linux/fs/btrfs/extent_io.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
   9#include <linux/spinlock.h>
  10#include <linux/blkdev.h>
  11#include <linux/swap.h>
  12#include <linux/writeback.h>
  13#include <linux/pagevec.h>
  14#include <linux/prefetch.h>
  15#include <linux/cleancache.h>
  16#include <linux/fsverity.h>
  17#include "misc.h"
  18#include "extent_io.h"
  19#include "extent-io-tree.h"
  20#include "extent_map.h"
  21#include "ctree.h"
  22#include "btrfs_inode.h"
  23#include "volumes.h"
  24#include "check-integrity.h"
  25#include "locking.h"
  26#include "rcu-string.h"
  27#include "backref.h"
  28#include "disk-io.h"
  29#include "subpage.h"
  30#include "zoned.h"
  31#include "block-group.h"
  32
  33static struct kmem_cache *extent_state_cache;
  34static struct kmem_cache *extent_buffer_cache;
  35static struct bio_set btrfs_bioset;
  36
  37static inline bool extent_state_in_tree(const struct extent_state *state)
  38{
  39        return !RB_EMPTY_NODE(&state->rb_node);
  40}
  41
  42#ifdef CONFIG_BTRFS_DEBUG
  43static LIST_HEAD(states);
  44static DEFINE_SPINLOCK(leak_lock);
  45
  46static inline void btrfs_leak_debug_add(spinlock_t *lock,
  47                                        struct list_head *new,
  48                                        struct list_head *head)
  49{
  50        unsigned long flags;
  51
  52        spin_lock_irqsave(lock, flags);
  53        list_add(new, head);
  54        spin_unlock_irqrestore(lock, flags);
  55}
  56
  57static inline void btrfs_leak_debug_del(spinlock_t *lock,
  58                                        struct list_head *entry)
  59{
  60        unsigned long flags;
  61
  62        spin_lock_irqsave(lock, flags);
  63        list_del(entry);
  64        spin_unlock_irqrestore(lock, flags);
  65}
  66
  67void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
  68{
  69        struct extent_buffer *eb;
  70        unsigned long flags;
  71
  72        /*
  73         * If we didn't get into open_ctree our allocated_ebs will not be
  74         * initialized, so just skip this.
  75         */
  76        if (!fs_info->allocated_ebs.next)
  77                return;
  78
  79        spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  80        while (!list_empty(&fs_info->allocated_ebs)) {
  81                eb = list_first_entry(&fs_info->allocated_ebs,
  82                                      struct extent_buffer, leak_list);
  83                pr_err(
  84        "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
  85                       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
  86                       btrfs_header_owner(eb));
  87                list_del(&eb->leak_list);
  88                kmem_cache_free(extent_buffer_cache, eb);
  89        }
  90        spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  91}
  92
  93static inline void btrfs_extent_state_leak_debug_check(void)
  94{
  95        struct extent_state *state;
  96
  97        while (!list_empty(&states)) {
  98                state = list_entry(states.next, struct extent_state, leak_list);
  99                pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
 100                       state->start, state->end, state->state,
 101                       extent_state_in_tree(state),
 102                       refcount_read(&state->refs));
 103                list_del(&state->leak_list);
 104                kmem_cache_free(extent_state_cache, state);
 105        }
 106}
 107
 108#define btrfs_debug_check_extent_io_range(tree, start, end)             \
 109        __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
 110static inline void __btrfs_debug_check_extent_io_range(const char *caller,
 111                struct extent_io_tree *tree, u64 start, u64 end)
 112{
 113        struct inode *inode = tree->private_data;
 114        u64 isize;
 115
 116        if (!inode || !is_data_inode(inode))
 117                return;
 118
 119        isize = i_size_read(inode);
 120        if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
 121                btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
 122                    "%s: ino %llu isize %llu odd range [%llu,%llu]",
 123                        caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
 124        }
 125}
 126#else
 127#define btrfs_leak_debug_add(lock, new, head)   do {} while (0)
 128#define btrfs_leak_debug_del(lock, entry)       do {} while (0)
 129#define btrfs_extent_state_leak_debug_check()   do {} while (0)
 130#define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
 131#endif
 132
 133struct tree_entry {
 134        u64 start;
 135        u64 end;
 136        struct rb_node rb_node;
 137};
 138
 139struct extent_page_data {
 140        struct btrfs_bio_ctrl bio_ctrl;
 141        /* tells writepage not to lock the state bits for this range
 142         * it still does the unlocking
 143         */
 144        unsigned int extent_locked:1;
 145
 146        /* tells the submit_bio code to use REQ_SYNC */
 147        unsigned int sync_io:1;
 148};
 149
 150static int add_extent_changeset(struct extent_state *state, u32 bits,
 151                                 struct extent_changeset *changeset,
 152                                 int set)
 153{
 154        int ret;
 155
 156        if (!changeset)
 157                return 0;
 158        if (set && (state->state & bits) == bits)
 159                return 0;
 160        if (!set && (state->state & bits) == 0)
 161                return 0;
 162        changeset->bytes_changed += state->end - state->start + 1;
 163        ret = ulist_add(&changeset->range_changed, state->start, state->end,
 164                        GFP_ATOMIC);
 165        return ret;
 166}
 167
 168int __must_check submit_one_bio(struct bio *bio, int mirror_num,
 169                                unsigned long bio_flags)
 170{
 171        blk_status_t ret = 0;
 172        struct extent_io_tree *tree = bio->bi_private;
 173
 174        bio->bi_private = NULL;
 175
 176        /* Caller should ensure the bio has at least some range added */
 177        ASSERT(bio->bi_iter.bi_size);
 178        if (is_data_inode(tree->private_data))
 179                ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
 180                                            bio_flags);
 181        else
 182                ret = btrfs_submit_metadata_bio(tree->private_data, bio,
 183                                                mirror_num, bio_flags);
 184
 185        return blk_status_to_errno(ret);
 186}
 187
 188/* Cleanup unsubmitted bios */
 189static void end_write_bio(struct extent_page_data *epd, int ret)
 190{
 191        struct bio *bio = epd->bio_ctrl.bio;
 192
 193        if (bio) {
 194                bio->bi_status = errno_to_blk_status(ret);
 195                bio_endio(bio);
 196                epd->bio_ctrl.bio = NULL;
 197        }
 198}
 199
 200/*
 201 * Submit bio from extent page data via submit_one_bio
 202 *
 203 * Return 0 if everything is OK.
 204 * Return <0 for error.
 205 */
 206static int __must_check flush_write_bio(struct extent_page_data *epd)
 207{
 208        int ret = 0;
 209        struct bio *bio = epd->bio_ctrl.bio;
 210
 211        if (bio) {
 212                ret = submit_one_bio(bio, 0, 0);
 213                /*
 214                 * Clean up of epd->bio is handled by its endio function.
 215                 * And endio is either triggered by successful bio execution
 216                 * or the error handler of submit bio hook.
 217                 * So at this point, no matter what happened, we don't need
 218                 * to clean up epd->bio.
 219                 */
 220                epd->bio_ctrl.bio = NULL;
 221        }
 222        return ret;
 223}
 224
 225int __init extent_state_cache_init(void)
 226{
 227        extent_state_cache = kmem_cache_create("btrfs_extent_state",
 228                        sizeof(struct extent_state), 0,
 229                        SLAB_MEM_SPREAD, NULL);
 230        if (!extent_state_cache)
 231                return -ENOMEM;
 232        return 0;
 233}
 234
 235int __init extent_io_init(void)
 236{
 237        extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 238                        sizeof(struct extent_buffer), 0,
 239                        SLAB_MEM_SPREAD, NULL);
 240        if (!extent_buffer_cache)
 241                return -ENOMEM;
 242
 243        if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
 244                        offsetof(struct btrfs_io_bio, bio),
 245                        BIOSET_NEED_BVECS))
 246                goto free_buffer_cache;
 247
 248        if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
 249                goto free_bioset;
 250
 251        return 0;
 252
 253free_bioset:
 254        bioset_exit(&btrfs_bioset);
 255
 256free_buffer_cache:
 257        kmem_cache_destroy(extent_buffer_cache);
 258        extent_buffer_cache = NULL;
 259        return -ENOMEM;
 260}
 261
 262void __cold extent_state_cache_exit(void)
 263{
 264        btrfs_extent_state_leak_debug_check();
 265        kmem_cache_destroy(extent_state_cache);
 266}
 267
 268void __cold extent_io_exit(void)
 269{
 270        /*
 271         * Make sure all delayed rcu free are flushed before we
 272         * destroy caches.
 273         */
 274        rcu_barrier();
 275        kmem_cache_destroy(extent_buffer_cache);
 276        bioset_exit(&btrfs_bioset);
 277}
 278
 279/*
 280 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 281 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 282 * the tree lock and get the inode lock when setting delalloc.  These two things
 283 * are unrelated, so make a class for the file_extent_tree so we don't get the
 284 * two locking patterns mixed up.
 285 */
 286static struct lock_class_key file_extent_tree_class;
 287
 288void extent_io_tree_init(struct btrfs_fs_info *fs_info,
 289                         struct extent_io_tree *tree, unsigned int owner,
 290                         void *private_data)
 291{
 292        tree->fs_info = fs_info;
 293        tree->state = RB_ROOT;
 294        tree->dirty_bytes = 0;
 295        spin_lock_init(&tree->lock);
 296        tree->private_data = private_data;
 297        tree->owner = owner;
 298        if (owner == IO_TREE_INODE_FILE_EXTENT)
 299                lockdep_set_class(&tree->lock, &file_extent_tree_class);
 300}
 301
 302void extent_io_tree_release(struct extent_io_tree *tree)
 303{
 304        spin_lock(&tree->lock);
 305        /*
 306         * Do a single barrier for the waitqueue_active check here, the state
 307         * of the waitqueue should not change once extent_io_tree_release is
 308         * called.
 309         */
 310        smp_mb();
 311        while (!RB_EMPTY_ROOT(&tree->state)) {
 312                struct rb_node *node;
 313                struct extent_state *state;
 314
 315                node = rb_first(&tree->state);
 316                state = rb_entry(node, struct extent_state, rb_node);
 317                rb_erase(&state->rb_node, &tree->state);
 318                RB_CLEAR_NODE(&state->rb_node);
 319                /*
 320                 * btree io trees aren't supposed to have tasks waiting for
 321                 * changes in the flags of extent states ever.
 322                 */
 323                ASSERT(!waitqueue_active(&state->wq));
 324                free_extent_state(state);
 325
 326                cond_resched_lock(&tree->lock);
 327        }
 328        spin_unlock(&tree->lock);
 329}
 330
 331static struct extent_state *alloc_extent_state(gfp_t mask)
 332{
 333        struct extent_state *state;
 334
 335        /*
 336         * The given mask might be not appropriate for the slab allocator,
 337         * drop the unsupported bits
 338         */
 339        mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
 340        state = kmem_cache_alloc(extent_state_cache, mask);
 341        if (!state)
 342                return state;
 343        state->state = 0;
 344        state->failrec = NULL;
 345        RB_CLEAR_NODE(&state->rb_node);
 346        btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
 347        refcount_set(&state->refs, 1);
 348        init_waitqueue_head(&state->wq);
 349        trace_alloc_extent_state(state, mask, _RET_IP_);
 350        return state;
 351}
 352
 353void free_extent_state(struct extent_state *state)
 354{
 355        if (!state)
 356                return;
 357        if (refcount_dec_and_test(&state->refs)) {
 358                WARN_ON(extent_state_in_tree(state));
 359                btrfs_leak_debug_del(&leak_lock, &state->leak_list);
 360                trace_free_extent_state(state, _RET_IP_);
 361                kmem_cache_free(extent_state_cache, state);
 362        }
 363}
 364
 365static struct rb_node *tree_insert(struct rb_root *root,
 366                                   struct rb_node *search_start,
 367                                   u64 offset,
 368                                   struct rb_node *node,
 369                                   struct rb_node ***p_in,
 370                                   struct rb_node **parent_in)
 371{
 372        struct rb_node **p;
 373        struct rb_node *parent = NULL;
 374        struct tree_entry *entry;
 375
 376        if (p_in && parent_in) {
 377                p = *p_in;
 378                parent = *parent_in;
 379                goto do_insert;
 380        }
 381
 382        p = search_start ? &search_start : &root->rb_node;
 383        while (*p) {
 384                parent = *p;
 385                entry = rb_entry(parent, struct tree_entry, rb_node);
 386
 387                if (offset < entry->start)
 388                        p = &(*p)->rb_left;
 389                else if (offset > entry->end)
 390                        p = &(*p)->rb_right;
 391                else
 392                        return parent;
 393        }
 394
 395do_insert:
 396        rb_link_node(node, parent, p);
 397        rb_insert_color(node, root);
 398        return NULL;
 399}
 400
 401/**
 402 * Search @tree for an entry that contains @offset. Such entry would have
 403 * entry->start <= offset && entry->end >= offset.
 404 *
 405 * @tree:       the tree to search
 406 * @offset:     offset that should fall within an entry in @tree
 407 * @next_ret:   pointer to the first entry whose range ends after @offset
 408 * @prev_ret:   pointer to the first entry whose range begins before @offset
 409 * @p_ret:      pointer where new node should be anchored (used when inserting an
 410 *              entry in the tree)
 411 * @parent_ret: points to entry which would have been the parent of the entry,
 412 *               containing @offset
 413 *
 414 * This function returns a pointer to the entry that contains @offset byte
 415 * address. If no such entry exists, then NULL is returned and the other
 416 * pointer arguments to the function are filled, otherwise the found entry is
 417 * returned and other pointers are left untouched.
 418 */
 419static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 420                                      struct rb_node **next_ret,
 421                                      struct rb_node **prev_ret,
 422                                      struct rb_node ***p_ret,
 423                                      struct rb_node **parent_ret)
 424{
 425        struct rb_root *root = &tree->state;
 426        struct rb_node **n = &root->rb_node;
 427        struct rb_node *prev = NULL;
 428        struct rb_node *orig_prev = NULL;
 429        struct tree_entry *entry;
 430        struct tree_entry *prev_entry = NULL;
 431
 432        while (*n) {
 433                prev = *n;
 434                entry = rb_entry(prev, struct tree_entry, rb_node);
 435                prev_entry = entry;
 436
 437                if (offset < entry->start)
 438                        n = &(*n)->rb_left;
 439                else if (offset > entry->end)
 440                        n = &(*n)->rb_right;
 441                else
 442                        return *n;
 443        }
 444
 445        if (p_ret)
 446                *p_ret = n;
 447        if (parent_ret)
 448                *parent_ret = prev;
 449
 450        if (next_ret) {
 451                orig_prev = prev;
 452                while (prev && offset > prev_entry->end) {
 453                        prev = rb_next(prev);
 454                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 455                }
 456                *next_ret = prev;
 457                prev = orig_prev;
 458        }
 459
 460        if (prev_ret) {
 461                prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 462                while (prev && offset < prev_entry->start) {
 463                        prev = rb_prev(prev);
 464                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 465                }
 466                *prev_ret = prev;
 467        }
 468        return NULL;
 469}
 470
 471static inline struct rb_node *
 472tree_search_for_insert(struct extent_io_tree *tree,
 473                       u64 offset,
 474                       struct rb_node ***p_ret,
 475                       struct rb_node **parent_ret)
 476{
 477        struct rb_node *next= NULL;
 478        struct rb_node *ret;
 479
 480        ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
 481        if (!ret)
 482                return next;
 483        return ret;
 484}
 485
 486static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 487                                          u64 offset)
 488{
 489        return tree_search_for_insert(tree, offset, NULL, NULL);
 490}
 491
 492/*
 493 * utility function to look for merge candidates inside a given range.
 494 * Any extents with matching state are merged together into a single
 495 * extent in the tree.  Extents with EXTENT_IO in their state field
 496 * are not merged because the end_io handlers need to be able to do
 497 * operations on them without sleeping (or doing allocations/splits).
 498 *
 499 * This should be called with the tree lock held.
 500 */
 501static void merge_state(struct extent_io_tree *tree,
 502                        struct extent_state *state)
 503{
 504        struct extent_state *other;
 505        struct rb_node *other_node;
 506
 507        if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 508                return;
 509
 510        other_node = rb_prev(&state->rb_node);
 511        if (other_node) {
 512                other = rb_entry(other_node, struct extent_state, rb_node);
 513                if (other->end == state->start - 1 &&
 514                    other->state == state->state) {
 515                        if (tree->private_data &&
 516                            is_data_inode(tree->private_data))
 517                                btrfs_merge_delalloc_extent(tree->private_data,
 518                                                            state, other);
 519                        state->start = other->start;
 520                        rb_erase(&other->rb_node, &tree->state);
 521                        RB_CLEAR_NODE(&other->rb_node);
 522                        free_extent_state(other);
 523                }
 524        }
 525        other_node = rb_next(&state->rb_node);
 526        if (other_node) {
 527                other = rb_entry(other_node, struct extent_state, rb_node);
 528                if (other->start == state->end + 1 &&
 529                    other->state == state->state) {
 530                        if (tree->private_data &&
 531                            is_data_inode(tree->private_data))
 532                                btrfs_merge_delalloc_extent(tree->private_data,
 533                                                            state, other);
 534                        state->end = other->end;
 535                        rb_erase(&other->rb_node, &tree->state);
 536                        RB_CLEAR_NODE(&other->rb_node);
 537                        free_extent_state(other);
 538                }
 539        }
 540}
 541
 542static void set_state_bits(struct extent_io_tree *tree,
 543                           struct extent_state *state, u32 *bits,
 544                           struct extent_changeset *changeset);
 545
 546/*
 547 * insert an extent_state struct into the tree.  'bits' are set on the
 548 * struct before it is inserted.
 549 *
 550 * This may return -EEXIST if the extent is already there, in which case the
 551 * state struct is freed.
 552 *
 553 * The tree lock is not taken internally.  This is a utility function and
 554 * probably isn't what you want to call (see set/clear_extent_bit).
 555 */
 556static int insert_state(struct extent_io_tree *tree,
 557                        struct extent_state *state, u64 start, u64 end,
 558                        struct rb_node ***p,
 559                        struct rb_node **parent,
 560                        u32 *bits, struct extent_changeset *changeset)
 561{
 562        struct rb_node *node;
 563
 564        if (end < start) {
 565                btrfs_err(tree->fs_info,
 566                        "insert state: end < start %llu %llu", end, start);
 567                WARN_ON(1);
 568        }
 569        state->start = start;
 570        state->end = end;
 571
 572        set_state_bits(tree, state, bits, changeset);
 573
 574        node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 575        if (node) {
 576                struct extent_state *found;
 577                found = rb_entry(node, struct extent_state, rb_node);
 578                btrfs_err(tree->fs_info,
 579                       "found node %llu %llu on insert of %llu %llu",
 580                       found->start, found->end, start, end);
 581                return -EEXIST;
 582        }
 583        merge_state(tree, state);
 584        return 0;
 585}
 586
 587/*
 588 * split a given extent state struct in two, inserting the preallocated
 589 * struct 'prealloc' as the newly created second half.  'split' indicates an
 590 * offset inside 'orig' where it should be split.
 591 *
 592 * Before calling,
 593 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 594 * are two extent state structs in the tree:
 595 * prealloc: [orig->start, split - 1]
 596 * orig: [ split, orig->end ]
 597 *
 598 * The tree locks are not taken by this function. They need to be held
 599 * by the caller.
 600 */
 601static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 602                       struct extent_state *prealloc, u64 split)
 603{
 604        struct rb_node *node;
 605
 606        if (tree->private_data && is_data_inode(tree->private_data))
 607                btrfs_split_delalloc_extent(tree->private_data, orig, split);
 608
 609        prealloc->start = orig->start;
 610        prealloc->end = split - 1;
 611        prealloc->state = orig->state;
 612        orig->start = split;
 613
 614        node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 615                           &prealloc->rb_node, NULL, NULL);
 616        if (node) {
 617                free_extent_state(prealloc);
 618                return -EEXIST;
 619        }
 620        return 0;
 621}
 622
 623static struct extent_state *next_state(struct extent_state *state)
 624{
 625        struct rb_node *next = rb_next(&state->rb_node);
 626        if (next)
 627                return rb_entry(next, struct extent_state, rb_node);
 628        else
 629                return NULL;
 630}
 631
 632/*
 633 * utility function to clear some bits in an extent state struct.
 634 * it will optionally wake up anyone waiting on this state (wake == 1).
 635 *
 636 * If no bits are set on the state struct after clearing things, the
 637 * struct is freed and removed from the tree
 638 */
 639static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 640                                            struct extent_state *state,
 641                                            u32 *bits, int wake,
 642                                            struct extent_changeset *changeset)
 643{
 644        struct extent_state *next;
 645        u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
 646        int ret;
 647
 648        if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 649                u64 range = state->end - state->start + 1;
 650                WARN_ON(range > tree->dirty_bytes);
 651                tree->dirty_bytes -= range;
 652        }
 653
 654        if (tree->private_data && is_data_inode(tree->private_data))
 655                btrfs_clear_delalloc_extent(tree->private_data, state, bits);
 656
 657        ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
 658        BUG_ON(ret < 0);
 659        state->state &= ~bits_to_clear;
 660        if (wake)
 661                wake_up(&state->wq);
 662        if (state->state == 0) {
 663                next = next_state(state);
 664                if (extent_state_in_tree(state)) {
 665                        rb_erase(&state->rb_node, &tree->state);
 666                        RB_CLEAR_NODE(&state->rb_node);
 667                        free_extent_state(state);
 668                } else {
 669                        WARN_ON(1);
 670                }
 671        } else {
 672                merge_state(tree, state);
 673                next = next_state(state);
 674        }
 675        return next;
 676}
 677
 678static struct extent_state *
 679alloc_extent_state_atomic(struct extent_state *prealloc)
 680{
 681        if (!prealloc)
 682                prealloc = alloc_extent_state(GFP_ATOMIC);
 683
 684        return prealloc;
 685}
 686
 687static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 688{
 689        btrfs_panic(tree->fs_info, err,
 690        "locking error: extent tree was modified by another thread while locked");
 691}
 692
 693/*
 694 * clear some bits on a range in the tree.  This may require splitting
 695 * or inserting elements in the tree, so the gfp mask is used to
 696 * indicate which allocations or sleeping are allowed.
