linux/fs/btrfs/delayed-inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   4 * Written by Miao Xie <miaox@cn.fujitsu.com>
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/iversion.h>
   9#include "misc.h"
  10#include "delayed-inode.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "ctree.h"
  14#include "qgroup.h"
  15#include "locking.h"
  16
  17#define BTRFS_DELAYED_WRITEBACK         512
  18#define BTRFS_DELAYED_BACKGROUND        128
  19#define BTRFS_DELAYED_BATCH             16
  20
  21static struct kmem_cache *delayed_node_cache;
  22
  23int __init btrfs_delayed_inode_init(void)
  24{
  25        delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  26                                        sizeof(struct btrfs_delayed_node),
  27                                        0,
  28                                        SLAB_MEM_SPREAD,
  29                                        NULL);
  30        if (!delayed_node_cache)
  31                return -ENOMEM;
  32        return 0;
  33}
  34
  35void __cold btrfs_delayed_inode_exit(void)
  36{
  37        kmem_cache_destroy(delayed_node_cache);
  38}
  39
  40static inline void btrfs_init_delayed_node(
  41                                struct btrfs_delayed_node *delayed_node,
  42                                struct btrfs_root *root, u64 inode_id)
  43{
  44        delayed_node->root = root;
  45        delayed_node->inode_id = inode_id;
  46        refcount_set(&delayed_node->refs, 0);
  47        delayed_node->ins_root = RB_ROOT_CACHED;
  48        delayed_node->del_root = RB_ROOT_CACHED;
  49        mutex_init(&delayed_node->mutex);
  50        INIT_LIST_HEAD(&delayed_node->n_list);
  51        INIT_LIST_HEAD(&delayed_node->p_list);
  52}
  53
  54static inline int btrfs_is_continuous_delayed_item(
  55                                        struct btrfs_delayed_item *item1,
  56                                        struct btrfs_delayed_item *item2)
  57{
  58        if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  59            item1->key.objectid == item2->key.objectid &&
  60            item1->key.type == item2->key.type &&
  61            item1->key.offset + 1 == item2->key.offset)
  62                return 1;
  63        return 0;
  64}
  65
  66static struct btrfs_delayed_node *btrfs_get_delayed_node(
  67                struct btrfs_inode *btrfs_inode)
  68{
  69        struct btrfs_root *root = btrfs_inode->root;
  70        u64 ino = btrfs_ino(btrfs_inode);
  71        struct btrfs_delayed_node *node;
  72
  73        node = READ_ONCE(btrfs_inode->delayed_node);
  74        if (node) {
  75                refcount_inc(&node->refs);
  76                return node;
  77        }
  78
  79        spin_lock(&root->inode_lock);
  80        node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  81
  82        if (node) {
  83                if (btrfs_inode->delayed_node) {
  84                        refcount_inc(&node->refs);      /* can be accessed */
  85                        BUG_ON(btrfs_inode->delayed_node != node);
  86                        spin_unlock(&root->inode_lock);
  87                        return node;
  88                }
  89
  90                /*
  91                 * It's possible that we're racing into the middle of removing
  92                 * this node from the radix tree.  In this case, the refcount
  93                 * was zero and it should never go back to one.  Just return
  94                 * NULL like it was never in the radix at all; our release
  95                 * function is in the process of removing it.
  96                 *
  97                 * Some implementations of refcount_inc refuse to bump the
  98                 * refcount once it has hit zero.  If we don't do this dance
  99                 * here, refcount_inc() may decide to just WARN_ONCE() instead
 100                 * of actually bumping the refcount.
 101                 *
 102                 * If this node is properly in the radix, we want to bump the
 103                 * refcount twice, once for the inode and once for this get
 104                 * operation.
 105                 */
 106                if (refcount_inc_not_zero(&node->refs)) {
 107                        refcount_inc(&node->refs);
 108                        btrfs_inode->delayed_node = node;
 109                } else {
 110                        node = NULL;
 111                }
 112
 113                spin_unlock(&root->inode_lock);
 114                return node;
 115        }
 116        spin_unlock(&root->inode_lock);
 117
 118        return NULL;
 119}
 120
 121/* Will return either the node or PTR_ERR(-ENOMEM) */
 122static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 123                struct btrfs_inode *btrfs_inode)
 124{
 125        struct btrfs_delayed_node *node;
 126        struct btrfs_root *root = btrfs_inode->root;
 127        u64 ino = btrfs_ino(btrfs_inode);
 128        int ret;
 129
 130again:
 131        node = btrfs_get_delayed_node(btrfs_inode);
 132        if (node)
 133                return node;
 134
 135        node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
 136        if (!node)
 137                return ERR_PTR(-ENOMEM);
 138        btrfs_init_delayed_node(node, root, ino);
 139
 140        /* cached in the btrfs inode and can be accessed */
 141        refcount_set(&node->refs, 2);
 142
 143        ret = radix_tree_preload(GFP_NOFS);
 144        if (ret) {
 145                kmem_cache_free(delayed_node_cache, node);
 146                return ERR_PTR(ret);
 147        }
 148
 149        spin_lock(&root->inode_lock);
 150        ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 151        if (ret == -EEXIST) {
 152                spin_unlock(&root->inode_lock);
 153                kmem_cache_free(delayed_node_cache, node);
 154                radix_tree_preload_end();
 155                goto again;
 156        }
 157        btrfs_inode->delayed_node = node;
 158        spin_unlock(&root->inode_lock);
 159        radix_tree_preload_end();
 160
 161        return node;
 162}
 163
 164/*
 165 * Call it when holding delayed_node->mutex
 166 *
 167 * If mod = 1, add this node into the prepared list.
