linux/fs/btrfs/block-group.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2
   3#ifndef BTRFS_BLOCK_GROUP_H
   4#define BTRFS_BLOCK_GROUP_H
   5
   6#include "free-space-cache.h"
   7
   8enum btrfs_disk_cache_state {
   9        BTRFS_DC_WRITTEN,
  10        BTRFS_DC_ERROR,
  11        BTRFS_DC_CLEAR,
  12        BTRFS_DC_SETUP,
  13};
  14
  15/*
  16 * This describes the state of the block_group for async discard.  This is due
  17 * to the two pass nature of it where extent discarding is prioritized over
  18 * bitmap discarding.  BTRFS_DISCARD_RESET_CURSOR is set when we are resetting
  19 * between lists to prevent contention for discard state variables
  20 * (eg. discard_cursor).
  21 */
  22enum btrfs_discard_state {
  23        BTRFS_DISCARD_EXTENTS,
  24        BTRFS_DISCARD_BITMAPS,
  25        BTRFS_DISCARD_RESET_CURSOR,
  26};
  27
  28/*
  29 * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to
  30 * only allocate a chunk if we really need one.
  31 *
  32 * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few
  33 * chunks already allocated.  This is used as part of the clustering code to
  34 * help make sure we have a good pool of storage to cluster in, without filling
  35 * the FS with empty chunks
  36 *
  37 * CHUNK_ALLOC_FORCE means it must try to allocate one
  38 */
  39enum btrfs_chunk_alloc_enum {
  40        CHUNK_ALLOC_NO_FORCE,
  41        CHUNK_ALLOC_LIMITED,
  42        CHUNK_ALLOC_FORCE,
  43};
  44
  45struct btrfs_caching_control {
  46        struct list_head list;
  47        struct mutex mutex;
  48        wait_queue_head_t wait;
  49        struct btrfs_work work;
  50        struct btrfs_block_group *block_group;
  51        u64 progress;
  52        refcount_t count;
  53};
  54
  55/* Once caching_thread() finds this much free space, it will wake up waiters. */
  56#define CACHING_CTL_WAKE_UP SZ_2M
  57
  58struct btrfs_block_group {
  59        struct btrfs_fs_info *fs_info;
  60        struct inode *inode;
  61        spinlock_t lock;
  62        u64 start;
  63        u64 length;
  64        u64 pinned;
  65        u64 reserved;
  66        u64 used;
  67        u64 delalloc_bytes;
  68        u64 bytes_super;
  69        u64 flags;
  70        u64 cache_generation;
  71
  72        /*
  73         * If the free space extent count exceeds this number, convert the block
  74         * group to bitmaps.
  75         */
  76        u32 bitmap_high_thresh;
  77
  78        /*
  79         * If the free space extent count drops below this number, convert the
  80         * block group back to extents.
  81         */
  82        u32 bitmap_low_thresh;
  83
  84        /*
  85         * It is just used for the delayed data space allocation because
  86         * only the data space allocation and the relative metadata update
  87         * can be done cross the transaction.
  88         */
  89        struct rw_semaphore data_rwsem;
  90
  91        /* For raid56, this is a full stripe, without parity */
  92        unsigned long full_stripe_len;
  93
  94        unsigned int ro;
  95        unsigned int iref:1;
  96        unsigned int has_caching_ctl:1;
  97        unsigned int removed:1;
  98        unsigned int to_copy:1;
  99        unsigned int relocating_repair:1;
 100        unsigned int chunk_item_inserted:1;
 101
 102        int disk_cache_state;
 103
 104        /* Cache tracking stuff */
 105        int cached;
 106        struct btrfs_caching_control *caching_ctl;
 107        u64 last_byte_to_unpin;
 108
 109        struct btrfs_space_info *space_info;
 110
 111        /* Free space cache stuff */
 112        struct btrfs_free_space_ctl *free_space_ctl;
 113
 114        /* Block group cache stuff */
 115        struct rb_node cache_node;
 116
 117        /* For block groups in the same raid type */
 118        struct list_head list;
 119
 120        refcount_t refs;
 121
 122        /*
 123         * List of struct btrfs_free_clusters for this block group.
 124         * Today it will only have one thing on it, but that may change
 125         */
 126        struct list_head cluster_list;
 127
 128        /* For delayed block group creation or deletion of empty block groups */
 129        struct list_head bg_list;
 130
 131        /* For read-only block groups */
 132        struct list_head ro_list;
 133
 134        /*
 135         * When non-zero it means the block group's logical address and its
 136         * device extents can not be reused for future block group allocations
 137         * until the counter goes down to 0. This is to prevent them from being
 138         * reused while some task is still using the block group after it was
 139         * deleted - we want to make sure they can only be reused for new block
 140         * groups after that task is done with the deleted block group.
 141         */
 142        atomic_t frozen;
 143
 144        /* For discard operations */
 145        struct list_head discard_list;
 146        int discard_index;
 147        u64 discard_eligible_time;
 148        u64 discard_cursor;
 149        enum btrfs_discard_state discard_state;
 150
 151        /* For dirty block groups */
 152        struct list_head dirty_list;
 153        struct list_head io_list;
 154
 155        struct btrfs_io_ctl io_ctl;
 156
 157        /*
 158         * Incremented when doing extent allocations and holding a read lock
 159         * on the space_info's groups_sem semaphore.
 160         * Decremented when an ordered extent that represents an IO against this
 161         * block group's range is created (after it's added to its inode's
 162         * root's list of ordered extents) or immediately after the allocation
 163         * if it's a metadata extent or fallocate extent (for these cases we
 164         * don't create ordered extents).