 697 *
 698 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 699 * the given range from the tree regardless of state (ie for truncate).
 700 *
 701 * the range [start, end] is inclusive.
 702 *
 703 * This takes the tree lock, and returns 0 on success and < 0 on error.
 704 */
 705int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 706                       u32 bits, int wake, int delete,
 707                       struct extent_state **cached_state,
 708                       gfp_t mask, struct extent_changeset *changeset)
 709{
 710        struct extent_state *state;
 711        struct extent_state *cached;
 712        struct extent_state *prealloc = NULL;
 713        struct rb_node *node;
 714        u64 last_end;
 715        int err;
 716        int clear = 0;
 717
 718        btrfs_debug_check_extent_io_range(tree, start, end);
 719        trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
 720
 721        if (bits & EXTENT_DELALLOC)
 722                bits |= EXTENT_NORESERVE;
 723
 724        if (delete)
 725                bits |= ~EXTENT_CTLBITS;
 726
 727        if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 728                clear = 1;
 729again:
 730        if (!prealloc && gfpflags_allow_blocking(mask)) {
 731                /*
 732                 * Don't care for allocation failure here because we might end
 733                 * up not needing the pre-allocated extent state at all, which
 734                 * is the case if we only have in the tree extent states that
 735                 * cover our input range and don't cover too any other range.
 736                 * If we end up needing a new extent state we allocate it later.
 737                 */
 738                prealloc = alloc_extent_state(mask);
 739        }
 740
 741        spin_lock(&tree->lock);
 742        if (cached_state) {
 743                cached = *cached_state;
 744
 745                if (clear) {
 746                        *cached_state = NULL;
 747                        cached_state = NULL;
 748                }
 749
 750                if (cached && extent_state_in_tree(cached) &&
 751                    cached->start <= start && cached->end > start) {
 752                        if (clear)
 753                                refcount_dec(&cached->refs);
 754                        state = cached;
 755                        goto hit_next;
 756                }
 757                if (clear)
 758                        free_extent_state(cached);
 759        }
 760        /*
 761         * this search will find the extents that end after
 762         * our range starts
 763         */
 764        node = tree_search(tree, start);
 765        if (!node)
 766                goto out;
 767        state = rb_entry(node, struct extent_state, rb_node);
 768hit_next:
 769        if (state->start > end)
 770                goto out;
 771        WARN_ON(state->end < start);
 772        last_end = state->end;
 773
 774        /* the state doesn't have the wanted bits, go ahead */
 775        if (!(state->state & bits)) {
 776                state = next_state(state);
 777                goto next;
 778        }
 779
 780        /*
 781         *     | ---- desired range ---- |
 782         *  | state | or
 783         *  | ------------- state -------------- |
 784         *
 785         * We need to split the extent we found, and may flip
 786         * bits on second half.
 787         *
 788         * If the extent we found extends past our range, we
 789         * just split and search again.  It'll get split again
 790         * the next time though.
 791         *
 792         * If the extent we found is inside our range, we clear
 793         * the desired bit on it.
 794         */
 795
 796        if (state->start < start) {
 797                prealloc = alloc_extent_state_atomic(prealloc);
 798                BUG_ON(!prealloc);
 799                err = split_state(tree, state, prealloc, start);
 800                if (err)
 801                        extent_io_tree_panic(tree, err);
 802
 803                prealloc = NULL;
 804                if (err)
 805                        goto out;
 806                if (state->end <= end) {
 807                        state = clear_state_bit(tree, state, &bits, wake,
 808                                                changeset);
 809                        goto next;
 810                }
 811                goto search_again;
 812        }
 813        /*
 814         * | ---- desired range ---- |
 815         *                        | state |
 816         * We need to split the extent, and clear the bit
 817         * on the first half
 818         */
 819        if (state->start <= end && state->end > end) {
 820                prealloc = alloc_extent_state_atomic(prealloc);
 821                BUG_ON(!prealloc);
 822                err = split_state(tree, state, prealloc, end + 1);
 823                if (err)
 824                        extent_io_tree_panic(tree, err);
 825
 826                if (wake)
 827                        wake_up(&state->wq);
 828
 829                clear_state_bit(tree, prealloc, &bits, wake, changeset);
 830
 831                prealloc = NULL;
 832                goto out;
 833        }
 834
 835        state = clear_state_bit(tree, state, &bits, wake, changeset);
 836next:
 837        if (last_end == (u64)-1)
 838                goto out;
 839        start = last_end + 1;
 840        if (start <= end && state && !need_resched())
 841                goto hit_next;
 842
 843search_again:
 844        if (start > end)
 845                goto out;
 846        spin_unlock(&tree->lock);
 847        if (gfpflags_allow_blocking(mask))
 848                cond_resched();
 849        goto again;
 850
 851out:
 852        spin_unlock(&tree->lock);
 853        if (prealloc)
 854                free_extent_state(prealloc);
 855
 856        return 0;
 857
 858}
 859
 860static void wait_on_state(struct extent_io_tree *tree,
 861                          struct extent_state *state)
 862                __releases(tree->lock)
 863                __acquires(tree->lock)
 864{
 865        DEFINE_WAIT(wait);
 866        prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 867        spin_unlock(&tree->lock);
 868        schedule();
 869        spin_lock(&tree->lock);
 870        finish_wait(&state->wq, &wait);
 871}
 872
 873/*
 874 * waits for one or more bits to clear on a range in the state tree.
 875 * The range [start, end] is inclusive.
 876 * The tree lock is taken by this function
 877 */
 878static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 879                            u32 bits)
 880{
 881        struct extent_state *state;
 882        struct rb_node *node;
 883
 884        btrfs_debug_check_extent_io_range(tree, start, end);
 885
 886        spin_lock(&tree->lock);
 887again:
 888        while (1) {
 889                /*
 890                 * this search will find all the extents that end after
 891                 * our range starts
 892                 */
 893                node = tree_search(tree, start);
 894process_node:
 895                if (!node)
 896                        break;
 897
 898                state = rb_entry(node, struct extent_state, rb_node);
 899
 900                if (state->start > end)
 901                        goto out;
 902
 903                if (state->state & bits) {
 904                        start = state->start;
 905                        refcount_inc(&state->refs);
 906                        wait_on_state(tree, state);
 907                        free_extent_state(state);
 908                        goto again;
 909                }
 910                start = state->end + 1;
 911
 912                if (start > end)
 913                        break;
 914
 915                if (!cond_resched_lock(&tree->lock)) {
 916                        node = rb_next(node);
 917                        goto process_node;
 918                }
 919        }
 920out:
 921        spin_unlock(&tree->lock);
 922}
 923
 924static void set_state_bits(struct extent_io_tree *tree,
 925                           struct extent_state *state,
 926                           u32 *bits, struct extent_changeset *changeset)
 927{
 928        u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
 929        int ret;
 930
 931        if (tree->private_data && is_data_inode(tree->private_data))
 932                btrfs_set_delalloc_extent(tree->private_data, state, bits);
 933
 934        if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 935                u64 range = state->end - state->start + 1;
 936                tree->dirty_bytes += range;
 937        }
 938        ret = add_extent_changeset(state, bits_to_set, changeset, 1);
 939        BUG_ON(ret < 0);
 940        state->state |= bits_to_set;
 941}
 942
 943static void cache_state_if_flags(struct extent_state *state,
 944                                 struct extent_state **cached_ptr,
 945                                 unsigned flags)
 946{
 947        if (cached_ptr && !(*cached_ptr)) {
 948                if (!flags || (state->state & flags)) {
 949                        *cached_ptr = state;
 950                        refcount_inc(&state->refs);
 951                }
 952        }
 953}
 954
 955static void cache_state(struct extent_state *state,
 956                        struct extent_state **cached_ptr)
 957{
 958        return cache_state_if_flags(state, cached_ptr,
 959                                    EXTENT_LOCKED | EXTENT_BOUNDARY);
 960}
 961
 962/*
 963 * set some bits on a range in the tree.  This may require allocations or
 964 * sleeping, so the gfp mask is used to indicate what is allowed.
 965 *
 966 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 967 * part of the range already has the desired bits set.  The start of the
 968 * existing range is returned in failed_start in this case.
 969 *
 970 * [start, end] is inclusive This takes the tree lock.
 971 */
 972int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
 973                   u32 exclusive_bits, u64 *failed_start,
 974                   struct extent_state **cached_state, gfp_t mask,
 975                   struct extent_changeset *changeset)
 976{
 977        struct extent_state *state;
 978        struct extent_state *prealloc = NULL;
 979        struct rb_node *node;
 980        struct rb_node **p;
 981        struct rb_node *parent;
 982        int err = 0;
 983        u64 last_start;
 984        u64 last_end;
 985
 986        btrfs_debug_check_extent_io_range(tree, start, end);
 987        trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
 988
 989        if (exclusive_bits)
 990                ASSERT(failed_start);
 991        else
 992                ASSERT(failed_start == NULL);
 993again:
 994        if (!prealloc && gfpflags_allow_blocking(mask)) {
 995                /*
 996                 * Don't care for allocation failure here because we might end
 997                 * up not needing the pre-allocated extent state at all, which
 998                 * is the case if we only have in the tree extent states that
 999                 * cover our input range and don't cover too any other range.
1000                 * If we end up needing a new extent state we allocate it later.
1001                 */
1002                prealloc = alloc_extent_state(mask);
1003        }
1004
1005        spin_lock(&tree->lock);
1006        if (cached_state && *cached_state) {
1007                state = *cached_state;
1008                if (state->start <= start && state->end > start &&
1009                    extent_state_in_tree(state)) {
1010                        node = &state->rb_node;
1011                        goto hit_next;
1012                }
1013        }
1014        /*
1015         * this search will find all the extents that end after
1016         * our range starts.
1017         */
1018        node = tree_search_for_insert(tree, start, &p, &parent);
1019        if (!node) {
1020                prealloc = alloc_extent_state_atomic(prealloc);
1021                BUG_ON(!prealloc);
1022                err = insert_state(tree, prealloc, start, end,
1023                                   &p, &parent, &bits, changeset);
1024                if (err)
1025                        extent_io_tree_panic(tree, err);
1026
1027                cache_state(prealloc, cached_state);
1028                prealloc = NULL;
1029                goto out;
1030        }
1031        state = rb_entry(node, struct extent_state, rb_node);
1032hit_next:
1033        last_start = state->start;
1034        last_end = state->end;
1035
1036        /*
1037         * | ---- desired range ---- |
1038         * | state |
1039         *
1040         * Just lock what we found and keep going
1041         */
1042        if (state->start == start && state->end <= end) {
1043                if (state->state & exclusive_bits) {
1044                        *failed_start = state->start;
1045                        err = -EEXIST;
1046                        goto out;
1047                }
1048
1049                set_state_bits(tree, state, &bits, changeset);
1050                cache_state(state, cached_state);
1051                merge_state(tree, state);
1052                if (last_end == (u64)-1)
1053                        goto out;
1054                start = last_end + 1;
1055                state = next_state(state);
1056                if (start < end && state && state->start == start &&
1057                    !need_resched())
1058                        goto hit_next;
1059                goto search_again;
1060        }
1061
1062        /*
1063         *     | ---- desired range ---- |
1064         * | state |
1065         *   or
1066         * | ------------- state -------------- |
1067         *
1068         * We need to split the extent we found, and may flip bits on
1069         * second half.
1070         *
1071         * If the extent we found extends past our
1072         * range, we just split and search again.  It'll get split
1073         * again the next time though.
1074         *
1075         * If the extent we found is inside our range, we set the
1076         * desired bit on it.
1077         */
1078        if (state->start < start) {
1079                if (state->state & exclusive_bits) {
1080                        *failed_start = start;
1081                        err = -EEXIST;
1082                        goto out;
1083                }
1084
1085                /*
1086                 * If this extent already has all the bits we want set, then
1087                 * skip it, not necessary to split it or do anything with it.
1088                 */
1089                if ((state->state & bits) == bits) {
1090                        start = state->end + 1;
1091                        cache_state(state, cached_state);
1092                        goto search_again;
1093                }
1094
1095                prealloc = alloc_extent_state_atomic(prealloc);
1096                BUG_ON(!prealloc);
1097                err = split_state(tree, state, prealloc, start);
1098                if (err)
1099                        extent_io_tree_panic(tree, err);
1100
1101                prealloc = NULL;
1102                if (err)
1103                        goto out;
1104                if (state->end <= end) {
1105                        set_state_bits(tree, state, &bits, changeset);
1106                        cache_state(state, cached_state);
1107                        merge_state(tree, state);
1108                        if (last_end == (u64)-1)
1109                                goto out;
1110                        start = last_end + 1;
1111                        state = next_state(state);
1112                        if (start < end && state && state->start == start &&
1113                            !need_resched())
1114                                goto hit_next;
1115                }
1116                goto search_again;
1117        }
1118        /*
1119         * | ---- desired range ---- |
1120         *     | state | or               | state |
1121         *
1122         * There's a hole, we need to insert something in it and
1123         * ignore the extent we found.
1124         */
1125        if (state->start > start) {
1126                u64 this_end;
1127                if (end < last_start)
1128                        this_end = end;
1129                else
1130                        this_end = last_start - 1;
1131
1132                prealloc = alloc_extent_state_atomic(prealloc);
1133                BUG_ON(!prealloc);
1134
1135                /*
1136                 * Avoid to free 'prealloc' if it can be merged with
1137                 * the later extent.
1138                 */
1139                err = insert_state(tree, prealloc, start, this_end,
1140                                   NULL, NULL, &bits, changeset);
1141                if (err)
1142                        extent_io_tree_panic(tree, err);
1143
1144                cache_state(prealloc, cached_state);
1145                prealloc = NULL;
1146                start = this_end + 1;
1147                goto search_again;
1148        }
1149        /*
1150         * | ---- desired range ---- |
1151         *                        | state |
1152         * We need to split the extent, and set the bit
1153         * on the first half
1154         */
1155        if (state->start <= end && state->end > end) {
1156                if (state->state & exclusive_bits) {
1157                        *failed_start = start;
1158                        err = -EEXIST;
1159                        goto out;
1160                }
1161
1162                prealloc = alloc_extent_state_atomic(prealloc);
1163                BUG_ON(!prealloc);
1164                err = split_state(tree, state, prealloc, end + 1);
1165                if (err)
1166                        extent_io_tree_panic(tree, err);
1167
1168                set_state_bits(tree, prealloc, &bits, changeset);
1169                cache_state(prealloc, cached_state);
1170                merge_state(tree, prealloc);
1171                prealloc = NULL;
1172                goto out;
1173        }
1174
1175search_again:
1176        if (start > end)
1177                goto out;
1178        spin_unlock(&tree->lock);
1179        if (gfpflags_allow_blocking(mask))
1180                cond_resched();
1181        goto again;
1182
1183out:
1184        spin_unlock(&tree->lock);
1185        if (prealloc)
1186                free_extent_state(prealloc);
1187
1188        return err;
1189
1190}
1191
1192/**
1193 * convert_extent_bit - convert all bits in a given range from one bit to
1194 *                      another
1195 * @tree:       the io tree to search
1196 * @start:      the start offset in bytes
1197 * @end:        the end offset in bytes (inclusive)
1198 * @bits:       the bits to set in this range
1199 * @clear_bits: the bits to clear in this range
1200 * @cached_state:       state that we're going to cache
1201 *
1202 * This will go through and set bits for the given range.  If any states exist
1203 * already in this range they are set with the given bit and cleared of the
1204 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1205 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1206 * boundary bits like LOCK.
1207 *
1208 * All allocations are done with GFP_NOFS.
1209 */
1210int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1211                       u32 bits, u32 clear_bits,
1212                       struct extent_state **cached_state)
1213{
1214        struct extent_state *state;
1215        struct extent_state *prealloc = NULL;
1216        struct rb_node *node;
1217        struct rb_node **p;
1218        struct rb_node *parent;
1219        int err = 0;
1220        u64 last_start;
1221        u64 last_end;
1222        bool first_iteration = true;
1223
1224        btrfs_debug_check_extent_io_range(tree, start, end);
1225        trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1226                                       clear_bits);
1227
1228again:
1229        if (!prealloc) {
1230                /*
1231                 * Best effort, don't worry if extent state allocation fails
1232                 * here for the first iteration. We might have a cached state
1233                 * that matches exactly the target range, in which case no
1234                 * extent state allocations are needed. We'll only know this
1235                 * after locking the tree.
1236                 */
1237                prealloc = alloc_extent_state(GFP_NOFS);
1238                if (!prealloc && !first_iteration)
1239                        return -ENOMEM;
1240        }
1241
1242        spin_lock(&tree->lock);
1243        if (cached_state && *cached_state) {
1244                state = *cached_state;
1245                if (state->start <= start && state->end > start &&
1246                    extent_state_in_tree(state)) {
1247                        node = &state->rb_node;
1248                        goto hit_next;
1249                }
1250        }
1251
1252        /*
1253         * this search will find all the extents that end after
1254         * our range starts.
1255         */
1256        node = tree_search_for_insert(tree, start, &p, &parent);
1257        if (!node) {
1258                prealloc = alloc_extent_state_atomic(prealloc);
1259                if (!prealloc) {
1260                        err = -ENOMEM;
1261                        goto out;
1262                }
1263                err = insert_state(tree, prealloc, start, end,
1264                                   &p, &parent, &bits, NULL);
1265                if (err)
1266                        extent_io_tree_panic(tree, err);
1267                cache_state(prealloc, cached_state);
1268                prealloc = NULL;
1269                goto out;
1270        }
1271        state = rb_entry(node, struct extent_state, rb_node);
1272hit_next:
1273        last_start = state->start;
1274        last_end = state->end;
1275
1276        /*
1277         * | ---- desired range ---- |
1278         * | state |
1279         *
1280         * Just lock what we found and keep going
1281         */
1282        if (state->start == start && state->end <= end) {
1283                set_state_bits(tree, state, &bits, NULL);
1284                cache_state(state, cached_state);
1285                state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1286                if (last_end == (u64)-1)
1287                        goto out;
1288                start = last_end + 1;
1289                if (start < end && state && state->start == start &&
1290                    !need_resched())
1291                        goto hit_next;
1292                goto search_again;
1293        }
1294
1295        /*
1296         *     | ---- desired range ---- |
1297         * | state |
1298         *   or
1299         * | ------------- state -------------- |
1300         *
1301         * We need to split the extent we found, and may flip bits on
1302         * second half.
1303         *
1304         * If the extent we found extends past our
1305         * range, we just split and search again.  It'll get split
1306         * again the next time though.
1307         *
1308         * If the extent we found is inside our range, we set the
1309         * desired bit on it.
1310         */
1311        if (state->start < start) {
1312                prealloc = alloc_extent_state_atomic(prealloc);
1313                if (!prealloc) {
1314                        err = -ENOMEM;
1315                        goto out;
1316                }
1317                err = split_state(tree, state, prealloc, start);
1318                if (err)
1319                        extent_io_tree_panic(tree, err);
1320                prealloc = NULL;
1321                if (err)
1322                        goto out;
1323                if (state->end <= end) {
1324                        set_state_bits(tree, state, &bits, NULL);
1325                        cache_state(state, cached_state);
1326                        state = clear_state_bit(tree, state, &clear_bits, 0,
1327                                                NULL);
1328                        if (last_end == (u64)-1)
1329                                goto out;
1330                        start = last_end + 1;
1331                        if (start < end && state && state->start == start &&
1332                            !need_resched())
1333                                goto hit_next;
1334                }
1335                goto search_again;
1336        }
1337        /*
1338         * | ---- desired range ---- |
1339         *     | state | or               | state |
1340         *
1341         * There's a hole, we need to insert something in it and
1342         * ignore the extent we found.
1343         */
1344        if (state->start > start) {
1345                u64 this_end;
1346                if (end < last_start)
1347                        this_end = end;
1348                else
1349                        this_end = last_start - 1;
1350
1351                prealloc = alloc_extent_state_atomic(prealloc);
1352                if (!prealloc) {
1353                        err = -ENOMEM;
1354                        goto out;
1355                }
1356
1357                /*
1358                 * Avoid to free 'prealloc' if it can be merged with
1359                 * the later extent.
1360                 */
1361                err = insert_state(tree, prealloc, start, this_end,
1362                                   NULL, NULL, &bits, NULL);
1363                if (err)
1364                        extent_io_tree_panic(tree, err);
1365                cache_state(prealloc, cached_state);
1366                prealloc = NULL;
1367                start = this_end + 1;
1368                goto search_again;
1369        }
1370        /*
1371         * | ---- desired range ---- |
1372         *                        | state |
1373         * We need to split the extent, and set the bit
1374         * on the first half
1375         */
1376        if (state->start <= end && state->end > end) {
1377                prealloc = alloc_extent_state_atomic(prealloc);
1378                if (!prealloc) {
1379                        err = -ENOMEM;
1380                        goto out;
1381                }
1382
1383                err = split_state(tree, state, prealloc, end + 1);
1384                if (err)
1385                        extent_io_tree_panic(tree, err);
1386
1387                set_state_bits(tree, prealloc, &bits, NULL);
1388                cache_state(prealloc, cached_state);
1389                clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1390                prealloc = NULL;
1391                goto out;
1392        }
1393
1394search_again:
1395        if (start > end)
1396                goto out;
1397        spin_unlock(&tree->lock);
1398        cond_resched();
1399        first_iteration = false;
1400        goto again;
1401
1402out:
1403        spin_unlock(&tree->lock);
1404        if (prealloc)
1405                free_extent_state(prealloc);
1406
1407        return err;
1408}
1409
1410/* wrappers around set/clear extent bit */
1411int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1412                           u32 bits, struct extent_changeset *changeset)
1413{
1414        /*
1415         * We don't support EXTENT_LOCKED yet, as current changeset will
1416         * record any bits changed, so for EXTENT_LOCKED case, it will
1417         * either fail with -EEXIST or changeset will record the whole
1418         * range.
