case USB_SPEED_WIRELESS:
2737                /* Should never happen because only LS/FS/HS endpoints will get
2738                 * added to the endpoint list.
2739                 */
2740                return;
2741        }
2742
2743        if (tt_info)
2744                tt_info->active_eps += 1;
2745        /* Insert the endpoint into the list, largest max packet size first. */
2746        list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2747                        bw_endpoint_list) {
2748                if (ep_bw->max_packet_size >=
2749                                smaller_ep->bw_info.max_packet_size) {
2750                        /* Add the new ep before the smaller endpoint */
2751                        list_add_tail(&virt_ep->bw_endpoint_list,
2752                                        &smaller_ep->bw_endpoint_list);
2753                        return;
2754                }
2755        }
2756        /* Add the new endpoint at the end of the list. */
2757        list_add_tail(&virt_ep->bw_endpoint_list,
2758                        &interval_bw->endpoints);
2759}
2760
2761void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2762                struct xhci_virt_device *virt_dev,
2763                int old_active_eps)
2764{
2765        struct xhci_root_port_bw_info *rh_bw_info;
2766        if (!virt_dev->tt_info)
2767                return;
2768
2769        rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2770        if (old_active_eps == 0 &&
2771                                virt_dev->tt_info->active_eps != 0) {
2772                rh_bw_info->num_active_tts += 1;
2773                rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2774        } else if (old_active_eps != 0 &&
2775                                virt_dev->tt_info->active_eps == 0) {
2776                rh_bw_info->num_active_tts -= 1;
2777                rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2778        }
2779}
2780
2781static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2782                struct xhci_virt_device *virt_dev,
2783                struct xhci_container_ctx *in_ctx)
2784{
2785        struct xhci_bw_info ep_bw_info[31];
2786        int i;
2787        struct xhci_input_control_ctx *ctrl_ctx;
2788        int old_active_eps = 0;
2789
2790        if (virt_dev->tt_info)
2791                old_active_eps = virt_dev->tt_info->active_eps;
2792
2793        ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2794        if (!ctrl_ctx) {
2795                xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2796                                __func__);
2797                return -ENOMEM;
2798        }
2799
2800        for (i = 0; i < 31; i++) {
2801                if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2802                        continue;
2803
2804                /* Make a copy of the BW info in case we need to revert this */
2805                memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2806                                sizeof(ep_bw_info[i]));
2807                /* Drop the endpoint from the interval table if the endpoint is
2808                 * being dropped or changed.
2809                 */
2810                if (EP_IS_DROPPED(ctrl_ctx, i))
2811                        xhci_drop_ep_from_interval_table(xhci,
2812                                        &virt_dev->eps[i].bw_info,
2813                                        virt_dev->bw_table,
2814                                        virt_dev->udev,
2815                                        &virt_dev->eps[i],
2816                                        virt_dev->tt_info);
2817        }
2818        /* Overwrite the information stored in the endpoints' bw_info */
2819        xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2820        for (i = 0; i < 31; i++) {
2821                /* Add any changed or added endpoints to the interval table */
2822                if (EP_IS_ADDED(ctrl_ctx, i))
2823                        xhci_add_ep_to_interval_table(xhci,
2824                                        &virt_dev->eps[i].bw_info,
2825                                        virt_dev->bw_table,
2826                                        virt_dev->udev,
2827                                        &virt_dev->eps[i],
2828                                        virt_dev->tt_info);
2829        }
2830
2831        if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2832                /* Ok, this fits in the bandwidth we have.
2833                 * Update the number of active TTs.
2834                 */
2835                xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2836                return 0;
2837        }
2838
2839        /* We don't have enough bandwidth for this, revert the stored info. */
2840        for (i = 0; i < 31; i++) {
2841                if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2842                        continue;
2843
2844                /* Drop the new copies of any added or changed endpoints from
2845                 * the interval table.
2846                 */
2847                if (EP_IS_ADDED(ctrl_ctx, i)) {
2848                        xhci_drop_ep_from_interval_table(xhci,
2849                                        &virt_dev->eps[i].bw_info,
2850                                        virt_dev->bw_table,
2851                                        virt_dev->udev,
2852                                        &virt_dev->eps[i],
2853                                        virt_dev->tt_info);
2854                }
2855                /* Revert the endpoint back to its old information */
2856                memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2857                                sizeof(ep_bw_info[i]));
2858                /* Add any changed or dropped endpoints back into the table */
2859                if (EP_IS_DROPPED(ctrl_ctx, i))
2860                        xhci_add_ep_to_interval_table(xhci,
2861                                        &virt_dev->eps[i].bw_info,
2862                                        virt_dev->bw_table,
2863                                        virt_dev->udev,
2864                                        &virt_dev->eps[i],
2865                                        virt_dev->tt_info);
2866        }
2867        return -ENOMEM;
2868}
2869
2870
2871/* Issue a configure endpoint command or evaluate context command
2872 * and wait for it to finish.
2873 */
2874static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2875                struct usb_device *udev,
2876                struct xhci_command *command,
2877                bool ctx_change, bool must_succeed)
2878{
2879        int ret;
2880        unsigned long flags;
2881        struct xhci_input_control_ctx *ctrl_ctx;
2882        struct xhci_virt_device *virt_dev;
2883        struct xhci_slot_ctx *slot_ctx;
2884
2885        if (!command)
2886                return -EINVAL;
2887
2888        spin_lock_irqsave(&xhci->lock, flags);
2889
2890        if (xhci->xhc_state & XHCI_STATE_DYING) {
2891                spin_unlock_irqrestore(&xhci->lock, flags);
2892                return -ESHUTDOWN;
2893        }
2894
2895        virt_dev = xhci->devs[udev->slot_id];
2896
2897        ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2898        if (!ctrl_ctx) {
2899                spin_unlock_irqrestore(&xhci->lock, flags);
2900                xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2901                                __func__);
2902                return -ENOMEM;
2903        }
2904
2905        if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2906                        xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2907                spin_unlock_irqrestore(&xhci->lock, flags);
2908                xhci_warn(xhci, "Not enough host resources, "
2909                                "active endpoint contexts = %u\n",
2910                                xhci->num_active_eps);
2911                return -ENOMEM;
2912        }
2913        if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2914            xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2915                if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2916                        xhci_free_host_resources(xhci, ctrl_ctx);
2917                spin_unlock_irqrestore(&xhci->lock, flags);
2918                xhci_warn(xhci, "Not enough bandwidth\n");
2919                return -ENOMEM;
2920        }
2921
2922        slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2923
2924        trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2925        trace_xhci_configure_endpoint(slot_ctx);
2926
2927        if (!ctx_change)
2928                ret = xhci_queue_configure_endpoint(xhci, command,
2929                                command->in_ctx->dma,
2930                                udev->slot_id, must_succeed);
2931        else
2932                ret = xhci_queue_evaluate_context(xhci, command,
2933                                command->in_ctx->dma,
2934                                udev->slot_id, must_succeed);
2935        if (ret < 0) {
2936                if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2937                        xhci_free_host_resources(xhci, ctrl_ctx);
2938                spin_unlock_irqrestore(&xhci->lock, flags);
2939                xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2940                                "FIXME allocate a new ring segment");
2941                return -ENOMEM;
2942        }
2943        xhci_ring_cmd_db(xhci);
2944        spin_unlock_irqrestore(&xhci->lock, flags);
2945
2946        /* Wait for the configure endpoint command to complete */
2947        wait_for_completion(command->completion);
2948
2949        if (!ctx_change)
2950                ret = xhci_configure_endpoint_result(xhci, udev,
2951                                                     &command->status);
2952        else
2953                ret = xhci_evaluate_context_result(xhci, udev,
2954                                                   &command->status);
2955
2956        if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2957                spin_lock_irqsave(&xhci->lock, flags);
2958                /* If the command failed, remove the reserved resources.
2959                 * Otherwise, clean up the estimate to include dropped eps.
2960                 */
2961                if (ret)
2962                        xhci_free_host_resources(xhci, ctrl_ctx);
2963                else
2964                        xhci_finish_resource_reservation(xhci, ctrl_ctx);
2965                spin_unlock_irqrestore(&xhci->lock, flags);
2966        }
2967        return ret;
2968}
2969
2970static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2971        struct xhci_virt_device *vdev, int i)
2972{
2973        struct xhci_virt_ep *ep = &vdev->eps[i];
2974
2975        if (ep->ep_state & EP_HAS_STREAMS) {
2976                xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2977                                xhci_get_endpoint_address(i));
2978                xhci_free_stream_info(xhci, ep->stream_info);
2979                ep->stream_info = NULL;
2980                ep->ep_state &= ~EP_HAS_STREAMS;
2981        }
2982}
2983
2984/* Called after one or more calls to xhci_add_endpoint() or
2985 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2986 * to call xhci_reset_bandwidth().
2987 *
2988 * Since we are in the middle of changing either configuration or
2989 * installing a new alt setting, the USB core won't allow URBs to be
2990 * enqueued for any endpoint on the old config or interface.  Nothing
2991 * else should be touching the xhci->devs[slot_id] structure, so we
2992 * don't need to take the xhci->lock for manipulating that.
2993 */
2994int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2995{
2996        int i;
2997        int ret = 0;
2998        struct xhci_hcd *xhci;
2999        struct xhci_virt_device *virt_dev;
3000        struct xhci_input_control_ctx *ctrl_ctx;
3001        struct xhci_slot_ctx *slot_ctx;
3002        struct xhci_command *command;
3003
3004        ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3005        if (ret <= 0)
3006                return ret;
3007        xhci = hcd_to_xhci(hcd);
3008        if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3009                (xhci->xhc_state & XHCI_STATE_REMOVING))
3010                return -ENODEV;
3011
3012        xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3013        virt_dev = xhci->devs[udev->slot_id];
3014
3015        command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3016        if (!command)
3017                return -ENOMEM;
3018
3019        command->in_ctx = virt_dev->in_ctx;
3020
3021        /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3022        ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3023        if (!ctrl_ctx) {
3024                xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3025                                __func__);
3026                ret = -ENOMEM;
3027                goto command_cleanup;
3028        }
3029        ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3030        ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3031        ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3032
3033        /* Don't issue the command if there's no endpoints to update. */
3034        if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3035            ctrl_ctx->drop_flags == 0) {
3036                ret = 0;
3037                goto command_cleanup;
3038        }
3039        /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3040        slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3041        for (i = 31; i >= 1; i--) {
3042                __le32 le32 = cpu_to_le32(BIT(i));
3043
3044                if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3045                    || (ctrl_ctx->add_flags & le32) || i == 1) {
3046                        slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3047                        slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3048                        break;
3049                }
3050        }
3051
3052        ret = xhci_configure_endpoint(xhci, udev, command,
3053                        false, false);
3054        if (ret)
3055                /* Callee should call reset_bandwidth() */
3056                goto command_cleanup;
3057
3058        /* Free any rings that were dropped, but not changed. */
3059        for (i = 1; i < 31; i++) {
3060                if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3061                    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3062                        xhci_free_endpoint_ring(xhci, virt_dev, i);
3063                        xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3064                }
3065        }
3066        xhci_zero_in_ctx(xhci, virt_dev);
3067        /*
3068         * Install any rings for completely new endpoints or changed endpoints,
3069         * and free any old rings from changed endpoints.