 168 */
 169static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 170                                     struct btrfs_delayed_node *node,
 171                                     int mod)
 172{
 173        spin_lock(&root->lock);
 174        if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 175                if (!list_empty(&node->p_list))
 176                        list_move_tail(&node->p_list, &root->prepare_list);
 177                else if (mod)
 178                        list_add_tail(&node->p_list, &root->prepare_list);
 179        } else {
 180                list_add_tail(&node->n_list, &root->node_list);
 181                list_add_tail(&node->p_list, &root->prepare_list);
 182                refcount_inc(&node->refs);      /* inserted into list */
 183                root->nodes++;
 184                set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 185        }
 186        spin_unlock(&root->lock);
 187}
 188
 189/* Call it when holding delayed_node->mutex */
 190static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 191                                       struct btrfs_delayed_node *node)
 192{
 193        spin_lock(&root->lock);
 194        if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 195                root->nodes--;
 196                refcount_dec(&node->refs);      /* not in the list */
 197                list_del_init(&node->n_list);
 198                if (!list_empty(&node->p_list))
 199                        list_del_init(&node->p_list);
 200                clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 201        }
 202        spin_unlock(&root->lock);
 203}
 204
 205static struct btrfs_delayed_node *btrfs_first_delayed_node(
 206                        struct btrfs_delayed_root *delayed_root)
 207{
 208        struct list_head *p;
 209        struct btrfs_delayed_node *node = NULL;
 210
 211        spin_lock(&delayed_root->lock);
 212        if (list_empty(&delayed_root->node_list))
 213                goto out;
 214
 215        p = delayed_root->node_list.next;
 216        node = list_entry(p, struct btrfs_delayed_node, n_list);
 217        refcount_inc(&node->refs);
 218out:
 219        spin_unlock(&delayed_root->lock);
 220
 221        return node;
 222}
 223
 224static struct btrfs_delayed_node *btrfs_next_delayed_node(
 225                                                struct btrfs_delayed_node *node)
 226{
 227        struct btrfs_delayed_root *delayed_root;
 228        struct list_head *p;
 229        struct btrfs_delayed_node *next = NULL;
 230
 231        delayed_root = node->root->fs_info->delayed_root;
 232        spin_lock(&delayed_root->lock);
 233        if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 234                /* not in the list */
 235                if (list_empty(&delayed_root->node_list))
 236                        goto out;
 237                p = delayed_root->node_list.next;
 238        } else if (list_is_last(&node->n_list, &delayed_root->node_list))
 239                goto out;
 240        else
 241                p = node->n_list.next;
 242
 243        next = list_entry(p, struct btrfs_delayed_node, n_list);
 244        refcount_inc(&next->refs);
 245out:
 246        spin_unlock(&delayed_root->lock);
 247
 248        return next;
 249}
 250
 251static void __btrfs_release_delayed_node(
 252                                struct btrfs_delayed_node *delayed_node,
 253                                int mod)
 254{
 255        struct btrfs_delayed_root *delayed_root;
 256
 257        if (!delayed_node)
 258                return;
 259
 260        delayed_root = delayed_node->root->fs_info->delayed_root;
 261
 262        mutex_lock(&delayed_node->mutex);
 263        if (delayed_node->count)
 264                btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 265        else
 266                btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 267        mutex_unlock(&delayed_node->mutex);
 268
 269        if (refcount_dec_and_test(&delayed_node->refs)) {
 270                struct btrfs_root *root = delayed_node->root;
 271
 272                spin_lock(&root->inode_lock);
 273                /*
 274                 * Once our refcount goes to zero, nobody is allowed to bump it
 275                 * back up.  We can delete it now.
 276                 */
 277                ASSERT(refcount_read(&delayed_node->refs) == 0);
 278                radix_tree_delete(&root->delayed_nodes_tree,
 279                                  delayed_node->inode_id);
 280                spin_unlock(&root->inode_lock);
 281                kmem_cache_free(delayed_node_cache, delayed_node);
 282        }
 283}
 284
 285static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 286{
 287        __btrfs_release_delayed_node(node, 0);
 288}
 289
 290static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 291                                        struct btrfs_delayed_root *delayed_root)
 292{
 293        struct list_head *p;
 294        struct btrfs_delayed_node *node = NULL;
 295
 296        spin_lock(&delayed_root->lock);
 297        if (list_empty(&delayed_root->prepare_list))
 298                goto out;
 299
 300        p = delayed_root->prepare_list.next;
 301        list_del_init(p);
 302        node = list_entry(p, struct btrfs_delayed_node, p_list);
 303        refcount_inc(&node->refs);
 304out:
 305        spin_unlock(&delayed_root->lock);
 306
 307        return node;
 308}
 309
 310static inline void btrfs_release_prepared_delayed_node(
 311                                        struct btrfs_delayed_node *node)
 312{
 313        __btrfs_release_delayed_node(node, 1);
 314}
 315
 316static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 317{
 318        struct btrfs_delayed_item *item;
 319        item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 320        if (item) {
 321                item->data_len = data_len;
 322                item->ins_or_del = 0;
 323                item->bytes_reserved = 0;
 324                item->delayed_node = NULL;
 325                refcount_set(&item->refs, 1);
 326        }
 327        return item;
 328}
 329
 330/*
 331 * __btrfs_lookup_delayed_item - look up the delayed item by key
 332 * @delayed_node: pointer to the delayed node
 333 * @key:          the key to look up
 334 * @prev:         used to store the prev item if the right item isn't found
 335 * @next:         used to store the next item if the right item isn't found
 336 *
 337 * Note: if we don't find the right item, we will return the prev item and
 338 * the next item.
 339 */
 340static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 341                                struct rb_root *root,
 342                                struct btrfs_key *key,
 343                                struct btrfs_delayed_item **prev,
 344                                struct btrfs_delayed_item **next)
 345{
 346        struct rb_node *node, *prev_node = NULL;
 347        struct btrfs_delayed_item *delayed_item = NULL;
 348        int ret = 0;
 349
 350        node = root->rb_node;
 351
 352        while (node) {
 353                delayed_item = rb_entry(node, struct btrfs_delayed_item,
 354                                        rb_node);
 355                prev_node = node;
 356                ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 357                if (ret < 0)
 358                        node = node->rb_right;
 359                else if (ret > 0)
 360                        node = node->rb_left;
 361                else
 362                        return delayed_item;
 363        }
 364
 365        if (prev) {
 366                if (!prev_node)
 367                        *prev = NULL;
 368                else if (ret < 0)
 369                        *prev = delayed_item;
 370                else if ((node = rb_prev(prev_node)) != NULL) {
 371                        *prev = rb_entry(node, struct btrfs_delayed_item,
 372                                         rb_node);
 373                } else
 374                        *prev = NULL;
 375        }
 376
 377        if (next) {
 378                if (!prev_node)
 379                        *next = NULL;
 380                else if (ret > 0)
 381                        *next = delayed_item;
 382                else if ((node = rb_next(prev_node)) != NULL) {
 383                        *next = rb_entry(node, struct btrfs_delayed_item,
 384                                         rb_node);
 385                } else
 386                        *next = NULL;
 387        }
 388        return NULL;
 389}
 390
 391static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 392                                        struct btrfs_delayed_node *delayed_node,
 393                                        struct btrfs_key *key)
 394{
 395        return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
 396                                           NULL, NULL);
 397}
 398
 399static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 400                                    struct btrfs_delayed_item *ins,
 401                                    int action)
 402{
 403        struct rb_node **p, *node;
 404        struct rb_node *parent_node = NULL;
 405        struct rb_root_cached *root;
 406        struct btrfs_delayed_item *item;
 407        int cmp;
 408        bool leftmost = true;
 409
 410        if (action == BTRFS_DELAYED_INSERTION_ITEM)
 411                root = &delayed_node->ins_root;
 412        else if (action == BTRFS_DELAYED_DELETION_ITEM)
 413                root = &delayed_node->del_root;
 414        else
 415                BUG();
 416        p = &root->rb_root.rb_node;
 417        node = &ins->rb_node;
 418
 419        while (*p) {
 420                parent_node = *p;
 421                item = rb_entry(parent_node, struct btrfs_delayed_item,