1419         */
1420        BUG_ON(bits & EXTENT_LOCKED);
1421
1422        return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1423                              changeset);
1424}
1425
1426int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1427                           u32 bits)
1428{
1429        return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1430                              GFP_NOWAIT, NULL);
1431}
1432
1433int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1434                     u32 bits, int wake, int delete,
1435                     struct extent_state **cached)
1436{
1437        return __clear_extent_bit(tree, start, end, bits, wake, delete,
1438                                  cached, GFP_NOFS, NULL);
1439}
1440
1441int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1442                u32 bits, struct extent_changeset *changeset)
1443{
1444        /*
1445         * Don't support EXTENT_LOCKED case, same reason as
1446         * set_record_extent_bits().
1447         */
1448        BUG_ON(bits & EXTENT_LOCKED);
1449
1450        return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1451                                  changeset);
1452}
1453
1454/*
1455 * either insert or lock state struct between start and end use mask to tell
1456 * us if waiting is desired.
1457 */
1458int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1459                     struct extent_state **cached_state)
1460{
1461        int err;
1462        u64 failed_start;
1463
1464        while (1) {
1465                err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1466                                     EXTENT_LOCKED, &failed_start,
1467                                     cached_state, GFP_NOFS, NULL);
1468                if (err == -EEXIST) {
1469                        wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1470                        start = failed_start;
1471                } else
1472                        break;
1473                WARN_ON(start > end);
1474        }
1475        return err;
1476}
1477
1478int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1479{
1480        int err;
1481        u64 failed_start;
1482
1483        err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1484                             &failed_start, NULL, GFP_NOFS, NULL);
1485        if (err == -EEXIST) {
1486                if (failed_start > start)
1487                        clear_extent_bit(tree, start, failed_start - 1,
1488                                         EXTENT_LOCKED, 1, 0, NULL);
1489                return 0;
1490        }
1491        return 1;
1492}
1493
1494void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1495{
1496        unsigned long index = start >> PAGE_SHIFT;
1497        unsigned long end_index = end >> PAGE_SHIFT;
1498        struct page *page;
1499
1500        while (index <= end_index) {
1501                page = find_get_page(inode->i_mapping, index);
1502                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1503                clear_page_dirty_for_io(page);
1504                put_page(page);
1505                index++;
1506        }
1507}
1508
1509void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1510{
1511        unsigned long index = start >> PAGE_SHIFT;
1512        unsigned long end_index = end >> PAGE_SHIFT;
1513        struct page *page;
1514
1515        while (index <= end_index) {
1516                page = find_get_page(inode->i_mapping, index);
1517                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1518                __set_page_dirty_nobuffers(page);
1519                account_page_redirty(page);
1520                put_page(page);
1521                index++;
1522        }
1523}
1524
1525/* find the first state struct with 'bits' set after 'start', and
1526 * return it.  tree->lock must be held.  NULL will returned if
1527 * nothing was found after 'start'
1528 */
1529static struct extent_state *
1530find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
1531{
1532        struct rb_node *node;
1533        struct extent_state *state;
1534
1535        /*
1536         * this search will find all the extents that end after
1537         * our range starts.
1538         */
1539        node = tree_search(tree, start);
1540        if (!node)
1541                goto out;
1542
1543        while (1) {
1544                state = rb_entry(node, struct extent_state, rb_node);
1545                if (state->end >= start && (state->state & bits))
1546                        return state;
1547
1548                node = rb_next(node);
1549                if (!node)
1550                        break;
1551        }
1552out:
1553        return NULL;
1554}
1555
1556/*
1557 * Find the first offset in the io tree with one or more @bits set.
1558 *
1559 * Note: If there are multiple bits set in @bits, any of them will match.
1560 *
1561 * Return 0 if we find something, and update @start_ret and @end_ret.
1562 * Return 1 if we found nothing.
1563 */
1564int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1565                          u64 *start_ret, u64 *end_ret, u32 bits,
1566                          struct extent_state **cached_state)
1567{
1568        struct extent_state *state;
1569        int ret = 1;
1570
1571        spin_lock(&tree->lock);
1572        if (cached_state && *cached_state) {
1573                state = *cached_state;
1574                if (state->end == start - 1 && extent_state_in_tree(state)) {
1575                        while ((state = next_state(state)) != NULL) {
1576                                if (state->state & bits)
1577                                        goto got_it;
1578                        }
1579                        free_extent_state(*cached_state);
1580                        *cached_state = NULL;
1581                        goto out;
1582                }
1583                free_extent_state(*cached_state);
1584                *cached_state = NULL;
1585        }
1586
1587        state = find_first_extent_bit_state(tree, start, bits);
1588got_it:
1589        if (state) {
1590                cache_state_if_flags(state, cached_state, 0);
1591                *start_ret = state->start;
1592                *end_ret = state->end;
1593                ret = 0;
1594        }
1595out:
1596        spin_unlock(&tree->lock);
1597        return ret;
1598}
1599
1600/**
1601 * Find a contiguous area of bits
1602 *
1603 * @tree:      io tree to check
1604 * @start:     offset to start the search from
1605 * @start_ret: the first offset we found with the bits set
1606 * @end_ret:   the final contiguous range of the bits that were set
1607 * @bits:      bits to look for
1608 *
1609 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1610 * to set bits appropriately, and then merge them again.  During this time it
1611 * will drop the tree->lock, so use this helper if you want to find the actual
1612 * contiguous area for given bits.  We will search to the first bit we find, and
1613 * then walk down the tree until we find a non-contiguous area.  The area
1614 * returned will be the full contiguous area with the bits set.
1615 */
1616int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1617                               u64 *start_ret, u64 *end_ret, u32 bits)
1618{
1619        struct extent_state *state;
1620        int ret = 1;
1621
1622        spin_lock(&tree->lock);
1623        state = find_first_extent_bit_state(tree, start, bits);
1624        if (state) {
1625                *start_ret = state->start;
1626                *end_ret = state->end;
1627                while ((state = next_state(state)) != NULL) {
1628                        if (state->start > (*end_ret + 1))
1629                                break;
1630                        *end_ret = state->end;
1631                }
1632                ret = 0;
1633        }
1634        spin_unlock(&tree->lock);
1635        return ret;
1636}
1637
1638/**
1639 * Find the first range that has @bits not set. This range could start before
1640 * @start.
1641 *
1642 * @tree:      the tree to search
1643 * @start:     offset at/after which the found extent should start
1644 * @start_ret: records the beginning of the range
1645 * @end_ret:   records the end of the range (inclusive)
1646 * @bits:      the set of bits which must be unset
1647 *
1648 * Since unallocated range is also considered one which doesn't have the bits
1649 * set it's possible that @end_ret contains -1, this happens in case the range
1650 * spans (last_range_end, end of device]. In this case it's up to the caller to
1651 * trim @end_ret to the appropriate size.
1652 */
1653void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1654                                 u64 *start_ret, u64 *end_ret, u32 bits)
1655{
1656        struct extent_state *state;
1657        struct rb_node *node, *prev = NULL, *next;
1658
1659        spin_lock(&tree->lock);
1660
1661        /* Find first extent with bits cleared */
1662        while (1) {
1663                node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1664                if (!node && !next && !prev) {
1665                        /*
1666                         * Tree is completely empty, send full range and let
1667                         * caller deal with it
1668                         */
1669                        *start_ret = 0;
1670                        *end_ret = -1;
1671                        goto out;
1672                } else if (!node && !next) {
1673                        /*
1674                         * We are past the last allocated chunk, set start at
1675                         * the end of the last extent.
1676                         */
1677                        state = rb_entry(prev, struct extent_state, rb_node);
1678                        *start_ret = state->end + 1;
1679                        *end_ret = -1;
1680                        goto out;
1681                } else if (!node) {
1682                        node = next;
1683                }
1684                /*
1685                 * At this point 'node' either contains 'start' or start is
1686                 * before 'node'
1687                 */
1688                state = rb_entry(node, struct extent_state, rb_node);
1689
1690                if (in_range(start, state->start, state->end - state->start + 1)) {
1691                        if (state->state & bits) {
1692                                /*
1693                                 * |--range with bits sets--|
1694                                 *    |
1695                                 *    start
1696                                 */
1697                                start = state->end + 1;
1698                        } else {
1699                                /*
1700                                 * 'start' falls within a range that doesn't
1701                                 * have the bits set, so take its start as
1702                                 * the beginning of the desired range
1703                                 *
1704                                 * |--range with bits cleared----|
1705                                 *      |
1706                                 *      start
1707                                 */
1708                                *start_ret = state->start;
1709                                break;
1710                        }
1711                } else {
1712                        /*
1713                         * |---prev range---|---hole/unset---|---node range---|
1714                         *                          |
1715                         *                        start
1716                         *
1717                         *                        or
1718                         *
1719                         * |---hole/unset--||--first node--|
1720                         * 0   |
1721                         *    start
1722                         */
1723                        if (prev) {
1724                                state = rb_entry(prev, struct extent_state,
1725                                                 rb_node);
1726                                *start_ret = state->end + 1;
1727                        } else {
1728                                *start_ret = 0;
1729                        }
1730                        break;
1731                }
1732        }
1733
1734        /*
1735         * Find the longest stretch from start until an entry which has the
1736         * bits set
1737         */
1738        while (1) {
1739                state = rb_entry(node, struct extent_state, rb_node);
1740                if (state->end >= start && !(state->state & bits)) {
1741                        *end_ret = state->end;
1742                } else {
1743                        *end_ret = state->start - 1;
1744                        break;
1745                }
1746
1747                node = rb_next(node);
1748                if (!node)
1749                        break;
1750        }
1751out:
1752        spin_unlock(&tree->lock);
1753}
1754
1755/*
1756 * find a contiguous range of bytes in the file marked as delalloc, not
1757 * more than 'max_bytes'.  start and end are used to return the range,
1758 *
1759 * true is returned if we find something, false if nothing was in the tree
1760 */
1761bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1762                               u64 *end, u64 max_bytes,
1763                               struct extent_state **cached_state)
1764{
1765        struct rb_node *node;
1766        struct extent_state *state;
1767        u64 cur_start = *start;
1768        bool found = false;
1769        u64 total_bytes = 0;
1770
1771        spin_lock(&tree->lock);
1772
1773        /*
1774         * this search will find all the extents that end after
1775         * our range starts.
1776         */
1777        node = tree_search(tree, cur_start);
1778        if (!node) {
1779                *end = (u64)-1;
1780                goto out;
1781        }
1782
1783        while (1) {
1784                state = rb_entry(node, struct extent_state, rb_node);
1785                if (found && (state->start != cur_start ||
1786                              (state->state & EXTENT_BOUNDARY))) {
1787                        goto out;
1788                }
1789                if (!(state->state & EXTENT_DELALLOC)) {
1790                        if (!found)
1791                                *end = state->end;
1792                        goto out;
1793                }
1794                if (!found) {
1795                        *start = state->start;
1796                        *cached_state = state;
1797                        refcount_inc(&state->refs);
1798                }
1799                found = true;
1800                *end = state->end;
1801                cur_start = state->end + 1;
1802                node = rb_next(node);
1803                total_bytes += state->end - state->start + 1;
1804                if (total_bytes >= max_bytes)
1805                        break;
1806                if (!node)
1807                        break;
1808        }
1809out:
1810        spin_unlock(&tree->lock);
1811        return found;
1812}
1813
1814/*
1815 * Process one page for __process_pages_contig().
1816 *
1817 * Return >0 if we hit @page == @locked_page.
1818 * Return 0 if we updated the page status.
1819 * Return -EGAIN if the we need to try again.
1820 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1821 */
1822static int process_one_page(struct btrfs_fs_info *fs_info,
1823                            struct address_space *mapping,
1824                            struct page *page, struct page *locked_page,
1825                            unsigned long page_ops, u64 start, u64 end)
1826{
1827        u32 len;
1828
1829        ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1830        len = end + 1 - start;
1831
1832        if (page_ops & PAGE_SET_ORDERED)
1833                btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1834        if (page_ops & PAGE_SET_ERROR)
1835                btrfs_page_clamp_set_error(fs_info, page, start, len);
1836        if (page_ops & PAGE_START_WRITEBACK) {
1837                btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1838                btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1839        }
1840        if (page_ops & PAGE_END_WRITEBACK)
1841                btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1842
1843        if (page == locked_page)
1844                return 1;
1845
1846        if (page_ops & PAGE_LOCK) {
1847                int ret;
1848
1849                ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1850                if (ret)
1851                        return ret;
1852                if (!PageDirty(page) || page->mapping != mapping) {
1853                        btrfs_page_end_writer_lock(fs_info, page, start, len);
1854                        return -EAGAIN;
1855                }
1856        }
1857        if (page_ops & PAGE_UNLOCK)
1858                btrfs_page_end_writer_lock(fs_info, page, start, len);
1859        return 0;
1860}
1861
1862static int __process_pages_contig(struct address_space *mapping,
1863                                  struct page *locked_page,
1864                                  u64 start, u64 end, unsigned long page_ops,
1865                                  u64 *processed_end)
1866{
1867        struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1868        pgoff_t start_index = start >> PAGE_SHIFT;
1869        pgoff_t end_index = end >> PAGE_SHIFT;
1870        pgoff_t index = start_index;
1871        unsigned long nr_pages = end_index - start_index + 1;
1872        unsigned long pages_processed = 0;
1873        struct page *pages[16];
1874        int err = 0;
1875        int i;
1876
1877        if (page_ops & PAGE_LOCK) {
1878                ASSERT(page_ops == PAGE_LOCK);
1879                ASSERT(processed_end && *processed_end == start);
1880        }
1881
1882        if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1883                mapping_set_error(mapping, -EIO);
1884
1885        while (nr_pages > 0) {
1886                int found_pages;
1887
1888                found_pages = find_get_pages_contig(mapping, index,
1889                                     min_t(unsigned long,
1890                                     nr_pages, ARRAY_SIZE(pages)), pages);
1891                if (found_pages == 0) {
1892                        /*
1893                         * Only if we're going to lock these pages, we can find
1894                         * nothing at @index.
1895                         */
1896                        ASSERT(page_ops & PAGE_LOCK);
1897                        err = -EAGAIN;
1898                        goto out;
1899                }
1900
1901                for (i = 0; i < found_pages; i++) {
1902                        int process_ret;
1903
1904                        process_ret = process_one_page(fs_info, mapping,
1905                                        pages[i], locked_page, page_ops,
1906                                        start, end);
1907                        if (process_ret < 0) {
1908                                for (; i < found_pages; i++)
1909                                        put_page(pages[i]);
1910                                err = -EAGAIN;
1911                                goto out;
1912                        }
1913                        put_page(pages[i]);
1914                        pages_processed++;
1915                }
1916                nr_pages -= found_pages;
1917                index += found_pages;
1918                cond_resched();
1919        }
1920out:
1921        if (err && processed_end) {
1922                /*
1923                 * Update @processed_end. I know this is awful since it has
1924                 * two different return value patterns (inclusive vs exclusive).
1925                 *
1926                 * But the exclusive pattern is necessary if @start is 0, or we
1927                 * underflow and check against processed_end won't work as
1928                 * expected.
1929                 */
1930                if (pages_processed)
1931                        *processed_end = min(end,
1932                        ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1933                else
1934                        *processed_end = start;
1935        }
1936        return err;
1937}
1938
1939static noinline void __unlock_for_delalloc(struct inode *inode,
1940                                           struct page *locked_page,
1941                                           u64 start, u64 end)
1942{
1943        unsigned long index = start >> PAGE_SHIFT;
1944        unsigned long end_index = end >> PAGE_SHIFT;
1945
1946        ASSERT(locked_page);
1947        if (index == locked_page->index && end_index == index)
1948                return;
1949
1950        __process_pages_contig(inode->i_mapping, locked_page, start, end,
1951                               PAGE_UNLOCK, NULL);
1952}
1953
1954static noinline int lock_delalloc_pages(struct inode *inode,
1955                                        struct page *locked_page,
1956                                        u64 delalloc_start,
1957                                        u64 delalloc_end)
1958{
1959        unsigned long index = delalloc_start >> PAGE_SHIFT;
1960        unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1961        u64 processed_end = delalloc_start;
1962        int ret;
1963
1964        ASSERT(locked_page);
1965        if (index == locked_page->index && index == end_index)
1966                return 0;
1967
1968        ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1969                                     delalloc_end, PAGE_LOCK, &processed_end);
1970        if (ret == -EAGAIN && processed_end > delalloc_start)
1971                __unlock_for_delalloc(inode, locked_page, delalloc_start,
1972                                      processed_end);
1973        return ret;
1974}
1975
1976/*
1977 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1978 * more than @max_bytes.  @Start and @end are used to return the range,
1979 *
1980 * Return: true if we find something
1981 *         false if nothing was in the tree
1982 */
1983EXPORT_FOR_TESTS
1984noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1985                                    struct page *locked_page, u64 *start,
1986                                    u64 *end)
1987{
1988        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1989        u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1990        u64 delalloc_start;
1991        u64 delalloc_end;
1992        bool found;
1993        struct extent_state *cached_state = NULL;
1994        int ret;
1995        int loops = 0;
1996
1997again:
1998        /* step one, find a bunch of delalloc bytes starting at start */
1999        delalloc_start = *start;
2000        delalloc_end = 0;
2001        found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
2002                                          max_bytes, &cached_state);
2003        if (!found || delalloc_end <= *start) {
2004                *start = delalloc_start;
2005                *end = delalloc_end;
2006                free_extent_state(cached_state);
2007                return false;
2008        }
2009
2010        /*
2011         * start comes from the offset of locked_page.  We have to lock
2012         * pages in order, so we can't process delalloc bytes before
2013         * locked_page
2014         */
2015        if (delalloc_start < *start)
2016                delalloc_start = *start;
2017
2018        /*
2019         * make sure to limit the number of pages we try to lock down
2020         */
2021        if (delalloc_end + 1 - delalloc_start > max_bytes)
2022                delalloc_end = delalloc_start + max_bytes - 1;
2023
2024        /* step two, lock all the pages after the page that has start */
2025        ret = lock_delalloc_pages(inode, locked_page,
2026                                  delalloc_start, delalloc_end);
2027        ASSERT(!ret || ret == -EAGAIN);
2028        if (ret == -EAGAIN) {
2029                /* some of the pages are gone, lets avoid looping by
2030                 * shortening the size of the delalloc range we're searching
2031                 */
2032                free_extent_state(cached_state);
2033                cached_state = NULL;
2034                if (!loops) {
2035                        max_bytes = PAGE_SIZE;
2036                        loops = 1;
2037                        goto again;
2038                } else {
2039                        found = false;
2040                        goto out_failed;
2041                }
2042        }
2043
2044        /* step three, lock the state bits for the whole range */
2045        lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
2046
2047        /* then test to make sure it is all still delalloc */
2048        ret = test_range_bit(tree, delalloc_start, delalloc_end,
2049                             EXTENT_DELALLOC, 1, cached_state);
2050        if (!ret) {
2051                unlock_extent_cached(tree, delalloc_start, delalloc_end,
2052                                     &cached_state);
2053                __unlock_for_delalloc(inode, locked_page,
2054                              delalloc_start, delalloc_end);
2055                cond_resched();
2056                goto again;
2057        }
2058        free_extent_state(cached_state);
2059        *start = delalloc_start;
2060        *end = delalloc_end;
2061out_failed:
2062        return found;
2063}
2064
2065void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2066                                  struct page *locked_page,
2067                                  u32 clear_bits, unsigned long page_ops)
2068{
2069        clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2070
2071        __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2072                               start, end, page_ops, NULL);
2073}
2074
2075/*
2076 * count the number of bytes in the tree that have a given bit(s)
2077 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2078 * cached.  The total number found is returned.
2079 */
2080u64 count_range_bits(struct extent_io_tree *tree,
2081                     u64 *start, u64 search_end, u64 max_bytes,
2082                     u32 bits, int contig)
2083{
2084        struct rb_node *node;
2085        struct extent_state *state;
2086        u64 cur_start = *start;
2087        u64 total_bytes = 0;
2088        u64 last = 0;
2089        int found = 0;
2090
2091        if (WARN_ON(search_end <= cur_start))
2092                return 0;
2093
2094        spin_lock(&tree->lock);
2095        if (cur_start == 0 && bits == EXTENT_DIRTY) {
2096                total_bytes = tree->dirty_bytes;
2097                goto out;
2098        }
2099        /*
2100         * this search will find all the extents that end after
2101         * our range starts.
2102         */
2103        node = tree_search(tree, cur_start);
2104        if (!node)
2105                goto out;
2106
2107        while (1) {
2108                state = rb_entry(node, struct extent_state, rb_node);
2109                if (state->start > search_end)
2110                        break;
2111                if (contig && found && state->start > last + 1)
2112                        break;
2113                if (state->end >= cur_start && (state->state & bits) == bits) {
2114                        total_bytes += min(search_end, state->end) + 1 -
2115                                       max(cur_start, state->start);
2116                        if (total_bytes >= max_bytes)
2117                                break;
2118                        if (!found) {
2119                                *start = max(cur_start, state->start);
2120                                found = 1;
2121                        }
2122                        last = state->end;
2123                } else if (contig && found) {
2124                        break;
2125                }
2126                node = rb_next(node);
2127                if (!node)
2128                        break;
2129        }
2130out:
2131        spin_unlock(&tree->lock);
2132        return total_bytes;
2133}
2134
2135/*
2136 * set the private field for a given byte offset in the tree.  If there isn't
2137 * an extent_state there already, this does nothing.