3070         */
3071        for (i = 1; i < 31; i++) {
3072                if (!virt_dev->eps[i].new_ring)
3073                        continue;
3074                /* Only free the old ring if it exists.
3075                 * It may not if this is the first add of an endpoint.
3076                 */
3077                if (virt_dev->eps[i].ring) {
3078                        xhci_free_endpoint_ring(xhci, virt_dev, i);
3079                }
3080                xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3081                virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3082                virt_dev->eps[i].new_ring = NULL;
3083                xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3084        }
3085command_cleanup:
3086        kfree(command->completion);
3087        kfree(command);
3088
3089        return ret;
3090}
3091EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3092
3093void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3094{
3095        struct xhci_hcd *xhci;
3096        struct xhci_virt_device *virt_dev;
3097        int i, ret;
3098
3099        ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3100        if (ret <= 0)
3101                return;
3102        xhci = hcd_to_xhci(hcd);
3103
3104        xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3105        virt_dev = xhci->devs[udev->slot_id];
3106        /* Free any rings allocated for added endpoints */
3107        for (i = 0; i < 31; i++) {
3108                if (virt_dev->eps[i].new_ring) {
3109                        xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3110                        xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3111                        virt_dev->eps[i].new_ring = NULL;
3112                }
3113        }
3114        xhci_zero_in_ctx(xhci, virt_dev);
3115}
3116EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3117
3118static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3119                struct xhci_container_ctx *in_ctx,
3120                struct xhci_container_ctx *out_ctx,
3121                struct xhci_input_control_ctx *ctrl_ctx,
3122                u32 add_flags, u32 drop_flags)
3123{
3124        ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3125        ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3126        xhci_slot_copy(xhci, in_ctx, out_ctx);
3127        ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3128}
3129
3130static void xhci_endpoint_disable(struct usb_hcd *hcd,
3131                                  struct usb_host_endpoint *host_ep)
3132{
3133        struct xhci_hcd         *xhci;
3134        struct xhci_virt_device *vdev;
3135        struct xhci_virt_ep     *ep;
3136        struct usb_device       *udev;
3137        unsigned long           flags;
3138        unsigned int            ep_index;
3139
3140        xhci = hcd_to_xhci(hcd);
3141rescan:
3142        spin_lock_irqsave(&xhci->lock, flags);
3143
3144        udev = (struct usb_device *)host_ep->hcpriv;
3145        if (!udev || !udev->slot_id)
3146                goto done;
3147
3148        vdev = xhci->devs[udev->slot_id];
3149        if (!vdev)
3150                goto done;
3151
3152        ep_index = xhci_get_endpoint_index(&host_ep->desc);
3153        ep = &vdev->eps[ep_index];
3154        if (!ep)
3155                goto done;
3156
3157        /* wait for hub_tt_work to finish clearing hub TT */
3158        if (ep->ep_state & EP_CLEARING_TT) {
3159                spin_unlock_irqrestore(&xhci->lock, flags);
3160                schedule_timeout_uninterruptible(1);
3161                goto rescan;
3162        }
3163
3164        if (ep->ep_state)
3165                xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3166                         ep->ep_state);
3167done:
3168        host_ep->hcpriv = NULL;
3169        spin_unlock_irqrestore(&xhci->lock, flags);
3170}
3171
3172/*
3173 * Called after usb core issues a clear halt control message.
3174 * The host side of the halt should already be cleared by a reset endpoint
3175 * command issued when the STALL event was received.
3176 *
3177 * The reset endpoint command may only be issued to endpoints in the halted
3178 * state. For software that wishes to reset the data toggle or sequence number
3179 * of an endpoint that isn't in the halted state this function will issue a
3180 * configure endpoint command with the Drop and Add bits set for the target
3181 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3182 */
3183
3184static void xhci_endpoint_reset(struct usb_hcd *hcd,
3185                struct usb_host_endpoint *host_ep)
3186{
3187        struct xhci_hcd *xhci;
3188        struct usb_device *udev;
3189        struct xhci_virt_device *vdev;
3190        struct xhci_virt_ep *ep;
3191        struct xhci_input_control_ctx *ctrl_ctx;
3192        struct xhci_command *stop_cmd, *cfg_cmd;
3193        unsigned int ep_index;
3194        unsigned long flags;
3195        u32 ep_flag;
3196        int err;
3197
3198        xhci = hcd_to_xhci(hcd);
3199        if (!host_ep->hcpriv)
3200                return;
3201        udev = (struct usb_device *) host_ep->hcpriv;
3202        vdev = xhci->devs[udev->slot_id];
3203
3204        /*
3205         * vdev may be lost due to xHC restore error and re-initialization
3206         * during S3/S4 resume. A new vdev will be allocated later by
3207         * xhci_discover_or_reset_device()
3208         */
3209        if (!udev->slot_id || !vdev)
3210                return;
3211        ep_index = xhci_get_endpoint_index(&host_ep->desc);
3212        ep = &vdev->eps[ep_index];
3213        if (!ep)
3214                return;
3215
3216        /* Bail out if toggle is already being cleared by a endpoint reset */
3217        spin_lock_irqsave(&xhci->lock, flags);
3218        if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3219                ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3220                spin_unlock_irqrestore(&xhci->lock, flags);
3221                return;
3222        }
3223        spin_unlock_irqrestore(&xhci->lock, flags);
3224        /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3225        if (usb_endpoint_xfer_control(&host_ep->desc) ||
3226            usb_endpoint_xfer_isoc(&host_ep->desc))
3227                return;
3228
3229        ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3230
3231        if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3232                return;
3233
3234        stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3235        if (!stop_cmd)
3236                return;
3237
3238        cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3239        if (!cfg_cmd)
3240                goto cleanup;
3241
3242        spin_lock_irqsave(&xhci->lock, flags);
3243
3244        /* block queuing new trbs and ringing ep doorbell */
3245        ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3246
3247        /*
3248         * Make sure endpoint ring is empty before resetting the toggle/seq.
3249         * Driver is required to synchronously cancel all transfer request.
3250         * Stop the endpoint to force xHC to update the output context
3251         */
3252
3253        if (!list_empty(&ep->ring->td_list)) {
3254                dev_err(&udev->dev, "EP not empty, refuse reset\n");
3255                spin_unlock_irqrestore(&xhci->lock, flags);
3256                xhci_free_command(xhci, cfg_cmd);
3257                goto cleanup;
3258        }
3259
3260        err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3261                                        ep_index, 0);
3262        if (err < 0) {
3263                spin_unlock_irqrestore(&xhci->lock, flags);
3264                xhci_free_command(xhci, cfg_cmd);
3265                xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3266                                __func__, err);
3267                goto cleanup;
3268        }
3269
3270        xhci_ring_cmd_db(xhci);
3271        spin_unlock_irqrestore(&xhci->lock, flags);
3272
3273        wait_for_completion(stop_cmd->completion);
3274
3275        spin_lock_irqsave(&xhci->lock, flags);
3276
3277        /* config ep command clears toggle if add and drop ep flags are set */
3278        ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3279        if (!ctrl_ctx) {
3280                spin_unlock_irqrestore(&xhci->lock, flags);
3281                xhci_free_command(xhci, cfg_cmd);
3282                xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3283                                __func__);
3284                goto cleanup;
3285        }
3286
3287        xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3288                                           ctrl_ctx, ep_flag, ep_flag);
3289        xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3290
3291        err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3292                                      udev->slot_id, false);
3293        if (err < 0) {
3294                spin_unlock_irqrestore(&xhci->lock, flags);
3295                xhci_free_command(xhci, cfg_cmd);
3296                xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3297                                __func__, err);
3298                goto cleanup;
3299        }
3300
3301        xhci_ring_cmd_db(xhci);
3302        spin_unlock_irqrestore(&xhci->lock, flags);
3303
3304        wait_for_completion(cfg_cmd->completion);
3305
3306        xhci_free_command(xhci, cfg_cmd);
3307cleanup:
3308        xhci_free_command(xhci, stop_cmd);
3309        spin_lock_irqsave(&xhci->lock, flags);
3310        if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3311                ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3312        spin_unlock_irqrestore(&xhci->lock, flags);
3313}
3314
3315static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3316                struct usb_device *udev, struct usb_host_endpoint *ep,
3317                unsigned int slot_id)
3318{
3319        int ret;
3320        unsigned int ep_index;
3321        unsigned int ep_state;
3322
3323        if (!ep)
3324                return -EINVAL;
3325        ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3326        if (ret <= 0)
3327                return -EINVAL;
3328        if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3329                xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3330                                " descriptor for ep 0x%x does not support streams\n",
3331                                ep->desc.bEndpointAddress);
3332                return -EINVAL;
3333        }
3334
3335        ep_index = xhci_get_endpoint_index(&ep->desc);
3336        ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3337        if (ep_state & EP_HAS_STREAMS ||
3338                        ep_state & EP_GETTING_STREAMS) {
3339                xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3340                                "already has streams set up.\n",
3341                                ep->desc.bEndpointAddress);
3342                xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3343                                "dynamic stream context array reallocation.\n");
3344                return -EINVAL;
3345        }
3346        if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3347                xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3348                                "endpoint 0x%x; URBs are pending.\n",
3349                                ep->desc.bEndpointAddress);
3350                return -EINVAL;
3351        }
3352        return 0;
3353}
3354
3355static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3356                unsigned int *num_streams, unsigned int *num_stream_ctxs)
3357{
3358        unsigned int max_streams;
3359
3360        /* The stream context array size must be a power of two */
3361        *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3362        /*
3363         * Find out how many primary stream array entries the host controller
3364         * supports.  Later we may use secondary stream arrays (similar to 2nd
3365         * level page entries), but that's an optional feature for xHCI host
3366         * controllers. xHCs must support at least 4 stream IDs.
3367         */
3368        max_streams = HCC_MAX_PSA(xhci->hcc_params);
3369        if (*num_stream_ctxs > max_streams) {
3370                xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3371                                max_streams);
3372                *num_stream_ctxs = max_streams;
3373                *num_streams = max_streams;
3374        }
3375}
3376
3377/* Returns an error code if one of the endpoint already has streams.
3378 * This does not change any data structures, it only checks and gathers
3379 * information.