 422                                 rb_node);
 423
 424                cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 425                if (cmp < 0) {
 426                        p = &(*p)->rb_right;
 427                        leftmost = false;
 428                } else if (cmp > 0) {
 429                        p = &(*p)->rb_left;
 430                } else {
 431                        return -EEXIST;
 432                }
 433        }
 434
 435        rb_link_node(node, parent_node, p);
 436        rb_insert_color_cached(node, root, leftmost);
 437        ins->delayed_node = delayed_node;
 438        ins->ins_or_del = action;
 439
 440        if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 441            action == BTRFS_DELAYED_INSERTION_ITEM &&
 442            ins->key.offset >= delayed_node->index_cnt)
 443                        delayed_node->index_cnt = ins->key.offset + 1;
 444
 445        delayed_node->count++;
 446        atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 447        return 0;
 448}
 449
 450static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 451                                              struct btrfs_delayed_item *item)
 452{
 453        return __btrfs_add_delayed_item(node, item,
 454                                        BTRFS_DELAYED_INSERTION_ITEM);
 455}
 456
 457static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 458                                             struct btrfs_delayed_item *item)
 459{
 460        return __btrfs_add_delayed_item(node, item,
 461                                        BTRFS_DELAYED_DELETION_ITEM);
 462}
 463
 464static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 465{
 466        int seq = atomic_inc_return(&delayed_root->items_seq);
 467
 468        /* atomic_dec_return implies a barrier */
 469        if ((atomic_dec_return(&delayed_root->items) <
 470            BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
 471                cond_wake_up_nomb(&delayed_root->wait);
 472}
 473
 474static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 475{
 476        struct rb_root_cached *root;
 477        struct btrfs_delayed_root *delayed_root;
 478
 479        /* Not associated with any delayed_node */
 480        if (!delayed_item->delayed_node)
 481                return;
 482        delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 483
 484        BUG_ON(!delayed_root);
 485        BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 486               delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 487
 488        if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 489                root = &delayed_item->delayed_node->ins_root;
 490        else
 491                root = &delayed_item->delayed_node->del_root;
 492
 493        rb_erase_cached(&delayed_item->rb_node, root);
 494        delayed_item->delayed_node->count--;
 495
 496        finish_one_item(delayed_root);
 497}
 498
 499static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 500{
 501        if (item) {
 502                __btrfs_remove_delayed_item(item);
 503                if (refcount_dec_and_test(&item->refs))
 504                        kfree(item);
 505        }
 506}
 507
 508static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 509                                        struct btrfs_delayed_node *delayed_node)
 510{
 511        struct rb_node *p;
 512        struct btrfs_delayed_item *item = NULL;
 513
 514        p = rb_first_cached(&delayed_node->ins_root);
 515        if (p)
 516                item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 517
 518        return item;
 519}
 520
 521static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 522                                        struct btrfs_delayed_node *delayed_node)
 523{
 524        struct rb_node *p;
 525        struct btrfs_delayed_item *item = NULL;
 526
 527        p = rb_first_cached(&delayed_node->del_root);
 528        if (p)
 529                item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 530
 531        return item;
 532}
 533
 534static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 535                                                struct btrfs_delayed_item *item)
 536{
 537        struct rb_node *p;
 538        struct btrfs_delayed_item *next = NULL;
 539
 540        p = rb_next(&item->rb_node);
 541        if (p)
 542                next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 543
 544        return next;
 545}
 546
 547static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 548                                               struct btrfs_root *root,
 549                                               struct btrfs_delayed_item *item)
 550{
 551        struct btrfs_block_rsv *src_rsv;
 552        struct btrfs_block_rsv *dst_rsv;
 553        struct btrfs_fs_info *fs_info = root->fs_info;
 554        u64 num_bytes;
 555        int ret;
 556
 557        if (!trans->bytes_reserved)
 558                return 0;
 559
 560        src_rsv = trans->block_rsv;
 561        dst_rsv = &fs_info->delayed_block_rsv;
 562
 563        num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 564
 565        /*
 566         * Here we migrate space rsv from transaction rsv, since have already
 567         * reserved space when starting a transaction.  So no need to reserve
 568         * qgroup space here.
 569         */
 570        ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 571        if (!ret) {
 572                trace_btrfs_space_reservation(fs_info, "delayed_item",
 573                                              item->key.objectid,
 574                                              num_bytes, 1);
 575                item->bytes_reserved = num_bytes;
 576        }
 577
 578        return ret;
 579}
 580
 581static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 582                                                struct btrfs_delayed_item *item)
 583{
 584        struct btrfs_block_rsv *rsv;
 585        struct btrfs_fs_info *fs_info = root->fs_info;
 586
 587        if (!item->bytes_reserved)
 588                return;
 589
 590        rsv = &fs_info->delayed_block_rsv;
 591        /*
 592         * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
 593         * to release/reserve qgroup space.
 594         */
 595        trace_btrfs_space_reservation(fs_info, "delayed_item",
 596                                      item->key.objectid, item->bytes_reserved,
 597                                      0);
 598        btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
 599}
 600
 601static int btrfs_delayed_inode_reserve_metadata(
 602                                        struct btrfs_trans_handle *trans,
 603                                        struct btrfs_root *root,
 604                                        struct btrfs_delayed_node *node)
 605{
 606        struct btrfs_fs_info *fs_info = root->fs_info;
 607        struct btrfs_block_rsv *src_rsv;
 608        struct btrfs_block_rsv *dst_rsv;
 609        u64 num_bytes;
 610        int ret;
 611
 612        src_rsv = trans->block_rsv;
 613        dst_rsv = &fs_info->delayed_block_rsv;
 614
 615        num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 616
 617        /*
 618         * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 619         * which doesn't reserve space for speed.  This is a problem since we
 620         * still need to reserve space for this update, so try to reserve the
 621         * space.
 622         *
 623         * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 624         * we always reserve enough to update the inode item.
 625         */
 626        if (!src_rsv || (!trans->bytes_reserved &&
 627                         src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 628                ret = btrfs_qgroup_reserve_meta(root, num_bytes,
 629                                          BTRFS_QGROUP_RSV_META_PREALLOC, true);
 630                if (ret < 0)
 631                        return ret;
 632                ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 633                                          BTRFS_RESERVE_NO_FLUSH);
 634                /* NO_FLUSH could only fail with -ENOSPC */
 635                ASSERT(ret == 0 || ret == -ENOSPC);
 636                if (ret)
 637                        btrfs_qgroup_free_meta_prealloc(root, num_bytes);
 638        } else {
 639                ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 640        }
 641
 642        if (!ret) {
 643                trace_btrfs_space_reservation(fs_info, "delayed_inode",
 644                                              node->inode_id, num_bytes, 1);
 645                node->bytes_reserved = num_bytes;
 646        }
 647
 648        return ret;
 649}
 650
 651static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
 652                                                struct btrfs_delayed_node *node,
 653                                                bool qgroup_free)
 654{
 655        struct btrfs_block_rsv *rsv;
 656
 657        if (!node->bytes_reserved)
 658                return;
 659
 660        rsv = &fs_info->delayed_block_rsv;
 661        trace_btrfs_space_reservation(fs_info, "delayed_inode",
 662                                      node->inode_id, node->bytes_reserved, 0);
 663        btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
 664        if (qgroup_free)
 665                btrfs_qgroup_free_meta_prealloc(node->root,
 666                                node->bytes_reserved);
 667        else
 668                btrfs_qgroup_convert_reserved_meta(node->root,
 669                                node->bytes_reserved);
 670        node->bytes_reserved = 0;
 671}
 672
 673/*
 674 * Insert a single delayed item or a batch of delayed items that have consecutive
 675 * keys if they exist.