2138 */
2139int set_state_failrec(struct extent_io_tree *tree, u64 start,
2140                      struct io_failure_record *failrec)
2141{
2142        struct rb_node *node;
2143        struct extent_state *state;
2144        int ret = 0;
2145
2146        spin_lock(&tree->lock);
2147        /*
2148         * this search will find all the extents that end after
2149         * our range starts.
2150         */
2151        node = tree_search(tree, start);
2152        if (!node) {
2153                ret = -ENOENT;
2154                goto out;
2155        }
2156        state = rb_entry(node, struct extent_state, rb_node);
2157        if (state->start != start) {
2158                ret = -ENOENT;
2159                goto out;
2160        }
2161        state->failrec = failrec;
2162out:
2163        spin_unlock(&tree->lock);
2164        return ret;
2165}
2166
2167struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2168{
2169        struct rb_node *node;
2170        struct extent_state *state;
2171        struct io_failure_record *failrec;
2172
2173        spin_lock(&tree->lock);
2174        /*
2175         * this search will find all the extents that end after
2176         * our range starts.
2177         */
2178        node = tree_search(tree, start);
2179        if (!node) {
2180                failrec = ERR_PTR(-ENOENT);
2181                goto out;
2182        }
2183        state = rb_entry(node, struct extent_state, rb_node);
2184        if (state->start != start) {
2185                failrec = ERR_PTR(-ENOENT);
2186                goto out;
2187        }
2188
2189        failrec = state->failrec;
2190out:
2191        spin_unlock(&tree->lock);
2192        return failrec;
2193}
2194
2195/*
2196 * searches a range in the state tree for a given mask.
2197 * If 'filled' == 1, this returns 1 only if every extent in the tree
2198 * has the bits set.  Otherwise, 1 is returned if any bit in the
2199 * range is found set.
2200 */
2201int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2202                   u32 bits, int filled, struct extent_state *cached)
2203{
2204        struct extent_state *state = NULL;
2205        struct rb_node *node;
2206        int bitset = 0;
2207
2208        spin_lock(&tree->lock);
2209        if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2210            cached->end > start)
2211                node = &cached->rb_node;
2212        else
2213                node = tree_search(tree, start);
2214        while (node && start <= end) {
2215                state = rb_entry(node, struct extent_state, rb_node);
2216
2217                if (filled && state->start > start) {
2218                        bitset = 0;
2219                        break;
2220                }
2221
2222                if (state->start > end)
2223                        break;
2224
2225                if (state->state & bits) {
2226                        bitset = 1;
2227                        if (!filled)
2228                                break;
2229                } else if (filled) {
2230                        bitset = 0;
2231                        break;
2232                }
2233
2234                if (state->end == (u64)-1)
2235                        break;
2236
2237                start = state->end + 1;
2238                if (start > end)
2239                        break;
2240                node = rb_next(node);
2241                if (!node) {
2242                        if (filled)
2243                                bitset = 0;
2244                        break;
2245                }
2246        }
2247        spin_unlock(&tree->lock);
2248        return bitset;
2249}
2250
2251int free_io_failure(struct extent_io_tree *failure_tree,
2252                    struct extent_io_tree *io_tree,
2253                    struct io_failure_record *rec)
2254{
2255        int ret;
2256        int err = 0;
2257
2258        set_state_failrec(failure_tree, rec->start, NULL);
2259        ret = clear_extent_bits(failure_tree, rec->start,
2260                                rec->start + rec->len - 1,
2261                                EXTENT_LOCKED | EXTENT_DIRTY);
2262        if (ret)
2263                err = ret;
2264
2265        ret = clear_extent_bits(io_tree, rec->start,
2266                                rec->start + rec->len - 1,
2267                                EXTENT_DAMAGED);
2268        if (ret && !err)
2269                err = ret;
2270
2271        kfree(rec);
2272        return err;
2273}
2274
2275/*
2276 * this bypasses the standard btrfs submit functions deliberately, as
2277 * the standard behavior is to write all copies in a raid setup. here we only
2278 * want to write the one bad copy. so we do the mapping for ourselves and issue
2279 * submit_bio directly.
2280 * to avoid any synchronization issues, wait for the data after writing, which
2281 * actually prevents the read that triggered the error from finishing.
2282 * currently, there can be no more than two copies of every data bit. thus,
2283 * exactly one rewrite is required.
2284 */
2285int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2286                      u64 length, u64 logical, struct page *page,
2287                      unsigned int pg_offset, int mirror_num)
2288{
2289        struct bio *bio;
2290        struct btrfs_device *dev;
2291        u64 map_length = 0;
2292        u64 sector;
2293        struct btrfs_bio *bbio = NULL;
2294        int ret;
2295
2296        ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2297        BUG_ON(!mirror_num);
2298
2299        if (btrfs_is_zoned(fs_info))
2300                return btrfs_repair_one_zone(fs_info, logical);
2301
2302        bio = btrfs_io_bio_alloc(1);
2303        bio->bi_iter.bi_size = 0;
2304        map_length = length;
2305
2306        /*
2307         * Avoid races with device replace and make sure our bbio has devices
2308         * associated to its stripes that don't go away while we are doing the
2309         * read repair operation.
2310         */
2311        btrfs_bio_counter_inc_blocked(fs_info);
2312        if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2313                /*
2314                 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2315                 * to update all raid stripes, but here we just want to correct
2316                 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2317                 * stripe's dev and sector.
2318                 */
2319                ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2320                                      &map_length, &bbio, 0);
2321                if (ret) {
2322                        btrfs_bio_counter_dec(fs_info);
2323                        bio_put(bio);
2324                        return -EIO;
2325                }
2326                ASSERT(bbio->mirror_num == 1);
2327        } else {
2328                ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2329                                      &map_length, &bbio, mirror_num);
2330                if (ret) {
2331                        btrfs_bio_counter_dec(fs_info);
2332                        bio_put(bio);
2333                        return -EIO;
2334                }
2335                BUG_ON(mirror_num != bbio->mirror_num);
2336        }
2337
2338        sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2339        bio->bi_iter.bi_sector = sector;
2340        dev = bbio->stripes[bbio->mirror_num - 1].dev;
2341        btrfs_put_bbio(bbio);
2342        if (!dev || !dev->bdev ||
2343            !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2344                btrfs_bio_counter_dec(fs_info);
2345                bio_put(bio);
2346                return -EIO;
2347        }
2348        bio_set_dev(bio, dev->bdev);
2349        bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2350        bio_add_page(bio, page, length, pg_offset);
2351
2352        if (btrfsic_submit_bio_wait(bio)) {
2353                /* try to remap that extent elsewhere? */
2354                btrfs_bio_counter_dec(fs_info);
2355                bio_put(bio);
2356                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2357                return -EIO;
2358        }
2359
2360        btrfs_info_rl_in_rcu(fs_info,
2361                "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2362                                  ino, start,
2363                                  rcu_str_deref(dev->name), sector);
2364        btrfs_bio_counter_dec(fs_info);
2365        bio_put(bio);
2366        return 0;
2367}
2368
2369int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2370{
2371        struct btrfs_fs_info *fs_info = eb->fs_info;
2372        u64 start = eb->start;
2373        int i, num_pages = num_extent_pages(eb);
2374        int ret = 0;
2375
2376        if (sb_rdonly(fs_info->sb))
2377                return -EROFS;
2378
2379        for (i = 0; i < num_pages; i++) {
2380                struct page *p = eb->pages[i];
2381
2382                ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2383                                        start - page_offset(p), mirror_num);
2384                if (ret)
2385                        break;
2386                start += PAGE_SIZE;
2387        }
2388
2389        return ret;
2390}
2391
2392/*
2393 * each time an IO finishes, we do a fast check in the IO failure tree
2394 * to see if we need to process or clean up an io_failure_record
2395 */
2396int clean_io_failure(struct btrfs_fs_info *fs_info,
2397                     struct extent_io_tree *failure_tree,
2398                     struct extent_io_tree *io_tree, u64 start,
2399                     struct page *page, u64 ino, unsigned int pg_offset)
2400{
2401        u64 private;
2402        struct io_failure_record *failrec;
2403        struct extent_state *state;
2404        int num_copies;
2405        int ret;
2406
2407        private = 0;
2408        ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2409                               EXTENT_DIRTY, 0);
2410        if (!ret)
2411                return 0;
2412
2413        failrec = get_state_failrec(failure_tree, start);
2414        if (IS_ERR(failrec))
2415                return 0;
2416
2417        BUG_ON(!failrec->this_mirror);
2418
2419        if (sb_rdonly(fs_info->sb))
2420                goto out;
2421
2422        spin_lock(&io_tree->lock);
2423        state = find_first_extent_bit_state(io_tree,
2424                                            failrec->start,
2425                                            EXTENT_LOCKED);
2426        spin_unlock(&io_tree->lock);
2427
2428        if (state && state->start <= failrec->start &&
2429            state->end >= failrec->start + failrec->len - 1) {
2430                num_copies = btrfs_num_copies(fs_info, failrec->logical,
2431                                              failrec->len);
2432                if (num_copies > 1)  {
2433                        repair_io_failure(fs_info, ino, start, failrec->len,
2434                                          failrec->logical, page, pg_offset,
2435                                          failrec->failed_mirror);
2436                }
2437        }
2438
2439out:
2440        free_io_failure(failure_tree, io_tree, failrec);
2441
2442        return 0;
2443}
2444
2445/*
2446 * Can be called when
2447 * - hold extent lock
2448 * - under ordered extent
2449 * - the inode is freeing
2450 */
2451void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2452{
2453        struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2454        struct io_failure_record *failrec;
2455        struct extent_state *state, *next;
2456
2457        if (RB_EMPTY_ROOT(&failure_tree->state))
2458                return;
2459
2460        spin_lock(&failure_tree->lock);
2461        state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2462        while (state) {
2463                if (state->start > end)
2464                        break;
2465
2466                ASSERT(state->end <= end);
2467
2468                next = next_state(state);
2469
2470                failrec = state->failrec;
2471                free_extent_state(state);
2472                kfree(failrec);
2473
2474                state = next;
2475        }
2476        spin_unlock(&failure_tree->lock);
2477}
2478
2479static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2480                                                             u64 start)
2481{
2482        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2483        struct io_failure_record *failrec;
2484        struct extent_map *em;
2485        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2486        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2487        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2488        const u32 sectorsize = fs_info->sectorsize;
2489        int ret;
2490        u64 logical;
2491
2492        failrec = get_state_failrec(failure_tree, start);
2493        if (!IS_ERR(failrec)) {
2494                btrfs_debug(fs_info,
2495        "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2496                        failrec->logical, failrec->start, failrec->len);
2497                /*
2498                 * when data can be on disk more than twice, add to failrec here
2499                 * (e.g. with a list for failed_mirror) to make
2500                 * clean_io_failure() clean all those errors at once.
2501                 */
2502
2503                return failrec;
2504        }
2505
2506        failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2507        if (!failrec)
2508                return ERR_PTR(-ENOMEM);
2509
2510        failrec->start = start;
2511        failrec->len = sectorsize;
2512        failrec->this_mirror = 0;
2513        failrec->bio_flags = 0;
2514
2515        read_lock(&em_tree->lock);
2516        em = lookup_extent_mapping(em_tree, start, failrec->len);
2517        if (!em) {
2518                read_unlock(&em_tree->lock);
2519                kfree(failrec);
2520                return ERR_PTR(-EIO);
2521        }
2522
2523        if (em->start > start || em->start + em->len <= start) {
2524                free_extent_map(em);
2525                em = NULL;
2526        }
2527        read_unlock(&em_tree->lock);
2528        if (!em) {
2529                kfree(failrec);
2530                return ERR_PTR(-EIO);
2531        }
2532
2533        logical = start - em->start;
2534        logical = em->block_start + logical;
2535        if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2536                logical = em->block_start;
2537                failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2538                extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2539        }
2540
2541        btrfs_debug(fs_info,
2542                    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2543                    logical, start, failrec->len);
2544
2545        failrec->logical = logical;
2546        free_extent_map(em);
2547
2548        /* Set the bits in the private failure tree */
2549        ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2550                              EXTENT_LOCKED | EXTENT_DIRTY);
2551        if (ret >= 0) {
2552                ret = set_state_failrec(failure_tree, start, failrec);
2553                /* Set the bits in the inode's tree */
2554                ret = set_extent_bits(tree, start, start + sectorsize - 1,
2555                                      EXTENT_DAMAGED);
2556        } else if (ret < 0) {
2557                kfree(failrec);
2558                return ERR_PTR(ret);
2559        }
2560
2561        return failrec;
2562}
2563
2564static bool btrfs_check_repairable(struct inode *inode,
2565                                   struct io_failure_record *failrec,
2566                                   int failed_mirror)
2567{
2568        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2569        int num_copies;
2570
2571        num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2572        if (num_copies == 1) {
2573                /*
2574                 * we only have a single copy of the data, so don't bother with
2575                 * all the retry and error correction code that follows. no
2576                 * matter what the error is, it is very likely to persist.
2577                 */
2578                btrfs_debug(fs_info,
2579                        "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2580                        num_copies, failrec->this_mirror, failed_mirror);
2581                return false;
2582        }
2583
2584        /* The failure record should only contain one sector */
2585        ASSERT(failrec->len == fs_info->sectorsize);
2586
2587        /*
2588         * There are two premises:
2589         * a) deliver good data to the caller
2590         * b) correct the bad sectors on disk
2591         *
2592         * Since we're only doing repair for one sector, we only need to get
2593         * a good copy of the failed sector and if we succeed, we have setup
2594         * everything for repair_io_failure to do the rest for us.
2595         */
2596        failrec->failed_mirror = failed_mirror;
2597        failrec->this_mirror++;
2598        if (failrec->this_mirror == failed_mirror)
2599                failrec->this_mirror++;
2600
2601        if (failrec->this_mirror > num_copies) {
2602                btrfs_debug(fs_info,
2603                        "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2604                        num_copies, failrec->this_mirror, failed_mirror);
2605                return false;
2606        }
2607
2608        return true;
2609}
2610
2611int btrfs_repair_one_sector(struct inode *inode,
2612                            struct bio *failed_bio, u32 bio_offset,
2613                            struct page *page, unsigned int pgoff,
2614                            u64 start, int failed_mirror,
2615                            submit_bio_hook_t *submit_bio_hook)
2616{
2617        struct io_failure_record *failrec;
2618        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2619        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2620        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2621        struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2622        const int icsum = bio_offset >> fs_info->sectorsize_bits;
2623        struct bio *repair_bio;
2624        struct btrfs_io_bio *repair_io_bio;
2625        blk_status_t status;
2626
2627        btrfs_debug(fs_info,
2628                   "repair read error: read error at %llu", start);
2629
2630        BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2631
2632        failrec = btrfs_get_io_failure_record(inode, start);
2633        if (IS_ERR(failrec))
2634                return PTR_ERR(failrec);
2635
2636
2637        if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2638                free_io_failure(failure_tree, tree, failrec);
2639                return -EIO;
2640        }
2641
2642        repair_bio = btrfs_io_bio_alloc(1);
2643        repair_io_bio = btrfs_io_bio(repair_bio);
2644        repair_bio->bi_opf = REQ_OP_READ;
2645        repair_bio->bi_end_io = failed_bio->bi_end_io;
2646        repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2647        repair_bio->bi_private = failed_bio->bi_private;
2648
2649        if (failed_io_bio->csum) {
2650                const u32 csum_size = fs_info->csum_size;
2651
2652                repair_io_bio->csum = repair_io_bio->csum_inline;
2653                memcpy(repair_io_bio->csum,
2654                       failed_io_bio->csum + csum_size * icsum, csum_size);
2655        }
2656
2657        bio_add_page(repair_bio, page, failrec->len, pgoff);
2658        repair_io_bio->logical = failrec->start;
2659        repair_io_bio->iter = repair_bio->bi_iter;
2660
2661        btrfs_debug(btrfs_sb(inode->i_sb),
2662                    "repair read error: submitting new read to mirror %d",
2663                    failrec->this_mirror);
2664
2665        status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2666                                 failrec->bio_flags);
2667        if (status) {
2668                free_io_failure(failure_tree, tree, failrec);
2669                bio_put(repair_bio);
2670        }
2671        return blk_status_to_errno(status);
2672}
2673
2674static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2675{
2676        struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2677
2678        ASSERT(page_offset(page) <= start &&
2679               start + len <= page_offset(page) + PAGE_SIZE);
2680
2681        if (uptodate) {
2682                if (fsverity_active(page->mapping->host) &&
2683                    !PageError(page) &&
2684                    !PageUptodate(page) &&
2685                    start < i_size_read(page->mapping->host) &&
2686                    !fsverity_verify_page(page)) {
2687                        btrfs_page_set_error(fs_info, page, start, len);
2688                } else {
2689                        btrfs_page_set_uptodate(fs_info, page, start, len);
2690                }
2691        } else {
2692                btrfs_page_clear_uptodate(fs_info, page, start, len);
2693                btrfs_page_set_error(fs_info, page, start, len);
2694        }
2695
2696        if (fs_info->sectorsize == PAGE_SIZE)
2697                unlock_page(page);
2698        else
2699                btrfs_subpage_end_reader(fs_info, page, start, len);
2700}
2701
2702static blk_status_t submit_read_repair(struct inode *inode,
2703                                      struct bio *failed_bio, u32 bio_offset,
2704                                      struct page *page, unsigned int pgoff,
2705                                      u64 start, u64 end, int failed_mirror,
2706                                      unsigned int error_bitmap,
2707                                      submit_bio_hook_t *submit_bio_hook)
2708{
2709        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2710        const u32 sectorsize = fs_info->sectorsize;
2711        const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2712        int error = 0;
2713        int i;
2714
2715        BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2716
2717        /* We're here because we had some read errors or csum mismatch */
2718        ASSERT(error_bitmap);
2719
2720        /*
2721         * We only get called on buffered IO, thus page must be mapped and bio
2722         * must not be cloned.
2723         */
2724        ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2725
2726        /* Iterate through all the sectors in the range */
2727        for (i = 0; i < nr_bits; i++) {
2728                const unsigned int offset = i * sectorsize;
2729                struct extent_state *cached = NULL;
2730                bool uptodate = false;
2731                int ret;
2732
2733                if (!(error_bitmap & (1U << i))) {
2734                        /*
2735                         * This sector has no error, just end the page read
2736                         * and unlock the range.
2737                         */
2738                        uptodate = true;
2739                        goto next;
2740                }
2741
2742                ret = btrfs_repair_one_sector(inode, failed_bio,
2743                                bio_offset + offset,
2744                                page, pgoff + offset, start + offset,
2745                                failed_mirror, submit_bio_hook);
2746                if (!ret) {
2747                        /*
2748                         * We have submitted the read repair, the page release
2749                         * will be handled by the endio function of the
2750                         * submitted repair bio.
2751                         * Thus we don't need to do any thing here.
2752                         */
2753                        continue;
2754                }
2755                /*
2756                 * Repair failed, just record the error but still continue.
2757                 * Or the remaining sectors will not be properly unlocked.
2758                 */
2759                if (!error)
2760                        error = ret;
2761next:
2762                end_page_read(page, uptodate, start + offset, sectorsize);
2763                if (uptodate)
2764                        set_extent_uptodate(&BTRFS_I(inode)->io_tree,
2765                                        start + offset,
2766                                        start + offset + sectorsize - 1,
2767                                        &cached, GFP_ATOMIC);
2768                unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
2769                                start + offset,
2770                                start + offset + sectorsize - 1,
2771                                &cached);
2772        }
2773        return errno_to_blk_status(error);
2774}
2775
2776/* lots and lots of room for performance fixes in the end_bio funcs */
2777
2778void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2779{
2780        struct btrfs_inode *inode;
2781        const bool uptodate = (err == 0);
2782        int ret = 0;
2783
2784        ASSERT(page && page->mapping);
2785        inode = BTRFS_I(page->mapping->host);
2786        btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2787
2788        if (!uptodate) {
2789                const struct btrfs_fs_info *fs_info = inode->root->fs_info;
2790                u32 len;
2791
2792                ASSERT(end + 1 - start <= U32_MAX);
2793                len = end + 1 - start;
2794
2795                btrfs_page_clear_uptodate(fs_info, page, start, len);
2796                btrfs_page_set_error(fs_info, page, start, len);
2797                ret = err < 0 ? err : -EIO;
2798                mapping_set_error(page->mapping, ret);
2799        }
2800}
2801
2802/*
2803 * after a writepage IO is done, we need to:
2804 * clear the uptodate bits on error
2805 * clear the writeback bits in the extent tree for this IO
2806 * end_page_writeback if the page has no more pending IO
2807 *
2808 * Scheduling is not allowed, so the extent state tree is expected
2809 * to have one and only one object corresponding to this IO.
2810 */
2811static void end_bio_extent_writepage(struct bio *bio)
2812{
2813        int error = blk_status_to_errno(bio->bi_status);
2814        struct bio_vec *bvec;
2815        u64 start;
2816        u64 end;
2817        struct bvec_iter_all iter_all;
2818        bool first_bvec = true;
2819
2820        ASSERT(!bio_flagged(bio, BIO_CLONED));
2821        bio_for_each_segment_all(bvec, bio, iter_all) {
2822                struct page *page = bvec->bv_page;
2823                struct inode *inode = page->mapping->host;
2824                struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2825                const u32 sectorsize = fs_info->sectorsize;
2826
2827                /* Our read/write should always be sector aligned. */
2828                if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2829                        btrfs_err(fs_info,
2830                "partial page write in btrfs with offset %u and length %u",
2831                                  bvec->bv_offset, bvec->bv_len);
2832                else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2833                        btrfs_info(fs_info,
2834                "incomplete page write with offset %u and length %u",
2835                                   bvec->bv_offset, bvec->bv_len);
2836
2837                start = page_offset(page) + bvec->bv_offset;
2838                end = start + bvec->bv_len - 1;
2839
2840                if (first_bvec) {
2841                        btrfs_record_physical_zoned(inode, start, bio);
2842                        first_bvec = false;
2843                }
2844
2845                end_extent_writepage(page, error, start, end);
2846
2847                btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2848        }
2849
2850        bio_put(bio);
2851}
2852
2853/*
2854 * Record previously processed extent range
2855 *
2856 * For endio_readpage_release_extent() to handle a full extent range, reducing
2857 * the extent io operations.
