linux/fs/btrfs/delalloc-space.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include "ctree.h"
   4#include "delalloc-space.h"
   5#include "block-rsv.h"
   6#include "btrfs_inode.h"
   7#include "space-info.h"
   8#include "transaction.h"
   9#include "qgroup.h"
  10#include "block-group.h"
  11
  12/*
  13 * HOW DOES THIS WORK
  14 *
  15 * There are two stages to data reservations, one for data and one for metadata
  16 * to handle the new extents and checksums generated by writing data.
  17 *
  18 *
  19 * DATA RESERVATION
  20 *   The general flow of the data reservation is as follows
  21 *
  22 *   -> Reserve
  23 *     We call into btrfs_reserve_data_bytes() for the user request bytes that
  24 *     they wish to write.  We make this reservation and add it to
  25 *     space_info->bytes_may_use.  We set EXTENT_DELALLOC on the inode io_tree
  26 *     for the range and carry on if this is buffered, or follow up trying to
  27 *     make a real allocation if we are pre-allocating or doing O_DIRECT.
  28 *
  29 *   -> Use
  30 *     At writepages()/prealloc/O_DIRECT time we will call into
  31 *     btrfs_reserve_extent() for some part or all of this range of bytes.  We
  32 *     will make the allocation and subtract space_info->bytes_may_use by the
  33 *     original requested length and increase the space_info->bytes_reserved by
  34 *     the allocated length.  This distinction is important because compression
  35 *     may allocate a smaller on disk extent than we previously reserved.
  36 *
  37 *   -> Allocation
  38 *     finish_ordered_io() will insert the new file extent item for this range,
  39 *     and then add a delayed ref update for the extent tree.  Once that delayed
  40 *     ref is written the extent size is subtracted from
  41 *     space_info->bytes_reserved and added to space_info->bytes_used.
  42 *
  43 *   Error handling
  44 *
  45 *   -> By the reservation maker
  46 *     This is the simplest case, we haven't completed our operation and we know
  47 *     how much we reserved, we can simply call
  48 *     btrfs_free_reserved_data_space*() and it will be removed from
  49 *     space_info->bytes_may_use.
  50 *
  51 *   -> After the reservation has been made, but before cow_file_range()
  52 *     This is specifically for the delalloc case.  You must clear
  53 *     EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will
  54 *     be subtracted from space_info->bytes_may_use.
  55 *
  56 * METADATA RESERVATION
  57 *   The general metadata reservation lifetimes are discussed elsewhere, this
  58 *   will just focus on how it is used for delalloc space.
  59 *
  60 *   We keep track of two things on a per inode bases
  61 *
  62 *   ->outstanding_extents
  63 *     This is the number of file extent items we'll need to handle all of the
  64 *     outstanding DELALLOC space we have in this inode.  We limit the maximum
  65 *     size of an extent, so a large contiguous dirty area may require more than
  66 *     one outstanding_extent, which is why count_max_extents() is used to
  67 *     determine how many outstanding_extents get added.
  68 *
  69 *   ->csum_bytes
  70 *     This is essentially how many dirty bytes we have for this inode, so we
  71 *     can calculate the number of checksum items we would have to add in order
  72 *     to checksum our outstanding data.
  73 *
  74 *   We keep a per-inode block_rsv in order to make it easier to keep track of
  75 *   our reservation.  We use btrfs_calculate_inode_block_rsv_size() to
  76 *   calculate the current theoretical maximum reservation we would need for the
  77 *   metadata for this inode.  We call this and then adjust our reservation as
  78 *   necessary, either by attempting to reserve more space, or freeing up excess
  79 *   space.
  80 *
  81 * OUTSTANDING_EXTENTS HANDLING
  82 *
  83 *  ->outstanding_extents is used for keeping track of how many extents we will
  84 *  need to use for this inode, and it will fluctuate depending on where you are
  85 *  in the life cycle of the dirty data.  Consider the following normal case for
  86 *  a completely clean inode, with a num_bytes < our maximum allowed extent size
  87 *
  88 *  -> reserve
  89 *    ->outstanding_extents += 1 (current value is 1)
  90 *
  91 *  -> set_delalloc
  92 *    ->outstanding_extents += 1 (current value is 2)
  93 *
  94 *  -> btrfs_delalloc_release_extents()
  95 *    ->outstanding_extents -= 1 (current value is 1)
  96 *
  97 *    We must call this once we are done, as we hold our reservation for the
  98 *    duration of our operation, and then assume set_delalloc will update the
  99 *    counter appropriately.