3380 */
3381static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3382                struct usb_device *udev,
3383                struct usb_host_endpoint **eps, unsigned int num_eps,
3384                unsigned int *num_streams, u32 *changed_ep_bitmask)
3385{
3386        unsigned int max_streams;
3387        unsigned int endpoint_flag;
3388        int i;
3389        int ret;
3390
3391        for (i = 0; i < num_eps; i++) {
3392                ret = xhci_check_streams_endpoint(xhci, udev,
3393                                eps[i], udev->slot_id);
3394                if (ret < 0)
3395                        return ret;
3396
3397                max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3398                if (max_streams < (*num_streams - 1)) {
3399                        xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3400                                        eps[i]->desc.bEndpointAddress,
3401                                        max_streams);
3402                        *num_streams = max_streams+1;
3403                }
3404
3405                endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3406                if (*changed_ep_bitmask & endpoint_flag)
3407                        return -EINVAL;
3408                *changed_ep_bitmask |= endpoint_flag;
3409        }
3410        return 0;
3411}
3412
3413static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3414                struct usb_device *udev,
3415                struct usb_host_endpoint **eps, unsigned int num_eps)
3416{
3417        u32 changed_ep_bitmask = 0;
3418        unsigned int slot_id;
3419        unsigned int ep_index;
3420        unsigned int ep_state;
3421        int i;
3422
3423        slot_id = udev->slot_id;
3424        if (!xhci->devs[slot_id])
3425                return 0;
3426
3427        for (i = 0; i < num_eps; i++) {
3428                ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3429                ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3430                /* Are streams already being freed for the endpoint? */
3431                if (ep_state & EP_GETTING_NO_STREAMS) {
3432                        xhci_warn(xhci, "WARN Can't disable streams for "
3433                                        "endpoint 0x%x, "
3434                                        "streams are being disabled already\n",
3435                                        eps[i]->desc.bEndpointAddress);
3436                        return 0;
3437                }
3438                /* Are there actually any streams to free? */
3439                if (!(ep_state & EP_HAS_STREAMS) &&
3440                                !(ep_state & EP_GETTING_STREAMS)) {
3441                        xhci_warn(xhci, "WARN Can't disable streams for "
3442                                        "endpoint 0x%x, "
3443                                        "streams are already disabled!\n",
3444                                        eps[i]->desc.bEndpointAddress);
3445                        xhci_warn(xhci, "WARN xhci_free_streams() called "
3446                                        "with non-streams endpoint\n");
3447                        return 0;
3448                }
3449                changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3450        }
3451        return changed_ep_bitmask;
3452}
3453
3454/*
3455 * The USB device drivers use this function (through the HCD interface in USB
3456 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3457 * coordinate mass storage command queueing across multiple endpoints (basically
3458 * a stream ID == a task ID).
3459 *
3460 * Setting up streams involves allocating the same size stream context array
3461 * for each endpoint and issuing a configure endpoint command for all endpoints.
3462 *
3463 * Don't allow the call to succeed if one endpoint only supports one stream
3464 * (which means it doesn't support streams at all).
3465 *
3466 * Drivers may get less stream IDs than they asked for, if the host controller
3467 * hardware or endpoints claim they can't support the number of requested
3468 * stream IDs.
3469 */
3470static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3471                struct usb_host_endpoint **eps, unsigned int num_eps,
3472                unsigned int num_streams, gfp_t mem_flags)
3473{
3474        int i, ret;
3475        struct xhci_hcd *xhci;
3476        struct xhci_virt_device *vdev;
3477        struct xhci_command *config_cmd;
3478        struct xhci_input_control_ctx *ctrl_ctx;
3479        unsigned int ep_index;
3480        unsigned int num_stream_ctxs;
3481        unsigned int max_packet;
3482        unsigned long flags;
3483        u32 changed_ep_bitmask = 0;
3484
3485        if (!eps)
3486                return -EINVAL;
3487
3488        /* Add one to the number of streams requested to account for
3489         * stream 0 that is reserved for xHCI usage.
3490         */
3491        num_streams += 1;
3492        xhci = hcd_to_xhci(hcd);
3493        xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3494                        num_streams);
3495
3496        /* MaxPSASize value 0 (2 streams) means streams are not supported */
3497        if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3498                        HCC_MAX_PSA(xhci->hcc_params) < 4) {
3499                xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3500                return -ENOSYS;
3501        }
3502
3503        config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3504        if (!config_cmd)
3505                return -ENOMEM;
3506
3507        ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3508        if (!ctrl_ctx) {
3509                xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3510                                __func__);
3511                xhci_free_command(xhci, config_cmd);
3512                return -ENOMEM;
3513        }
3514
3515        /* Check to make sure all endpoints are not already configured for
3516         * streams.  While we're at it, find the maximum number of streams that
3517         * all the endpoints will support and check for duplicate endpoints.
3518         */
3519        spin_lock_irqsave(&xhci->lock, flags);
3520        ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3521                        num_eps, &num_streams, &changed_ep_bitmask);
3522        if (ret < 0) {
3523                xhci_free_command(xhci, config_cmd);
3524                spin_unlock_irqrestore(&xhci->lock, flags);
3525                return ret;
3526        }
3527        if (num_streams <= 1) {
3528                xhci_warn(xhci, "WARN: endpoints can't handle "
3529                                "more than one stream.\n");
3530                xhci_free_command(xhci, config_cmd);
3531                spin_unlock_irqrestore(&xhci->lock, flags);
3532                return -EINVAL;
3533        }
3534        vdev = xhci->devs[udev->slot_id];
3535        /* Mark each endpoint as being in transition, so
3536         * xhci_urb_enqueue() will reject all URBs.
3537         */
3538        for (i = 0; i < num_eps; i++) {
3539                ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3540                vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3541        }
3542        spin_unlock_irqrestore(&xhci->lock, flags);
3543
3544        /* Setup internal data structures and allocate HW data structures for
3545         * streams (but don't install the HW structures in the input context
3546         * until we're sure all memory allocation succeeded).
3547         */
3548        xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3549        xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3550                        num_stream_ctxs, num_streams);
3551
3552        for (i = 0; i < num_eps; i++) {
3553                ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3554                max_packet = usb_endpoint_maxp(&eps[i]->desc);
3555                vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3556                                num_stream_ctxs,
3557                                num_streams,
3558                                max_packet, mem_flags);
3559                if (!vdev->eps[ep_index].stream_info)
3560                        goto cleanup;
3561                /* Set maxPstreams in endpoint context and update deq ptr to
3562                 * point to stream context array. FIXME
3563                 */
3564        }
3565
3566        /* Set up the input context for a configure endpoint command. */
3567        for (i = 0; i < num_eps; i++) {
3568                struct xhci_ep_ctx *ep_ctx;
3569
3570                ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3571                ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3572
3573                xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3574                                vdev->out_ctx, ep_index);
3575                xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3576                                vdev->eps[ep_index].stream_info);
3577        }
3578        /* Tell the HW to drop its old copy of the endpoint context info
3579         * and add the updated copy from the input context.
3580         */
3581        xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3582                        vdev->out_ctx, ctrl_ctx,
3583                        changed_ep_bitmask, changed_ep_bitmask);
3584
3585        /* Issue and wait for the configure endpoint command */
3586        ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3587                        false, false);
3588
3589        /* xHC rejected the configure endpoint command for some reason, so we
3590         * leave the old ring intact and free our internal streams data
3591         * structure.
3592         */
3593        if (ret < 0)
3594                goto cleanup;
3595
3596        spin_lock_irqsave(&xhci->lock, flags);
3597        for (i = 0; i < num_eps; i++) {
3598                ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3599                vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3600                xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3601                         udev->slot_id, ep_index);
3602                vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3603        }
3604        xhci_free_command(xhci, config_cmd);
3605        spin_unlock_irqrestore(&xhci->lock, flags);
3606
3607        for (i = 0; i < num_eps; i++) {
3608                ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3609                xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3610        }
3611        /* Subtract 1 for stream 0, which drivers can't use */
3612        return num_streams - 1;
3613
3614cleanup:
3615        /* If it didn't work, free the streams! */
3616        for (i = 0; i < num_eps; i++) {
3617                ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3618                xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3619                vdev->eps[ep_index].stream_info = NULL;
3620                /* FIXME Unset maxPstreams in endpoint context and
3621                 * update deq ptr to point to normal string ring.
3622                 */
3623                vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3624                vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3625                xhci_endpoint_zero(xhci, vdev, eps[i]);
3626        }
3627        xhci_free_command(xhci, config_cmd);
3628        return -ENOMEM;
3629}
3630
3631/* Transition the endpoint from using streams to being a "normal" endpoint
3632 * without streams.
3633 *
3634 * Modify the endpoint context state, submit a configure endpoint command,
3635 * and free all endpoint rings for streams if that completes successfully.
3636 */
3637static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3638                struct usb_host_endpoint **eps, unsigned int num_eps,
3639                gfp_t mem_flags)
3640{
3641        int i, ret;
3642        struct xhci_hcd *xhci;
3643        struct xhci_virt_device *vdev;
3644        struct xhci_command *command;
3645        struct xhci_input_control_ctx *ctrl_ctx;
3646        unsigned int ep_index;
3647        unsigned long flags;
3648        u32 changed_ep_bitmask;
3649
3650        xhci = hcd_to_xhci(hcd);
3651        vdev = xhci->devs[udev->slot_id];
3652
3653        /* Set up a configure endpoint command to remove the streams rings */
3654        spin_lock_irqsave(&xhci->lock, flags);
3655        changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3656                        udev, eps, num_eps);
3657        if (changed_ep_bitmask == 0) {
3658                spin_unlock_irqrestore(&xhci->lock, flags);
3659                return -EINVAL;
3660        }
3661
3662        /* Use the xhci_command structure from the first endpoint.  We may have
3663         * allocated too many, but the driver may call xhci_free_streams() for
3664         * each endpoint it grouped into one call to xhci_alloc_streams().
3665         */
3666        ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3667        command = vdev->eps[ep_index].stream_info->free_streams_command;
3668        ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3669        if (!ctrl_ctx) {
3670                spin_unlock_irqrestore(&xhci->lock, flags);
3671                xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3672                                __func__);
3673                return -EINVAL;
3674        }
3675
3676        for (i = 0; i < num_eps; i++) {
3677                struct xhci_ep_ctx *ep_ctx;
3678
3679                ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3680                ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3681                xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3682                        EP_GETTING_NO_STREAMS;
3683
3684                xhci_endpoint_copy(xhci, command->in_ctx,
3685                                vdev->out_ctx, ep_index);
3686                xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3687                                &vdev->eps[ep_index]);
3688        }
3689        xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3690                        vdev->out_ctx, ctrl_ctx,
3691                        changed_ep_bitmask, changed_ep_bitmask);
3692        spin_unlock_irqrestore(&xhci->lock, flags);
3693
3694        /* Issue and wait for the configure endpoint command,
3695         * which must succeed.
3696         */
3697        ret = xhci_configure_endpoint(xhci, udev, command,
3698                        false, true);
3699
3700        /* xHC rejected the configure endpoint command for some reason, so we
3701         * leave the streams rings intact.
3702         */
3703        if (ret < 0)
3704                return ret;
3705
3706        spin_lock_irqsave(&xhci->lock, flags);
3707        for (i = 0; i < num_eps; i++) {
3708                ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3709                xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3710                vdev->eps[ep_index].stream_info = NULL;
3711                /* FIXME Unset maxPstreams in endpoint context and
3712                 * update deq ptr to point to normal string ring.
3713                 */
3714                vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3715                vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3716        }
3717        spin_unlock_irqrestore(&xhci->lock, flags);
3718
3719        return 0;
3720}
3721
3722/*
3723 * Deletes endpoint resources for endpoints that were active before a Reset
3724 * Device command, or a Disable Slot command.  The Reset Device command leaves
3725 * the control endpoint intact, whereas the Disable Slot command deletes it.
3726 *
3727 * Must be called with xhci->lock held.