2858 */
2859struct processed_extent {
2860        struct btrfs_inode *inode;
2861        /* Start of the range in @inode */
2862        u64 start;
2863        /* End of the range in @inode */
2864        u64 end;
2865        bool uptodate;
2866};
2867
2868/*
2869 * Try to release processed extent range
2870 *
2871 * May not release the extent range right now if the current range is
2872 * contiguous to processed extent.
2873 *
2874 * Will release processed extent when any of @inode, @uptodate, the range is
2875 * no longer contiguous to the processed range.
2876 *
2877 * Passing @inode == NULL will force processed extent to be released.
2878 */
2879static void endio_readpage_release_extent(struct processed_extent *processed,
2880                              struct btrfs_inode *inode, u64 start, u64 end,
2881                              bool uptodate)
2882{
2883        struct extent_state *cached = NULL;
2884        struct extent_io_tree *tree;
2885
2886        /* The first extent, initialize @processed */
2887        if (!processed->inode)
2888                goto update;
2889
2890        /*
2891         * Contiguous to processed extent, just uptodate the end.
2892         *
2893         * Several things to notice:
2894         *
2895         * - bio can be merged as long as on-disk bytenr is contiguous
2896         *   This means we can have page belonging to other inodes, thus need to
2897         *   check if the inode still matches.
2898         * - bvec can contain range beyond current page for multi-page bvec
2899         *   Thus we need to do processed->end + 1 >= start check
2900         */
2901        if (processed->inode == inode && processed->uptodate == uptodate &&
2902            processed->end + 1 >= start && end >= processed->end) {
2903                processed->end = end;
2904                return;
2905        }
2906
2907        tree = &processed->inode->io_tree;
2908        /*
2909         * Now we don't have range contiguous to the processed range, release
2910         * the processed range now.
2911         */
2912        if (processed->uptodate && tree->track_uptodate)
2913                set_extent_uptodate(tree, processed->start, processed->end,
2914                                    &cached, GFP_ATOMIC);
2915        unlock_extent_cached_atomic(tree, processed->start, processed->end,
2916                                    &cached);
2917
2918update:
2919        /* Update processed to current range */
2920        processed->inode = inode;
2921        processed->start = start;
2922        processed->end = end;
2923        processed->uptodate = uptodate;
2924}
2925
2926static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2927{
2928        ASSERT(PageLocked(page));
2929        if (fs_info->sectorsize == PAGE_SIZE)
2930                return;
2931
2932        ASSERT(PagePrivate(page));
2933        btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2934}
2935
2936/*
2937 * Find extent buffer for a givne bytenr.
2938 *
2939 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2940 * in endio context.
2941 */
2942static struct extent_buffer *find_extent_buffer_readpage(
2943                struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2944{
2945        struct extent_buffer *eb;
2946
2947        /*
2948         * For regular sectorsize, we can use page->private to grab extent
2949         * buffer
2950         */
2951        if (fs_info->sectorsize == PAGE_SIZE) {
2952                ASSERT(PagePrivate(page) && page->private);
2953                return (struct extent_buffer *)page->private;
2954        }
2955
2956        /* For subpage case, we need to lookup buffer radix tree */
2957        rcu_read_lock();
2958        eb = radix_tree_lookup(&fs_info->buffer_radix,
2959                               bytenr >> fs_info->sectorsize_bits);
2960        rcu_read_unlock();
2961        ASSERT(eb);
2962        return eb;
2963}
2964
2965/*
2966 * after a readpage IO is done, we need to:
2967 * clear the uptodate bits on error
2968 * set the uptodate bits if things worked
2969 * set the page up to date if all extents in the tree are uptodate
2970 * clear the lock bit in the extent tree
2971 * unlock the page if there are no other extents locked for it
2972 *
2973 * Scheduling is not allowed, so the extent state tree is expected
2974 * to have one and only one object corresponding to this IO.
2975 */
2976static void end_bio_extent_readpage(struct bio *bio)
2977{
2978        struct bio_vec *bvec;
2979        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2980        struct extent_io_tree *tree, *failure_tree;
2981        struct processed_extent processed = { 0 };
2982        /*
2983         * The offset to the beginning of a bio, since one bio can never be
2984         * larger than UINT_MAX, u32 here is enough.
2985         */
2986        u32 bio_offset = 0;
2987        int mirror;
2988        int ret;
2989        struct bvec_iter_all iter_all;
2990
2991        ASSERT(!bio_flagged(bio, BIO_CLONED));
2992        bio_for_each_segment_all(bvec, bio, iter_all) {
2993                bool uptodate = !bio->bi_status;
2994                struct page *page = bvec->bv_page;
2995                struct inode *inode = page->mapping->host;
2996                struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2997                const u32 sectorsize = fs_info->sectorsize;
2998                unsigned int error_bitmap = (unsigned int)-1;
2999                u64 start;
3000                u64 end;
3001                u32 len;
3002
3003                btrfs_debug(fs_info,
3004                        "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
3005                        bio->bi_iter.bi_sector, bio->bi_status,
3006                        io_bio->mirror_num);
3007                tree = &BTRFS_I(inode)->io_tree;
3008                failure_tree = &BTRFS_I(inode)->io_failure_tree;
3009
3010                /*
3011                 * We always issue full-sector reads, but if some block in a
3012                 * page fails to read, blk_update_request() will advance
3013                 * bv_offset and adjust bv_len to compensate.  Print a warning
3014                 * for unaligned offsets, and an error if they don't add up to
3015                 * a full sector.
3016                 */
3017                if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3018                        btrfs_err(fs_info,
3019                "partial page read in btrfs with offset %u and length %u",
3020                                  bvec->bv_offset, bvec->bv_len);
3021                else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3022                                     sectorsize))
3023                        btrfs_info(fs_info,
3024                "incomplete page read with offset %u and length %u",
3025                                   bvec->bv_offset, bvec->bv_len);
3026
3027                start = page_offset(page) + bvec->bv_offset;
3028                end = start + bvec->bv_len - 1;
3029                len = bvec->bv_len;
3030
3031                mirror = io_bio->mirror_num;
3032                if (likely(uptodate)) {
3033                        if (is_data_inode(inode)) {
3034                                error_bitmap = btrfs_verify_data_csum(io_bio,
3035                                                bio_offset, page, start, end);
3036                                ret = error_bitmap;
3037                        } else {
3038                                ret = btrfs_validate_metadata_buffer(io_bio,
3039                                        page, start, end, mirror);
3040                        }
3041                        if (ret)
3042                                uptodate = false;
3043                        else
3044                                clean_io_failure(BTRFS_I(inode)->root->fs_info,
3045                                                 failure_tree, tree, start,
3046                                                 page,
3047                                                 btrfs_ino(BTRFS_I(inode)), 0);
3048                }
3049
3050                if (likely(uptodate))
3051                        goto readpage_ok;
3052
3053                if (is_data_inode(inode)) {
3054                        /*
3055                         * btrfs_submit_read_repair() will handle all the good
3056                         * and bad sectors, we just continue to the next bvec.
3057                         */
3058                        submit_read_repair(inode, bio, bio_offset, page,
3059                                           start - page_offset(page), start,
3060                                           end, mirror, error_bitmap,
3061                                           btrfs_submit_data_bio);
3062
3063                        ASSERT(bio_offset + len > bio_offset);
3064                        bio_offset += len;
3065                        continue;
3066                } else {
3067                        struct extent_buffer *eb;
3068
3069                        eb = find_extent_buffer_readpage(fs_info, page, start);
3070                        set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3071                        eb->read_mirror = mirror;
3072                        atomic_dec(&eb->io_pages);
3073                        if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
3074                                               &eb->bflags))
3075                                btree_readahead_hook(eb, -EIO);
3076                }
3077readpage_ok:
3078                if (likely(uptodate)) {
3079                        loff_t i_size = i_size_read(inode);
3080                        pgoff_t end_index = i_size >> PAGE_SHIFT;
3081
3082                        /*
3083                         * Zero out the remaining part if this range straddles
3084                         * i_size.
3085                         *
3086                         * Here we should only zero the range inside the bvec,
3087                         * not touch anything else.
3088                         *
3089                         * NOTE: i_size is exclusive while end is inclusive.
3090                         */
3091                        if (page->index == end_index && i_size <= end) {
3092                                u32 zero_start = max(offset_in_page(i_size),
3093                                                     offset_in_page(start));
3094
3095                                zero_user_segment(page, zero_start,
3096                                                  offset_in_page(end) + 1);
3097                        }
3098                }
3099                ASSERT(bio_offset + len > bio_offset);
3100                bio_offset += len;
3101
3102                /* Update page status and unlock */
3103                end_page_read(page, uptodate, start, len);
3104                endio_readpage_release_extent(&processed, BTRFS_I(inode),
3105                                              start, end, PageUptodate(page));
3106        }
3107        /* Release the last extent */
3108        endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3109        btrfs_io_bio_free_csum(io_bio);
3110        bio_put(bio);
3111}
3112
3113/*
3114 * Initialize the members up to but not including 'bio'. Use after allocating a
3115 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3116 * 'bio' because use of __GFP_ZERO is not supported.
3117 */
3118static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3119{
3120        memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
3121}
3122
3123/*
3124 * The following helpers allocate a bio. As it's backed by a bioset, it'll
3125 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
3126 * for the appropriate container_of magic
3127 */
3128struct bio *btrfs_bio_alloc(u64 first_byte)
3129{
3130        struct bio *bio;
3131
3132        bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
3133        bio->bi_iter.bi_sector = first_byte >> 9;
3134        btrfs_io_bio_init(btrfs_io_bio(bio));
3135        return bio;
3136}
3137
3138struct bio *btrfs_bio_clone(struct bio *bio)
3139{
3140        struct btrfs_io_bio *btrfs_bio;
3141        struct bio *new;
3142
3143        /* Bio allocation backed by a bioset does not fail */
3144        new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3145        btrfs_bio = btrfs_io_bio(new);
3146        btrfs_io_bio_init(btrfs_bio);
3147        btrfs_bio->iter = bio->bi_iter;
3148        return new;
3149}
3150
3151struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3152{
3153        struct bio *bio;
3154
3155        /* Bio allocation backed by a bioset does not fail */
3156        bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3157        btrfs_io_bio_init(btrfs_io_bio(bio));
3158        return bio;
3159}
3160
3161struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
3162{
3163        struct bio *bio;
3164        struct btrfs_io_bio *btrfs_bio;
3165
3166        ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
3167
3168        /* this will never fail when it's backed by a bioset */
3169        bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3170        ASSERT(bio);
3171
3172        btrfs_bio = btrfs_io_bio(bio);
3173        btrfs_io_bio_init(btrfs_bio);
3174
3175        bio_trim(bio, offset >> 9, size >> 9);
3176        btrfs_bio->iter = bio->bi_iter;
3177        return bio;
3178}
3179
3180/**
3181 * Attempt to add a page to bio
3182 *
3183 * @bio:        destination bio
3184 * @page:       page to add to the bio
3185 * @disk_bytenr:  offset of the new bio or to check whether we are adding
3186 *                a contiguous page to the previous one
3187 * @pg_offset:  starting offset in the page
3188 * @size:       portion of page that we want to write
3189 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3190 * @bio_flags:  flags of the current bio to see if we can merge them
3191 *
3192 * Attempt to add a page to bio considering stripe alignment etc.
3193 *
3194 * Return >= 0 for the number of bytes added to the bio.
3195 * Can return 0 if the current bio is already at stripe/zone boundary.
3196 * Return <0 for error.
3197 */
3198static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3199                              struct page *page,
3200                              u64 disk_bytenr, unsigned int size,
3201                              unsigned int pg_offset,
3202                              unsigned long bio_flags)
3203{
3204        struct bio *bio = bio_ctrl->bio;
3205        u32 bio_size = bio->bi_iter.bi_size;
3206        u32 real_size;
3207        const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3208        bool contig;
3209        int ret;
3210
3211        ASSERT(bio);
3212        /* The limit should be calculated when bio_ctrl->bio is allocated */
3213        ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3214        if (bio_ctrl->bio_flags != bio_flags)
3215                return 0;
3216
3217        if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3218                contig = bio->bi_iter.bi_sector == sector;
3219        else
3220                contig = bio_end_sector(bio) == sector;
3221        if (!contig)
3222                return 0;
3223
3224        real_size = min(bio_ctrl->len_to_oe_boundary,
3225                        bio_ctrl->len_to_stripe_boundary) - bio_size;
3226        real_size = min(real_size, size);
3227
3228        /*
3229         * If real_size is 0, never call bio_add_*_page(), as even size is 0,
3230         * bio will still execute its endio function on the page!
3231         */
3232        if (real_size == 0)
3233                return 0;
3234
3235        if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3236                ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3237        else
3238                ret = bio_add_page(bio, page, real_size, pg_offset);
3239
3240        return ret;
3241}
3242
3243static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3244                               struct btrfs_inode *inode, u64 file_offset)
3245{
3246        struct btrfs_fs_info *fs_info = inode->root->fs_info;
3247        struct btrfs_io_geometry geom;
3248        struct btrfs_ordered_extent *ordered;
3249        struct extent_map *em;
3250        u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3251        int ret;
3252
3253        /*
3254         * Pages for compressed extent are never submitted to disk directly,
3255         * thus it has no real boundary, just set them to U32_MAX.
3256         *
3257         * The split happens for real compressed bio, which happens in
3258         * btrfs_submit_compressed_read/write().
3259         */
3260        if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
3261                bio_ctrl->len_to_oe_boundary = U32_MAX;
3262                bio_ctrl->len_to_stripe_boundary = U32_MAX;
3263                return 0;
3264        }
3265        em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3266        if (IS_ERR(em))
3267                return PTR_ERR(em);
3268        ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3269                                    logical, &geom);
3270        free_extent_map(em);
3271        if (ret < 0) {
3272                return ret;
3273        }
3274        if (geom.len > U32_MAX)
3275                bio_ctrl->len_to_stripe_boundary = U32_MAX;
3276        else
3277                bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3278
3279        if (!btrfs_is_zoned(fs_info) ||
3280            bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3281                bio_ctrl->len_to_oe_boundary = U32_MAX;
3282                return 0;
3283        }
3284
3285        /* Ordered extent not yet created, so we're good */
3286        ordered = btrfs_lookup_ordered_extent(inode, file_offset);
3287        if (!ordered) {
3288                bio_ctrl->len_to_oe_boundary = U32_MAX;
3289                return 0;
3290        }
3291
3292        bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3293                ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3294        btrfs_put_ordered_extent(ordered);
3295        return 0;
3296}
3297
3298static int alloc_new_bio(struct btrfs_inode *inode,
3299                         struct btrfs_bio_ctrl *bio_ctrl,
3300                         struct writeback_control *wbc,
3301                         unsigned int opf,
3302                         bio_end_io_t end_io_func,
3303                         u64 disk_bytenr, u32 offset, u64 file_offset,
3304                         unsigned long bio_flags)
3305{
3306        struct btrfs_fs_info *fs_info = inode->root->fs_info;
3307        struct bio *bio;
3308        int ret;
3309
3310        /*
3311         * For compressed page range, its disk_bytenr is always @disk_bytenr
3312         * passed in, no matter if we have added any range into previous bio.
3313         */
3314        if (bio_flags & EXTENT_BIO_COMPRESSED)
3315                bio = btrfs_bio_alloc(disk_bytenr);
3316        else
3317                bio = btrfs_bio_alloc(disk_bytenr + offset);
3318        bio_ctrl->bio = bio;
3319        bio_ctrl->bio_flags = bio_flags;
3320        bio->bi_end_io = end_io_func;
3321        bio->bi_private = &inode->io_tree;
3322        bio->bi_write_hint = inode->vfs_inode.i_write_hint;
3323        bio->bi_opf = opf;
3324        ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
3325        if (ret < 0)
3326                goto error;
3327        if (wbc) {
3328                struct block_device *bdev;
3329
3330                bdev = fs_info->fs_devices->latest_bdev;
3331                bio_set_dev(bio, bdev);
3332                wbc_init_bio(wbc, bio);
3333        }
3334        if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
3335                struct btrfs_device *device;
3336
3337                device = btrfs_zoned_get_device(fs_info, disk_bytenr,
3338                                                fs_info->sectorsize);
3339                if (IS_ERR(device)) {
3340                        ret = PTR_ERR(device);
3341                        goto error;
3342                }
3343
3344                btrfs_io_bio(bio)->device = device;
3345        }
3346        return 0;
3347error:
3348        bio_ctrl->bio = NULL;
3349        bio->bi_status = errno_to_blk_status(ret);
3350        bio_endio(bio);
3351        return ret;
3352}
3353
3354/*
3355 * @opf:        bio REQ_OP_* and REQ_* flags as one value
3356 * @wbc:        optional writeback control for io accounting
3357 * @page:       page to add to the bio
3358 * @disk_bytenr: logical bytenr where the write will be
3359 * @size:       portion of page that we want to write to
3360 * @pg_offset:  offset of the new bio or to check whether we are adding
3361 *              a contiguous page to the previous one
3362 * @bio_ret:    must be valid pointer, newly allocated bio will be stored there
3363 * @end_io_func:     end_io callback for new bio
3364 * @mirror_num:      desired mirror to read/write
3365 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3366 * @bio_flags:  flags of the current bio to see if we can merge them
3367 */
3368static int submit_extent_page(unsigned int opf,
3369                              struct writeback_control *wbc,
3370                              struct btrfs_bio_ctrl *bio_ctrl,
3371                              struct page *page, u64 disk_bytenr,
3372                              size_t size, unsigned long pg_offset,
3373                              bio_end_io_t end_io_func,
3374                              int mirror_num,
3375                              unsigned long bio_flags,
3376                              bool force_bio_submit)
3377{
3378        int ret = 0;
3379        struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3380        unsigned int cur = pg_offset;
3381
3382        ASSERT(bio_ctrl);
3383
3384        ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3385               pg_offset + size <= PAGE_SIZE);
3386        if (force_bio_submit && bio_ctrl->bio) {
3387                ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags);
3388                bio_ctrl->bio = NULL;
3389                if (ret < 0)
3390                        return ret;
3391        }
3392
3393        while (cur < pg_offset + size) {
3394                u32 offset = cur - pg_offset;
3395                int added;
3396
3397                /* Allocate new bio if needed */
3398                if (!bio_ctrl->bio) {
3399                        ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
3400                                            end_io_func, disk_bytenr, offset,
3401                                            page_offset(page) + cur,
3402                                            bio_flags);
3403                        if (ret < 0)
3404                                return ret;
3405                }
3406                /*
3407                 * We must go through btrfs_bio_add_page() to ensure each
3408                 * page range won't cross various boundaries.
3409                 */
3410                if (bio_flags & EXTENT_BIO_COMPRESSED)
3411                        added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
3412                                        size - offset, pg_offset + offset,
3413                                        bio_flags);
3414                else
3415                        added = btrfs_bio_add_page(bio_ctrl, page,
3416                                        disk_bytenr + offset, size - offset,
3417                                        pg_offset + offset, bio_flags);
3418
3419                /* Metadata page range should never be split */
3420                if (!is_data_inode(&inode->vfs_inode))
3421                        ASSERT(added == 0 || added == size - offset);
3422
3423                /* At least we added some page, update the account */
3424                if (wbc && added)
3425                        wbc_account_cgroup_owner(wbc, page, added);
3426
3427                /* We have reached boundary, submit right now */
3428                if (added < size - offset) {
3429                        /* The bio should contain some page(s) */
3430                        ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3431                        ret = submit_one_bio(bio_ctrl->bio, mirror_num,
3432                                        bio_ctrl->bio_flags);
3433                        bio_ctrl->bio = NULL;
3434                        if (ret < 0)
3435                                return ret;
3436                }
3437                cur += added;
3438        }
3439        return 0;
3440}
3441
3442static int attach_extent_buffer_page(struct extent_buffer *eb,
3443                                     struct page *page,
3444                                     struct btrfs_subpage *prealloc)
3445{
3446        struct btrfs_fs_info *fs_info = eb->fs_info;
3447        int ret = 0;
3448
3449        /*
3450         * If the page is mapped to btree inode, we should hold the private
3451         * lock to prevent race.
3452         * For cloned or dummy extent buffers, their pages are not mapped and
3453         * will not race with any other ebs.
