linux/drivers/usb/storage/alauda.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Driver for Alauda-based card readers
   4 *
   5 * Current development and maintenance by:
   6 *   (c) 2005 Daniel Drake <dsd@gentoo.org>
   7 *
   8 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
   9 *
  10 * Alauda implements a vendor-specific command set to access two media reader
  11 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
  12 * which are accepted by these devices.
  13 *
  14 * The driver was developed through reverse-engineering, with the help of the
  15 * sddr09 driver which has many similarities, and with some help from the
  16 * (very old) vendor-supplied GPL sma03 driver.
  17 *
  18 * For protocol info, see http://alauda.sourceforge.net
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/slab.h>
  23
  24#include <scsi/scsi.h>
  25#include <scsi/scsi_cmnd.h>
  26#include <scsi/scsi_device.h>
  27
  28#include "usb.h"
  29#include "transport.h"
  30#include "protocol.h"
  31#include "debug.h"
  32#include "scsiglue.h"
  33
  34#define DRV_NAME "ums-alauda"
  35
  36MODULE_DESCRIPTION("Driver for Alauda-based card readers");
  37MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
  38MODULE_LICENSE("GPL");
  39MODULE_IMPORT_NS(USB_STORAGE);
  40
  41/*
  42 * Status bytes
  43 */
  44#define ALAUDA_STATUS_ERROR             0x01
  45#define ALAUDA_STATUS_READY             0x40
  46
  47/*
  48 * Control opcodes (for request field)
  49 */
  50#define ALAUDA_GET_XD_MEDIA_STATUS      0x08
  51#define ALAUDA_GET_SM_MEDIA_STATUS      0x98
  52#define ALAUDA_ACK_XD_MEDIA_CHANGE      0x0a
  53#define ALAUDA_ACK_SM_MEDIA_CHANGE      0x9a
  54#define ALAUDA_GET_XD_MEDIA_SIG         0x86
  55#define ALAUDA_GET_SM_MEDIA_SIG         0x96
  56
  57/*
  58 * Bulk command identity (byte 0)
  59 */
  60#define ALAUDA_BULK_CMD                 0x40
  61
  62/*
  63 * Bulk opcodes (byte 1)
  64 */
  65#define ALAUDA_BULK_GET_REDU_DATA       0x85
  66#define ALAUDA_BULK_READ_BLOCK          0x94
  67#define ALAUDA_BULK_ERASE_BLOCK         0xa3
  68#define ALAUDA_BULK_WRITE_BLOCK         0xb4
  69#define ALAUDA_BULK_GET_STATUS2         0xb7
  70#define ALAUDA_BULK_RESET_MEDIA         0xe0
  71
  72/*
  73 * Port to operate on (byte 8)
  74 */
  75#define ALAUDA_PORT_XD                  0x00
  76#define ALAUDA_PORT_SM                  0x01
  77
  78/*
  79 * LBA and PBA are unsigned ints. Special values.
  80 */
  81#define UNDEF    0xffff
  82#define SPARE    0xfffe
  83#define UNUSABLE 0xfffd
  84
  85struct alauda_media_info {
  86        unsigned long capacity;         /* total media size in bytes */
  87        unsigned int pagesize;          /* page size in bytes */
  88        unsigned int blocksize;         /* number of pages per block */
  89        unsigned int uzonesize;         /* number of usable blocks per zone */
  90        unsigned int zonesize;          /* number of blocks per zone */
  91        unsigned int blockmask;         /* mask to get page from address */
  92
  93        unsigned char pageshift;
  94        unsigned char blockshift;
  95        unsigned char zoneshift;
  96
  97        u16 **lba_to_pba;               /* logical to physical block map */
  98        u16 **pba_to_lba;               /* physical to logical block map */
  99};
 100
 101struct alauda_info {
 102        struct alauda_media_info port[2];
 103        int wr_ep;                      /* endpoint to write data out of */
 104
 105        unsigned char sense_key;
 106        unsigned long sense_asc;        /* additional sense code */
 107        unsigned long sense_ascq;       /* additional sense code qualifier */
 108};
 109
 110#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 111#define LSB_of(s) ((s)&0xFF)
 112#define MSB_of(s) ((s)>>8)
 113
 114#define MEDIA_PORT(us) us->srb->device->lun
 115#define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
 116
 117#define PBA_LO(pba) ((pba & 0xF) << 5)
 118#define PBA_HI(pba) (pba >> 3)
 119#define PBA_ZONE(pba) (pba >> 11)
 120
 121static int init_alauda(struct us_data *us);
 122
 123
 124/*
 125 * The table of devices
 126 */
 127#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
 128                    vendorName, productName, useProtocol, useTransport, \
 129                    initFunction, flags) \
 130{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
 131  .driver_info = (flags) }
 132
 133static struct usb_device_id alauda_usb_ids[] = {
 134#       include "unusual_alauda.h"
 135        { }             /* Terminating entry */
 136};
 137MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
 138
 139#undef UNUSUAL_DEV
 140
 141/*
 142 * The flags table
 143 */
 144#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
 145                    vendor_name, product_name, use_protocol, use_transport, \
 146                    init_function, Flags) \
 147{ \
 148        .vendorName = vendor_name,      \
 149        .productName = product_name,    \
 150        .useProtocol = use_protocol,    \
 151        .useTransport = use_transport,  \
 152        .initFunction = init_function,  \
 153}
 154
 155static struct us_unusual_dev alauda_unusual_dev_list[] = {
 156#       include "unusual_alauda.h"
 157        { }             /* Terminating entry */
 158};
 159
 160#undef UNUSUAL_DEV
 161
 162
 163/*
 164 * Media handling
 165 */
 166
 167struct alauda_card_info {
 168        unsigned char id;               /* id byte */