3728 */
3729void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3730        struct xhci_virt_device *virt_dev, bool drop_control_ep)
3731{
3732        int i;
3733        unsigned int num_dropped_eps = 0;
3734        unsigned int drop_flags = 0;
3735
3736        for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3737                if (virt_dev->eps[i].ring) {
3738                        drop_flags |= 1 << i;
3739                        num_dropped_eps++;
3740                }
3741        }
3742        xhci->num_active_eps -= num_dropped_eps;
3743        if (num_dropped_eps)
3744                xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3745                                "Dropped %u ep ctxs, flags = 0x%x, "
3746                                "%u now active.",
3747                                num_dropped_eps, drop_flags,
3748                                xhci->num_active_eps);
3749}
3750
3751/*
3752 * This submits a Reset Device Command, which will set the device state to 0,
3753 * set the device address to 0, and disable all the endpoints except the default
3754 * control endpoint.  The USB core should come back and call
3755 * xhci_address_device(), and then re-set up the configuration.  If this is
3756 * called because of a usb_reset_and_verify_device(), then the old alternate
3757 * settings will be re-installed through the normal bandwidth allocation
3758 * functions.
3759 *
3760 * Wait for the Reset Device command to finish.  Remove all structures
3761 * associated with the endpoints that were disabled.  Clear the input device
3762 * structure? Reset the control endpoint 0 max packet size?
3763 *
3764 * If the virt_dev to be reset does not exist or does not match the udev,
3765 * it means the device is lost, possibly due to the xHC restore error and
3766 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3767 * re-allocate the device.
3768 */
3769static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3770                struct usb_device *udev)
3771{
3772        int ret, i;
3773        unsigned long flags;
3774        struct xhci_hcd *xhci;
3775        unsigned int slot_id;
3776        struct xhci_virt_device *virt_dev;
3777        struct xhci_command *reset_device_cmd;
3778        struct xhci_slot_ctx *slot_ctx;
3779        int old_active_eps = 0;
3780
3781        ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3782        if (ret <= 0)
3783                return ret;
3784        xhci = hcd_to_xhci(hcd);
3785        slot_id = udev->slot_id;
3786        virt_dev = xhci->devs[slot_id];
3787        if (!virt_dev) {
3788                xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3789                                "not exist. Re-allocate the device\n", slot_id);
3790                ret = xhci_alloc_dev(hcd, udev);
3791                if (ret == 1)
3792                        return 0;
3793                else
3794                        return -EINVAL;
3795        }
3796
3797        if (virt_dev->tt_info)
3798                old_active_eps = virt_dev->tt_info->active_eps;
3799
3800        if (virt_dev->udev != udev) {
3801                /* If the virt_dev and the udev does not match, this virt_dev
3802                 * may belong to another udev.
3803                 * Re-allocate the device.
3804                 */
3805                xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3806                                "not match the udev. Re-allocate the device\n",
3807                                slot_id);
3808                ret = xhci_alloc_dev(hcd, udev);
3809                if (ret == 1)
3810                        return 0;
3811                else
3812                        return -EINVAL;
3813        }
3814
3815        /* If device is not setup, there is no point in resetting it */
3816        slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3817        if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3818                                                SLOT_STATE_DISABLED)
3819                return 0;
3820
3821        trace_xhci_discover_or_reset_device(slot_ctx);
3822
3823        xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3824        /* Allocate the command structure that holds the struct completion.
3825         * Assume we're in process context, since the normal device reset
3826         * process has to wait for the device anyway.  Storage devices are
3827         * reset as part of error handling, so use GFP_NOIO instead of
3828         * GFP_KERNEL.
3829         */
3830        reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3831        if (!reset_device_cmd) {
3832                xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3833                return -ENOMEM;
3834        }
3835
3836        /* Attempt to submit the Reset Device command to the command ring */
3837        spin_lock_irqsave(&xhci->lock, flags);
3838
3839        ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3840        if (ret) {
3841                xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3842                spin_unlock_irqrestore(&xhci->lock, flags);
3843                goto command_cleanup;
3844        }
3845        xhci_ring_cmd_db(xhci);
3846        spin_unlock_irqrestore(&xhci->lock, flags);
3847
3848        /* Wait for the Reset Device command to finish */
3849        wait_for_completion(reset_device_cmd->completion);
3850
3851        /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3852         * unless we tried to reset a slot ID that wasn't enabled,
3853         * or the device wasn't in the addressed or configured state.
3854         */
3855        ret = reset_device_cmd->status;
3856        switch (ret) {
3857        case COMP_COMMAND_ABORTED:
3858        case COMP_COMMAND_RING_STOPPED:
3859                xhci_warn(xhci, "Timeout waiting for reset device command\n");
3860                ret = -ETIME;
3861                goto command_cleanup;
3862        case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3863        case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3864                xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3865                                slot_id,
3866                                xhci_get_slot_state(xhci, virt_dev->out_ctx));
3867                xhci_dbg(xhci, "Not freeing device rings.\n");
3868                /* Don't treat this as an error.  May change my mind later. */
3869                ret = 0;
3870                goto command_cleanup;
3871        case COMP_SUCCESS:
3872                xhci_dbg(xhci, "Successful reset device command.\n");
3873                break;
3874        default:
3875                if (xhci_is_vendor_info_code(xhci, ret))
3876                        break;
3877                xhci_warn(xhci, "Unknown completion code %u for "
3878                                "reset device command.\n", ret);
3879                ret = -EINVAL;
3880                goto command_cleanup;
3881        }
3882
3883        /* Free up host controller endpoint resources */
3884        if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3885                spin_lock_irqsave(&xhci->lock, flags);
3886                /* Don't delete the default control endpoint resources */
3887                xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3888                spin_unlock_irqrestore(&xhci->lock, flags);
3889        }
3890
3891        /* Everything but endpoint 0 is disabled, so free the rings. */
3892        for (i = 1; i < 31; i++) {
3893                struct xhci_virt_ep *ep = &virt_dev->eps[i];
3894
3895                if (ep->ep_state & EP_HAS_STREAMS) {
3896                        xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3897                                        xhci_get_endpoint_address(i));
3898                        xhci_free_stream_info(xhci, ep->stream_info);
3899                        ep->stream_info = NULL;
3900                        ep->ep_state &= ~EP_HAS_STREAMS;
3901                }
3902
3903                if (ep->ring) {
3904                        xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3905                        xhci_free_endpoint_ring(xhci, virt_dev, i);
3906                }
3907                if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3908                        xhci_drop_ep_from_interval_table(xhci,
3909                                        &virt_dev->eps[i].bw_info,
3910                                        virt_dev->bw_table,
3911                                        udev,
3912                                        &virt_dev->eps[i],
3913                                        virt_dev->tt_info);
3914                xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3915        }
3916        /* If necessary, update the number of active TTs on this root port */
3917        xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3918        virt_dev->flags = 0;
3919        ret = 0;
3920
3921command_cleanup:
3922        xhci_free_command(xhci, reset_device_cmd);
3923        return ret;
3924}
3925
3926/*
3927 * At this point, the struct usb_device is about to go away, the device has
3928 * disconnected, and all traffic has been stopped and the endpoints have been
3929 * disabled.  Free any HC data structures associated with that device.
3930 */
3931static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3932{
3933        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3934        struct xhci_virt_device *virt_dev;
3935        struct xhci_slot_ctx *slot_ctx;
3936        int i, ret;
3937
3938#ifndef CONFIG_USB_DEFAULT_PERSIST
3939        /*
3940         * We called pm_runtime_get_noresume when the device was attached.
3941         * Decrement the counter here to allow controller to runtime suspend
3942         * if no devices remain.
3943         */
3944        if (xhci->quirks & XHCI_RESET_ON_RESUME)
3945                pm_runtime_put_noidle(hcd->self.controller);
3946#endif
3947
3948        ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3949        /* If the host is halted due to driver unload, we still need to free the
3950         * device.
3951         */
3952        if (ret <= 0 && ret != -ENODEV)
3953                return;
3954
3955        virt_dev = xhci->devs[udev->slot_id];
3956        slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3957        trace_xhci_free_dev(slot_ctx);
3958
3959        /* Stop any wayward timer functions (which may grab the lock) */
3960        for (i = 0; i < 31; i++) {
3961                virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3962                del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3963        }
3964        virt_dev->udev = NULL;
3965        ret = xhci_disable_slot(xhci, udev->slot_id);
3966        if (ret)
3967                xhci_free_virt_device(xhci, udev->slot_id);
3968}
3969
3970int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3971{
3972        struct xhci_command *command;
3973        unsigned long flags;
3974        u32 state;
3975        int ret = 0;
3976
3977        command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3978        if (!command)
3979                return -ENOMEM;
3980
3981        xhci_debugfs_remove_slot(xhci, slot_id);
3982
3983        spin_lock_irqsave(&xhci->lock, flags);
3984        /* Don't disable the slot if the host controller is dead. */
3985        state = readl(&xhci->op_regs->status);
3986        if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3987                        (xhci->xhc_state & XHCI_STATE_HALTED)) {
3988                spin_unlock_irqrestore(&xhci->lock, flags);
3989                kfree(command);
3990                return -ENODEV;
3991        }
3992
3993        ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3994                                slot_id);
3995        if (ret) {
3996                spin_unlock_irqrestore(&xhci->lock, flags);
3997                kfree(command);
3998                return ret;
3999        }
4000        xhci_ring_cmd_db(xhci);
4001        spin_unlock_irqrestore(&xhci->lock, flags);
4002        return ret;
4003}
4004
4005/*
4006 * Checks if we have enough host controller resources for the default control
4007 * endpoint.
4008 *
4009 * Must be called with xhci->lock held.
4010 */
4011static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4012{
4013        if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4014                xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4015                                "Not enough ep ctxs: "
4016                                "%u active, need to add 1, limit is %u.",
4017                                xhci->num_active_eps, xhci->limit_active_eps);
4018                return -ENOMEM;
4019        }
4020        xhci->num_active_eps += 1;
4021        xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4022                        "Adding 1 ep ctx, %u now active.",
4023                        xhci->num_active_eps);
4024        return 0;
4025}
4026
4027
4028/*
4029 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4030 * timed out, or allocating memory failed.  Returns 1 on success.
4031 */
4032int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4033{
4034        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4035        struct xhci_virt_device *vdev;
4036        struct xhci_slot_ctx *slot_ctx;
4037        unsigned long flags;
4038        int ret, slot_id;
4039        struct xhci_command *command;
4040
4041        command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4042        if (!command)
4043                return 0;
4044
4045        spin_lock_irqsave(&xhci->lock, flags);
4046        ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4047        if (ret) {
4048                spin_unlock_irqrestore(&xhci->lock, flags);
4049                xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4050                xhci_free_command(xhci, command);
4051                return 0;
4052        }
4053        xhci_ring_cmd_db(xhci);
4054        spin_unlock_irqrestore(&xhci->lock, flags);
4055
4056        wait_for_completion(command->completion);
4057        slot_id = command->slot_id;
4058
4059        if (!slot_id || command->status != COMP_SUCCESS) {
4060                xhci_err(xhci, "Error while assigning device slot ID\n");
4061                xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4062                                HCS_MAX_SLOTS(
4063                                        readl(&xhci->cap_regs->hcs_params1)));
4064                xhci_free_command(xhci, command);
4065                return 0;
4066        }
4067
4068        xhci_free_command(xhci, command);
4069
4070        if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4071                spin_lock_irqsave(&xhci->lock, flags);
4072                ret = xhci_reserve_host_control_ep_resources(xhci);
4073                if (ret) {
4074                        spin_unlock_irqrestore(&xhci->lock, flags);
4075                        xhci_warn(xhci, "Not enough host resources, "
4076                                        "active endpoint contexts = %u\n",
4077                                        xhci->num_active_eps);
4078                        goto disable_slot;
4079                }
4080                spin_unlock_irqrestore(&xhci->lock, flags);
4081        }
4082        /* Use GFP_NOIO, since this function can be called from
4083         * xhci_discover_or_reset_device(), which may be called as part of
4084         * mass storage driver error handling.