3454         */
3455        if (page->mapping)
3456                lockdep_assert_held(&page->mapping->private_lock);
3457
3458        if (fs_info->sectorsize == PAGE_SIZE) {
3459                if (!PagePrivate(page))
3460                        attach_page_private(page, eb);
3461                else
3462                        WARN_ON(page->private != (unsigned long)eb);
3463                return 0;
3464        }
3465
3466        /* Already mapped, just free prealloc */
3467        if (PagePrivate(page)) {
3468                btrfs_free_subpage(prealloc);
3469                return 0;
3470        }
3471
3472        if (prealloc)
3473                /* Has preallocated memory for subpage */
3474                attach_page_private(page, prealloc);
3475        else
3476                /* Do new allocation to attach subpage */
3477                ret = btrfs_attach_subpage(fs_info, page,
3478                                           BTRFS_SUBPAGE_METADATA);
3479        return ret;
3480}
3481
3482int set_page_extent_mapped(struct page *page)
3483{
3484        struct btrfs_fs_info *fs_info;
3485
3486        ASSERT(page->mapping);
3487
3488        if (PagePrivate(page))
3489                return 0;
3490
3491        fs_info = btrfs_sb(page->mapping->host->i_sb);
3492
3493        if (fs_info->sectorsize < PAGE_SIZE)
3494                return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3495
3496        attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3497        return 0;
3498}
3499
3500void clear_page_extent_mapped(struct page *page)
3501{
3502        struct btrfs_fs_info *fs_info;
3503
3504        ASSERT(page->mapping);
3505
3506        if (!PagePrivate(page))
3507                return;
3508
3509        fs_info = btrfs_sb(page->mapping->host->i_sb);
3510        if (fs_info->sectorsize < PAGE_SIZE)
3511                return btrfs_detach_subpage(fs_info, page);
3512
3513        detach_page_private(page);
3514}
3515
3516static struct extent_map *
3517__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3518                 u64 start, u64 len, struct extent_map **em_cached)
3519{
3520        struct extent_map *em;
3521
3522        if (em_cached && *em_cached) {
3523                em = *em_cached;
3524                if (extent_map_in_tree(em) && start >= em->start &&
3525                    start < extent_map_end(em)) {
3526                        refcount_inc(&em->refs);
3527                        return em;
3528                }
3529
3530                free_extent_map(em);
3531                *em_cached = NULL;
3532        }
3533
3534        em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3535        if (em_cached && !IS_ERR_OR_NULL(em)) {
3536                BUG_ON(*em_cached);
3537                refcount_inc(&em->refs);
3538                *em_cached = em;
3539        }
3540        return em;
3541}
3542/*
3543 * basic readpage implementation.  Locked extent state structs are inserted
3544 * into the tree that are removed when the IO is done (by the end_io
3545 * handlers)
3546 * XXX JDM: This needs looking at to ensure proper page locking
3547 * return 0 on success, otherwise return error
3548 */
3549int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3550                      struct btrfs_bio_ctrl *bio_ctrl,
3551                      unsigned int read_flags, u64 *prev_em_start)
3552{
3553        struct inode *inode = page->mapping->host;
3554        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3555        u64 start = page_offset(page);
3556        const u64 end = start + PAGE_SIZE - 1;
3557        u64 cur = start;
3558        u64 extent_offset;
3559        u64 last_byte = i_size_read(inode);
3560        u64 block_start;
3561        u64 cur_end;
3562        struct extent_map *em;
3563        int ret = 0;
3564        int nr = 0;
3565        size_t pg_offset = 0;
3566        size_t iosize;
3567        size_t blocksize = inode->i_sb->s_blocksize;
3568        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3569
3570        ret = set_page_extent_mapped(page);
3571        if (ret < 0) {
3572                unlock_extent(tree, start, end);
3573                btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3574                unlock_page(page);
3575                goto out;
3576        }
3577
3578        if (!PageUptodate(page)) {
3579                if (cleancache_get_page(page) == 0) {
3580                        BUG_ON(blocksize != PAGE_SIZE);
3581                        unlock_extent(tree, start, end);
3582                        unlock_page(page);
3583                        goto out;
3584                }
3585        }
3586
3587        if (page->index == last_byte >> PAGE_SHIFT) {
3588                size_t zero_offset = offset_in_page(last_byte);
3589
3590                if (zero_offset) {
3591                        iosize = PAGE_SIZE - zero_offset;
3592                        memzero_page(page, zero_offset, iosize);
3593                        flush_dcache_page(page);
3594                }
3595        }
3596        begin_page_read(fs_info, page);
3597        while (cur <= end) {
3598                unsigned long this_bio_flag = 0;
3599                bool force_bio_submit = false;
3600                u64 disk_bytenr;
3601
3602                if (cur >= last_byte) {
3603                        struct extent_state *cached = NULL;
3604
3605                        iosize = PAGE_SIZE - pg_offset;
3606                        memzero_page(page, pg_offset, iosize);
3607                        flush_dcache_page(page);
3608                        set_extent_uptodate(tree, cur, cur + iosize - 1,
3609                                            &cached, GFP_NOFS);
3610                        unlock_extent_cached(tree, cur,
3611                                             cur + iosize - 1, &cached);
3612                        end_page_read(page, true, cur, iosize);
3613                        break;
3614                }
3615                em = __get_extent_map(inode, page, pg_offset, cur,
3616                                      end - cur + 1, em_cached);
3617                if (IS_ERR_OR_NULL(em)) {
3618                        unlock_extent(tree, cur, end);
3619                        end_page_read(page, false, cur, end + 1 - cur);
3620                        break;
3621                }
3622                extent_offset = cur - em->start;
3623                BUG_ON(extent_map_end(em) <= cur);
3624                BUG_ON(end < cur);
3625
3626                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3627                        this_bio_flag |= EXTENT_BIO_COMPRESSED;
3628                        extent_set_compress_type(&this_bio_flag,
3629                                                 em->compress_type);
3630                }
3631
3632                iosize = min(extent_map_end(em) - cur, end - cur + 1);
3633                cur_end = min(extent_map_end(em) - 1, end);
3634                iosize = ALIGN(iosize, blocksize);
3635                if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3636                        disk_bytenr = em->block_start;
3637                else
3638                        disk_bytenr = em->block_start + extent_offset;
3639                block_start = em->block_start;
3640                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3641                        block_start = EXTENT_MAP_HOLE;
3642
3643                /*
3644                 * If we have a file range that points to a compressed extent
3645                 * and it's followed by a consecutive file range that points
3646                 * to the same compressed extent (possibly with a different
3647                 * offset and/or length, so it either points to the whole extent
3648                 * or only part of it), we must make sure we do not submit a
3649                 * single bio to populate the pages for the 2 ranges because
3650                 * this makes the compressed extent read zero out the pages
3651                 * belonging to the 2nd range. Imagine the following scenario:
3652                 *
3653                 *  File layout
3654                 *  [0 - 8K]                     [8K - 24K]
3655                 *    |                               |
3656                 *    |                               |
3657                 * points to extent X,         points to extent X,
3658                 * offset 4K, length of 8K     offset 0, length 16K
3659                 *
3660                 * [extent X, compressed length = 4K uncompressed length = 16K]
3661                 *
3662                 * If the bio to read the compressed extent covers both ranges,
3663                 * it will decompress extent X into the pages belonging to the
3664                 * first range and then it will stop, zeroing out the remaining
3665                 * pages that belong to the other range that points to extent X.
3666                 * So here we make sure we submit 2 bios, one for the first
3667                 * range and another one for the third range. Both will target
3668                 * the same physical extent from disk, but we can't currently
3669                 * make the compressed bio endio callback populate the pages
3670                 * for both ranges because each compressed bio is tightly
3671                 * coupled with a single extent map, and each range can have
3672                 * an extent map with a different offset value relative to the
3673                 * uncompressed data of our extent and different lengths. This
3674                 * is a corner case so we prioritize correctness over
3675                 * non-optimal behavior (submitting 2 bios for the same extent).
3676                 */
3677                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3678                    prev_em_start && *prev_em_start != (u64)-1 &&
3679                    *prev_em_start != em->start)
3680                        force_bio_submit = true;
3681
3682                if (prev_em_start)
3683                        *prev_em_start = em->start;
3684
3685                free_extent_map(em);
3686                em = NULL;
3687
3688                /* we've found a hole, just zero and go on */
3689                if (block_start == EXTENT_MAP_HOLE) {
3690                        struct extent_state *cached = NULL;
3691
3692                        memzero_page(page, pg_offset, iosize);
3693                        flush_dcache_page(page);
3694
3695                        set_extent_uptodate(tree, cur, cur + iosize - 1,
3696                                            &cached, GFP_NOFS);
3697                        unlock_extent_cached(tree, cur,
3698                                             cur + iosize - 1, &cached);
3699                        end_page_read(page, true, cur, iosize);
3700                        cur = cur + iosize;
3701                        pg_offset += iosize;
3702                        continue;
3703                }
3704                /* the get_extent function already copied into the page */
3705                if (test_range_bit(tree, cur, cur_end,
3706                                   EXTENT_UPTODATE, 1, NULL)) {
3707                        unlock_extent(tree, cur, cur + iosize - 1);
3708                        end_page_read(page, true, cur, iosize);
3709                        cur = cur + iosize;
3710                        pg_offset += iosize;
3711                        continue;
3712                }
3713                /* we have an inline extent but it didn't get marked up
3714                 * to date.  Error out
3715                 */
3716                if (block_start == EXTENT_MAP_INLINE) {
3717                        unlock_extent(tree, cur, cur + iosize - 1);
3718                        end_page_read(page, false, cur, iosize);
3719                        cur = cur + iosize;
3720                        pg_offset += iosize;
3721                        continue;
3722                }
3723
3724                ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3725                                         bio_ctrl, page, disk_bytenr, iosize,
3726                                         pg_offset,
3727                                         end_bio_extent_readpage, 0,
3728                                         this_bio_flag,
3729                                         force_bio_submit);
3730                if (!ret) {
3731                        nr++;
3732                } else {
3733                        unlock_extent(tree, cur, cur + iosize - 1);
3734                        end_page_read(page, false, cur, iosize);
3735                        goto out;
3736                }
3737                cur = cur + iosize;
3738                pg_offset += iosize;
3739        }
3740out:
3741        return ret;
3742}
3743
3744static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3745                                        u64 start, u64 end,
3746                                        struct extent_map **em_cached,
3747                                        struct btrfs_bio_ctrl *bio_ctrl,
3748                                        u64 *prev_em_start)
3749{
3750        struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3751        int index;
3752
3753        btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3754
3755        for (index = 0; index < nr_pages; index++) {
3756                btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3757                                  REQ_RAHEAD, prev_em_start);
3758                put_page(pages[index]);
3759        }
3760}
3761
3762static void update_nr_written(struct writeback_control *wbc,
3763                              unsigned long nr_written)
3764{
3765        wbc->nr_to_write -= nr_written;
3766}
3767
3768/*
3769 * helper for __extent_writepage, doing all of the delayed allocation setup.
3770 *
3771 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3772 * to write the page (copy into inline extent).  In this case the IO has
3773 * been started and the page is already unlocked.
3774 *
3775 * This returns 0 if all went well (page still locked)
3776 * This returns < 0 if there were errors (page still locked)
3777 */
3778static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3779                struct page *page, struct writeback_control *wbc,
3780                u64 delalloc_start, unsigned long *nr_written)
3781{
3782        u64 page_end = delalloc_start + PAGE_SIZE - 1;
3783        bool found;
3784        u64 delalloc_to_write = 0;
3785        u64 delalloc_end = 0;
3786        int ret;
3787        int page_started = 0;
3788
3789
3790        while (delalloc_end < page_end) {
3791                found = find_lock_delalloc_range(&inode->vfs_inode, page,
3792                                               &delalloc_start,
3793                                               &delalloc_end);
3794                if (!found) {
3795                        delalloc_start = delalloc_end + 1;
3796                        continue;
3797                }
3798                ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3799                                delalloc_end, &page_started, nr_written, wbc);
3800                if (ret) {
3801                        btrfs_page_set_error(inode->root->fs_info, page,
3802                                             page_offset(page), PAGE_SIZE);
3803                        return ret;
3804                }
3805                /*
3806                 * delalloc_end is already one less than the total length, so
3807                 * we don't subtract one from PAGE_SIZE
3808                 */
3809                delalloc_to_write += (delalloc_end - delalloc_start +
3810                                      PAGE_SIZE) >> PAGE_SHIFT;
3811                delalloc_start = delalloc_end + 1;
3812        }
3813        if (wbc->nr_to_write < delalloc_to_write) {
3814                int thresh = 8192;
3815
3816                if (delalloc_to_write < thresh * 2)
3817                        thresh = delalloc_to_write;
3818                wbc->nr_to_write = min_t(u64, delalloc_to_write,
3819                                         thresh);
3820        }
3821
3822        /* did the fill delalloc function already unlock and start
3823         * the IO?
3824         */
3825        if (page_started) {
3826                /*
3827                 * we've unlocked the page, so we can't update
3828                 * the mapping's writeback index, just update
3829                 * nr_to_write.
3830                 */
3831                wbc->nr_to_write -= *nr_written;
3832                return 1;
3833        }
3834
3835        return 0;
3836}
3837
3838/*
3839 * Find the first byte we need to write.
3840 *
3841 * For subpage, one page can contain several sectors, and
3842 * __extent_writepage_io() will just grab all extent maps in the page
3843 * range and try to submit all non-inline/non-compressed extents.
3844 *
3845 * This is a big problem for subpage, we shouldn't re-submit already written
3846 * data at all.
3847 * This function will lookup subpage dirty bit to find which range we really
3848 * need to submit.
3849 *
3850 * Return the next dirty range in [@start, @end).
3851 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3852 */
3853static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3854                                 struct page *page, u64 *start, u64 *end)
3855{
3856        struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3857        u64 orig_start = *start;
3858        /* Declare as unsigned long so we can use bitmap ops */
3859        unsigned long dirty_bitmap;
3860        unsigned long flags;
3861        int nbits = (orig_start - page_offset(page)) >> fs_info->sectorsize_bits;
3862        int range_start_bit = nbits;
3863        int range_end_bit;
3864
3865        /*
3866         * For regular sector size == page size case, since one page only
3867         * contains one sector, we return the page offset directly.
3868         */
3869        if (fs_info->sectorsize == PAGE_SIZE) {
3870                *start = page_offset(page);
3871                *end = page_offset(page) + PAGE_SIZE;
3872                return;
3873        }
3874
3875        /* We should have the page locked, but just in case */
3876        spin_lock_irqsave(&subpage->lock, flags);
3877        dirty_bitmap = subpage->dirty_bitmap;
3878        spin_unlock_irqrestore(&subpage->lock, flags);
3879
3880        bitmap_next_set_region(&dirty_bitmap, &range_start_bit, &range_end_bit,
3881                               BTRFS_SUBPAGE_BITMAP_SIZE);
3882        *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3883        *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3884}
3885
3886/*
3887 * helper for __extent_writepage.  This calls the writepage start hooks,
3888 * and does the loop to map the page into extents and bios.
3889 *
3890 * We return 1 if the IO is started and the page is unlocked,
3891 * 0 if all went well (page still locked)
3892 * < 0 if there were errors (page still locked)
3893 */
3894static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3895                                 struct page *page,
3896                                 struct writeback_control *wbc,
3897                                 struct extent_page_data *epd,
3898                                 loff_t i_size,
3899                                 unsigned long nr_written,
3900                                 int *nr_ret)
3901{
3902        struct btrfs_fs_info *fs_info = inode->root->fs_info;
3903        u64 cur = page_offset(page);
3904        u64 end = cur + PAGE_SIZE - 1;
3905        u64 extent_offset;
3906        u64 block_start;
3907        struct extent_map *em;
3908        int ret = 0;
3909        int nr = 0;
3910        u32 opf = REQ_OP_WRITE;
3911        const unsigned int write_flags = wbc_to_write_flags(wbc);
3912        bool compressed;
3913
3914        ret = btrfs_writepage_cow_fixup(page);
3915        if (ret) {
3916                /* Fixup worker will requeue */
3917                redirty_page_for_writepage(wbc, page);
3918                update_nr_written(wbc, nr_written);
3919                unlock_page(page);
3920                return 1;
3921        }
3922
3923        /*
3924         * we don't want to touch the inode after unlocking the page,
3925         * so we update the mapping writeback index now
3926         */
3927        update_nr_written(wbc, nr_written + 1);
3928
3929        while (cur <= end) {
3930                u64 disk_bytenr;
3931                u64 em_end;
3932                u64 dirty_range_start = cur;
3933                u64 dirty_range_end;
3934                u32 iosize;
3935
3936                if (cur >= i_size) {
3937                        btrfs_writepage_endio_finish_ordered(inode, page, cur,
3938                                                             end, true);
3939                        /*
3940                         * This range is beyond i_size, thus we don't need to
3941                         * bother writing back.
3942                         * But we still need to clear the dirty subpage bit, or
3943                         * the next time the page gets dirtied, we will try to
3944                         * writeback the sectors with subpage dirty bits,
3945                         * causing writeback without ordered extent.
3946                         */
3947                        btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
3948                        break;
3949                }
3950
3951                find_next_dirty_byte(fs_info, page, &dirty_range_start,
3952                                     &dirty_range_end);
3953                if (cur < dirty_range_start) {
3954                        cur = dirty_range_start;
3955                        continue;
3956                }
3957
3958                em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3959                if (IS_ERR_OR_NULL(em)) {
3960                        btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3961                        ret = PTR_ERR_OR_ZERO(em);
3962                        break;
3963                }
3964
3965                extent_offset = cur - em->start;
3966                em_end = extent_map_end(em);
3967                ASSERT(cur <= em_end);
3968                ASSERT(cur < end);
3969                ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
3970                ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3971                block_start = em->block_start;
3972                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3973                disk_bytenr = em->block_start + extent_offset;
3974
3975                /*
3976                 * Note that em_end from extent_map_end() and dirty_range_end from
3977                 * find_next_dirty_byte() are all exclusive
3978                 */
3979                iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3980
3981                if (btrfs_use_zone_append(inode, em->block_start))
3982                        opf = REQ_OP_ZONE_APPEND;
3983
3984                free_extent_map(em);
3985                em = NULL;
3986
3987                /*
3988                 * compressed and inline extents are written through other
3989                 * paths in the FS
3990                 */
3991                if (compressed || block_start == EXTENT_MAP_HOLE ||
3992                    block_start == EXTENT_MAP_INLINE) {
3993                        if (compressed)
3994                                nr++;
3995                        else
3996                                btrfs_writepage_endio_finish_ordered(inode,
3997                                                page, cur, cur + iosize - 1, true);
3998                        btrfs_page_clear_dirty(fs_info, page, cur, iosize);
3999                        cur += iosize;
4000                        continue;
4001                }
4002
4003                btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
4004                if (!PageWriteback(page)) {
4005                        btrfs_err(inode->root->fs_info,
4006                                   "page %lu not writeback, cur %llu end %llu",
4007                               page->index, cur, end);
4008                }
4009
4010                /*
4011                 * Although the PageDirty bit is cleared before entering this
4012                 * function, subpage dirty bit is not cleared.
4013                 * So clear subpage dirty bit here so next time we won't submit
4014                 * page for range already written to disk.
4015                 */
4016                btrfs_page_clear_dirty(fs_info, page, cur, iosize);
4017
4018                ret = submit_extent_page(opf | write_flags, wbc,
4019                                         &epd->bio_ctrl, page,
4020                                         disk_bytenr, iosize,
4021                                         cur - page_offset(page),
4022                                         end_bio_extent_writepage,
4023                                         0, 0, false);
4024                if (ret) {
4025                        btrfs_page_set_error(fs_info, page, cur, iosize);
4026                        if (PageWriteback(page))
4027                                btrfs_page_clear_writeback(fs_info, page, cur,
4028                                                           iosize);
4029                }
4030
4031                cur += iosize;
4032                nr++;
4033        }
4034        /*
4035         * If we finish without problem, we should not only clear page dirty,
4036         * but also empty subpage dirty bits
4037         */
4038        if (!ret)
4039                btrfs_page_assert_not_dirty(fs_info, page);
4040        *nr_ret = nr;
4041        return ret;
4042}
4043
4044/*
4045 * the writepage semantics are similar to regular writepage.  extent
4046 * records are inserted to lock ranges in the tree, and as dirty areas
4047 * are found, they are marked writeback.  Then the lock bits are removed
4048 * and the end_io handler clears the writeback ranges
4049 *
4050 * Return 0 if everything goes well.
4051 * Return <0 for error.
4052 */
4053static int __extent_writepage(struct page *page, struct writeback_control *wbc,
4054                              struct extent_page_data *epd)
4055{
4056        struct inode *inode = page->mapping->host;
4057        u64 start = page_offset(page);
4058        u64 page_end = start + PAGE_SIZE - 1;
4059        int ret;
4060        int nr = 0;
4061        size_t pg_offset;
4062        loff_t i_size = i_size_read(inode);
4063        unsigned long end_index = i_size >> PAGE_SHIFT;
4064        unsigned long nr_written = 0;
4065
4066        trace___extent_writepage(page, inode, wbc);
4067
4068        WARN_ON(!PageLocked(page));
4069
4070        btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
4071                               page_offset(page), PAGE_SIZE);
4072
4073        pg_offset = offset_in_page(i_size);
4074        if (page->index > end_index ||
4075           (page->index == end_index && !pg_offset)) {
4076                page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
4077                unlock_page(page);
4078                return 0;
4079        }
4080
4081        if (page->index == end_index) {
4082                memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
4083                flush_dcache_page(page);
4084        }
4085
4086        ret = set_page_extent_mapped(page);
4087        if (ret < 0) {
4088                SetPageError(page);
4089                goto done;
4090        }
4091
4092        if (!epd->extent_locked) {
4093                ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
4094                                         &nr_written);
4095                if (ret == 1)
4096                        return 0;
4097                if (ret)
4098                        goto done;
4099        }
4100
4101        ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4102                                    nr_written, &nr);
4103        if (ret == 1)
4104                return 0;
4105
4106done:
4107        if (nr == 0) {
4108                /* make sure the mapping tag for page dirty gets cleared */
4109                set_page_writeback(page);
4110                end_page_writeback(page);
4111        }
4112        /*
4113         * Here we used to have a check for PageError() and then set @ret and
4114         * call end_extent_writepage().
4115         *
4116         * But in fact setting @ret here will cause different error paths
4117         * between subpage and regular sectorsize.
4118         *
4119         * For regular page size, we never submit current page, but only add
4120         * current page to current bio.
4121         * The bio submission can only happen in next page.
4122         * Thus if we hit the PageError() branch, @ret is already set to
4123         * non-zero value and will not get updated for regular sectorsize.