 169        unsigned char chipshift;        /* 1<<cs bytes total capacity */
 170        unsigned char pageshift;        /* 1<<ps bytes in a page */
 171        unsigned char blockshift;       /* 1<<bs pages per block */
 172        unsigned char zoneshift;        /* 1<<zs blocks per zone */
 173};
 174
 175static struct alauda_card_info alauda_card_ids[] = {
 176        /* NAND flash */
 177        { 0x6e, 20, 8, 4, 8},   /* 1 MB */
 178        { 0xe8, 20, 8, 4, 8},   /* 1 MB */
 179        { 0xec, 20, 8, 4, 8},   /* 1 MB */
 180        { 0x64, 21, 8, 4, 9},   /* 2 MB */
 181        { 0xea, 21, 8, 4, 9},   /* 2 MB */
 182        { 0x6b, 22, 9, 4, 9},   /* 4 MB */
 183        { 0xe3, 22, 9, 4, 9},   /* 4 MB */
 184        { 0xe5, 22, 9, 4, 9},   /* 4 MB */
 185        { 0xe6, 23, 9, 4, 10},  /* 8 MB */
 186        { 0x73, 24, 9, 5, 10},  /* 16 MB */
 187        { 0x75, 25, 9, 5, 10},  /* 32 MB */
 188        { 0x76, 26, 9, 5, 10},  /* 64 MB */
 189        { 0x79, 27, 9, 5, 10},  /* 128 MB */
 190        { 0x71, 28, 9, 5, 10},  /* 256 MB */
 191
 192        /* MASK ROM */
 193        { 0x5d, 21, 9, 4, 8},   /* 2 MB */
 194        { 0xd5, 22, 9, 4, 9},   /* 4 MB */
 195        { 0xd6, 23, 9, 4, 10},  /* 8 MB */
 196        { 0x57, 24, 9, 4, 11},  /* 16 MB */
 197        { 0x58, 25, 9, 4, 12},  /* 32 MB */
 198        { 0,}
 199};
 200
 201static struct alauda_card_info *alauda_card_find_id(unsigned char id)
 202{
 203        int i;
 204
 205        for (i = 0; alauda_card_ids[i].id != 0; i++)
 206                if (alauda_card_ids[i].id == id)
 207                        return &(alauda_card_ids[i]);
 208        return NULL;
 209}
 210
 211/*
 212 * ECC computation.
 213 */
 214
 215static unsigned char parity[256];
 216static unsigned char ecc2[256];
 217
 218static void nand_init_ecc(void)
 219{
 220        int i, j, a;
 221
 222        parity[0] = 0;
 223        for (i = 1; i < 256; i++)
 224                parity[i] = (parity[i&(i-1)] ^ 1);
 225
 226        for (i = 0; i < 256; i++) {
 227                a = 0;
 228                for (j = 0; j < 8; j++) {
 229                        if (i & (1<<j)) {
 230                                if ((j & 1) == 0)
 231                                        a ^= 0x04;
 232                                if ((j & 2) == 0)
 233                                        a ^= 0x10;
 234                                if ((j & 4) == 0)
 235                                        a ^= 0x40;
 236                        }
 237                }
 238                ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 239        }
 240}
 241
 242/* compute 3-byte ecc on 256 bytes */
 243static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
 244{
 245        int i, j, a;
 246        unsigned char par = 0, bit, bits[8] = {0};
 247
 248        /* collect 16 checksum bits */
 249        for (i = 0; i < 256; i++) {
 250                par ^= data[i];
 251                bit = parity[data[i]];
 252                for (j = 0; j < 8; j++)
 253                        if ((i & (1<<j)) == 0)
 254                                bits[j] ^= bit;
 255        }
 256
 257        /* put 4+4+4 = 12 bits in the ecc */
 258        a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 259        ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 260
 261        a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 262        ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 263
 264        ecc[2] = ecc2[par];
 265}
 266
 267static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
 268{
 269        return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 270}
 271
 272static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
 273{
 274        memcpy(data, ecc, 3);
 275}
 276
 277/*
 278 * Alauda driver
 279 */
 280
 281/*
 282 * Forget our PBA <---> LBA mappings for a particular port
 283 */
 284static void alauda_free_maps (struct alauda_media_info *media_info)
 285{
 286        unsigned int shift = media_info->zoneshift
 287                + media_info->blockshift + media_info->pageshift;
 288        unsigned int num_zones = media_info->capacity >> shift;
 289        unsigned int i;
 290
 291        if (media_info->lba_to_pba != NULL)
 292                for (i = 0; i < num_zones; i++) {
 293                        kfree(media_info->lba_to_pba[i]);
 294                        media_info->lba_to_pba[i] = NULL;
 295                }
 296
 297        if (media_info->pba_to_lba != NULL)
 298                for (i = 0; i < num_zones; i++) {
 299                        kfree(media_info->pba_to_lba[i]);
 300                        media_info->pba_to_lba[i] = NULL;
 301                }
 302}
 303
 304/*
 305 * Returns 2 bytes of status data
 306 * The first byte describes media status, and second byte describes door status
 307 */
 308static int alauda_get_media_status(struct us_data *us, unsigned char *data)
 309{
 310        int rc;
 311        unsigned char command;
 312
 313        if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 314                command = ALAUDA_GET_XD_MEDIA_STATUS;
 315        else
 316                command = ALAUDA_GET_SM_MEDIA_STATUS;
 317
 318        rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
 319                command, 0xc0, 0, 1, data, 2);
 320
 321        usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
 322
 323        return rc;
 324}
 325
 326/*
 327 * Clears the "media was changed" bit so that we know when it changes again
 328 * in the future.