 100 *
 101 *  -> add ordered extent
 102 *    ->outstanding_extents += 1 (current value is 2)
 103 *
 104 *  -> btrfs_clear_delalloc_extent
 105 *    ->outstanding_extents -= 1 (current value is 1)
 106 *
 107 *  -> finish_ordered_io/btrfs_remove_ordered_extent
 108 *    ->outstanding_extents -= 1 (current value is 0)
 109 *
 110 *  Each stage is responsible for their own accounting of the extent, thus
 111 *  making error handling and cleanup easier.
 112 */
 113
 114int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
 115{
 116        struct btrfs_root *root = inode->root;
 117        struct btrfs_fs_info *fs_info = root->fs_info;
 118        enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA;
 119
 120        /* Make sure bytes are sectorsize aligned */
 121        bytes = ALIGN(bytes, fs_info->sectorsize);
 122
 123        if (btrfs_is_free_space_inode(inode))
 124                flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE;
 125
 126        return btrfs_reserve_data_bytes(fs_info, bytes, flush);
 127}
 128
 129int btrfs_check_data_free_space(struct btrfs_inode *inode,
 130                        struct extent_changeset **reserved, u64 start, u64 len)
 131{
 132        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 133        int ret;
 134
 135        /* align the range */
 136        len = round_up(start + len, fs_info->sectorsize) -
 137              round_down(start, fs_info->sectorsize);
 138        start = round_down(start, fs_info->sectorsize);
 139
 140        ret = btrfs_alloc_data_chunk_ondemand(inode, len);
 141        if (ret < 0)
 142                return ret;
 143
 144        /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
 145        ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
 146        if (ret < 0)
 147                btrfs_free_reserved_data_space_noquota(fs_info, len);
 148        else
 149                ret = 0;
 150        return ret;
 151}
 152
 153/*
 154 * Called if we need to clear a data reservation for this inode
 155 * Normally in a error case.
 156 *
 157 * This one will *NOT* use accurate qgroup reserved space API, just for case
 158 * which we can't sleep and is sure it won't affect qgroup reserved space.
 159 * Like clear_bit_hook().
 160 */
 161void btrfs_free_reserved_data_space_noquota(struct btrfs_fs_info *fs_info,
 162                                            u64 len)
 163{
 164        struct btrfs_space_info *data_sinfo;
 165
 166        ASSERT(IS_ALIGNED(len, fs_info->sectorsize));
 167
 168        data_sinfo = fs_info->data_sinfo;
 169        btrfs_space_info_free_bytes_may_use(fs_info, data_sinfo, len);
 170}
 171
 172/*
 173 * Called if we need to clear a data reservation for this inode
 174 * Normally in a error case.
 175 *
 176 * This one will handle the per-inode data rsv map for accurate reserved
 177 * space framework.
 178 */
 179void btrfs_free_reserved_data_space(struct btrfs_inode *inode,
 180                        struct extent_changeset *reserved, u64 start, u64 len)
 181{
 182        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 183
 184        /* Make sure the range is aligned to sectorsize */
 185        len = round_up(start + len, fs_info->sectorsize) -
 186              round_down(start, fs_info->sectorsize);
 187        start = round_down(start, fs_info->sectorsize);
 188
 189        btrfs_free_reserved_data_space_noquota(fs_info, len);
 190        btrfs_qgroup_free_data(inode, reserved, start, len);
 191}
 192
 193/**
 194 * Release any excessive reservation
 195 *
 196 * @inode:       the inode we need to release from
 197 * @qgroup_free: free or convert qgroup meta. Unlike normal operation, qgroup
 198 *               meta reservation needs to know if we are freeing qgroup
 199 *               reservation or just converting it into per-trans.  Normally
 200 *               @qgroup_free is true for error handling, and false for normal
 201 *               release.
 202 *
 203 * This is the same as btrfs_block_rsv_release, except that it handles the
 204 * tracepoint for the reservation.
 205 */
 206static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
 207{
 208        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 209        struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
 210        u64 released = 0;
 211        u64 qgroup_to_release = 0;
 212
 213        /*
 214         * Since we statically set the block_rsv->size we just want to say we
 215         * are releasing 0 bytes, and then we'll just get the reservation over
 216         * the size free'd.
 217         */
 218        released = btrfs_block_rsv_release(fs_info, block_rsv, 0,
 219                                           &qgroup_to_release);
 220        if (released > 0)
 221                trace_btrfs_space_reservation(fs_info, "delalloc",
 222                                              btrfs_ino(inode), released, 0);
 223        if (qgroup_free)
 224                btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
 225        else
 226                btrfs_qgroup_convert_reserved_meta(inode->root,
 227                                                   qgroup_to_release);
 228}
 229
 230static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
 231                                                 struct btrfs_inode *inode)
 232{
 233        struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
 234        u64 reserve_size = 0;
 235        u64 qgroup_rsv_size = 0;
 236        u64 csum_leaves;
 237        unsigned outstanding_extents;
 238
 239        lockdep_assert_held(&inode->lock);
 240        outstanding_extents = inode->outstanding_extents;
 241
 242        /*
 243         * Insert size for the number of outstanding extents, 1 normal size for
 244         * updating the inode.