 676 */
 677static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 678                                     struct btrfs_root *root,
 679                                     struct btrfs_path *path,
 680                                     struct btrfs_delayed_item *first_item)
 681{
 682        LIST_HEAD(batch);
 683        struct btrfs_delayed_item *curr;
 684        struct btrfs_delayed_item *next;
 685        const int max_size = BTRFS_LEAF_DATA_SIZE(root->fs_info);
 686        int total_size;
 687        int nitems;
 688        char *ins_data = NULL;
 689        struct btrfs_key *ins_keys;
 690        u32 *ins_sizes;
 691        int ret;
 692
 693        list_add_tail(&first_item->tree_list, &batch);
 694        nitems = 1;
 695        total_size = first_item->data_len + sizeof(struct btrfs_item);
 696        curr = first_item;
 697
 698        while (true) {
 699                int next_size;
 700
 701                next = __btrfs_next_delayed_item(curr);
 702                if (!next || !btrfs_is_continuous_delayed_item(curr, next))
 703                        break;
 704
 705                next_size = next->data_len + sizeof(struct btrfs_item);
 706                if (total_size + next_size > max_size)
 707                        break;
 708
 709                list_add_tail(&next->tree_list, &batch);
 710                nitems++;
 711                total_size += next_size;
 712                curr = next;
 713        }
 714
 715        if (nitems == 1) {
 716                ins_keys = &first_item->key;
 717                ins_sizes = &first_item->data_len;
 718        } else {
 719                int i = 0;
 720
 721                ins_data = kmalloc(nitems * sizeof(u32) +
 722                                   nitems * sizeof(struct btrfs_key), GFP_NOFS);
 723                if (!ins_data) {
 724                        ret = -ENOMEM;
 725                        goto out;
 726                }
 727                ins_sizes = (u32 *)ins_data;
 728                ins_keys = (struct btrfs_key *)(ins_data + nitems * sizeof(u32));
 729                list_for_each_entry(curr, &batch, tree_list) {
 730                        ins_keys[i] = curr->key;
 731                        ins_sizes[i] = curr->data_len;
 732                        i++;
 733                }
 734        }
 735
 736        ret = btrfs_insert_empty_items(trans, root, path, ins_keys, ins_sizes,
 737                                       nitems);
 738        if (ret)
 739                goto out;
 740
 741        list_for_each_entry(curr, &batch, tree_list) {
 742                char *data_ptr;
 743
 744                data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
 745                write_extent_buffer(path->nodes[0], &curr->data,
 746                                    (unsigned long)data_ptr, curr->data_len);
 747                path->slots[0]++;
 748        }
 749
 750        /*
 751         * Now release our path before releasing the delayed items and their
 752         * metadata reservations, so that we don't block other tasks for more
 753         * time than needed.
 754         */
 755        btrfs_release_path(path);
 756
 757        list_for_each_entry_safe(curr, next, &batch, tree_list) {
 758                list_del(&curr->tree_list);
 759                btrfs_delayed_item_release_metadata(root, curr);
 760                btrfs_release_delayed_item(curr);
 761        }
 762out:
 763        kfree(ins_data);
 764        return ret;
 765}
 766
 767static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 768                                      struct btrfs_path *path,
 769                                      struct btrfs_root *root,
 770                                      struct btrfs_delayed_node *node)
 771{
 772        int ret = 0;
 773
 774        while (ret == 0) {
 775                struct btrfs_delayed_item *curr;
 776
 777                mutex_lock(&node->mutex);
 778                curr = __btrfs_first_delayed_insertion_item(node);
 779                if (!curr) {
 780                        mutex_unlock(&node->mutex);
 781                        break;
 782                }
 783                ret = btrfs_insert_delayed_item(trans, root, path, curr);
 784                mutex_unlock(&node->mutex);
 785        }
 786
 787        return ret;
 788}
 789
 790static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 791                                    struct btrfs_root *root,
 792                                    struct btrfs_path *path,
 793                                    struct btrfs_delayed_item *item)
 794{
 795        struct btrfs_delayed_item *curr, *next;
 796        struct extent_buffer *leaf;
 797        struct btrfs_key key;
 798        struct list_head head;
 799        int nitems, i, last_item;
 800        int ret = 0;
 801
 802        BUG_ON(!path->nodes[0]);
 803
 804        leaf = path->nodes[0];
 805
 806        i = path->slots[0];
 807        last_item = btrfs_header_nritems(leaf) - 1;
 808        if (i > last_item)
 809                return -ENOENT; /* FIXME: Is errno suitable? */
 810
 811        next = item;
 812        INIT_LIST_HEAD(&head);
 813        btrfs_item_key_to_cpu(leaf, &key, i);
 814        nitems = 0;
 815        /*
 816         * count the number of the dir index items that we can delete in batch
 817         */
 818        while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 819                list_add_tail(&next->tree_list, &head);
 820                nitems++;
 821
 822                curr = next;
 823                next = __btrfs_next_delayed_item(curr);
 824                if (!next)
 825                        break;
 826
 827                if (!btrfs_is_continuous_delayed_item(curr, next))
 828                        break;
 829
 830                i++;
 831                if (i > last_item)
 832                        break;
 833                btrfs_item_key_to_cpu(leaf, &key, i);
 834        }
 835
 836        if (!nitems)
 837                return 0;
 838
 839        ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 840        if (ret)
 841                goto out;
 842
 843        list_for_each_entry_safe(curr, next, &head, tree_list) {
 844                btrfs_delayed_item_release_metadata(root, curr);
 845                list_del(&curr->tree_list);
 846                btrfs_release_delayed_item(curr);
 847        }
 848
 849out:
 850        return ret;
 851}
 852
 853static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 854                                      struct btrfs_path *path,
 855                                      struct btrfs_root *root,
 856                                      struct btrfs_delayed_node *node)
 857{
 858        struct btrfs_delayed_item *curr, *prev;
 859        int ret = 0;
 860
 861do_again:
 862        mutex_lock(&node->mutex);
 863        curr = __btrfs_first_delayed_deletion_item(node);
 864        if (!curr)
 865                goto delete_fail;
 866
 867        ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 868        if (ret < 0)
 869                goto delete_fail;
 870        else if (ret > 0) {
 871                /*
 872                 * can't find the item which the node points to, so this node
 873                 * is invalid, just drop it.
 874                 */
 875                prev = curr;
 876                curr = __btrfs_next_delayed_item(prev);
 877                btrfs_release_delayed_item(prev);
 878                ret = 0;
 879                btrfs_release_path(path);
 880                if (curr) {
 881                        mutex_unlock(&node->mutex);
 882                        goto do_again;
 883                } else
 884                        goto delete_fail;
 885        }
 886
 887        btrfs_batch_delete_items(trans, root, path, curr);
 888        btrfs_release_path(path);
 889        mutex_unlock(&node->mutex);
 890        goto do_again;
 891
 892delete_fail:
 893        btrfs_release_path(path);
 894        mutex_unlock(&node->mutex);
 895        return ret;
 896}
 897
 898static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 899{
 900        struct btrfs_delayed_root *delayed_root;
 901
 902        if (delayed_node &&
 903            test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
 904                BUG_ON(!delayed_node->root);
 905                clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
 906                delayed_node->count--;
 907
 908                delayed_root = delayed_node->root->fs_info->delayed_root;
 909                finish_one_item(delayed_root);
 910        }
 911}
 912
 913static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
 914{
 915
 916        if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
 917                struct btrfs_delayed_root *delayed_root;
 918
 919                ASSERT(delayed_node->root);
 920                delayed_node->count--;
 921
 922                delayed_root = delayed_node->root->fs_info->delayed_root;
 923                finish_one_item(delayed_root);
 924        }
 925}
 926
 927static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
 928                                        struct btrfs_root *root,
 929                                        struct btrfs_path *path,
 930                                        struct btrfs_delayed_node *node)
 931{
 932        struct btrfs_fs_info *fs_info = root->fs_info;
 933        struct btrfs_key key;
 934        struct btrfs_inode_item *inode_item;
 935        struct extent_buffer *leaf;
 936        int mod;
 937        int ret;
 938
 939        key.objectid = node->inode_id;
 940        key.type = BTRFS_INODE_ITEM_KEY;
 941        key.offset = 0;
 942
 943        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
 944                mod = -1;
 945        else
 946                mod = 1;
 947
 948        ret = btrfs_lookup_inode(trans, root, path, &key, mod);
 949        if (ret > 0)
 950                ret = -ENOENT;
 951        if (ret < 0)
 952                goto out;
 953
 954        leaf = path->nodes[0];
 955        inode_item = btrfs_item_ptr(leaf, path->slots[0],
 956                                    struct btrfs_inode_item);
 957        write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
 958                            sizeof(struct btrfs_inode_item));
 959        btrfs_mark_buffer_dirty(leaf);
 960
 961        if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
 962                goto out;
 963
 964        path->slots[0]++;
 965        if (path->slots[0] >= btrfs_header_nritems(leaf))
 966                goto search;
 967again:
 968        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 969        if (key.objectid != node->inode_id)
 970                goto out;
 971
 972        if (key.type != BTRFS_INODE_REF_KEY &&
 973            key.type != BTRFS_INODE_EXTREF_KEY)
 974                goto out;
 975
 976        /*
 977         * Delayed iref deletion is for the inode who has only one link,
 978         * so there is only one iref. The case that several irefs are
 979         * in the same item doesn't exist.