 329 */
 330static int alauda_ack_media(struct us_data *us)
 331{
 332        unsigned char command;
 333
 334        if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 335                command = ALAUDA_ACK_XD_MEDIA_CHANGE;
 336        else
 337                command = ALAUDA_ACK_SM_MEDIA_CHANGE;
 338
 339        return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
 340                command, 0x40, 0, 1, NULL, 0);
 341}
 342
 343/*
 344 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
 345 * and some other details.
 346 */
 347static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
 348{
 349        unsigned char command;
 350
 351        if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 352                command = ALAUDA_GET_XD_MEDIA_SIG;
 353        else
 354                command = ALAUDA_GET_SM_MEDIA_SIG;
 355
 356        return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
 357                command, 0xc0, 0, 0, data, 4);
 358}
 359
 360/*
 361 * Resets the media status (but not the whole device?)
 362 */
 363static int alauda_reset_media(struct us_data *us)
 364{
 365        unsigned char *command = us->iobuf;
 366
 367        memset(command, 0, 9);
 368        command[0] = ALAUDA_BULK_CMD;
 369        command[1] = ALAUDA_BULK_RESET_MEDIA;
 370        command[8] = MEDIA_PORT(us);
 371
 372        return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 373                command, 9, NULL);
 374}
 375
 376/*
 377 * Examines the media and deduces capacity, etc.
 378 */
 379static int alauda_init_media(struct us_data *us)
 380{
 381        unsigned char *data = us->iobuf;
 382        int ready = 0;
 383        struct alauda_card_info *media_info;
 384        unsigned int num_zones;
 385
 386        while (ready == 0) {
 387                msleep(20);
 388
 389                if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
 390                        return USB_STOR_TRANSPORT_ERROR;
 391
 392                if (data[0] & 0x10)
 393                        ready = 1;
 394        }
 395
 396        usb_stor_dbg(us, "We are ready for action!\n");
 397
 398        if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
 399                return USB_STOR_TRANSPORT_ERROR;
 400
 401        msleep(10);
 402
 403        if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
 404                return USB_STOR_TRANSPORT_ERROR;
 405
 406        if (data[0] != 0x14) {
 407                usb_stor_dbg(us, "Media not ready after ack\n");
 408                return USB_STOR_TRANSPORT_ERROR;
 409        }
 410
 411        if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
 412                return USB_STOR_TRANSPORT_ERROR;
 413
 414        usb_stor_dbg(us, "Media signature: %4ph\n", data);
 415        media_info = alauda_card_find_id(data[1]);
 416        if (media_info == NULL) {
 417                pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
 418                        data);
 419                return USB_STOR_TRANSPORT_ERROR;
 420        }
 421
 422        MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
 423        usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
 424                     MEDIA_INFO(us).capacity >> 20);
 425
 426        MEDIA_INFO(us).pageshift = media_info->pageshift;
 427        MEDIA_INFO(us).blockshift = media_info->blockshift;
 428        MEDIA_INFO(us).zoneshift = media_info->zoneshift;
 429
 430        MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
 431        MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
 432        MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
 433
 434        MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
 435        MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
 436
 437        num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
 438                + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
 439        MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
 440        MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
 441
 442        if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
 443                return USB_STOR_TRANSPORT_ERROR;
 444
 445        return USB_STOR_TRANSPORT_GOOD;
 446}
 447
 448/*
 449 * Examines the media status and does the right thing when the media has gone,
 450 * appeared, or changed.