4124         *
4125         * But for subpage case, it's possible we submit part of current page,
4126         * thus can get PageError() set by submitted bio of the same page,
4127         * while our @ret is still 0.
4128         *
4129         * So here we unify the behavior and don't set @ret.
4130         * Error can still be properly passed to higher layer as page will
4131         * be set error, here we just don't handle the IO failure.
4132         *
4133         * NOTE: This is just a hotfix for subpage.
4134         * The root fix will be properly ending ordered extent when we hit
4135         * an error during writeback.
4136         *
4137         * But that needs a bigger refactoring, as we not only need to grab the
4138         * submitted OE, but also need to know exactly at which bytenr we hit
4139         * the error.
4140         * Currently the full page based __extent_writepage_io() is not
4141         * capable of that.
4142         */
4143        if (PageError(page))
4144                end_extent_writepage(page, ret, start, page_end);
4145        unlock_page(page);
4146        ASSERT(ret <= 0);
4147        return ret;
4148}
4149
4150void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4151{
4152        wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4153                       TASK_UNINTERRUPTIBLE);
4154}
4155
4156static void end_extent_buffer_writeback(struct extent_buffer *eb)
4157{
4158        clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4159        smp_mb__after_atomic();
4160        wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4161}
4162
4163/*
4164 * Lock extent buffer status and pages for writeback.
4165 *
4166 * May try to flush write bio if we can't get the lock.
4167 *
4168 * Return  0 if the extent buffer doesn't need to be submitted.
4169 *           (E.g. the extent buffer is not dirty)
4170 * Return >0 is the extent buffer is submitted to bio.
4171 * Return <0 if something went wrong, no page is locked.
4172 */
4173static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4174                          struct extent_page_data *epd)
4175{
4176        struct btrfs_fs_info *fs_info = eb->fs_info;
4177        int i, num_pages, failed_page_nr;
4178        int flush = 0;
4179        int ret = 0;
4180
4181        if (!btrfs_try_tree_write_lock(eb)) {
4182                ret = flush_write_bio(epd);
4183                if (ret < 0)
4184                        return ret;
4185                flush = 1;
4186                btrfs_tree_lock(eb);
4187        }
4188
4189        if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4190                btrfs_tree_unlock(eb);
4191                if (!epd->sync_io)
4192                        return 0;
4193                if (!flush) {
4194                        ret = flush_write_bio(epd);
4195                        if (ret < 0)
4196                                return ret;
4197                        flush = 1;
4198                }
4199                while (1) {
4200                        wait_on_extent_buffer_writeback(eb);
4201                        btrfs_tree_lock(eb);
4202                        if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4203                                break;
4204                        btrfs_tree_unlock(eb);
4205                }
4206        }
4207
4208        /*
4209         * We need to do this to prevent races in people who check if the eb is
4210         * under IO since we can end up having no IO bits set for a short period
4211         * of time.
4212         */
4213        spin_lock(&eb->refs_lock);
4214        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4215                set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4216                spin_unlock(&eb->refs_lock);
4217                btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4218                percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4219                                         -eb->len,
4220                                         fs_info->dirty_metadata_batch);
4221                ret = 1;
4222        } else {
4223                spin_unlock(&eb->refs_lock);
4224        }
4225
4226        btrfs_tree_unlock(eb);
4227
4228        /*
4229         * Either we don't need to submit any tree block, or we're submitting
4230         * subpage eb.
4231         * Subpage metadata doesn't use page locking at all, so we can skip
4232         * the page locking.
4233         */
4234        if (!ret || fs_info->sectorsize < PAGE_SIZE)
4235                return ret;
4236
4237        num_pages = num_extent_pages(eb);
4238        for (i = 0; i < num_pages; i++) {
4239                struct page *p = eb->pages[i];
4240
4241                if (!trylock_page(p)) {
4242                        if (!flush) {
4243                                int err;
4244
4245                                err = flush_write_bio(epd);
4246                                if (err < 0) {
4247                                        ret = err;
4248                                        failed_page_nr = i;
4249                                        goto err_unlock;
4250                                }
4251                                flush = 1;
4252                        }
4253                        lock_page(p);
4254                }
4255        }
4256
4257        return ret;
4258err_unlock:
4259        /* Unlock already locked pages */
4260        for (i = 0; i < failed_page_nr; i++)
4261                unlock_page(eb->pages[i]);
4262        /*
4263         * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
4264         * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
4265         * be made and undo everything done before.
4266         */
4267        btrfs_tree_lock(eb);
4268        spin_lock(&eb->refs_lock);
4269        set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4270        end_extent_buffer_writeback(eb);
4271        spin_unlock(&eb->refs_lock);
4272        percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
4273                                 fs_info->dirty_metadata_batch);
4274        btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4275        btrfs_tree_unlock(eb);
4276        return ret;
4277}
4278
4279static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4280{
4281        struct btrfs_fs_info *fs_info = eb->fs_info;
4282
4283        btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4284        if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4285                return;
4286
4287        /*
4288         * If we error out, we should add back the dirty_metadata_bytes
4289         * to make it consistent.
4290         */
4291        percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4292                                 eb->len, fs_info->dirty_metadata_batch);
4293
4294        /*
4295         * If writeback for a btree extent that doesn't belong to a log tree
4296         * failed, increment the counter transaction->eb_write_errors.
4297         * We do this because while the transaction is running and before it's
4298         * committing (when we call filemap_fdata[write|wait]_range against
4299         * the btree inode), we might have
4300         * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4301         * returns an error or an error happens during writeback, when we're
4302         * committing the transaction we wouldn't know about it, since the pages
4303         * can be no longer dirty nor marked anymore for writeback (if a
4304         * subsequent modification to the extent buffer didn't happen before the
4305         * transaction commit), which makes filemap_fdata[write|wait]_range not
4306         * able to find the pages tagged with SetPageError at transaction
4307         * commit time. So if this happens we must abort the transaction,
4308         * otherwise we commit a super block with btree roots that point to
4309         * btree nodes/leafs whose content on disk is invalid - either garbage
4310         * or the content of some node/leaf from a past generation that got
4311         * cowed or deleted and is no longer valid.
4312         *
4313         * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4314         * not be enough - we need to distinguish between log tree extents vs
4315         * non-log tree extents, and the next filemap_fdatawait_range() call
4316         * will catch and clear such errors in the mapping - and that call might
4317         * be from a log sync and not from a transaction commit. Also, checking
4318         * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4319         * not done and would not be reliable - the eb might have been released
4320         * from memory and reading it back again means that flag would not be
4321         * set (since it's a runtime flag, not persisted on disk).
4322         *
4323         * Using the flags below in the btree inode also makes us achieve the
4324         * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4325         * writeback for all dirty pages and before filemap_fdatawait_range()
4326         * is called, the writeback for all dirty pages had already finished
4327         * with errors - because we were not using AS_EIO/AS_ENOSPC,
4328         * filemap_fdatawait_range() would return success, as it could not know
4329         * that writeback errors happened (the pages were no longer tagged for
4330         * writeback).
4331         */
4332        switch (eb->log_index) {
4333        case -1:
4334                set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4335                break;
4336        case 0:
4337                set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4338                break;
4339        case 1:
4340                set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4341                break;
4342        default:
4343                BUG(); /* unexpected, logic error */
4344        }
4345}
4346
4347/*
4348 * The endio specific version which won't touch any unsafe spinlock in endio
4349 * context.
4350 */
4351static struct extent_buffer *find_extent_buffer_nolock(
4352                struct btrfs_fs_info *fs_info, u64 start)
4353{
4354        struct extent_buffer *eb;
4355
4356        rcu_read_lock();
4357        eb = radix_tree_lookup(&fs_info->buffer_radix,
4358                               start >> fs_info->sectorsize_bits);
4359        if (eb && atomic_inc_not_zero(&eb->refs)) {
4360                rcu_read_unlock();
4361                return eb;
4362        }
4363        rcu_read_unlock();
4364        return NULL;
4365}
4366
4367/*
4368 * The endio function for subpage extent buffer write.
4369 *
4370 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4371 * after all extent buffers in the page has finished their writeback.
4372 */
4373static void end_bio_subpage_eb_writepage(struct bio *bio)
4374{
4375        struct btrfs_fs_info *fs_info;
4376        struct bio_vec *bvec;
4377        struct bvec_iter_all iter_all;
4378
4379        fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4380        ASSERT(fs_info->sectorsize < PAGE_SIZE);
4381
4382        ASSERT(!bio_flagged(bio, BIO_CLONED));
4383        bio_for_each_segment_all(bvec, bio, iter_all) {
4384                struct page *page = bvec->bv_page;
4385                u64 bvec_start = page_offset(page) + bvec->bv_offset;
4386                u64 bvec_end = bvec_start + bvec->bv_len - 1;
4387                u64 cur_bytenr = bvec_start;
4388
4389                ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4390
4391                /* Iterate through all extent buffers in the range */
4392                while (cur_bytenr <= bvec_end) {
4393                        struct extent_buffer *eb;
4394                        int done;
4395
4396                        /*
4397                         * Here we can't use find_extent_buffer(), as it may
4398                         * try to lock eb->refs_lock, which is not safe in endio
4399                         * context.
4400                         */
4401                        eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4402                        ASSERT(eb);
4403
4404                        cur_bytenr = eb->start + eb->len;
4405
4406                        ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4407                        done = atomic_dec_and_test(&eb->io_pages);
4408                        ASSERT(done);
4409
4410                        if (bio->bi_status ||
4411                            test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4412                                ClearPageUptodate(page);
4413                                set_btree_ioerr(page, eb);
4414                        }
4415
4416                        btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4417                                                      eb->len);
4418                        end_extent_buffer_writeback(eb);
4419                        /*
4420                         * free_extent_buffer() will grab spinlock which is not
4421                         * safe in endio context. Thus here we manually dec
4422                         * the ref.
4423                         */
4424                        atomic_dec(&eb->refs);
4425                }
4426        }
4427        bio_put(bio);
4428}
4429
4430static void end_bio_extent_buffer_writepage(struct bio *bio)
4431{
4432        struct bio_vec *bvec;
4433        struct extent_buffer *eb;
4434        int done;
4435        struct bvec_iter_all iter_all;
4436
4437        ASSERT(!bio_flagged(bio, BIO_CLONED));
4438        bio_for_each_segment_all(bvec, bio, iter_all) {
4439                struct page *page = bvec->bv_page;
4440
4441                eb = (struct extent_buffer *)page->private;
4442                BUG_ON(!eb);
4443                done = atomic_dec_and_test(&eb->io_pages);
4444
4445                if (bio->bi_status ||
4446                    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4447                        ClearPageUptodate(page);
4448                        set_btree_ioerr(page, eb);
4449                }
4450
4451                end_page_writeback(page);
4452
4453                if (!done)
4454                        continue;
4455
4456                end_extent_buffer_writeback(eb);
4457        }
4458
4459        bio_put(bio);
4460}
4461
4462static void prepare_eb_write(struct extent_buffer *eb)
4463{
4464        u32 nritems;
4465        unsigned long start;
4466        unsigned long end;
4467
4468        clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4469        atomic_set(&eb->io_pages, num_extent_pages(eb));
4470
4471        /* Set btree blocks beyond nritems with 0 to avoid stale content */
4472        nritems = btrfs_header_nritems(eb);
4473        if (btrfs_header_level(eb) > 0) {
4474                end = btrfs_node_key_ptr_offset(nritems);
4475                memzero_extent_buffer(eb, end, eb->len - end);
4476        } else {
4477                /*
4478                 * Leaf:
4479                 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4480                 */
4481                start = btrfs_item_nr_offset(nritems);
4482                end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4483                memzero_extent_buffer(eb, start, end - start);
4484        }
4485}
4486
4487/*
4488 * Unlike the work in write_one_eb(), we rely completely on extent locking.
4489 * Page locking is only utilized at minimum to keep the VMM code happy.
4490 */
4491static int write_one_subpage_eb(struct extent_buffer *eb,
4492                                struct writeback_control *wbc,
4493                                struct extent_page_data *epd)
4494{
4495        struct btrfs_fs_info *fs_info = eb->fs_info;
4496        struct page *page = eb->pages[0];
4497        unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4498        bool no_dirty_ebs = false;
4499        int ret;
4500
4501        prepare_eb_write(eb);
4502
4503        /* clear_page_dirty_for_io() in subpage helper needs page locked */
4504        lock_page(page);
4505        btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4506
4507        /* Check if this is the last dirty bit to update nr_written */
4508        no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4509                                                          eb->start, eb->len);
4510        if (no_dirty_ebs)
4511                clear_page_dirty_for_io(page);
4512
4513        ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4514                        &epd->bio_ctrl, page, eb->start, eb->len,
4515                        eb->start - page_offset(page),
4516                        end_bio_subpage_eb_writepage, 0, 0, false);
4517        if (ret) {
4518                btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4519                set_btree_ioerr(page, eb);
4520                unlock_page(page);
4521
4522                if (atomic_dec_and_test(&eb->io_pages))
4523                        end_extent_buffer_writeback(eb);
4524                return -EIO;
4525        }
4526        unlock_page(page);
4527        /*
4528         * Submission finished without problem, if no range of the page is
4529         * dirty anymore, we have submitted a page.  Update nr_written in wbc.
4530         */
4531        if (no_dirty_ebs)
4532                update_nr_written(wbc, 1);
4533        return ret;
4534}
4535
4536static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4537                        struct writeback_control *wbc,
4538                        struct extent_page_data *epd)
4539{
4540        u64 disk_bytenr = eb->start;
4541        int i, num_pages;
4542        unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4543        int ret = 0;
4544
4545        prepare_eb_write(eb);
4546
4547        num_pages = num_extent_pages(eb);
4548        for (i = 0; i < num_pages; i++) {
4549                struct page *p = eb->pages[i];
4550
4551                clear_page_dirty_for_io(p);
4552                set_page_writeback(p);
4553                ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4554                                         &epd->bio_ctrl, p, disk_bytenr,
4555                                         PAGE_SIZE, 0,
4556                                         end_bio_extent_buffer_writepage,
4557                                         0, 0, false);
4558                if (ret) {
4559                        set_btree_ioerr(p, eb);
4560                        if (PageWriteback(p))
4561                                end_page_writeback(p);
4562                        if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4563                                end_extent_buffer_writeback(eb);
4564                        ret = -EIO;
4565                        break;
4566                }
4567                disk_bytenr += PAGE_SIZE;
4568                update_nr_written(wbc, 1);
4569                unlock_page(p);
4570        }
4571
4572        if (unlikely(ret)) {
4573                for (; i < num_pages; i++) {
4574                        struct page *p = eb->pages[i];
4575                        clear_page_dirty_for_io(p);
4576                        unlock_page(p);
4577                }
4578        }
4579
4580        return ret;
4581}
4582
4583/*
4584 * Submit one subpage btree page.
4585 *
4586 * The main difference to submit_eb_page() is:
4587 * - Page locking
4588 *   For subpage, we don't rely on page locking at all.
4589 *
4590 * - Flush write bio
4591 *   We only flush bio if we may be unable to fit current extent buffers into
4592 *   current bio.
4593 *
4594 * Return >=0 for the number of submitted extent buffers.
4595 * Return <0 for fatal error.
4596 */
4597static int submit_eb_subpage(struct page *page,
4598                             struct writeback_control *wbc,
4599                             struct extent_page_data *epd)
4600{
4601        struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4602        int submitted = 0;
4603        u64 page_start = page_offset(page);
4604        int bit_start = 0;
4605        const int nbits = BTRFS_SUBPAGE_BITMAP_SIZE;
4606        int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4607        int ret;
4608
4609        /* Lock and write each dirty extent buffers in the range */
4610        while (bit_start < nbits) {
4611                struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4612                struct extent_buffer *eb;
4613                unsigned long flags;
4614                u64 start;
4615
4616                /*
4617                 * Take private lock to ensure the subpage won't be detached
4618                 * in the meantime.
4619                 */
4620                spin_lock(&page->mapping->private_lock);
4621                if (!PagePrivate(page)) {
4622                        spin_unlock(&page->mapping->private_lock);
4623                        break;
4624                }
4625                spin_lock_irqsave(&subpage->lock, flags);
4626                if (!((1 << bit_start) & subpage->dirty_bitmap)) {
4627                        spin_unlock_irqrestore(&subpage->lock, flags);
4628                        spin_unlock(&page->mapping->private_lock);
4629                        bit_start++;
4630                        continue;
4631                }
4632
4633                start = page_start + bit_start * fs_info->sectorsize;
4634                bit_start += sectors_per_node;
4635
4636                /*
4637                 * Here we just want to grab the eb without touching extra
4638                 * spin locks, so call find_extent_buffer_nolock().
4639                 */
4640                eb = find_extent_buffer_nolock(fs_info, start);
4641                spin_unlock_irqrestore(&subpage->lock, flags);
4642                spin_unlock(&page->mapping->private_lock);
4643
4644                /*
4645                 * The eb has already reached 0 refs thus find_extent_buffer()
4646                 * doesn't return it. We don't need to write back such eb
4647                 * anyway.
4648                 */
4649                if (!eb)
4650                        continue;
4651
4652                ret = lock_extent_buffer_for_io(eb, epd);
4653                if (ret == 0) {
4654                        free_extent_buffer(eb);
4655                        continue;
4656                }
4657                if (ret < 0) {
4658                        free_extent_buffer(eb);
4659                        goto cleanup;
4660                }
4661                ret = write_one_subpage_eb(eb, wbc, epd);
4662                free_extent_buffer(eb);
4663                if (ret < 0)
4664                        goto cleanup;
4665                submitted++;
4666        }
4667        return submitted;
4668
4669cleanup:
4670        /* We hit error, end bio for the submitted extent buffers */
4671        end_write_bio(epd, ret);
4672        return ret;
4673}
4674
4675/*
4676 * Submit all page(s) of one extent buffer.
4677 *
4678 * @page:       the page of one extent buffer
4679 * @eb_context: to determine if we need to submit this page, if current page
4680 *              belongs to this eb, we don't need to submit
4681 *
4682 * The caller should pass each page in their bytenr order, and here we use
4683 * @eb_context to determine if we have submitted pages of one extent buffer.
4684 *
4685 * If we have, we just skip until we hit a new page that doesn't belong to
4686 * current @eb_context.
4687 *
4688 * If not, we submit all the page(s) of the extent buffer.
4689 *
4690 * Return >0 if we have submitted the extent buffer successfully.
4691 * Return 0 if we don't need to submit the page, as it's already submitted by
4692 * previous call.
4693 * Return <0 for fatal error.
4694 */
4695static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4696                          struct extent_page_data *epd,
4697                          struct extent_buffer **eb_context)
4698{
4699        struct address_space *mapping = page->mapping;
4700        struct btrfs_block_group *cache = NULL;
4701        struct extent_buffer *eb;
4702        int ret;
4703
4704        if (!PagePrivate(page))
4705                return 0;
4706
4707        if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
4708                return submit_eb_subpage(page, wbc, epd);
4709
4710        spin_lock(&mapping->private_lock);
4711        if (!PagePrivate(page)) {
4712                spin_unlock(&mapping->private_lock);
4713                return 0;
4714        }
4715
4716        eb = (struct extent_buffer *)page->private;
4717
4718        /*
4719         * Shouldn't happen and normally this would be a BUG_ON but no point
4720         * crashing the machine for something we can survive anyway.
4721         */
4722        if (WARN_ON(!eb)) {
4723                spin_unlock(&mapping->private_lock);
4724                return 0;
4725        }
4726
4727        if (eb == *eb_context) {
4728                spin_unlock(&mapping->private_lock);
4729                return 0;
4730        }
4731        ret = atomic_inc_not_zero(&eb->refs);
4732        spin_unlock(&mapping->private_lock);
4733        if (!ret)
4734                return 0;
4735
4736        if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4737                /*
4738                 * If for_sync, this hole will be filled with
4739                 * trasnsaction commit.
4740                 */
4741                if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4742                        ret = -EAGAIN;
4743                else
4744                        ret = 0;
4745                free_extent_buffer(eb);
4746                return ret;
4747        }
4748
4749        *eb_context = eb;
4750
4751        ret = lock_extent_buffer_for_io(eb, epd);
4752        if (ret <= 0) {
4753                btrfs_revert_meta_write_pointer(cache, eb);
4754                if (cache)
4755                        btrfs_put_block_group(cache);
4756                free_extent_buffer(eb);
4757                return ret;
4758        }
4759        if (cache)
4760                btrfs_put_block_group(cache);
4761        ret = write_one_eb(eb, wbc, epd);
4762        free_extent_buffer(eb);
4763        if (ret < 0)
4764                return ret;
4765        return 1;
4766}
4767
4768int btree_write_cache_pages(struct address_space *mapping,
4769                                   struct writeback_control *wbc)
4770{
4771        struct extent_buffer *eb_context = NULL;
4772        struct extent_page_data epd = {
4773                .bio_ctrl = { 0 },
4774                .extent_locked = 0,
4775                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4776        };
4777        struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4778        int ret = 0;
4779        int done = 0;
4780        int nr_to_write_done = 0;
4781        struct pagevec pvec;
4782        int nr_pages;
4783        pgoff_t index;
4784        pgoff_t end;            /* Inclusive */
4785        int scanned = 0;
4786        xa_mark_t tag;
4787
4788        pagevec_init(&pvec);
4789        if (wbc->range_cyclic) {
4790                index = mapping->writeback_index; /* Start from prev offset */
4791                end = -1;
4792                /*
4793                 * Start from the beginning does not need to cycle over the
4794                 * range, mark it as scanned.