4085         */
4086        if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4087                xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4088                goto disable_slot;
4089        }
4090        vdev = xhci->devs[slot_id];
4091        slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4092        trace_xhci_alloc_dev(slot_ctx);
4093
4094        udev->slot_id = slot_id;
4095
4096        xhci_debugfs_create_slot(xhci, slot_id);
4097
4098#ifndef CONFIG_USB_DEFAULT_PERSIST
4099        /*
4100         * If resetting upon resume, we can't put the controller into runtime
4101         * suspend if there is a device attached.
4102         */
4103        if (xhci->quirks & XHCI_RESET_ON_RESUME)
4104                pm_runtime_get_noresume(hcd->self.controller);
4105#endif
4106
4107        /* Is this a LS or FS device under a HS hub? */
4108        /* Hub or peripherial? */
4109        return 1;
4110
4111disable_slot:
4112        ret = xhci_disable_slot(xhci, udev->slot_id);
4113        if (ret)
4114                xhci_free_virt_device(xhci, udev->slot_id);
4115
4116        return 0;
4117}
4118
4119/*
4120 * Issue an Address Device command and optionally send a corresponding
4121 * SetAddress request to the device.
4122 */
4123static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4124                             enum xhci_setup_dev setup)
4125{
4126        const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4127        unsigned long flags;
4128        struct xhci_virt_device *virt_dev;
4129        int ret = 0;
4130        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4131        struct xhci_slot_ctx *slot_ctx;
4132        struct xhci_input_control_ctx *ctrl_ctx;
4133        u64 temp_64;
4134        struct xhci_command *command = NULL;
4135
4136        mutex_lock(&xhci->mutex);
4137
4138        if (xhci->xhc_state) {  /* dying, removing or halted */
4139                ret = -ESHUTDOWN;
4140                goto out;
4141        }
4142
4143        if (!udev->slot_id) {
4144                xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4145                                "Bad Slot ID %d", udev->slot_id);
4146                ret = -EINVAL;
4147                goto out;
4148        }
4149
4150        virt_dev = xhci->devs[udev->slot_id];
4151
4152        if (WARN_ON(!virt_dev)) {
4153                /*
4154                 * In plug/unplug torture test with an NEC controller,
4155                 * a zero-dereference was observed once due to virt_dev = 0.
4156                 * Print useful debug rather than crash if it is observed again!
4157                 */
4158                xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4159                        udev->slot_id);
4160                ret = -EINVAL;
4161                goto out;
4162        }
4163        slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4164        trace_xhci_setup_device_slot(slot_ctx);
4165
4166        if (setup == SETUP_CONTEXT_ONLY) {
4167                if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4168                    SLOT_STATE_DEFAULT) {
4169                        xhci_dbg(xhci, "Slot already in default state\n");
4170                        goto out;
4171                }
4172        }
4173
4174        command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4175        if (!command) {
4176                ret = -ENOMEM;
4177                goto out;
4178        }
4179
4180        command->in_ctx = virt_dev->in_ctx;
4181
4182        slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4183        ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4184        if (!ctrl_ctx) {
4185                xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4186                                __func__);
4187                ret = -EINVAL;
4188                goto out;
4189        }
4190        /*
4191         * If this is the first Set Address since device plug-in or
4192         * virt_device realloaction after a resume with an xHCI power loss,
4193         * then set up the slot context.
4194         */
4195        if (!slot_ctx->dev_info)
4196                xhci_setup_addressable_virt_dev(xhci, udev);
4197        /* Otherwise, update the control endpoint ring enqueue pointer. */
4198        else
4199                xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4200        ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4201        ctrl_ctx->drop_flags = 0;
4202
4203        trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4204                                le32_to_cpu(slot_ctx->dev_info) >> 27);
4205
4206        trace_xhci_address_ctrl_ctx(ctrl_ctx);
4207        spin_lock_irqsave(&xhci->lock, flags);
4208        trace_xhci_setup_device(virt_dev);
4209        ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4210                                        udev->slot_id, setup);
4211        if (ret) {
4212                spin_unlock_irqrestore(&xhci->lock, flags);
4213                xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4214                                "FIXME: allocate a command ring segment");
4215                goto out;
4216        }
4217        xhci_ring_cmd_db(xhci);
4218        spin_unlock_irqrestore(&xhci->lock, flags);
4219
4220        /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4221        wait_for_completion(command->completion);
4222
4223        /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4224         * the SetAddress() "recovery interval" required by USB and aborting the
4225         * command on a timeout.
4226         */
4227        switch (command->status) {
4228        case COMP_COMMAND_ABORTED:
4229        case COMP_COMMAND_RING_STOPPED:
4230                xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4231                ret = -ETIME;
4232                break;
4233        case COMP_CONTEXT_STATE_ERROR:
4234        case COMP_SLOT_NOT_ENABLED_ERROR:
4235                xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4236                         act, udev->slot_id);
4237                ret = -EINVAL;
4238                break;
4239        case COMP_USB_TRANSACTION_ERROR:
4240                dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4241
4242                mutex_unlock(&xhci->mutex);
4243                ret = xhci_disable_slot(xhci, udev->slot_id);
4244                if (!ret)
4245                        xhci_alloc_dev(hcd, udev);
4246                kfree(command->completion);
4247                kfree(command);
4248                return -EPROTO;
4249        case COMP_INCOMPATIBLE_DEVICE_ERROR:
4250                dev_warn(&udev->dev,
4251                         "ERROR: Incompatible device for setup %s command\n", act);
4252                ret = -ENODEV;
4253                break;
4254        case COMP_SUCCESS:
4255                xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4256                               "Successful setup %s command", act);
4257                break;
4258        default:
4259                xhci_err(xhci,
4260                         "ERROR: unexpected setup %s command completion code 0x%x.\n",
4261                         act, command->status);
4262                trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4263                ret = -EINVAL;
4264                break;
4265        }
4266        if (ret)
4267                goto out;
4268        temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4269        xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4270                        "Op regs DCBAA ptr = %#016llx", temp_64);
4271        xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4272                "Slot ID %d dcbaa entry @%p = %#016llx",
4273                udev->slot_id,
4274                &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4275                (unsigned long long)
4276                le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4277        xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4278                        "Output Context DMA address = %#08llx",
4279                        (unsigned long long)virt_dev->out_ctx->dma);
4280        trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4281                                le32_to_cpu(slot_ctx->dev_info) >> 27);
4282        /*
4283         * USB core uses address 1 for the roothubs, so we add one to the
4284         * address given back to us by the HC.
4285         */
4286        trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4287                                le32_to_cpu(slot_ctx->dev_info) >> 27);
4288        /* Zero the input context control for later use */
4289        ctrl_ctx->add_flags = 0;
4290        ctrl_ctx->drop_flags = 0;
4291        slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4292        udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4293
4294        xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4295                       "Internal device address = %d",
4296                       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4297out:
4298        mutex_unlock(&xhci->mutex);
4299        if (command) {
4300                kfree(command->completion);
4301                kfree(command);
4302        }
4303        return ret;
4304}
4305
4306static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4307{
4308        return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4309}
4310
4311static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4312{
4313        return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4314}
4315
4316/*
4317 * Transfer the port index into real index in the HW port status
4318 * registers. Caculate offset between the port's PORTSC register
4319 * and port status base. Divide the number of per port register
4320 * to get the real index. The raw port number bases 1.
4321 */
4322int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4323{
4324        struct xhci_hub *rhub;
4325
4326        rhub = xhci_get_rhub(hcd);
4327        return rhub->ports[port1 - 1]->hw_portnum + 1;
4328}
4329
4330/*
4331 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4332 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4333 */
4334static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4335                        struct usb_device *udev, u16 max_exit_latency)
4336{
4337        struct xhci_virt_device *virt_dev;
4338        struct xhci_command *command;
4339        struct xhci_input_control_ctx *ctrl_ctx;
4340        struct xhci_slot_ctx *slot_ctx;
4341        unsigned long flags;
4342        int ret;
4343
4344        spin_lock_irqsave(&xhci->lock, flags);
4345
4346        virt_dev = xhci->devs[udev->slot_id];
4347
4348        /*
4349         * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4350         * xHC was re-initialized. Exit latency will be set later after
4351         * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4352         */
4353
4354        if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4355                spin_unlock_irqrestore(&xhci->lock, flags);
4356                return 0;
4357        }
4358
4359        /* Attempt to issue an Evaluate Context command to change the MEL. */
4360        command = xhci->lpm_command;
4361        ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4362        if (!ctrl_ctx) {
4363                spin_unlock_irqrestore(&xhci->lock, flags);
4364                xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4365                                __func__);
4366                return -ENOMEM;
4367        }
4368
4369        xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4370        spin_unlock_irqrestore(&xhci->lock, flags);
4371
4372        ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4373        slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4374        slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4375        slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4376        slot_ctx->dev_state = 0;
4377
4378        xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4379                        "Set up evaluate context for LPM MEL change.");
4380
4381        /* Issue and wait for the evaluate context command. */
4382        ret = xhci_configure_endpoint(xhci, udev, command,
4383                        true, true);
4384
4385        if (!ret) {
4386                spin_lock_irqsave(&xhci->lock, flags);
4387                virt_dev->current_mel = max_exit_latency;
4388                spin_unlock_irqrestore(&xhci->lock, flags);
4389        }
4390        return ret;
4391}
4392
4393#ifdef CONFIG_PM
4394
4395/* BESL to HIRD Encoding array for USB2 LPM */
4396static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4397        3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4398
4399/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4400static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4401                                        struct usb_device *udev)
4402{
4403        int u2del, besl, besl_host;
4404        int besl_device = 0;
4405        u32 field;
4406
4407        u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4408        field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4409
4410        if (field & USB_BESL_SUPPORT) {
4411                for (besl_host = 0; besl_host < 16; besl_host++) {
4412                        if (xhci_besl_encoding[besl_host] >= u2del)
4413                                break;
4414                }
4415                /* Use baseline BESL value as default */
4416                if (field & USB_BESL_BASELINE_VALID)
4417                        besl_device = USB_GET_BESL_BASELINE(field);
4418                else if (field & USB_BESL_DEEP_VALID)
4419                        besl_device = USB_GET_BESL_DEEP(field);
4420        } else {
4421                if (u2del <= 50)
4422                        besl_host = 0;
4423                else
4424                        besl_host = (u2del - 51) / 75 + 1;
4425        }
4426
4427        besl = besl_host + besl_device;
4428        if (besl > 15)
4429                besl = 15;
4430
4431        return besl;
4432}
4433
4434/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4435static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4436{
4437        u32 field;
4438        int l1;
4439        int besld = 0;
4440        int hirdm = 0;
4441
4442        field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4443
4444        /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4445        l1 = udev->l1_params.timeout / 256;
4446
4447        /* device has preferred BESLD */
4448        if (field & USB_BESL_DEEP_VALID) {
4449                besld = USB_GET_BESL_DEEP(field);
4450                hirdm = 1;
4451        }
4452
4453        return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4454}
4455
4456static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4457                        struct usb_device *udev, int enable)