 451 */
 452static int alauda_check_media(struct us_data *us)
 453{
 454        struct alauda_info *info = (struct alauda_info *) us->extra;
 455        unsigned char status[2];
 456
 457        alauda_get_media_status(us, status);
 458
 459        /* Check for no media or door open */
 460        if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
 461                || ((status[1] & 0x01) == 0)) {
 462                usb_stor_dbg(us, "No media, or door open\n");
 463                alauda_free_maps(&MEDIA_INFO(us));
 464                info->sense_key = 0x02;
 465                info->sense_asc = 0x3A;
 466                info->sense_ascq = 0x00;
 467                return USB_STOR_TRANSPORT_FAILED;
 468        }
 469
 470        /* Check for media change */
 471        if (status[0] & 0x08) {
 472                usb_stor_dbg(us, "Media change detected\n");
 473                alauda_free_maps(&MEDIA_INFO(us));
 474                alauda_init_media(us);
 475
 476                info->sense_key = UNIT_ATTENTION;
 477                info->sense_asc = 0x28;
 478                info->sense_ascq = 0x00;
 479                return USB_STOR_TRANSPORT_FAILED;
 480        }
 481
 482        return USB_STOR_TRANSPORT_GOOD;
 483}
 484
 485/*
 486 * Checks the status from the 2nd status register
 487 * Returns 3 bytes of status data, only the first is known
 488 */
 489static int alauda_check_status2(struct us_data *us)
 490{
 491        int rc;
 492        unsigned char command[] = {
 493                ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
 494                0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
 495        };
 496        unsigned char data[3];
 497
 498        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 499                command, 9, NULL);
 500        if (rc != USB_STOR_XFER_GOOD)
 501                return rc;
 502
 503        rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 504                data, 3, NULL);
 505        if (rc != USB_STOR_XFER_GOOD)
 506                return rc;
 507
 508        usb_stor_dbg(us, "%3ph\n", data);
 509        if (data[0] & ALAUDA_STATUS_ERROR)
 510                return USB_STOR_XFER_ERROR;
 511
 512        return USB_STOR_XFER_GOOD;
 513}
 514
 515/*
 516 * Gets the redundancy data for the first page of a PBA
 517 * Returns 16 bytes.
 518 */
 519static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
 520{
 521        int rc;
 522        unsigned char command[] = {
 523                ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
 524                PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
 525        };
 526
 527        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 528                command, 9, NULL);
 529        if (rc != USB_STOR_XFER_GOOD)
 530                return rc;
 531
 532        return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 533                data, 16, NULL);
 534}
 535
 536/*
 537 * Finds the first unused PBA in a zone
 538 * Returns the absolute PBA of an unused PBA, or 0 if none found.
 539 */
 540static u16 alauda_find_unused_pba(struct alauda_media_info *info,
 541        unsigned int zone)
 542{
 543        u16 *pba_to_lba = info->pba_to_lba[zone];
 544        unsigned int i;
 545
 546        for (i = 0; i < info->zonesize; i++)
 547                if (pba_to_lba[i] == UNDEF)
 548                        return (zone << info->zoneshift) + i;
 549
 550        return 0;
 551}
 552
 553/*
 554 * Reads the redundancy data for all PBA's in a zone
 555 * Produces lba <--> pba mappings
 556 */
 557static int alauda_read_map(struct us_data *us, unsigned int zone)
 558{
 559        unsigned char *data = us->iobuf;
 560        int result;
 561        int i, j;
 562        unsigned int zonesize = MEDIA_INFO(us).zonesize;
 563        unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 564        unsigned int lba_offset, lba_real, blocknum;
 565        unsigned int zone_base_lba = zone * uzonesize;
 566        unsigned int zone_base_pba = zone * zonesize;
 567        u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
 568        u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
 569        if (lba_to_pba == NULL || pba_to_lba == NULL) {
 570                result = USB_STOR_TRANSPORT_ERROR;
 571                goto error;
 572        }
 573
 574        usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
 575
 576        /* 1024 PBA's per zone */
 577        for (i = 0; i < zonesize; i++)
 578                lba_to_pba[i] = pba_to_lba[i] = UNDEF;
 579
 580        for (i = 0; i < zonesize; i++) {
 581                blocknum = zone_base_pba + i;
 582
 583                result = alauda_get_redu_data(us, blocknum, data);
 584                if (result != USB_STOR_XFER_GOOD) {
 585                        result = USB_STOR_TRANSPORT_ERROR;
 586                        goto error;
 587                }
 588
 589                /* special PBAs have control field 0^16 */
 590                for (j = 0; j < 16; j++)
 591                        if (data[j] != 0)
 592                                goto nonz;
 593                pba_to_lba[i] = UNUSABLE;
 594                usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
 595                continue;
 596
 597        nonz:
 598                /* unwritten PBAs have control field FF^16 */
 599                for (j = 0; j < 16; j++)
 600                        if (data[j] != 0xff)
 601                                goto nonff;
 602                continue;
 603
 604        nonff:
 605                /* normal PBAs start with six FFs */
 606                if (j < 6) {
 607                        usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
 608                                     blocknum,
 609                                     data[0], data[1], data[2], data[3],
 610                                     data[4], data[5]);
 611                        pba_to_lba[i] = UNUSABLE;
 612                        continue;
 613                }
 614
 615                if ((data[6] >> 4) != 0x01) {
 616                        usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
 617                                     blocknum, data[6], data[7],
 618                                     data[11], data[12]);
 619                        pba_to_lba[i] = UNUSABLE;
 620                        continue;
 621                }
 622
 623                /* check even parity */
 624                if (parity[data[6] ^ data[7]]) {
 625                        printk(KERN_WARNING
 626                               "alauda_read_map: Bad parity in LBA for block %d"
 627                               " (%02X %02X)\n", i, data[6], data[7]);
 628                        pba_to_lba[i] = UNUSABLE;
 629                        continue;
 630                }
 631
 632                lba_offset = short_pack(data[7], data[6]);
 633                lba_offset = (lba_offset & 0x07FF) >> 1;
 634                lba_real = lba_offset + zone_base_lba;
 635
 636                /*
 637                 * Every 1024 physical blocks ("zone"), the LBA numbers
 638                 * go back to zero, but are within a higher block of LBA's.