 245         */
 246        if (outstanding_extents) {
 247                reserve_size = btrfs_calc_insert_metadata_size(fs_info,
 248                                                outstanding_extents);
 249                reserve_size += btrfs_calc_metadata_size(fs_info, 1);
 250        }
 251        csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
 252                                                 inode->csum_bytes);
 253        reserve_size += btrfs_calc_insert_metadata_size(fs_info,
 254                                                        csum_leaves);
 255        /*
 256         * For qgroup rsv, the calculation is very simple:
 257         * account one nodesize for each outstanding extent
 258         *
 259         * This is overestimating in most cases.
 260         */
 261        qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
 262
 263        spin_lock(&block_rsv->lock);
 264        block_rsv->size = reserve_size;
 265        block_rsv->qgroup_rsv_size = qgroup_rsv_size;
 266        spin_unlock(&block_rsv->lock);
 267}
 268
 269static void calc_inode_reservations(struct btrfs_fs_info *fs_info,
 270                                    u64 num_bytes, u64 *meta_reserve,
 271                                    u64 *qgroup_reserve)
 272{
 273        u64 nr_extents = count_max_extents(num_bytes);
 274        u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, num_bytes);
 275        u64 inode_update = btrfs_calc_metadata_size(fs_info, 1);
 276
 277        *meta_reserve = btrfs_calc_insert_metadata_size(fs_info,
 278                                                nr_extents + csum_leaves);
 279
 280        /*
 281         * finish_ordered_io has to update the inode, so add the space required
 282         * for an inode update.
 283         */
 284        *meta_reserve += inode_update;
 285        *qgroup_reserve = nr_extents * fs_info->nodesize;
 286}
 287
 288int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
 289{
 290        struct btrfs_root *root = inode->root;
 291        struct btrfs_fs_info *fs_info = root->fs_info;
 292        struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
 293        u64 meta_reserve, qgroup_reserve;
 294        unsigned nr_extents;
 295        enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
 296        int ret = 0;
 297
 298        /*
 299         * If we are a free space inode we need to not flush since we will be in
 300         * the middle of a transaction commit.  We also don't need the delalloc
 301         * mutex since we won't race with anybody.  We need this mostly to make
 302         * lockdep shut its filthy mouth.
 303         *
 304         * If we have a transaction open (can happen if we call truncate_block
 305         * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
 306         */
 307        if (btrfs_is_free_space_inode(inode)) {
 308                flush = BTRFS_RESERVE_NO_FLUSH;
 309        } else {
 310                if (current->journal_info)
 311                        flush = BTRFS_RESERVE_FLUSH_LIMIT;
 312
 313                if (btrfs_transaction_in_commit(fs_info))
 314                        schedule_timeout(1);
 315        }
 316
 317        num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
 318
 319        /*
 320         * We always want to do it this way, every other way is wrong and ends
 321         * in tears.  Pre-reserving the amount we are going to add will always
 322         * be the right way, because otherwise if we have enough parallelism we
 323         * could end up with thousands of inodes all holding little bits of
 324         * reservations they were able to make previously and the only way to
 325         * reclaim that space is to ENOSPC out the operations and clear
 326         * everything out and try again, which is bad.  This way we just
 327         * over-reserve slightly, and clean up the mess when we are done.
 328         */
 329        calc_inode_reservations(fs_info, num_bytes, &meta_reserve,
 330                                &qgroup_reserve);
 331        ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true);
 332        if (ret)
 333                return ret;
 334        ret = btrfs_reserve_metadata_bytes(root, block_rsv, meta_reserve, flush);
 335        if (ret) {
 336                btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve);
 337                return ret;
 338        }
 339
 340        /*
 341         * Now we need to update our outstanding extents and csum bytes _first_
 342         * and then add the reservation to the block_rsv.  This keeps us from
 343         * racing with an ordered completion or some such that would think it
 344         * needs to free the reservation we just made.