4458{
4459        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4460        struct xhci_port **ports;
4461        __le32 __iomem  *pm_addr, *hlpm_addr;
4462        u32             pm_val, hlpm_val, field;
4463        unsigned int    port_num;
4464        unsigned long   flags;
4465        int             hird, exit_latency;
4466        int             ret;
4467
4468        if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4469                return -EPERM;
4470
4471        if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4472                        !udev->lpm_capable)
4473                return -EPERM;
4474
4475        if (!udev->parent || udev->parent->parent ||
4476                        udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4477                return -EPERM;
4478
4479        if (udev->usb2_hw_lpm_capable != 1)
4480                return -EPERM;
4481
4482        spin_lock_irqsave(&xhci->lock, flags);
4483
4484        ports = xhci->usb2_rhub.ports;
4485        port_num = udev->portnum - 1;
4486        pm_addr = ports[port_num]->addr + PORTPMSC;
4487        pm_val = readl(pm_addr);
4488        hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4489
4490        xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4491                        enable ? "enable" : "disable", port_num + 1);
4492
4493        if (enable) {
4494                /* Host supports BESL timeout instead of HIRD */
4495                if (udev->usb2_hw_lpm_besl_capable) {
4496                        /* if device doesn't have a preferred BESL value use a
4497                         * default one which works with mixed HIRD and BESL
4498                         * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4499                         */
4500                        field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4501                        if ((field & USB_BESL_SUPPORT) &&
4502                            (field & USB_BESL_BASELINE_VALID))
4503                                hird = USB_GET_BESL_BASELINE(field);
4504                        else
4505                                hird = udev->l1_params.besl;
4506
4507                        exit_latency = xhci_besl_encoding[hird];
4508                        spin_unlock_irqrestore(&xhci->lock, flags);
4509
4510                        /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4511                         * input context for link powermanagement evaluate
4512                         * context commands. It is protected by hcd->bandwidth
4513                         * mutex and is shared by all devices. We need to set
4514                         * the max ext latency in USB 2 BESL LPM as well, so
4515                         * use the same mutex and xhci_change_max_exit_latency()
4516                         */
4517                        mutex_lock(hcd->bandwidth_mutex);
4518                        ret = xhci_change_max_exit_latency(xhci, udev,
4519                                                           exit_latency);
4520                        mutex_unlock(hcd->bandwidth_mutex);
4521
4522                        if (ret < 0)
4523                                return ret;
4524                        spin_lock_irqsave(&xhci->lock, flags);
4525
4526                        hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4527                        writel(hlpm_val, hlpm_addr);
4528                        /* flush write */
4529                        readl(hlpm_addr);
4530                } else {
4531                        hird = xhci_calculate_hird_besl(xhci, udev);
4532                }
4533
4534                pm_val &= ~PORT_HIRD_MASK;
4535                pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4536                writel(pm_val, pm_addr);
4537                pm_val = readl(pm_addr);
4538                pm_val |= PORT_HLE;
4539                writel(pm_val, pm_addr);
4540                /* flush write */
4541                readl(pm_addr);
4542        } else {
4543                pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4544                writel(pm_val, pm_addr);
4545                /* flush write */
4546                readl(pm_addr);
4547                if (udev->usb2_hw_lpm_besl_capable) {
4548                        spin_unlock_irqrestore(&xhci->lock, flags);
4549                        mutex_lock(hcd->bandwidth_mutex);
4550                        xhci_change_max_exit_latency(xhci, udev, 0);
4551                        mutex_unlock(hcd->bandwidth_mutex);
4552                        readl_poll_timeout(ports[port_num]->addr, pm_val,
4553                                           (pm_val & PORT_PLS_MASK) == XDEV_U0,
4554                                           100, 10000);
4555                        return 0;
4556                }
4557        }
4558
4559        spin_unlock_irqrestore(&xhci->lock, flags);
4560        return 0;
4561}
4562
4563/* check if a usb2 port supports a given extened capability protocol
4564 * only USB2 ports extended protocol capability values are cached.
4565 * Return 1 if capability is supported
4566 */
4567static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4568                                           unsigned capability)
4569{
4570        u32 port_offset, port_count;
4571        int i;
4572
4573        for (i = 0; i < xhci->num_ext_caps; i++) {
4574                if (xhci->ext_caps[i] & capability) {
4575                        /* port offsets starts at 1 */
4576                        port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4577                        port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4578                        if (port >= port_offset &&
4579                            port < port_offset + port_count)
4580                                return 1;
4581                }
4582        }
4583        return 0;
4584}
4585
4586static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4587{
4588        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4589        int             portnum = udev->portnum - 1;
4590
4591        if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4592                return 0;
4593
4594        /* we only support lpm for non-hub device connected to root hub yet */
4595        if (!udev->parent || udev->parent->parent ||
4596                        udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4597                return 0;
4598
4599        if (xhci->hw_lpm_support == 1 &&
4600                        xhci_check_usb2_port_capability(
4601                                xhci, portnum, XHCI_HLC)) {
4602                udev->usb2_hw_lpm_capable = 1;
4603                udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4604                udev->l1_params.besl = XHCI_DEFAULT_BESL;
4605                if (xhci_check_usb2_port_capability(xhci, portnum,
4606                                        XHCI_BLC))
4607                        udev->usb2_hw_lpm_besl_capable = 1;
4608        }
4609
4610        return 0;
4611}
4612
4613/*---------------------- USB 3.0 Link PM functions ------------------------*/
4614
4615/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4616static unsigned long long xhci_service_interval_to_ns(
4617                struct usb_endpoint_descriptor *desc)
4618{
4619        return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4620}
4621
4622static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4623                enum usb3_link_state state)
4624{
4625        unsigned long long sel;
4626        unsigned long long pel;
4627        unsigned int max_sel_pel;
4628        char *state_name;
4629
4630        switch (state) {
4631        case USB3_LPM_U1:
4632                /* Convert SEL and PEL stored in nanoseconds to microseconds */
4633                sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4634                pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4635                max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4636                state_name = "U1";
4637                break;
4638        case USB3_LPM_U2:
4639                sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4640                pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4641                max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4642                state_name = "U2";
4643                break;
4644        default:
4645                dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4646                                __func__);
4647                return USB3_LPM_DISABLED;
4648        }
4649
4650        if (sel <= max_sel_pel && pel <= max_sel_pel)
4651                return USB3_LPM_DEVICE_INITIATED;
4652
4653        if (sel > max_sel_pel)
4654                dev_dbg(&udev->dev, "Device-initiated %s disabled "
4655                                "due to long SEL %llu ms\n",
4656                                state_name, sel);
4657        else
4658                dev_dbg(&udev->dev, "Device-initiated %s disabled "
4659                                "due to long PEL %llu ms\n",
4660                                state_name, pel);
4661        return USB3_LPM_DISABLED;
4662}
4663
4664/* The U1 timeout should be the maximum of the following values:
4665 *  - For control endpoints, U1 system exit latency (SEL) * 3
4666 *  - For bulk endpoints, U1 SEL * 5
4667 *  - For interrupt endpoints:
4668 *    - Notification EPs, U1 SEL * 3
4669 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4670 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4671 */
4672static unsigned long long xhci_calculate_intel_u1_timeout(
4673                struct usb_device *udev,
4674                struct usb_endpoint_descriptor *desc)
4675{
4676        unsigned long long timeout_ns;
4677        int ep_type;
4678        int intr_type;
4679
4680        ep_type = usb_endpoint_type(desc);
4681        switch (ep_type) {
4682        case USB_ENDPOINT_XFER_CONTROL:
4683                timeout_ns = udev->u1_params.sel * 3;
4684                break;
4685        case USB_ENDPOINT_XFER_BULK:
4686                timeout_ns = udev->u1_params.sel * 5;
4687                break;
4688        case USB_ENDPOINT_XFER_INT:
4689                intr_type = usb_endpoint_interrupt_type(desc);
4690                if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4691                        timeout_ns = udev->u1_params.sel * 3;
4692                        break;
4693                }
4694                /* Otherwise the calculation is the same as isoc eps */
4695                fallthrough;
4696        case USB_ENDPOINT_XFER_ISOC:
4697                timeout_ns = xhci_service_interval_to_ns(desc);
4698                timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4699                if (timeout_ns < udev->u1_params.sel * 2)
4700                        timeout_ns = udev->u1_params.sel * 2;
4701                break;
4702        default:
4703                return 0;
4704        }
4705
4706        return timeout_ns;
4707}
4708
4709/* Returns the hub-encoded U1 timeout value. */
4710static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4711                struct usb_device *udev,
4712                struct usb_endpoint_descriptor *desc)
4713{
4714        unsigned long long timeout_ns;
4715
4716        /* Prevent U1 if service interval is shorter than U1 exit latency */
4717        if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4718                if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4719                        dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4720                        return USB3_LPM_DISABLED;
4721                }
4722        }
4723
4724        if (xhci->quirks & XHCI_INTEL_HOST)
4725                timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4726        else
4727                timeout_ns = udev->u1_params.sel;
4728
4729        /* The U1 timeout is encoded in 1us intervals.
4730         * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4731         */
4732        if (timeout_ns == USB3_LPM_DISABLED)
4733                timeout_ns = 1;
4734        else
4735                timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4736
4737        /* If the necessary timeout value is bigger than what we can set in the
4738         * USB 3.0 hub, we have to disable hub-initiated U1.
4739         */
4740        if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4741                return timeout_ns;
4742        dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4743                        "due to long timeout %llu ms\n", timeout_ns);
4744        return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4745}
4746
4747/* The U2 timeout should be the maximum of:
4748 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4749 *  - largest bInterval of any active periodic endpoint (to avoid going
4750 *    into lower power link states between intervals).
4751 *  - the U2 Exit Latency of the device
4752 */
4753static unsigned long long xhci_calculate_intel_u2_timeout(
4754                struct usb_device *udev,
4755                struct usb_endpoint_descriptor *desc)
4756{
4757        unsigned long long timeout_ns;
4758        unsigned long long u2_del_ns;
4759
4760        timeout_ns = 10 * 1000 * 1000;
4761
4762        if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4763                        (xhci_service_interval_to_ns(desc) > timeout_ns))
4764                timeout_ns = xhci_service_interval_to_ns(desc);
4765
4766        u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4767        if (u2_del_ns > timeout_ns)
4768                timeout_ns = u2_del_ns;
4769
4770        return timeout_ns;
4771}
4772
4773/* Returns the hub-encoded U2 timeout value. */
4774static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4775                struct usb_device *udev,
4776                struct usb_endpoint_descriptor *desc)
4777{
4778        unsigned long long timeout_ns;
4779
4780        /* Prevent U2 if service interval is shorter than U2 exit latency */
4781        if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4782                if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4783                        dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4784                        return USB3_LPM_DISABLED;
4785                }
4786        }
4787
4788        if (xhci->quirks & XHCI_INTEL_HOST)
4789                timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4790        else
4791                timeout_ns = udev->u2_params.sel;
4792
4793        /* The U2 timeout is encoded in 256us intervals */
4794        timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4795        /* If the necessary timeout value is bigger than what we can set in the
4796         * USB 3.0 hub, we have to disable hub-initiated U2.