 639                 * Also, there is a maximum of 1000 LBA's per zone.
 640                 * In other words, in PBA 1024-2047 you will find LBA 0-999
 641                 * which are really LBA 1000-1999. This allows for 24 bad
 642                 * or special physical blocks per zone.
 643                 */
 644
 645                if (lba_offset >= uzonesize) {
 646                        printk(KERN_WARNING
 647                               "alauda_read_map: Bad low LBA %d for block %d\n",
 648                               lba_real, blocknum);
 649                        continue;
 650                }
 651
 652                if (lba_to_pba[lba_offset] != UNDEF) {
 653                        printk(KERN_WARNING
 654                               "alauda_read_map: "
 655                               "LBA %d seen for PBA %d and %d\n",
 656                               lba_real, lba_to_pba[lba_offset], blocknum);
 657                        continue;
 658                }
 659
 660                pba_to_lba[i] = lba_real;
 661                lba_to_pba[lba_offset] = blocknum;
 662                continue;
 663        }
 664
 665        MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
 666        MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
 667        result = 0;
 668        goto out;
 669
 670error:
 671        kfree(lba_to_pba);
 672        kfree(pba_to_lba);
 673out:
 674        return result;
 675}
 676
 677/*
 678 * Checks to see whether we have already mapped a certain zone
 679 * If we haven't, the map is generated
 680 */
 681static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
 682{
 683        if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
 684                || MEDIA_INFO(us).pba_to_lba[zone] == NULL)
 685                alauda_read_map(us, zone);
 686}
 687
 688/*
 689 * Erases an entire block
 690 */
 691static int alauda_erase_block(struct us_data *us, u16 pba)
 692{
 693        int rc;
 694        unsigned char command[] = {
 695                ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
 696                PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
 697        };
 698        unsigned char buf[2];
 699
 700        usb_stor_dbg(us, "Erasing PBA %d\n", pba);
 701
 702        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 703                command, 9, NULL);
 704        if (rc != USB_STOR_XFER_GOOD)
 705                return rc;
 706
 707        rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 708                buf, 2, NULL);
 709        if (rc != USB_STOR_XFER_GOOD)
 710                return rc;
 711
 712        usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
 713        return rc;
 714}
 715
 716/*
 717 * Reads data from a certain offset page inside a PBA, including interleaved
 718 * redundancy data. Returns (pagesize+64)*pages bytes in data.
 719 */
 720static int alauda_read_block_raw(struct us_data *us, u16 pba,
 721                unsigned int page, unsigned int pages, unsigned char *data)
 722{
 723        int rc;
 724        unsigned char command[] = {
 725                ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
 726                PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
 727        };
 728
 729        usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
 730
 731        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 732                command, 9, NULL);
 733        if (rc != USB_STOR_XFER_GOOD)
 734                return rc;
 735
 736        return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 737                data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
 738}
 739
 740/*
 741 * Reads data from a certain offset page inside a PBA, excluding redundancy
 742 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
 743 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
 744 * trailing bytes outside this function.
 745 */
 746static int alauda_read_block(struct us_data *us, u16 pba,
 747                unsigned int page, unsigned int pages, unsigned char *data)
 748{
 749        int i, rc;
 750        unsigned int pagesize = MEDIA_INFO(us).pagesize;
 751
 752        rc = alauda_read_block_raw(us, pba, page, pages, data);
 753        if (rc != USB_STOR_XFER_GOOD)
 754                return rc;
 755
 756        /* Cut out the redundancy data */
 757        for (i = 0; i < pages; i++) {
 758                int dest_offset = i * pagesize;
 759                int src_offset = i * (pagesize + 64);
 760                memmove(data + dest_offset, data + src_offset, pagesize);
 761        }
 762
 763        return rc;
 764}
 765
 766/*
 767 * Writes an entire block of data and checks status after write.
 768 * Redundancy data must be already included in data. Data should be
 769 * (pagesize+64)*blocksize bytes in length.
 770 */
 771static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
 772{
 773        int rc;
 774        struct alauda_info *info = (struct alauda_info *) us->extra;
 775        unsigned char command[] = {
 776                ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
 777                PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
 778        };
 779
 780        usb_stor_dbg(us, "pba %d\n", pba);
 781
 782        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 783                command, 9, NULL);
 784        if (rc != USB_STOR_XFER_GOOD)
 785                return rc;
 786
 787        rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
 788                (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
 789                NULL);
 790        if (rc != USB_STOR_XFER_GOOD)
 791                return rc;
 792
 793        return alauda_check_status2(us);
 794}
 795
 796/*
 797 * Write some data to a specific LBA.