 980         */
 981        btrfs_del_item(trans, root, path);
 982out:
 983        btrfs_release_delayed_iref(node);
 984        btrfs_release_path(path);
 985err_out:
 986        btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
 987        btrfs_release_delayed_inode(node);
 988
 989        /*
 990         * If we fail to update the delayed inode we need to abort the
 991         * transaction, because we could leave the inode with the improper
 992         * counts behind.
 993         */
 994        if (ret && ret != -ENOENT)
 995                btrfs_abort_transaction(trans, ret);
 996
 997        return ret;
 998
 999search:
1000        btrfs_release_path(path);
1001
1002        key.type = BTRFS_INODE_EXTREF_KEY;
1003        key.offset = -1;
1004
1005        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1006        if (ret < 0)
1007                goto err_out;
1008        ASSERT(ret);
1009
1010        ret = 0;
1011        leaf = path->nodes[0];
1012        path->slots[0]--;
1013        goto again;
1014}
1015
1016static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1017                                             struct btrfs_root *root,
1018                                             struct btrfs_path *path,
1019                                             struct btrfs_delayed_node *node)
1020{
1021        int ret;
1022
1023        mutex_lock(&node->mutex);
1024        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1025                mutex_unlock(&node->mutex);
1026                return 0;
1027        }
1028
1029        ret = __btrfs_update_delayed_inode(trans, root, path, node);
1030        mutex_unlock(&node->mutex);
1031        return ret;
1032}
1033
1034static inline int
1035__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1036                                   struct btrfs_path *path,
1037                                   struct btrfs_delayed_node *node)
1038{
1039        int ret;
1040
1041        ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1042        if (ret)
1043                return ret;
1044
1045        ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1046        if (ret)
1047                return ret;
1048
1049        ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1050        return ret;
1051}
1052
1053/*
1054 * Called when committing the transaction.
1055 * Returns 0 on success.
1056 * Returns < 0 on error and returns with an aborted transaction with any
1057 * outstanding delayed items cleaned up.
1058 */
1059static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1060{
1061        struct btrfs_fs_info *fs_info = trans->fs_info;
1062        struct btrfs_delayed_root *delayed_root;
1063        struct btrfs_delayed_node *curr_node, *prev_node;
1064        struct btrfs_path *path;
1065        struct btrfs_block_rsv *block_rsv;
1066        int ret = 0;
1067        bool count = (nr > 0);
1068
1069        if (TRANS_ABORTED(trans))
1070                return -EIO;
1071
1072        path = btrfs_alloc_path();
1073        if (!path)
1074                return -ENOMEM;
1075
1076        block_rsv = trans->block_rsv;
1077        trans->block_rsv = &fs_info->delayed_block_rsv;
1078
1079        delayed_root = fs_info->delayed_root;
1080
1081        curr_node = btrfs_first_delayed_node(delayed_root);
1082        while (curr_node && (!count || nr--)) {
1083                ret = __btrfs_commit_inode_delayed_items(trans, path,
1084                                                         curr_node);
1085                if (ret) {
1086                        btrfs_release_delayed_node(curr_node);
1087                        curr_node = NULL;
1088                        btrfs_abort_transaction(trans, ret);
1089                        break;
1090                }
1091
1092                prev_node = curr_node;
1093                curr_node = btrfs_next_delayed_node(curr_node);
1094                btrfs_release_delayed_node(prev_node);
1095        }
1096
1097        if (curr_node)
1098                btrfs_release_delayed_node(curr_node);
1099        btrfs_free_path(path);
1100        trans->block_rsv = block_rsv;
1101
1102        return ret;
1103}
1104
1105int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1106{
1107        return __btrfs_run_delayed_items(trans, -1);
1108}
1109
1110int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1111{
1112        return __btrfs_run_delayed_items(trans, nr);
1113}
1114
1115int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1116                                     struct btrfs_inode *inode)
1117{
1118        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1119        struct btrfs_path *path;
1120        struct btrfs_block_rsv *block_rsv;
1121        int ret;
1122
1123        if (!delayed_node)
1124                return 0;
1125
1126        mutex_lock(&delayed_node->mutex);
1127        if (!delayed_node->count) {
1128                mutex_unlock(&delayed_node->mutex);
1129                btrfs_release_delayed_node(delayed_node);
1130                return 0;
1131        }
1132        mutex_unlock(&delayed_node->mutex);
1133
1134        path = btrfs_alloc_path();
1135        if (!path) {
1136                btrfs_release_delayed_node(delayed_node);
1137                return -ENOMEM;
1138        }
1139
1140        block_rsv = trans->block_rsv;
1141        trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1142
1143        ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1144
1145        btrfs_release_delayed_node(delayed_node);
1146        btrfs_free_path(path);
1147        trans->block_rsv = block_rsv;
1148
1149        return ret;
1150}
1151
1152int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1153{
1154        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1155        struct btrfs_trans_handle *trans;
1156        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1157        struct btrfs_path *path;
1158        struct btrfs_block_rsv *block_rsv;
1159        int ret;
1160
1161        if (!delayed_node)
1162                return 0;
1163
1164        mutex_lock(&delayed_node->mutex);
1165        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1166                mutex_unlock(&delayed_node->mutex);
1167                btrfs_release_delayed_node(delayed_node);
1168                return 0;
1169        }
1170        mutex_unlock(&delayed_node->mutex);
1171
1172        trans = btrfs_join_transaction(delayed_node->root);
1173        if (IS_ERR(trans)) {
1174                ret = PTR_ERR(trans);
1175                goto out;
1176        }
1177
1178        path = btrfs_alloc_path();
1179        if (!path) {
1180                ret = -ENOMEM;
1181                goto trans_out;
1182        }
1183
1184        block_rsv = trans->block_rsv;
1185        trans->block_rsv = &fs_info->delayed_block_rsv;
1186
1187        mutex_lock(&delayed_node->mutex);
1188        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1189                ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1190                                                   path, delayed_node);
1191        else
1192                ret = 0;
1193        mutex_unlock(&delayed_node->mutex);
1194
1195        btrfs_free_path(path);
1196        trans->block_rsv = block_rsv;
1197trans_out:
1198        btrfs_end_transaction(trans);
1199        btrfs_btree_balance_dirty(fs_info);
1200out:
1201        btrfs_release_delayed_node(delayed_node);
1202
1203        return ret;
1204}
1205
1206void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1207{
1208        struct btrfs_delayed_node *delayed_node;
1209
1210        delayed_node = READ_ONCE(inode->delayed_node);
1211        if (!delayed_node)
1212                return;
1213
1214        inode->delayed_node = NULL;
1215        btrfs_release_delayed_node(delayed_node);
1216}
1217
1218struct btrfs_async_delayed_work {
1219        struct btrfs_delayed_root *delayed_root;
1220        int nr;
1221        struct btrfs_work work;
1222};
1223
1224static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1225{
1226        struct btrfs_async_delayed_work *async_work;
1227        struct btrfs_delayed_root *delayed_root;
1228        struct btrfs_trans_handle *trans;
1229        struct btrfs_path *path;