4797         */
4798        if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4799                return timeout_ns;
4800        dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4801                        "due to long timeout %llu ms\n", timeout_ns);
4802        return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4803}
4804
4805static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4806                struct usb_device *udev,
4807                struct usb_endpoint_descriptor *desc,
4808                enum usb3_link_state state,
4809                u16 *timeout)
4810{
4811        if (state == USB3_LPM_U1)
4812                return xhci_calculate_u1_timeout(xhci, udev, desc);
4813        else if (state == USB3_LPM_U2)
4814                return xhci_calculate_u2_timeout(xhci, udev, desc);
4815
4816        return USB3_LPM_DISABLED;
4817}
4818
4819static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4820                struct usb_device *udev,
4821                struct usb_endpoint_descriptor *desc,
4822                enum usb3_link_state state,
4823                u16 *timeout)
4824{
4825        u16 alt_timeout;
4826
4827        alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4828                desc, state, timeout);
4829
4830        /* If we found we can't enable hub-initiated LPM, and
4831         * the U1 or U2 exit latency was too high to allow
4832         * device-initiated LPM as well, then we will disable LPM
4833         * for this device, so stop searching any further.
4834         */
4835        if (alt_timeout == USB3_LPM_DISABLED) {
4836                *timeout = alt_timeout;
4837                return -E2BIG;
4838        }
4839        if (alt_timeout > *timeout)
4840                *timeout = alt_timeout;
4841        return 0;
4842}
4843
4844static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4845                struct usb_device *udev,
4846                struct usb_host_interface *alt,
4847                enum usb3_link_state state,
4848                u16 *timeout)
4849{
4850        int j;
4851
4852        for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4853                if (xhci_update_timeout_for_endpoint(xhci, udev,
4854                                        &alt->endpoint[j].desc, state, timeout))
4855                        return -E2BIG;
4856        }
4857        return 0;
4858}
4859
4860static int xhci_check_intel_tier_policy(struct usb_device *udev,
4861                enum usb3_link_state state)
4862{
4863        struct usb_device *parent;
4864        unsigned int num_hubs;
4865
4866        if (state == USB3_LPM_U2)
4867                return 0;
4868
4869        /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4870        for (parent = udev->parent, num_hubs = 0; parent->parent;
4871                        parent = parent->parent)
4872                num_hubs++;
4873
4874        if (num_hubs < 2)
4875                return 0;
4876
4877        dev_dbg(&udev->dev, "Disabling U1 link state for device"
4878                        " below second-tier hub.\n");
4879        dev_dbg(&udev->dev, "Plug device into first-tier hub "
4880                        "to decrease power consumption.\n");
4881        return -E2BIG;
4882}
4883
4884static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4885                struct usb_device *udev,
4886                enum usb3_link_state state)
4887{
4888        if (xhci->quirks & XHCI_INTEL_HOST)
4889                return xhci_check_intel_tier_policy(udev, state);
4890        else
4891                return 0;
4892}
4893
4894/* Returns the U1 or U2 timeout that should be enabled.
4895 * If the tier check or timeout setting functions return with a non-zero exit
4896 * code, that means the timeout value has been finalized and we shouldn't look
4897 * at any more endpoints.
4898 */
4899static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4900                        struct usb_device *udev, enum usb3_link_state state)
4901{
4902        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4903        struct usb_host_config *config;
4904        char *state_name;
4905        int i;
4906        u16 timeout = USB3_LPM_DISABLED;
4907
4908        if (state == USB3_LPM_U1)
4909                state_name = "U1";
4910        else if (state == USB3_LPM_U2)
4911                state_name = "U2";
4912        else {
4913                dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4914                                state);
4915                return timeout;
4916        }
4917
4918        if (xhci_check_tier_policy(xhci, udev, state) < 0)
4919                return timeout;
4920
4921        /* Gather some information about the currently installed configuration
4922         * and alternate interface settings.
4923         */
4924        if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4925                        state, &timeout))
4926                return timeout;
4927
4928        config = udev->actconfig;
4929        if (!config)
4930                return timeout;
4931
4932        for (i = 0; i < config->desc.bNumInterfaces; i++) {
4933                struct usb_driver *driver;
4934                struct usb_interface *intf = config->interface[i];
4935
4936                if (!intf)
4937                        continue;
4938
4939                /* Check if any currently bound drivers want hub-initiated LPM
4940                 * disabled.
4941                 */
4942                if (intf->dev.driver) {
4943                        driver = to_usb_driver(intf->dev.driver);
4944                        if (driver && driver->disable_hub_initiated_lpm) {
4945                                dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4946                                        state_name, driver->name);
4947                                timeout = xhci_get_timeout_no_hub_lpm(udev,
4948                                                                      state);
4949                                if (timeout == USB3_LPM_DISABLED)
4950                                        return timeout;
4951                        }
4952                }
4953
4954                /* Not sure how this could happen... */
4955                if (!intf->cur_altsetting)
4956                        continue;
4957
4958                if (xhci_update_timeout_for_interface(xhci, udev,
4959                                        intf->cur_altsetting,
4960                                        state, &timeout))
4961                        return timeout;
4962        }
4963        return timeout;
4964}
4965
4966static int calculate_max_exit_latency(struct usb_device *udev,
4967                enum usb3_link_state state_changed,
4968                u16 hub_encoded_timeout)
4969{
4970        unsigned long long u1_mel_us = 0;
4971        unsigned long long u2_mel_us = 0;
4972        unsigned long long mel_us = 0;
4973        bool disabling_u1;
4974        bool disabling_u2;
4975        bool enabling_u1;
4976        bool enabling_u2;
4977
4978        disabling_u1 = (state_changed == USB3_LPM_U1 &&
4979                        hub_encoded_timeout == USB3_LPM_DISABLED);
4980        disabling_u2 = (state_changed == USB3_LPM_U2 &&
4981                        hub_encoded_timeout == USB3_LPM_DISABLED);
4982
4983        enabling_u1 = (state_changed == USB3_LPM_U1 &&
4984                        hub_encoded_timeout != USB3_LPM_DISABLED);
4985        enabling_u2 = (state_changed == USB3_LPM_U2 &&
4986                        hub_encoded_timeout != USB3_LPM_DISABLED);
4987
4988        /* If U1 was already enabled and we're not disabling it,
4989         * or we're going to enable U1, account for the U1 max exit latency.
4990         */
4991        if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4992                        enabling_u1)
4993                u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4994        if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4995                        enabling_u2)
4996                u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4997
4998        if (u1_mel_us > u2_mel_us)
4999                mel_us = u1_mel_us;
5000        else
5001                mel_us = u2_mel_us;
5002        /* xHCI host controller max exit latency field is only 16 bits wide. */
5003        if (mel_us > MAX_EXIT) {
5004                dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5005                                "is too big.\n", mel_us);
5006                return -E2BIG;
5007        }
5008        return mel_us;
5009}
5010
5011/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5012static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5013                        struct usb_device *udev, enum usb3_link_state state)
5014{
5015        struct xhci_hcd *xhci;
5016        u16 hub_encoded_timeout;
5017        int mel;
5018        int ret;
5019
5020        xhci = hcd_to_xhci(hcd);
5021        /* The LPM timeout values are pretty host-controller specific, so don't
5022         * enable hub-initiated timeouts unless the vendor has provided
5023         * information about their timeout algorithm.
5024         */
5025        if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5026                        !xhci->devs[udev->slot_id])
5027                return USB3_LPM_DISABLED;
5028
5029        hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5030        mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5031        if (mel < 0) {
5032                /* Max Exit Latency is too big, disable LPM. */
5033                hub_encoded_timeout = USB3_LPM_DISABLED;
5034                mel = 0;
5035        }
5036
5037        ret = xhci_change_max_exit_latency(xhci, udev, mel);
5038        if (ret)
5039                return ret;
5040        return hub_encoded_timeout;
5041}
5042
5043static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5044                        struct usb_device *udev, enum usb3_link_state state)
5045{
5046        struct xhci_hcd *xhci;
5047        u16 mel;
5048
5049        xhci = hcd_to_xhci(hcd);
5050        if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5051                        !xhci->devs[udev->slot_id])
5052                return 0;
5053
5054        mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5055        return xhci_change_max_exit_latency(xhci, udev, mel);
5056}
5057#else /* CONFIG_PM */
5058
5059static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5060                                struct usb_device *udev, int enable)
5061{
5062        return 0;
5063}
5064
5065static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5066{
5067        return 0;
5068}
5069
5070static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5071                        struct usb_device *udev, enum usb3_link_state state)
5072{
5073        return USB3_LPM_DISABLED;
5074}
5075
5076static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5077                        struct usb_device *udev, enum usb3_link_state state)
5078{
5079        return 0;
5080}
5081#endif  /* CONFIG_PM */
5082
5083/*-------------------------------------------------------------------------*/
5084
5085/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5086 * internal data structures for the device.
5087 */
5088static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5089                        struct usb_tt *tt, gfp_t mem_flags)
5090{
5091        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5092        struct xhci_virt_device *vdev;
5093        struct xhci_command *config_cmd;
5094        struct xhci_input_control_ctx *ctrl_ctx;
5095        struct xhci_slot_ctx *slot_ctx;
5096        unsigned long flags;
5097        unsigned think_time;
5098        int ret;
5099
5100        /* Ignore root hubs */
5101        if (!hdev->parent)
5102                return 0;
5103
5104        vdev = xhci->devs[hdev->slot_id];
5105        if (!vdev) {
5106                xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5107                return -EINVAL;
5108        }
5109
5110        config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5111        if (!config_cmd)
5112                return -ENOMEM;
5113
5114        ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5115        if (!ctrl_ctx) {
5116                xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5117                                __func__);
5118                xhci_free_command(xhci, config_cmd);
5119                return -ENOMEM;
5120        }
5121
5122        spin_lock_irqsave(&xhci->lock, flags);
5123        if (hdev->speed == USB_SPEED_HIGH &&
5124                        xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5125                xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5126                xhci_free_command(xhci, config_cmd);
5127                spin_unlock_irqrestore(&xhci->lock, flags);
5128                return -ENOMEM;
5129        }
5130
5131        xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5132        ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5133        slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5134        slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5135        /*
5136         * refer to section 6.2.2: MTT should be 0 for full speed hub,
5137         * but it may be already set to 1 when setup an xHCI virtual
5138         * device, so clear it anyway.
5139         */
5140        if (tt->multi)
5141                slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5142        else if (hdev->speed == USB_SPEED_FULL)
5143                slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5144
5145        if (xhci->hci_version > 0x95) {
5146                xhci_dbg(xhci, "xHCI version %x needs hub "
5147                                "TT think time and number of ports\n",
5148                                (unsigned int) xhci->hci_version);
5149                slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5150                /* Set TT think time - convert from ns to FS bit times.
5151                 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5152                 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5153                 *
5154                 * xHCI 1.0: this field shall be 0 if the device is not a
5155                 * High-spped hub.