 798 */
 799static int alauda_write_lba(struct us_data *us, u16 lba,
 800                 unsigned int page, unsigned int pages,
 801                 unsigned char *ptr, unsigned char *blockbuffer)
 802{
 803        u16 pba, lbap, new_pba;
 804        unsigned char *bptr, *cptr, *xptr;
 805        unsigned char ecc[3];
 806        int i, result;
 807        unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 808        unsigned int zonesize = MEDIA_INFO(us).zonesize;
 809        unsigned int pagesize = MEDIA_INFO(us).pagesize;
 810        unsigned int blocksize = MEDIA_INFO(us).blocksize;
 811        unsigned int lba_offset = lba % uzonesize;
 812        unsigned int new_pba_offset;
 813        unsigned int zone = lba / uzonesize;
 814
 815        alauda_ensure_map_for_zone(us, zone);
 816
 817        pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
 818        if (pba == 1) {
 819                /*
 820                 * Maybe it is impossible to write to PBA 1.
 821                 * Fake success, but don't do anything.
 822                 */
 823                printk(KERN_WARNING
 824                       "alauda_write_lba: avoid writing to pba 1\n");
 825                return USB_STOR_TRANSPORT_GOOD;
 826        }
 827
 828        new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
 829        if (!new_pba) {
 830                printk(KERN_WARNING
 831                       "alauda_write_lba: Out of unused blocks\n");
 832                return USB_STOR_TRANSPORT_ERROR;
 833        }
 834
 835        /* read old contents */
 836        if (pba != UNDEF) {
 837                result = alauda_read_block_raw(us, pba, 0,
 838                        blocksize, blockbuffer);
 839                if (result != USB_STOR_XFER_GOOD)
 840                        return result;
 841        } else {
 842                memset(blockbuffer, 0, blocksize * (pagesize + 64));
 843        }
 844
 845        lbap = (lba_offset << 1) | 0x1000;
 846        if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 847                lbap ^= 1;
 848
 849        /* check old contents and fill lba */
 850        for (i = 0; i < blocksize; i++) {
 851                bptr = blockbuffer + (i * (pagesize + 64));
 852                cptr = bptr + pagesize;
 853                nand_compute_ecc(bptr, ecc);
 854                if (!nand_compare_ecc(cptr+13, ecc)) {
 855                        usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 856                                     i, pba);
 857                        nand_store_ecc(cptr+13, ecc);
 858                }
 859                nand_compute_ecc(bptr + (pagesize / 2), ecc);
 860                if (!nand_compare_ecc(cptr+8, ecc)) {
 861                        usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 862                                     i, pba);
 863                        nand_store_ecc(cptr+8, ecc);
 864                }
 865                cptr[6] = cptr[11] = MSB_of(lbap);
 866                cptr[7] = cptr[12] = LSB_of(lbap);
 867        }
 868
 869        /* copy in new stuff and compute ECC */
 870        xptr = ptr;
 871        for (i = page; i < page+pages; i++) {
 872                bptr = blockbuffer + (i * (pagesize + 64));
 873                cptr = bptr + pagesize;
 874                memcpy(bptr, xptr, pagesize);
 875                xptr += pagesize;
 876                nand_compute_ecc(bptr, ecc);
 877                nand_store_ecc(cptr+13, ecc);
 878                nand_compute_ecc(bptr + (pagesize / 2), ecc);
 879                nand_store_ecc(cptr+8, ecc);
 880        }
 881
 882        result = alauda_write_block(us, new_pba, blockbuffer);
 883        if (result != USB_STOR_XFER_GOOD)
 884                return result;
 885
 886        new_pba_offset = new_pba - (zone * zonesize);
 887        MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
 888        MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
 889        usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
 890
 891        if (pba != UNDEF) {
 892                unsigned int pba_offset = pba - (zone * zonesize);
 893                result = alauda_erase_block(us, pba);
 894                if (result != USB_STOR_XFER_GOOD)
 895                        return result;
 896                MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
 897        }
 898
 899        return USB_STOR_TRANSPORT_GOOD;
 900}
 901
 902/*
 903 * Read data from a specific sector address
 904 */
 905static int alauda_read_data(struct us_data *us, unsigned long address,
 906                unsigned int sectors)
 907{
 908        unsigned char *buffer;
 909        u16 lba, max_lba;
 910        unsigned int page, len, offset;
 911        unsigned int blockshift = MEDIA_INFO(us).blockshift;
 912        unsigned int pageshift = MEDIA_INFO(us).pageshift;
 913        unsigned int blocksize = MEDIA_INFO(us).blocksize;
 914        unsigned int pagesize = MEDIA_INFO(us).pagesize;
 915        unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 916        struct scatterlist *sg;
 917        int result;
 918
 919        /*
 920         * Since we only read in one block at a time, we have to create
 921         * a bounce buffer and move the data a piece at a time between the
 922         * bounce buffer and the actual transfer buffer.
 923         * We make this buffer big enough to hold temporary redundancy data,
 924         * which we use when reading the data blocks.