1230        struct btrfs_delayed_node *delayed_node = NULL;
1231        struct btrfs_root *root;
1232        struct btrfs_block_rsv *block_rsv;
1233        int total_done = 0;
1234
1235        async_work = container_of(work, struct btrfs_async_delayed_work, work);
1236        delayed_root = async_work->delayed_root;
1237
1238        path = btrfs_alloc_path();
1239        if (!path)
1240                goto out;
1241
1242        do {
1243                if (atomic_read(&delayed_root->items) <
1244                    BTRFS_DELAYED_BACKGROUND / 2)
1245                        break;
1246
1247                delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1248                if (!delayed_node)
1249                        break;
1250
1251                root = delayed_node->root;
1252
1253                trans = btrfs_join_transaction(root);
1254                if (IS_ERR(trans)) {
1255                        btrfs_release_path(path);
1256                        btrfs_release_prepared_delayed_node(delayed_node);
1257                        total_done++;
1258                        continue;
1259                }
1260
1261                block_rsv = trans->block_rsv;
1262                trans->block_rsv = &root->fs_info->delayed_block_rsv;
1263
1264                __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1265
1266                trans->block_rsv = block_rsv;
1267                btrfs_end_transaction(trans);
1268                btrfs_btree_balance_dirty_nodelay(root->fs_info);
1269
1270                btrfs_release_path(path);
1271                btrfs_release_prepared_delayed_node(delayed_node);
1272                total_done++;
1273
1274        } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1275                 || total_done < async_work->nr);
1276
1277        btrfs_free_path(path);
1278out:
1279        wake_up(&delayed_root->wait);
1280        kfree(async_work);
1281}
1282
1283
1284static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1285                                     struct btrfs_fs_info *fs_info, int nr)
1286{
1287        struct btrfs_async_delayed_work *async_work;
1288
1289        async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1290        if (!async_work)
1291                return -ENOMEM;
1292
1293        async_work->delayed_root = delayed_root;
1294        btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1295                        NULL);
1296        async_work->nr = nr;
1297
1298        btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1299        return 0;
1300}
1301
1302void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1303{
1304        WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1305}
1306
1307static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1308{
1309        int val = atomic_read(&delayed_root->items_seq);
1310
1311        if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1312                return 1;
1313
1314        if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1315                return 1;
1316
1317        return 0;
1318}
1319
1320void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1321{
1322        struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1323
1324        if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1325                btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1326                return;
1327
1328        if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1329                int seq;
1330                int ret;
1331
1332                seq = atomic_read(&delayed_root->items_seq);
1333
1334                ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1335                if (ret)
1336                        return;
1337
1338                wait_event_interruptible(delayed_root->wait,
1339                                         could_end_wait(delayed_root, seq));
1340                return;
1341        }
1342
1343        btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1344}
1345
1346/* Will return 0 or -ENOMEM */
1347int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1348                                   const char *name, int name_len,
1349                                   struct btrfs_inode *dir,
1350                                   struct btrfs_disk_key *disk_key, u8 type,
1351                                   u64 index)
1352{
1353        struct btrfs_delayed_node *delayed_node;
1354        struct btrfs_delayed_item *delayed_item;
1355        struct btrfs_dir_item *dir_item;
1356        int ret;
1357
1358        delayed_node = btrfs_get_or_create_delayed_node(dir);
1359        if (IS_ERR(delayed_node))
1360                return PTR_ERR(delayed_node);
1361
1362        delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1363        if (!delayed_item) {
1364                ret = -ENOMEM;
1365                goto release_node;
1366        }
1367
1368        delayed_item->key.objectid = btrfs_ino(dir);
1369        delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1370        delayed_item->key.offset = index;
1371
1372        dir_item = (struct btrfs_dir_item *)delayed_item->data;
1373        dir_item->location = *disk_key;
1374        btrfs_set_stack_dir_transid(dir_item, trans->transid);
1375        btrfs_set_stack_dir_data_len(dir_item, 0);
1376        btrfs_set_stack_dir_name_len(dir_item, name_len);
1377        btrfs_set_stack_dir_type(dir_item, type);
1378        memcpy((char *)(dir_item + 1), name, name_len);
1379
1380        ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1381        /*
1382         * we have reserved enough space when we start a new transaction,
1383         * so reserving metadata failure is impossible
1384         */
1385        BUG_ON(ret);
1386
1387        mutex_lock(&delayed_node->mutex);
1388        ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1389        if (unlikely(ret)) {
1390                btrfs_err(trans->fs_info,
1391                          "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1392                          name_len, name, delayed_node->root->root_key.objectid,
1393                          delayed_node->inode_id, ret);
1394                BUG();
1395        }
1396        mutex_unlock(&delayed_node->mutex);
1397
1398release_node:
1399        btrfs_release_delayed_node(delayed_node);
1400        return ret;
1401}
1402
1403static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1404                                               struct btrfs_delayed_node *node,
1405                                               struct btrfs_key *key)
1406{
1407        struct btrfs_delayed_item *item;
1408
1409        mutex_lock(&node->mutex);
1410        item = __btrfs_lookup_delayed_insertion_item(node, key);
1411        if (!item) {
1412                mutex_unlock(&node->mutex);
1413                return 1;
1414        }
1415
1416        btrfs_delayed_item_release_metadata(node->root, item);
1417        btrfs_release_delayed_item(item);
1418        mutex_unlock(&node->mutex);
1419        return 0;
1420}
1421
1422int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1423                                   struct btrfs_inode *dir, u64 index)
1424{
1425        struct btrfs_delayed_node *node;
1426        struct btrfs_delayed_item *item;
1427        struct btrfs_key item_key;
1428        int ret;
1429
1430        node = btrfs_get_or_create_delayed_node(dir);
1431        if (IS_ERR(node))
1432                return PTR_ERR(node);
1433
1434        item_key.objectid = btrfs_ino(dir);
1435        item_key.type = BTRFS_DIR_INDEX_KEY;
1436        item_key.offset = index;
1437
1438        ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1439                                                  &item_key);
1440        if (!ret)
1441                goto end;
1442
1443        item = btrfs_alloc_delayed_item(0);
1444        if (!item) {
1445                ret = -ENOMEM;
1446                goto end;
1447        }
1448
1449        item->key = item_key;
1450
1451        ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1452        /*
1453         * we have reserved enough space when we start a new transaction,
1454         * so reserving metadata failure is impossible.