 345         */
 346        spin_lock(&inode->lock);
 347        nr_extents = count_max_extents(num_bytes);
 348        btrfs_mod_outstanding_extents(inode, nr_extents);
 349        inode->csum_bytes += num_bytes;
 350        btrfs_calculate_inode_block_rsv_size(fs_info, inode);
 351        spin_unlock(&inode->lock);
 352
 353        /* Now we can safely add our space to our block rsv */
 354        btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false);
 355        trace_btrfs_space_reservation(root->fs_info, "delalloc",
 356                                      btrfs_ino(inode), meta_reserve, 1);
 357
 358        spin_lock(&block_rsv->lock);
 359        block_rsv->qgroup_rsv_reserved += qgroup_reserve;
 360        spin_unlock(&block_rsv->lock);
 361
 362        return 0;
 363}
 364
 365/**
 366 * Release a metadata reservation for an inode
 367 *
 368 * @inode: the inode to release the reservation for.
 369 * @num_bytes: the number of bytes we are releasing.
 370 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
 371 *
 372 * This will release the metadata reservation for an inode.  This can be called
 373 * once we complete IO for a given set of bytes to release their metadata
 374 * reservations, or on error for the same reason.
 375 */
 376void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
 377                                     bool qgroup_free)
 378{
 379        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 380
 381        num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
 382        spin_lock(&inode->lock);
 383        inode->csum_bytes -= num_bytes;
 384        btrfs_calculate_inode_block_rsv_size(fs_info, inode);
 385        spin_unlock(&inode->lock);
 386
 387        if (btrfs_is_testing(fs_info))
 388                return;
 389
 390        btrfs_inode_rsv_release(inode, qgroup_free);
 391}
 392
 393/**
 394 * btrfs_delalloc_release_extents - release our outstanding_extents
 395 * @inode: the inode to balance the reservation for.
 396 * @num_bytes: the number of bytes we originally reserved with
 397 *
 398 * When we reserve space we increase outstanding_extents for the extents we may
 399 * add.  Once we've set the range as delalloc or created our ordered extents we
 400 * have outstanding_extents to track the real usage, so we use this to free our
 401 * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
 402 * with btrfs_delalloc_reserve_metadata.
 403 */
 404void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
 405{
 406        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 407        unsigned num_extents;
 408
 409        spin_lock(&inode->lock);
 410        num_extents = count_max_extents(num_bytes);
 411        btrfs_mod_outstanding_extents(inode, -num_extents);
 412        btrfs_calculate_inode_block_rsv_size(fs_info, inode);
 413        spin_unlock(&inode->lock);
 414
 415        if (btrfs_is_testing(fs_info))
 416                return;
 417
 418        btrfs_inode_rsv_release(inode, true);
 419}
 420
 421/**
 422 * btrfs_delalloc_reserve_space - reserve data and metadata space for
 423 * delalloc
 424 * @inode: inode we're writing to
 425 * @start: start range we are writing to
 426 * @len: how long the range we are writing to
 427 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
 428 *            current reservation.
 429 *
 430 * This will do the following things
 431 *
 432 * - reserve space in data space info for num bytes
 433 *   and reserve precious corresponding qgroup space
 434 *   (Done in check_data_free_space)
 435 *
 436 * - reserve space for metadata space, based on the number of outstanding
 437 *   extents and how much csums will be needed
 438 *   also reserve metadata space in a per root over-reserve method.
 439 * - add to the inodes->delalloc_bytes
 440 * - add it to the fs_info's delalloc inodes list.
 441 *   (Above 3 all done in delalloc_reserve_metadata)
 442 *
 443 * Return 0 for success
 444 * Return <0 for error(-ENOSPC or -EQUOT)
 445 */
 446int btrfs_delalloc_reserve_space(struct btrfs_inode *inode,
 447                        struct extent_changeset **reserved, u64 start, u64 len)
 448{
 449        int ret;
 450
 451        ret = btrfs_check_data_free_space(inode, reserved, start, len);
 452        if (ret < 0)
 453                return ret;
 454        ret = btrfs_delalloc_reserve_metadata(inode, len);
 455        if (ret < 0)
 456                btrfs_free_reserved_data_space(inode, *reserved, start, len);
 457        return ret;
 458}
 459
 460/**
 461 * Release data and metadata space for delalloc
 462 *
 463 * @inode:       inode we're releasing space for
 464 * @reserved:    list of changed/reserved ranges
 465 * @start:       start position of the space already reserved
 466 * @len:         length of the space already reserved
 467 * @qgroup_free: should qgroup reserved-space also be freed
 468 *
 469 * This function will release the metadata space that was not used and will
 470 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
 471 * list if there are no delalloc bytes left.
 472 * Also it will handle the qgroup reserved space.
 473 */
 474void btrfs_delalloc_release_space(struct btrfs_inode *inode,
 475                                  struct extent_changeset *reserved,
 476                                  u64 start, u64 len, bool qgroup_free)
 477{
 478        btrfs_delalloc_release_metadata(inode, len, qgroup_free);
 479        btrfs_free_reserved_data_space(inode, reserved, start, len);
 480}
 481