 925         */
 926
 927        len = min(sectors, blocksize) * (pagesize + 64);
 928        buffer = kmalloc(len, GFP_NOIO);
 929        if (!buffer)
 930                return USB_STOR_TRANSPORT_ERROR;
 931
 932        /* Figure out the initial LBA and page */
 933        lba = address >> blockshift;
 934        page = (address & MEDIA_INFO(us).blockmask);
 935        max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
 936
 937        result = USB_STOR_TRANSPORT_GOOD;
 938        offset = 0;
 939        sg = NULL;
 940
 941        while (sectors > 0) {
 942                unsigned int zone = lba / uzonesize; /* integer division */
 943                unsigned int lba_offset = lba - (zone * uzonesize);
 944                unsigned int pages;
 945                u16 pba;
 946                alauda_ensure_map_for_zone(us, zone);
 947
 948                /* Not overflowing capacity? */
 949                if (lba >= max_lba) {
 950                        usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 951                                     lba, max_lba);
 952                        result = USB_STOR_TRANSPORT_ERROR;
 953                        break;
 954                }
 955
 956                /* Find number of pages we can read in this block */
 957                pages = min(sectors, blocksize - page);
 958                len = pages << pageshift;
 959
 960                /* Find where this lba lives on disk */
 961                pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
 962
 963                if (pba == UNDEF) {     /* this lba was never written */
 964                        usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 965                                     pages, lba, page);
 966
 967                        /*
 968                         * This is not really an error. It just means
 969                         * that the block has never been written.
 970                         * Instead of returning USB_STOR_TRANSPORT_ERROR
 971                         * it is better to return all zero data.
 972                         */
 973
 974                        memset(buffer, 0, len);
 975                } else {
 976                        usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 977                                     pages, pba, lba, page);
 978
 979                        result = alauda_read_block(us, pba, page, pages, buffer);
 980                        if (result != USB_STOR_TRANSPORT_GOOD)
 981                                break;
 982                }
 983
 984                /* Store the data in the transfer buffer */
 985                usb_stor_access_xfer_buf(buffer, len, us->srb,
 986                                &sg, &offset, TO_XFER_BUF);
 987
 988                page = 0;
 989                lba++;
 990                sectors -= pages;
 991        }
 992
 993        kfree(buffer);
 994        return result;
 995}
 996
 997/*
 998 * Write data to a specific sector address
 999 */
1000static int alauda_write_data(struct us_data *us, unsigned long address,
1001                unsigned int sectors)
1002{
1003        unsigned char *buffer, *blockbuffer;
1004        unsigned int page, len, offset;
1005        unsigned int blockshift = MEDIA_INFO(us).blockshift;
1006        unsigned int pageshift = MEDIA_INFO(us).pageshift;
1007        unsigned int blocksize = MEDIA_INFO(us).blocksize;
1008        unsigned int pagesize = MEDIA_INFO(us).pagesize;
1009        struct scatterlist *sg;
1010        u16 lba, max_lba;
1011        int result;
1012
1013        /*
1014         * Since we don't write the user data directly to the device,
1015         * we have to create a bounce buffer and move the data a piece
1016         * at a time between the bounce buffer and the actual transfer buffer.
1017         */
1018
1019        len = min(sectors, blocksize) * pagesize;
1020        buffer = kmalloc(len, GFP_NOIO);
1021        if (!buffer)
1022                return USB_STOR_TRANSPORT_ERROR;
1023
1024        /*
1025         * We also need a temporary block buffer, where we read in the old data,
1026         * overwrite parts with the new data, and manipulate the redundancy data
1027         */
1028        blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO);
1029        if (!blockbuffer) {
1030                kfree(buffer);
1031                return USB_STOR_TRANSPORT_ERROR;
1032        }
1033
1034        /* Figure out the initial LBA and page */
1035        lba = address >> blockshift;
1036        page = (address & MEDIA_INFO(us).blockmask);
1037        max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1038
1039        result = USB_STOR_TRANSPORT_GOOD;
1040        offset = 0;
1041        sg = NULL;
1042
1043        while (sectors > 0) {
1044                /* Write as many sectors as possible in this block */
1045                unsigned int pages = min(sectors, blocksize - page);
1046                len = pages << pageshift;
1047
1048                /* Not overflowing capacity? */
1049                if (lba >= max_lba) {
1050                        usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1051                                     lba, max_lba);
1052                        result = USB_STOR_TRANSPORT_ERROR;
1053                        break;
1054                }
1055
1056                /* Get the data from the transfer buffer */
1057                usb_stor_access_xfer_buf(buffer, len, us->srb,
1058                                &sg, &offset, FROM_XFER_BUF);
1059
1060                result = alauda_write_lba(us, lba, page, pages, buffer,
1061                        blockbuffer);
1062                if (result != USB_STOR_TRANSPORT_GOOD)
1063                        break;
1064
1065                page = 0;
1066                lba++;
1067                sectors -= pages;
1068        }
1069
1070        kfree(buffer);
1071        kfree(blockbuffer);
1072        return result;
1073}
1074
1075/*
1076 * Our interface with the rest of the world
1077 */
1078
1079static void alauda_info_destructor(void *extra)
1080{
1081        struct alauda_info *info = (struct alauda_info *) extra;
1082        int port;
1083
1084        if (!info)
1085                return;
1086
1087        for (port = 0; port < 2; port++) {
1088                struct alauda_media_info *media_info = &info->port[port];
1089
1090                alauda_free_maps(media_info);
1091                kfree(media_info->lba_to_pba);