1455         */
1456        if (ret < 0) {
1457                btrfs_err(trans->fs_info,
1458"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1459                btrfs_release_delayed_item(item);
1460                goto end;
1461        }
1462
1463        mutex_lock(&node->mutex);
1464        ret = __btrfs_add_delayed_deletion_item(node, item);
1465        if (unlikely(ret)) {
1466                btrfs_err(trans->fs_info,
1467                          "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1468                          index, node->root->root_key.objectid,
1469                          node->inode_id, ret);
1470                btrfs_delayed_item_release_metadata(dir->root, item);
1471                btrfs_release_delayed_item(item);
1472        }
1473        mutex_unlock(&node->mutex);
1474end:
1475        btrfs_release_delayed_node(node);
1476        return ret;
1477}
1478
1479int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1480{
1481        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1482
1483        if (!delayed_node)
1484                return -ENOENT;
1485
1486        /*
1487         * Since we have held i_mutex of this directory, it is impossible that
1488         * a new directory index is added into the delayed node and index_cnt
1489         * is updated now. So we needn't lock the delayed node.
1490         */
1491        if (!delayed_node->index_cnt) {
1492                btrfs_release_delayed_node(delayed_node);
1493                return -EINVAL;
1494        }
1495
1496        inode->index_cnt = delayed_node->index_cnt;
1497        btrfs_release_delayed_node(delayed_node);
1498        return 0;
1499}
1500
1501bool btrfs_readdir_get_delayed_items(struct inode *inode,
1502                                     struct list_head *ins_list,
1503                                     struct list_head *del_list)
1504{
1505        struct btrfs_delayed_node *delayed_node;
1506        struct btrfs_delayed_item *item;
1507
1508        delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1509        if (!delayed_node)
1510                return false;
1511
1512        /*
1513         * We can only do one readdir with delayed items at a time because of
1514         * item->readdir_list.
1515         */
1516        btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1517        btrfs_inode_lock(inode, 0);
1518
1519        mutex_lock(&delayed_node->mutex);
1520        item = __btrfs_first_delayed_insertion_item(delayed_node);
1521        while (item) {
1522                refcount_inc(&item->refs);
1523                list_add_tail(&item->readdir_list, ins_list);
1524                item = __btrfs_next_delayed_item(item);
1525        }
1526
1527        item = __btrfs_first_delayed_deletion_item(delayed_node);
1528        while (item) {
1529                refcount_inc(&item->refs);
1530                list_add_tail(&item->readdir_list, del_list);
1531                item = __btrfs_next_delayed_item(item);
1532        }
1533        mutex_unlock(&delayed_node->mutex);
1534        /*
1535         * This delayed node is still cached in the btrfs inode, so refs
1536         * must be > 1 now, and we needn't check it is going to be freed
1537         * or not.
1538         *
1539         * Besides that, this function is used to read dir, we do not
1540         * insert/delete delayed items in this period. So we also needn't
1541         * requeue or dequeue this delayed node.
1542         */
1543        refcount_dec(&delayed_node->refs);
1544
1545        return true;
1546}
1547
1548void btrfs_readdir_put_delayed_items(struct inode *inode,
1549                                     struct list_head *ins_list,
1550                                     struct list_head *del_list)
1551{
1552        struct btrfs_delayed_item *curr, *next;
1553
1554        list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1555                list_del(&curr->readdir_list);
1556                if (refcount_dec_and_test(&curr->refs))
1557                        kfree(curr);
1558        }
1559
1560        list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1561                list_del(&curr->readdir_list);
1562                if (refcount_dec_and_test(&curr->refs))
1563                        kfree(curr);
1564        }
1565
1566        /*
1567         * The VFS is going to do up_read(), so we need to downgrade back to a
1568         * read lock.
1569         */
1570        downgrade_write(&inode->i_rwsem);
1571}
1572
1573int btrfs_should_delete_dir_index(struct list_head *del_list,
1574                                  u64 index)
1575{
1576        struct btrfs_delayed_item *curr;
1577        int ret = 0;
1578
1579        list_for_each_entry(curr, del_list, readdir_list) {
1580                if (curr->key.offset > index)
1581                        break;
1582                if (curr->key.offset == index) {
1583                        ret = 1;
1584                        break;
1585                }
1586        }
1587        return ret;
1588}
1589
1590/*
1591 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1592 *
1593 */
1594int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1595                                    struct list_head *ins_list)
1596{
1597        struct btrfs_dir_item *di;
1598        struct btrfs_delayed_item *curr, *next;
1599        struct btrfs_key location;
1600        char *name;
1601        int name_len;
1602        int over = 0;
1603        unsigned char d_type;
1604
1605        if (list_empty(ins_list))
1606                return 0;
1607
1608        /*
1609         * Changing the data of the delayed item is impossible. So
1610         * we needn't lock them. And we have held i_mutex of the
1611         * directory, nobody can delete any directory indexes now.
1612         */
1613        list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1614                list_del(&curr->readdir_list);
1615
1616                if (curr->key.offset < ctx->pos) {
1617                        if (refcount_dec_and_test(&curr->refs))
1618                                kfree(curr);
1619                        continue;
1620                }
1621
1622                ctx->pos = curr->key.offset;
1623
1624                di = (struct btrfs_dir_item *)curr->data;
1625                name = (char *)(di + 1);
1626                name_len = btrfs_stack_dir_name_len(di);
1627
1628                d_type = fs_ftype_to_dtype(di->type);
1629                btrfs_disk_key_to_cpu(&location, &di->location);
1630
1631                over = !dir_emit(ctx, name, name_len,
1632                               location.objectid, d_type);
1633
1634                if (refcount_dec_and_test(&curr->refs))
1635                        kfree(curr);
1636
1637                if (over)
1638                        return 1;
1639                ctx->pos++;
1640        }
1641        return 0;
1642}
1643
1644static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1645                                  struct btrfs_inode_item *inode_item,
1646                                  struct inode *inode)
1647{
1648        u64 flags;
1649
1650        btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1651        btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1652        btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1653        btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1654        btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1655        btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1656        btrfs_set_stack_inode_generation(inode_item,
1657                                         BTRFS_I(inode)->generation);
1658        btrfs_set_stack_inode_sequence(inode_item,
1659                                       inode_peek_iversion(inode));
1660        btrfs_set_stack_inode_transid(inode_item, trans->transid);
1661        btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1662        flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1663                                          BTRFS_I(inode)->ro_flags);
1664        btrfs_set_stack_inode_flags(inode_item, flags);
1665        btrfs_set_stack_inode_block_group(inode_item, 0);
1666
1667        btrfs_set_stack_timespec_sec(&inode_item->atime,
1668                                     inode->i_atime.tv_sec);
1669        btrfs_set_stack_timespec_nsec(&inode_item->atime,
1670                                      inode->i_atime.tv_nsec);
1671
1672        btrfs_set_stack_timespec_sec(&inode_item->mtime,
1673                                     inode->i_mtime.tv_sec);
1674        btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1675                                      inode->i_mtime.tv_nsec);
1676
1677        btrfs_set_stack_timespec_sec(&inode_item->ctime,
1678                                     inode->i_ctime.tv_sec);
1679        btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1680                                      inode->i_ctime.tv_nsec);
1681
1682        btrfs_set_stack_timespec_sec(&inode_item->otime,
1683                                     BTRFS_I(inode)->i_otime.tv_sec);
1684        btrfs_set_stack_timespec_nsec(&inode_item->otime,
1685                                     BTRFS_I(inode)->i_otime.tv_nsec);
1686}
1687
1688int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1689{
1690        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1691        struct btrfs_delayed_node *delayed_node;
1692        struct btrfs_inode_item *inode_item;