5156                 */
5157                think_time = tt->think_time;
5158                if (think_time != 0)
5159                        think_time = (think_time / 666) - 1;
5160                if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5161                        slot_ctx->tt_info |=
5162                                cpu_to_le32(TT_THINK_TIME(think_time));
5163        } else {
5164                xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5165                                "TT think time or number of ports\n",
5166                                (unsigned int) xhci->hci_version);
5167        }
5168        slot_ctx->dev_state = 0;
5169        spin_unlock_irqrestore(&xhci->lock, flags);
5170
5171        xhci_dbg(xhci, "Set up %s for hub device.\n",
5172                        (xhci->hci_version > 0x95) ?
5173                        "configure endpoint" : "evaluate context");
5174
5175        /* Issue and wait for the configure endpoint or
5176         * evaluate context command.
5177         */
5178        if (xhci->hci_version > 0x95)
5179                ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5180                                false, false);
5181        else
5182                ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5183                                true, false);
5184
5185        xhci_free_command(xhci, config_cmd);
5186        return ret;
5187}
5188
5189static int xhci_get_frame(struct usb_hcd *hcd)
5190{
5191        struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5192        /* EHCI mods by the periodic size.  Why? */
5193        return readl(&xhci->run_regs->microframe_index) >> 3;
5194}
5195
5196int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5197{
5198        struct xhci_hcd         *xhci;
5199        /*
5200         * TODO: Check with DWC3 clients for sysdev according to
5201         * quirks
5202         */
5203        struct device           *dev = hcd->self.sysdev;
5204        unsigned int            minor_rev;
5205        int                     retval;
5206
5207        /* Accept arbitrarily long scatter-gather lists */
5208        hcd->self.sg_tablesize = ~0;
5209
5210        /* support to build packet from discontinuous buffers */
5211        hcd->self.no_sg_constraint = 1;
5212
5213        /* XHCI controllers don't stop the ep queue on short packets :| */
5214        hcd->self.no_stop_on_short = 1;
5215
5216        xhci = hcd_to_xhci(hcd);
5217
5218        if (usb_hcd_is_primary_hcd(hcd)) {
5219                xhci->main_hcd = hcd;
5220                xhci->usb2_rhub.hcd = hcd;
5221                /* Mark the first roothub as being USB 2.0.
5222                 * The xHCI driver will register the USB 3.0 roothub.
5223                 */
5224                hcd->speed = HCD_USB2;
5225                hcd->self.root_hub->speed = USB_SPEED_HIGH;
5226                /*
5227                 * USB 2.0 roothub under xHCI has an integrated TT,
5228                 * (rate matching hub) as opposed to having an OHCI/UHCI
5229                 * companion controller.
5230                 */
5231                hcd->has_tt = 1;
5232        } else {
5233                /*
5234                 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5235                 * should return 0x31 for sbrn, or that the minor revision
5236                 * is a two digit BCD containig minor and sub-minor numbers.
5237                 * This was later clarified in xHCI 1.2.
5238                 *
5239                 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5240                 * minor revision set to 0x1 instead of 0x10.
5241                 */
5242                if (xhci->usb3_rhub.min_rev == 0x1)
5243                        minor_rev = 1;
5244                else
5245                        minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5246
5247                switch (minor_rev) {
5248                case 2:
5249                        hcd->speed = HCD_USB32;
5250                        hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5251                        hcd->self.root_hub->rx_lanes = 2;
5252                        hcd->self.root_hub->tx_lanes = 2;
5253                        hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5254                        break;
5255                case 1:
5256                        hcd->speed = HCD_USB31;
5257                        hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5258                        hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5259                        break;
5260                }
5261                xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5262                          minor_rev,
5263                          minor_rev ? "Enhanced " : "");
5264
5265                xhci->usb3_rhub.hcd = hcd;
5266                /* xHCI private pointer was set in xhci_pci_probe for the second
5267                 * registered roothub.
5268                 */
5269                return 0;
5270        }
5271
5272        mutex_init(&xhci->mutex);
5273        xhci->cap_regs = hcd->regs;
5274        xhci->op_regs = hcd->regs +
5275                HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5276        xhci->run_regs = hcd->regs +
5277                (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5278        /* Cache read-only capability registers */
5279        xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5280        xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5281        xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5282        xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5283        xhci->hci_version = HC_VERSION(xhci->hcc_params);
5284        xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5285        if (xhci->hci_version > 0x100)
5286                xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5287
5288        xhci->quirks |= quirks;
5289
5290        get_quirks(dev, xhci);
5291
5292        /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5293         * success event after a short transfer. This quirk will ignore such
5294         * spurious event.
5295         */
5296        if (xhci->hci_version > 0x96)
5297                xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5298
5299        /* Make sure the HC is halted. */
5300        retval = xhci_halt(xhci);
5301        if (retval)
5302                return retval;
5303
5304        xhci_zero_64b_regs(xhci);
5305
5306        xhci_dbg(xhci, "Resetting HCD\n");
5307        /* Reset the internal HC memory state and registers. */
5308        retval = xhci_reset(xhci);
5309        if (retval)
5310                return retval;
5311        xhci_dbg(xhci, "Reset complete\n");
5312
5313        /*
5314         * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5315         * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5316         * address memory pointers actually. So, this driver clears the AC64
5317         * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5318         * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5319         */
5320        if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5321                xhci->hcc_params &= ~BIT(0);
5322
5323        /* Set dma_mask and coherent_dma_mask to 64-bits,
5324         * if xHC supports 64-bit addressing */
5325        if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5326                        !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5327                xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5328                dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5329        } else {
5330                /*
5331                 * This is to avoid error in cases where a 32-bit USB
5332                 * controller is used on a 64-bit capable system.
5333                 */
5334                retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5335                if (retval)
5336                        return retval;
5337                xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5338                dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5339        }
5340
5341        xhci_dbg(xhci, "Calling HCD init\n");
5342        /* Initialize HCD and host controller data structures. */
5343        retval = xhci_init(hcd);
5344        if (retval)
5345                return retval;
5346        xhci_dbg(xhci, "Called HCD init\n");
5347
5348        xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5349                  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5350
5351        return 0;
5352}
5353EXPORT_SYMBOL_GPL(xhci_gen_setup);
5354
5355static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5356                struct usb_host_endpoint *ep)
5357{
5358        struct xhci_hcd *xhci;
5359        struct usb_device *udev;
5360        unsigned int slot_id;
5361        unsigned int ep_index;
5362        unsigned long flags;
5363
5364        xhci = hcd_to_xhci(hcd);
5365
5366        spin_lock_irqsave(&xhci->lock, flags);
5367        udev = (struct usb_device *)ep->hcpriv;
5368        slot_id = udev->slot_id;
5369        ep_index = xhci_get_endpoint_index(&ep->desc);
5370
5371        xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5372        xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5373        spin_unlock_irqrestore(&xhci->lock, flags);
5374}
5375
5376static const struct hc_driver xhci_hc_driver = {
5377        .description =          "xhci-hcd",
5378        .product_desc =         "xHCI Host Controller",
5379        .hcd_priv_size =        sizeof(struct xhci_hcd),
5380
5381        /*
5382         * generic hardware linkage
5383         */
5384        .irq =                  xhci_irq,
5385        .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5386                                HCD_BH,
5387
5388        /*
5389         * basic lifecycle operations
5390         */
5391        .reset =                NULL, /* set in xhci_init_driver() */
5392        .start =                xhci_run,
5393        .stop =                 xhci_stop,
5394        .shutdown =             xhci_shutdown,
5395
5396        /*
5397         * managing i/o requests and associated device resources
5398         */
5399        .map_urb_for_dma =      xhci_map_urb_for_dma,
5400        .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5401        .urb_enqueue =          xhci_urb_enqueue,
5402        .urb_dequeue =          xhci_urb_dequeue,
5403        .alloc_dev =            xhci_alloc_dev,
5404        .free_dev =             xhci_free_dev,
5405        .alloc_streams =        xhci_alloc_streams,
5406        .free_streams =         xhci_free_streams,
5407        .add_endpoint =         xhci_add_endpoint,
5408        .drop_endpoint =        xhci_drop_endpoint,
5409        .endpoint_disable =     xhci_endpoint_disable,
5410        .endpoint_reset =       xhci_endpoint_reset,
5411        .check_bandwidth =      xhci_check_bandwidth,
5412        .reset_bandwidth =      xhci_reset_bandwidth,
5413        .address_device =       xhci_address_device,
5414        .enable_device =        xhci_enable_device,
5415        .update_hub_device =    xhci_update_hub_device,
5416        .reset_device =         xhci_discover_or_reset_device,
5417
5418        /*
5419         * scheduling support
5420         */
5421        .get_frame_number =     xhci_get_frame,
5422
5423        /*
5424         * root hub support
5425         */
5426        .hub_control =          xhci_hub_control,
5427        .hub_status_data =      xhci_hub_status_data,
5428        .bus_suspend =          xhci_bus_suspend,
5429        .bus_resume =           xhci_bus_resume,
5430        .get_resuming_ports =   xhci_get_resuming_ports,
5431
5432        /*
5433         * call back when device connected and addressed
5434         */
5435        .update_device =        xhci_update_device,
5436        .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5437        .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5438        .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5439        .find_raw_port_number = xhci_find_raw_port_number,
5440        .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5441};
5442
5443void xhci_init_driver(struct hc_driver *drv,
5444                      const struct xhci_driver_overrides *over)
5445{
5446        BUG_ON(!over);
5447
5448        /* Copy the generic table to drv then apply the overrides */
5449        *drv = xhci_hc_driver;
5450
5451        if (over) {
5452                drv->hcd_priv_size += over->extra_priv_size;
5453                if (over->reset)
5454                        drv->reset = over->reset;
5455                if (over->start)
5456                        drv->start = over->start;
5457                if (over->add_endpoint)
5458                        drv->add_endpoint = over->add_endpoint;
5459                if (over->drop_endpoint)
5460                        drv->drop_endpoint = over->drop_endpoint;
5461                if (over->check_bandwidth)
5462                        drv->check_bandwidth = over->check_bandwidth;
5463                if (over->reset_bandwidth)
5464                        drv->reset_bandwidth = over->reset_bandwidth;
5465        }
5466}
5467EXPORT_SYMBOL_GPL(xhci_init_driver);
5468
5469MODULE_DESCRIPTION(DRIVER_DESC);
5470MODULE_AUTHOR(DRIVER_AUTHOR);
5471MODULE_LICENSE("GPL");
5472
5473static int __init xhci_hcd_init(void)
5474{
5475        /*
5476         * Check the compiler generated sizes of structures that must be laid
5477         * out in specific ways for hardware access.
5478         */
5479        BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5480        BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5481        BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5482        /* xhci_device_control has eight fields, and also
5483         * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5484         */
5485        BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5486        BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5487        BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5488        BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5489        BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5490        /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5491        BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5492
5493        if (usb_disabled())
5494                return -ENODEV;
5495
5496        xhci_debugfs_create_root();
5497
5498        return 0;
5499}
5500
5501/*
5502 * If an init function is provided, an exit function must also be provided
5503 * to allow module unload.
5504 */
5505static void __exit xhci_hcd_fini(void)
5506{
5507        xhci_debugfs_remove_root();
5508}
5509
5510module_init(xhci_hcd_init);
5511module_exit(xhci_hcd_fini);
5512