1092                kfree(media_info->pba_to_lba);
1093        }
1094}
1095
1096/*
1097 * Initialize alauda_info struct and find the data-write endpoint
1098 */
1099static int init_alauda(struct us_data *us)
1100{
1101        struct alauda_info *info;
1102        struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1103        nand_init_ecc();
1104
1105        us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1106        if (!us->extra)
1107                return USB_STOR_TRANSPORT_ERROR;
1108
1109        info = (struct alauda_info *) us->extra;
1110        us->extra_destructor = alauda_info_destructor;
1111
1112        info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1113                altsetting->endpoint[0].desc.bEndpointAddress
1114                & USB_ENDPOINT_NUMBER_MASK);
1115
1116        return USB_STOR_TRANSPORT_GOOD;
1117}
1118
1119static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1120{
1121        int rc;
1122        struct alauda_info *info = (struct alauda_info *) us->extra;
1123        unsigned char *ptr = us->iobuf;
1124        static unsigned char inquiry_response[36] = {
1125                0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1126        };
1127
1128        if (srb->cmnd[0] == INQUIRY) {
1129                usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1130                memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1131                fill_inquiry_response(us, ptr, 36);
1132                return USB_STOR_TRANSPORT_GOOD;
1133        }
1134
1135        if (srb->cmnd[0] == TEST_UNIT_READY) {
1136                usb_stor_dbg(us, "TEST_UNIT_READY\n");
1137                return alauda_check_media(us);
1138        }
1139
1140        if (srb->cmnd[0] == READ_CAPACITY) {
1141                unsigned int num_zones;
1142                unsigned long capacity;
1143
1144                rc = alauda_check_media(us);
1145                if (rc != USB_STOR_TRANSPORT_GOOD)
1146                        return rc;
1147
1148                num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1149                        + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1150
1151                capacity = num_zones * MEDIA_INFO(us).uzonesize
1152                        * MEDIA_INFO(us).blocksize;
1153
1154                /* Report capacity and page size */
1155                ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1156                ((__be32 *) ptr)[1] = cpu_to_be32(512);
1157
1158                usb_stor_set_xfer_buf(ptr, 8, srb);
1159                return USB_STOR_TRANSPORT_GOOD;
1160        }
1161
1162        if (srb->cmnd[0] == READ_10) {
1163                unsigned int page, pages;
1164
1165                rc = alauda_check_media(us);
1166                if (rc != USB_STOR_TRANSPORT_GOOD)
1167                        return rc;
1168
1169                page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1170                page <<= 16;
1171                page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1172                pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1173
1174                usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1175
1176                return alauda_read_data(us, page, pages);
1177        }
1178
1179        if (srb->cmnd[0] == WRITE_10) {
1180                unsigned int page, pages;
1181
1182                rc = alauda_check_media(us);
1183                if (rc != USB_STOR_TRANSPORT_GOOD)
1184                        return rc;
1185
1186                page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1187                page <<= 16;
1188                page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1189                pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1190
1191                usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1192
1193                return alauda_write_data(us, page, pages);
1194        }
1195
1196        if (srb->cmnd[0] == REQUEST_SENSE) {
1197                usb_stor_dbg(us, "REQUEST_SENSE\n");
1198
1199                memset(ptr, 0, 18);
1200                ptr[0] = 0xF0;
1201                ptr[2] = info->sense_key;
1202                ptr[7] = 11;
1203                ptr[12] = info->sense_asc;
1204                ptr[13] = info->sense_ascq;
1205                usb_stor_set_xfer_buf(ptr, 18, srb);
1206
1207                return USB_STOR_TRANSPORT_GOOD;
1208        }
1209
1210        if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1211                /*
1212                 * sure.  whatever.  not like we can stop the user from popping
1213                 * the media out of the device (no locking doors, etc)
1214                 */
1215                return USB_STOR_TRANSPORT_GOOD;
1216        }
1217
1218        usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1219                     srb->cmnd[0], srb->cmnd[0]);
1220        info->sense_key = 0x05;
1221        info->sense_asc = 0x20;
1222        info->sense_ascq = 0x00;
1223        return USB_STOR_TRANSPORT_FAILED;
1224}
1225
1226static struct scsi_host_template alauda_host_template;
1227
1228static int alauda_probe(struct usb_interface *intf,
1229                         const struct usb_device_id *id)
1230{
1231        struct us_data *us;
1232        int result;
1233
1234        result = usb_stor_probe1(&us, intf, id,
1235                        (id - alauda_usb_ids) + alauda_unusual_dev_list,
1236                        &alauda_host_template);
1237        if (result)
1238                return result;
1239
1240        us->transport_name  = "Alauda Control/Bulk";
1241        us->transport = alauda_transport;
1242        us->transport_reset = usb_stor_Bulk_reset;
1243        us->max_lun = 1;
1244
1245        result = usb_stor_probe2(us);
1246        return result;
1247}
1248
1249static struct usb_driver alauda_driver = {
1250        .name =         DRV_NAME,
1251        .probe =        alauda_probe,
1252        .disconnect =   usb_stor_disconnect,
1253        .suspend =      usb_stor_suspend,
1254        .resume =       usb_stor_resume,
1255        .reset_resume = usb_stor_reset_resume,
1256        .pre_reset =    usb_stor_pre_reset,
1257        .post_reset =   usb_stor_post_reset,
1258        .id_table =     alauda_usb_ids,
1259        .soft_unbind =  1,
1260        .no_dynamic_id = 1,
1261};
1262
1263module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);
1264