1693
1694        delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1695        if (!delayed_node)
1696                return -ENOENT;
1697
1698        mutex_lock(&delayed_node->mutex);
1699        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1700                mutex_unlock(&delayed_node->mutex);
1701                btrfs_release_delayed_node(delayed_node);
1702                return -ENOENT;
1703        }
1704
1705        inode_item = &delayed_node->inode_item;
1706
1707        i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1708        i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1709        btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1710        btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1711                        round_up(i_size_read(inode), fs_info->sectorsize));
1712        inode->i_mode = btrfs_stack_inode_mode(inode_item);
1713        set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1714        inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1715        BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1716        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1717
1718        inode_set_iversion_queried(inode,
1719                                   btrfs_stack_inode_sequence(inode_item));
1720        inode->i_rdev = 0;
1721        *rdev = btrfs_stack_inode_rdev(inode_item);
1722        btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1723                                &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1724
1725        inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1726        inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1727
1728        inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1729        inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1730
1731        inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1732        inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1733
1734        BTRFS_I(inode)->i_otime.tv_sec =
1735                btrfs_stack_timespec_sec(&inode_item->otime);
1736        BTRFS_I(inode)->i_otime.tv_nsec =
1737                btrfs_stack_timespec_nsec(&inode_item->otime);
1738
1739        inode->i_generation = BTRFS_I(inode)->generation;
1740        BTRFS_I(inode)->index_cnt = (u64)-1;
1741
1742        mutex_unlock(&delayed_node->mutex);
1743        btrfs_release_delayed_node(delayed_node);
1744        return 0;
1745}
1746
1747int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1748                               struct btrfs_root *root,
1749                               struct btrfs_inode *inode)
1750{
1751        struct btrfs_delayed_node *delayed_node;
1752        int ret = 0;
1753
1754        delayed_node = btrfs_get_or_create_delayed_node(inode);
1755        if (IS_ERR(delayed_node))
1756                return PTR_ERR(delayed_node);
1757
1758        mutex_lock(&delayed_node->mutex);
1759        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1760                fill_stack_inode_item(trans, &delayed_node->inode_item,
1761                                      &inode->vfs_inode);
1762                goto release_node;
1763        }
1764
1765        ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1766        if (ret)
1767                goto release_node;
1768
1769        fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1770        set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1771        delayed_node->count++;
1772        atomic_inc(&root->fs_info->delayed_root->items);
1773release_node:
1774        mutex_unlock(&delayed_node->mutex);
1775        btrfs_release_delayed_node(delayed_node);
1776        return ret;
1777}
1778
1779int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1780{
1781        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1782        struct btrfs_delayed_node *delayed_node;
1783
1784        /*
1785         * we don't do delayed inode updates during log recovery because it
1786         * leads to enospc problems.  This means we also can't do
1787         * delayed inode refs
1788         */
1789        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1790                return -EAGAIN;
1791
1792        delayed_node = btrfs_get_or_create_delayed_node(inode);
1793        if (IS_ERR(delayed_node))
1794                return PTR_ERR(delayed_node);
1795
1796        /*
1797         * We don't reserve space for inode ref deletion is because:
1798         * - We ONLY do async inode ref deletion for the inode who has only
1799         *   one link(i_nlink == 1), it means there is only one inode ref.
1800         *   And in most case, the inode ref and the inode item are in the
1801         *   same leaf, and we will deal with them at the same time.
1802         *   Since we are sure we will reserve the space for the inode item,
1803         *   it is unnecessary to reserve space for inode ref deletion.
1804         * - If the inode ref and the inode item are not in the same leaf,
1805         *   We also needn't worry about enospc problem, because we reserve
1806         *   much more space for the inode update than it needs.
1807         * - At the worst, we can steal some space from the global reservation.
1808         *   It is very rare.
1809         */
1810        mutex_lock(&delayed_node->mutex);
1811        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1812                goto release_node;
1813
1814        set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1815        delayed_node->count++;
1816        atomic_inc(&fs_info->delayed_root->items);
1817release_node:
1818        mutex_unlock(&delayed_node->mutex);
1819        btrfs_release_delayed_node(delayed_node);
1820        return 0;
1821}
1822
1823static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1824{
1825        struct btrfs_root *root = delayed_node->root;
1826        struct btrfs_fs_info *fs_info = root->fs_info;
1827        struct btrfs_delayed_item *curr_item, *prev_item;
1828
1829        mutex_lock(&delayed_node->mutex);
1830        curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1831        while (curr_item) {
1832                btrfs_delayed_item_release_metadata(root, curr_item);
1833                prev_item = curr_item;
1834                curr_item = __btrfs_next_delayed_item(prev_item);
1835                btrfs_release_delayed_item(prev_item);
1836        }
1837
1838        curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1839        while (curr_item) {
1840                btrfs_delayed_item_release_metadata(root, curr_item);
1841                prev_item = curr_item;
1842                curr_item = __btrfs_next_delayed_item(prev_item);
1843                btrfs_release_delayed_item(prev_item);
1844        }
1845
1846        btrfs_release_delayed_iref(delayed_node);
1847
1848        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1849                btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1850                btrfs_release_delayed_inode(delayed_node);
1851        }
1852        mutex_unlock(&delayed_node->mutex);
1853}
1854
1855void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1856{
1857        struct btrfs_delayed_node *delayed_node;
1858
1859        delayed_node = btrfs_get_delayed_node(inode);
1860        if (!delayed_node)
1861                return;
1862
1863        __btrfs_kill_delayed_node(delayed_node);
1864        btrfs_release_delayed_node(delayed_node);
1865}
1866
1867void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1868{
1869        u64 inode_id = 0;
1870        struct btrfs_delayed_node *delayed_nodes[8];
1871        int i, n;
1872
1873        while (1) {
1874                spin_lock(&root->inode_lock);
1875                n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1876                                           (void **)delayed_nodes, inode_id,
1877                                           ARRAY_SIZE(delayed_nodes));
1878                if (!n) {
1879                        spin_unlock(&root->inode_lock);
1880                        break;
1881                }
1882
1883                inode_id = delayed_nodes[n - 1]->inode_id + 1;
1884                for (i = 0; i < n; i++) {
1885                        /*
1886                         * Don't increase refs in case the node is dead and
1887                         * about to be removed from the tree in the loop below
1888                         */
1889                        if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1890                                delayed_nodes[i] = NULL;
1891                }
1892                spin_unlock(&root->inode_lock);
1893
1894                for (i = 0; i < n; i++) {
1895                        if (!delayed_nodes[i])
1896                                continue;
1897                        __btrfs_kill_delayed_node(delayed_nodes[i]);
1898                        btrfs_release_delayed_node(delayed_nodes[i]);
1899                }
1900        }
1901}
1902
1903void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1904{
1905        struct btrfs_delayed_node *curr_node, *prev_node;
1906
1907        curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1908        while (curr_node) {
1909                __btrfs_kill_delayed_node(curr_node);
1910
1911                prev_node = curr_node;
1912                curr_node = btrfs_next_delayed_node(curr_node);
1913                btrfs_release_delayed_node(prev_node);
1914        }
1915}
1916
1917