 165         */
 166        atomic_t reservations;
 167
 168        /*
 169         * Incremented while holding the spinlock *lock* by a task checking if
 170         * it can perform a nocow write (incremented if the value for the *ro*
 171         * field is 0). Decremented by such tasks once they create an ordered
 172         * extent or before that if some error happens before reaching that step.
 173         * This is to prevent races between block group relocation and nocow
 174         * writes through direct IO.
 175         */
 176        atomic_t nocow_writers;
 177
 178        /* Lock for free space tree operations. */
 179        struct mutex free_space_lock;
 180
 181        /*
 182         * Does the block group need to be added to the free space tree?
 183         * Protected by free_space_lock.
 184         */
 185        int needs_free_space;
 186
 187        /* Flag indicating this block group is placed on a sequential zone */
 188        bool seq_zone;
 189
 190        /*
 191         * Number of extents in this block group used for swap files.
 192         * All accesses protected by the spinlock 'lock'.
 193         */
 194        int swap_extents;
 195
 196        /* Record locked full stripes for RAID5/6 block group */
 197        struct btrfs_full_stripe_locks_tree full_stripe_locks_root;
 198
 199        /*
 200         * Allocation offset for the block group to implement sequential
 201         * allocation. This is used only on a zoned filesystem.
 202         */
 203        u64 alloc_offset;
 204        u64 zone_unusable;
 205        u64 meta_write_pointer;
 206};
 207
 208static inline u64 btrfs_block_group_end(struct btrfs_block_group *block_group)
 209{
 210        return (block_group->start + block_group->length);
 211}
 212
 213static inline bool btrfs_is_block_group_data_only(
 214                                        struct btrfs_block_group *block_group)
 215{
 216        /*
 217         * In mixed mode the fragmentation is expected to be high, lowering the
 218         * efficiency, so only proper data block groups are considered.
 219         */
 220        return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
 221               !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA);
 222}
 223
 224#ifdef CONFIG_BTRFS_DEBUG
 225static inline int btrfs_should_fragment_free_space(
 226                struct btrfs_block_group *block_group)
 227{
 228        struct btrfs_fs_info *fs_info = block_group->fs_info;
 229
 230        return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
 231                block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
 232               (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
 233                block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
 234}
 235#endif
 236
 237struct btrfs_block_group *btrfs_lookup_first_block_group(
 238                struct btrfs_fs_info *info, u64 bytenr);
 239struct btrfs_block_group *btrfs_lookup_block_group(
 240                struct btrfs_fs_info *info, u64 bytenr);
 241struct btrfs_block_group *btrfs_next_block_group(
 242                struct btrfs_block_group *cache);
 243void btrfs_get_block_group(struct btrfs_block_group *cache);
 244void btrfs_put_block_group(struct btrfs_block_group *cache);
 245void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
 246                                        const u64 start);
 247void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg);
 248bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr);
 249void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr);
 250void btrfs_wait_nocow_writers(struct btrfs_block_group *bg);
 251void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
 252                                           u64 num_bytes);
 253int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache);
 254int btrfs_cache_block_group(struct btrfs_block_group *cache,
 255                            int load_cache_only);
 256void btrfs_put_caching_control(struct btrfs_caching_control *ctl);
 257struct btrfs_caching_control *btrfs_get_caching_control(
 258                struct btrfs_block_group *cache);
 259u64 add_new_free_space(struct btrfs_block_group *block_group,
 260                       u64 start, u64 end);
 261struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
 262                                struct btrfs_fs_info *fs_info,
 263                                const u64 chunk_offset);
 264int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
 265                             u64 group_start, struct extent_map *em);
 266void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
 267void btrfs_mark_bg_unused(struct btrfs_block_group *bg);
 268void btrfs_reclaim_bgs_work(struct work_struct *work);
 269void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info);
 270void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg);
 271int btrfs_read_block_groups(struct btrfs_fs_info *info);
 272struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
 273                                                 u64 bytes_used, u64 type,
 274                                                 u64 chunk_offset, u64 size);
 275void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans);
 276int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
 277                             bool do_chunk_alloc);
 278void btrfs_dec_block_group_ro(struct btrfs_block_group *cache);
 279int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans);
 280int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans);
 281int btrfs_setup_space_cache(struct btrfs_trans_handle *trans);
 282int btrfs_update_block_group(struct btrfs_trans_handle *trans,
 283                             u64 bytenr, u64 num_bytes, int alloc);
 284int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
 285                             u64 ram_bytes, u64 num_bytes, int delalloc);
 286void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
 287                               u64 num_bytes, int delalloc);
 288int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
 289                      enum btrfs_chunk_alloc_enum force);
 290int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type);
 291void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type);
 292u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags);
 293void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
 294int btrfs_free_block_groups(struct btrfs_fs_info *info);
 295void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
 296                                struct btrfs_caching_control *caching_ctl);
 297int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
 298                       struct block_device *bdev, u64 physical, u64 **logical,
 299                       int *naddrs, int *stripe_len);
 300
 301static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
 302{
 303        return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
 304}
 305
 306static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
 307{
 308        return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 309}
 310
 311static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
 312{
 313        return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
 314}
 315
 316static inline int btrfs_block_group_done(struct btrfs_block_group *cache)
 317{
 318        smp_mb();
 319        return cache->cached == BTRFS_CACHE_FINISHED ||
 320                cache->cached == BTRFS_CACHE_ERROR;
 321}
 322
 323void btrfs_freeze_block_group(struct btrfs_block_group *cache);
 324void btrfs_unfreeze_block_group(struct btrfs_block_group *cache);
 325
 326bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg);
 327void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount);
 328
 329#endif /* BTRFS_BLOCK_GROUP_H */
 330