4795                 */
4796                scanned = (index == 0);
4797        } else {
4798                index = wbc->range_start >> PAGE_SHIFT;
4799                end = wbc->range_end >> PAGE_SHIFT;
4800                scanned = 1;
4801        }
4802        if (wbc->sync_mode == WB_SYNC_ALL)
4803                tag = PAGECACHE_TAG_TOWRITE;
4804        else
4805                tag = PAGECACHE_TAG_DIRTY;
4806        btrfs_zoned_meta_io_lock(fs_info);
4807retry:
4808        if (wbc->sync_mode == WB_SYNC_ALL)
4809                tag_pages_for_writeback(mapping, index, end);
4810        while (!done && !nr_to_write_done && (index <= end) &&
4811               (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4812                        tag))) {
4813                unsigned i;
4814
4815                for (i = 0; i < nr_pages; i++) {
4816                        struct page *page = pvec.pages[i];
4817
4818                        ret = submit_eb_page(page, wbc, &epd, &eb_context);
4819                        if (ret == 0)
4820                                continue;
4821                        if (ret < 0) {
4822                                done = 1;
4823                                break;
4824                        }
4825
4826                        /*
4827                         * the filesystem may choose to bump up nr_to_write.
4828                         * We have to make sure to honor the new nr_to_write
4829                         * at any time
4830                         */
4831                        nr_to_write_done = wbc->nr_to_write <= 0;
4832                }
4833                pagevec_release(&pvec);
4834                cond_resched();
4835        }
4836        if (!scanned && !done) {
4837                /*
4838                 * We hit the last page and there is more work to be done: wrap
4839                 * back to the start of the file
4840                 */
4841                scanned = 1;
4842                index = 0;
4843                goto retry;
4844        }
4845        if (ret < 0) {
4846                end_write_bio(&epd, ret);
4847                goto out;
4848        }
4849        /*
4850         * If something went wrong, don't allow any metadata write bio to be
4851         * submitted.
4852         *
4853         * This would prevent use-after-free if we had dirty pages not
4854         * cleaned up, which can still happen by fuzzed images.
4855         *
4856         * - Bad extent tree
4857         *   Allowing existing tree block to be allocated for other trees.
4858         *
4859         * - Log tree operations
4860         *   Exiting tree blocks get allocated to log tree, bumps its
4861         *   generation, then get cleaned in tree re-balance.
4862         *   Such tree block will not be written back, since it's clean,
4863         *   thus no WRITTEN flag set.
4864         *   And after log writes back, this tree block is not traced by
4865         *   any dirty extent_io_tree.
4866         *
4867         * - Offending tree block gets re-dirtied from its original owner
4868         *   Since it has bumped generation, no WRITTEN flag, it can be
4869         *   reused without COWing. This tree block will not be traced
4870         *   by btrfs_transaction::dirty_pages.
4871         *
4872         *   Now such dirty tree block will not be cleaned by any dirty
4873         *   extent io tree. Thus we don't want to submit such wild eb
4874         *   if the fs already has error.
4875         */
4876        if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4877                ret = flush_write_bio(&epd);
4878        } else {
4879                ret = -EROFS;
4880                end_write_bio(&epd, ret);
4881        }
4882out:
4883        btrfs_zoned_meta_io_unlock(fs_info);
4884        return ret;
4885}
4886
4887/**
4888 * Walk the list of dirty pages of the given address space and write all of them.
4889 *
4890 * @mapping: address space structure to write
4891 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
4892 * @epd:     holds context for the write, namely the bio
4893 *
4894 * If a page is already under I/O, write_cache_pages() skips it, even
4895 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4896 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4897 * and msync() need to guarantee that all the data which was dirty at the time
4898 * the call was made get new I/O started against them.  If wbc->sync_mode is
4899 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4900 * existing IO to complete.
4901 */
4902static int extent_write_cache_pages(struct address_space *mapping,
4903                             struct writeback_control *wbc,
4904                             struct extent_page_data *epd)
4905{
4906        struct inode *inode = mapping->host;
4907        int ret = 0;
4908        int done = 0;
4909        int nr_to_write_done = 0;
4910        struct pagevec pvec;
4911        int nr_pages;
4912        pgoff_t index;
4913        pgoff_t end;            /* Inclusive */
4914        pgoff_t done_index;
4915        int range_whole = 0;
4916        int scanned = 0;
4917        xa_mark_t tag;
4918
4919        /*
4920         * We have to hold onto the inode so that ordered extents can do their
4921         * work when the IO finishes.  The alternative to this is failing to add
4922         * an ordered extent if the igrab() fails there and that is a huge pain
4923         * to deal with, so instead just hold onto the inode throughout the
4924         * writepages operation.  If it fails here we are freeing up the inode
4925         * anyway and we'd rather not waste our time writing out stuff that is
4926         * going to be truncated anyway.
4927         */
4928        if (!igrab(inode))
4929                return 0;
4930
4931        pagevec_init(&pvec);
4932        if (wbc->range_cyclic) {
4933                index = mapping->writeback_index; /* Start from prev offset */
4934                end = -1;
4935                /*
4936                 * Start from the beginning does not need to cycle over the
4937                 * range, mark it as scanned.
4938                 */
4939                scanned = (index == 0);
4940        } else {
4941                index = wbc->range_start >> PAGE_SHIFT;
4942                end = wbc->range_end >> PAGE_SHIFT;
4943                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4944                        range_whole = 1;
4945                scanned = 1;
4946        }
4947
4948        /*
4949         * We do the tagged writepage as long as the snapshot flush bit is set
4950         * and we are the first one who do the filemap_flush() on this inode.
4951         *
4952         * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4953         * not race in and drop the bit.
4954         */
4955        if (range_whole && wbc->nr_to_write == LONG_MAX &&
4956            test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4957                               &BTRFS_I(inode)->runtime_flags))
4958                wbc->tagged_writepages = 1;
4959
4960        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4961                tag = PAGECACHE_TAG_TOWRITE;
4962        else
4963                tag = PAGECACHE_TAG_DIRTY;
4964retry:
4965        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4966                tag_pages_for_writeback(mapping, index, end);
4967        done_index = index;
4968        while (!done && !nr_to_write_done && (index <= end) &&
4969                        (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4970                                                &index, end, tag))) {
4971                unsigned i;
4972
4973                for (i = 0; i < nr_pages; i++) {
4974                        struct page *page = pvec.pages[i];
4975
4976                        done_index = page->index + 1;
4977                        /*
4978                         * At this point we hold neither the i_pages lock nor
4979                         * the page lock: the page may be truncated or
4980                         * invalidated (changing page->mapping to NULL),
4981                         * or even swizzled back from swapper_space to
4982                         * tmpfs file mapping
4983                         */
4984                        if (!trylock_page(page)) {
4985                                ret = flush_write_bio(epd);
4986                                BUG_ON(ret < 0);
4987                                lock_page(page);
4988                        }
4989
4990                        if (unlikely(page->mapping != mapping)) {
4991                                unlock_page(page);
4992                                continue;
4993                        }
4994
4995                        if (wbc->sync_mode != WB_SYNC_NONE) {
4996                                if (PageWriteback(page)) {
4997                                        ret = flush_write_bio(epd);
4998                                        BUG_ON(ret < 0);
4999                                }
5000                                wait_on_page_writeback(page);
5001                        }
5002
5003                        if (PageWriteback(page) ||
5004                            !clear_page_dirty_for_io(page)) {
5005                                unlock_page(page);
5006                                continue;
5007                        }
5008
5009                        ret = __extent_writepage(page, wbc, epd);
5010                        if (ret < 0) {
5011                                done = 1;
5012                                break;
5013                        }
5014
5015                        /*
5016                         * the filesystem may choose to bump up nr_to_write.
5017                         * We have to make sure to honor the new nr_to_write
5018                         * at any time
5019                         */
5020                        nr_to_write_done = wbc->nr_to_write <= 0;
5021                }
5022                pagevec_release(&pvec);
5023                cond_resched();
5024        }
5025        if (!scanned && !done) {
5026                /*
5027                 * We hit the last page and there is more work to be done: wrap
5028                 * back to the start of the file
5029                 */
5030                scanned = 1;
5031                index = 0;
5032
5033                /*
5034                 * If we're looping we could run into a page that is locked by a
5035                 * writer and that writer could be waiting on writeback for a
5036                 * page in our current bio, and thus deadlock, so flush the
5037                 * write bio here.
5038                 */
5039                ret = flush_write_bio(epd);
5040                if (!ret)
5041                        goto retry;
5042        }
5043
5044        if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
5045                mapping->writeback_index = done_index;
5046
5047        btrfs_add_delayed_iput(inode);
5048        return ret;
5049}
5050
5051int extent_write_full_page(struct page *page, struct writeback_control *wbc)
5052{
5053        int ret;
5054        struct extent_page_data epd = {
5055                .bio_ctrl = { 0 },
5056                .extent_locked = 0,
5057                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
5058        };
5059
5060        ret = __extent_writepage(page, wbc, &epd);
5061        ASSERT(ret <= 0);
5062        if (ret < 0) {
5063                end_write_bio(&epd, ret);
5064                return ret;
5065        }
5066
5067        ret = flush_write_bio(&epd);
5068        ASSERT(ret <= 0);
5069        return ret;
5070}
5071
5072int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
5073                              int mode)
5074{
5075        int ret = 0;
5076        struct address_space *mapping = inode->i_mapping;
5077        struct page *page;
5078        unsigned long nr_pages = (end - start + PAGE_SIZE) >>
5079                PAGE_SHIFT;
5080
5081        struct extent_page_data epd = {
5082                .bio_ctrl = { 0 },
5083                .extent_locked = 1,
5084                .sync_io = mode == WB_SYNC_ALL,
5085        };
5086        struct writeback_control wbc_writepages = {
5087                .sync_mode      = mode,
5088                .nr_to_write    = nr_pages * 2,
5089                .range_start    = start,
5090                .range_end      = end + 1,
5091                /* We're called from an async helper function */
5092                .punt_to_cgroup = 1,
5093                .no_cgroup_owner = 1,
5094        };
5095
5096        wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
5097        while (start <= end) {
5098                page = find_get_page(mapping, start >> PAGE_SHIFT);
5099                if (clear_page_dirty_for_io(page))
5100                        ret = __extent_writepage(page, &wbc_writepages, &epd);
5101                else {
5102                        btrfs_writepage_endio_finish_ordered(BTRFS_I(inode),
5103                                        page, start, start + PAGE_SIZE - 1, true);
5104                        unlock_page(page);
5105                }
5106                put_page(page);
5107                start += PAGE_SIZE;
5108        }
5109
5110        ASSERT(ret <= 0);
5111        if (ret == 0)
5112                ret = flush_write_bio(&epd);
5113        else
5114                end_write_bio(&epd, ret);
5115
5116        wbc_detach_inode(&wbc_writepages);
5117        return ret;
5118}
5119
5120int extent_writepages(struct address_space *mapping,
5121                      struct writeback_control *wbc)
5122{
5123        int ret = 0;
5124        struct extent_page_data epd = {
5125                .bio_ctrl = { 0 },
5126                .extent_locked = 0,
5127                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
5128        };
5129
5130        ret = extent_write_cache_pages(mapping, wbc, &epd);
5131        ASSERT(ret <= 0);
5132        if (ret < 0) {
5133                end_write_bio(&epd, ret);
5134                return ret;
5135        }
5136        ret = flush_write_bio(&epd);
5137        return ret;
5138}
5139
5140void extent_readahead(struct readahead_control *rac)
5141{
5142        struct btrfs_bio_ctrl bio_ctrl = { 0 };
5143        struct page *pagepool[16];
5144        struct extent_map *em_cached = NULL;
5145        u64 prev_em_start = (u64)-1;
5146        int nr;
5147
5148        while ((nr = readahead_page_batch(rac, pagepool))) {
5149                u64 contig_start = readahead_pos(rac);
5150                u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5151
5152                contiguous_readpages(pagepool, nr, contig_start, contig_end,
5153                                &em_cached, &bio_ctrl, &prev_em_start);
5154        }
5155
5156        if (em_cached)
5157                free_extent_map(em_cached);
5158
5159        if (bio_ctrl.bio) {
5160                if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
5161                        return;
5162        }
5163}
5164
5165/*
5166 * basic invalidatepage code, this waits on any locked or writeback
5167 * ranges corresponding to the page, and then deletes any extent state
5168 * records from the tree
5169 */
5170int extent_invalidatepage(struct extent_io_tree *tree,
5171                          struct page *page, unsigned long offset)
5172{
5173        struct extent_state *cached_state = NULL;
5174        u64 start = page_offset(page);
5175        u64 end = start + PAGE_SIZE - 1;
5176        size_t blocksize = page->mapping->host->i_sb->s_blocksize;
5177
5178        /* This function is only called for the btree inode */
5179        ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5180
5181        start += ALIGN(offset, blocksize);
5182        if (start > end)
5183                return 0;
5184
5185        lock_extent_bits(tree, start, end, &cached_state);
5186        wait_on_page_writeback(page);
5187
5188        /*
5189         * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5190         * so here we only need to unlock the extent range to free any
5191         * existing extent state.
5192         */
5193        unlock_extent_cached(tree, start, end, &cached_state);
5194        return 0;
5195}
5196
5197/*
5198 * a helper for releasepage, this tests for areas of the page that
5199 * are locked or under IO and drops the related state bits if it is safe
5200 * to drop the page.
5201 */
5202static int try_release_extent_state(struct extent_io_tree *tree,
5203                                    struct page *page, gfp_t mask)
5204{
5205        u64 start = page_offset(page);
5206        u64 end = start + PAGE_SIZE - 1;
5207        int ret = 1;
5208
5209        if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5210                ret = 0;
5211        } else {
5212                /*
5213                 * At this point we can safely clear everything except the
5214                 * locked bit, the nodatasum bit and the delalloc new bit.
5215                 * The delalloc new bit will be cleared by ordered extent
5216                 * completion.
5217                 */
5218                ret = __clear_extent_bit(tree, start, end,
5219                         ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5220                         0, 0, NULL, mask, NULL);
5221
5222                /* if clear_extent_bit failed for enomem reasons,
5223                 * we can't allow the release to continue.
5224                 */
5225                if (ret < 0)
5226                        ret = 0;
5227                else
5228                        ret = 1;
5229        }
5230        return ret;
5231}
5232
5233/*
5234 * a helper for releasepage.  As long as there are no locked extents
5235 * in the range corresponding to the page, both state records and extent
5236 * map records are removed
5237 */
5238int try_release_extent_mapping(struct page *page, gfp_t mask)
5239{
5240        struct extent_map *em;
5241        u64 start = page_offset(page);
5242        u64 end = start + PAGE_SIZE - 1;
5243        struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5244        struct extent_io_tree *tree = &btrfs_inode->io_tree;
5245        struct extent_map_tree *map = &btrfs_inode->extent_tree;
5246
5247        if (gfpflags_allow_blocking(mask) &&
5248            page->mapping->host->i_size > SZ_16M) {
5249                u64 len;
5250                while (start <= end) {
5251                        struct btrfs_fs_info *fs_info;
5252                        u64 cur_gen;
5253
5254                        len = end - start + 1;
5255                        write_lock(&map->lock);
5256                        em = lookup_extent_mapping(map, start, len);
5257                        if (!em) {
5258                                write_unlock(&map->lock);
5259                                break;
5260                        }
5261                        if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5262                            em->start != start) {
5263                                write_unlock(&map->lock);
5264                                free_extent_map(em);
5265                                break;
5266                        }
5267                        if (test_range_bit(tree, em->start,
5268                                           extent_map_end(em) - 1,
5269                                           EXTENT_LOCKED, 0, NULL))
5270                                goto next;
5271                        /*
5272                         * If it's not in the list of modified extents, used
5273                         * by a fast fsync, we can remove it. If it's being
5274                         * logged we can safely remove it since fsync took an
5275                         * extra reference on the em.
5276                         */
5277                        if (list_empty(&em->list) ||
5278                            test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5279                                goto remove_em;
5280                        /*
5281                         * If it's in the list of modified extents, remove it
5282                         * only if its generation is older then the current one,
5283                         * in which case we don't need it for a fast fsync.
5284                         * Otherwise don't remove it, we could be racing with an
5285                         * ongoing fast fsync that could miss the new extent.
5286                         */
5287                        fs_info = btrfs_inode->root->fs_info;
5288                        spin_lock(&fs_info->trans_lock);
5289                        cur_gen = fs_info->generation;
5290                        spin_unlock(&fs_info->trans_lock);
5291                        if (em->generation >= cur_gen)
5292                                goto next;
5293remove_em:
5294                        /*
5295                         * We only remove extent maps that are not in the list of
5296                         * modified extents or that are in the list but with a
5297                         * generation lower then the current generation, so there
5298                         * is no need to set the full fsync flag on the inode (it
5299                         * hurts the fsync performance for workloads with a data
5300                         * size that exceeds or is close to the system's memory).
5301                         */
5302                        remove_extent_mapping(map, em);
5303                        /* once for the rb tree */
5304                        free_extent_map(em);
5305next:
5306                        start = extent_map_end(em);
5307                        write_unlock(&map->lock);
5308
5309                        /* once for us */
5310                        free_extent_map(em);
5311
5312                        cond_resched(); /* Allow large-extent preemption. */
5313                }
5314        }
5315        return try_release_extent_state(tree, page, mask);
5316}
5317
5318/*
5319 * helper function for fiemap, which doesn't want to see any holes.
5320 * This maps until we find something past 'last'
5321 */
5322static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5323                                                u64 offset, u64 last)
5324{
5325        u64 sectorsize = btrfs_inode_sectorsize(inode);
5326        struct extent_map *em;
5327        u64 len;
5328
5329        if (offset >= last)
5330                return NULL;
5331
5332        while (1) {
5333                len = last - offset;
5334                if (len == 0)
5335                        break;
5336                len = ALIGN(len, sectorsize);
5337                em = btrfs_get_extent_fiemap(inode, offset, len);
5338                if (IS_ERR_OR_NULL(em))
5339                        return em;
5340
5341                /* if this isn't a hole return it */
5342                if (em->block_start != EXTENT_MAP_HOLE)
5343                        return em;
5344
5345                /* this is a hole, advance to the next extent */
5346                offset = extent_map_end(em);
5347                free_extent_map(em);
5348                if (offset >= last)
5349                        break;
5350        }
5351        return NULL;
5352}
5353
5354/*
5355 * To cache previous fiemap extent
5356 *
5357 * Will be used for merging fiemap extent
5358 */
5359struct fiemap_cache {
5360        u64 offset;
5361        u64 phys;
5362        u64 len;
5363        u32 flags;
5364        bool cached;
5365};
5366
5367/*
5368 * Helper to submit fiemap extent.
5369 *
5370 * Will try to merge current fiemap extent specified by @offset, @phys,
5371 * @len and @flags with cached one.
5372 * And only when we fails to merge, cached one will be submitted as
5373 * fiemap extent.
5374 *
5375 * Return value is the same as fiemap_fill_next_extent().
5376 */
5377static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5378                                struct fiemap_cache *cache,
5379                                u64 offset, u64 phys, u64 len, u32 flags)
5380{
5381        int ret = 0;
5382
5383        if (!cache->cached)
5384                goto assign;
5385
5386        /*
5387         * Sanity check, extent_fiemap() should have ensured that new
5388         * fiemap extent won't overlap with cached one.
5389         * Not recoverable.
5390         *
5391         * NOTE: Physical address can overlap, due to compression
5392         */
5393        if (cache->offset + cache->len > offset) {
5394                WARN_ON(1);
5395                return -EINVAL;
5396        }
5397
5398        /*
5399         * Only merges fiemap extents if
5400         * 1) Their logical addresses are continuous
5401         *
5402         * 2) Their physical addresses are continuous
5403         *    So truly compressed (physical size smaller than logical size)
5404         *    extents won't get merged with each other
5405         *
5406         * 3) Share same flags except FIEMAP_EXTENT_LAST
5407         *    So regular extent won't get merged with prealloc extent
5408         */
5409        if (cache->offset + cache->len  == offset &&
5410            cache->phys + cache->len == phys  &&
5411            (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5412                        (flags & ~FIEMAP_EXTENT_LAST)) {
5413                cache->len += len;
5414                cache->flags |= flags;
5415                goto try_submit_last;
5416        }
5417
5418        /* Not mergeable, need to submit cached one */
5419        ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5420                                      cache->len, cache->flags);
5421        cache->cached = false;
5422        if (ret)
5423                return ret;
5424assign:
5425        cache->cached = true;
5426        cache->offset = offset;
5427        cache->phys = phys;
5428        cache->len = len;
5429        cache->flags = flags;
5430try_submit_last:
5431        if (cache->flags & FIEMAP_EXTENT_LAST) {
5432                ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5433                                cache->phys, cache->len, cache->flags);
5434                cache->cached = false;
5435        }
5436        return ret;
5437}
5438
5439/*
5440 * Emit last fiemap cache
5441 *
5442 * The last fiemap cache may still be cached in the following case:
5443 * 0                  4k                    8k
5444 * |<- Fiemap range ->|
5445 * |<------------  First extent ----------->|
5446 *
5447 * In this case, the first extent range will be cached but not emitted.
5448 * So we must emit it before ending extent_fiemap().
5449 */
5450static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5451                                  struct fiemap_cache *cache)
5452{
5453        int ret;
5454
5455        if (!cache->cached)
5456                return 0;
5457
5458        ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5459                                      cache->len, cache->flags);
5460        cache->cached = false;
5461        if (ret > 0)
5462                ret = 0;
5463        return ret;
5464}
5465
5466int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5467                  u64 start, u64 len)
5468{
5469        int ret = 0;
5470        u64 off;
5471        u64 max = start + len;
5472        u32 flags = 0;
5473        u32 found_type;
5474        u64 last;
5475        u64 last_for_get_extent = 0;
5476        u64 disko = 0;
5477        u64 isize = i_size_read(&inode->vfs_inode);
5478        struct btrfs_key found_key;
5479        struct extent_map *em = NULL;
5480        struct extent_state *cached_state = NULL;
5481        struct btrfs_path *path;
5482        struct btrfs_root *root = inode->root;
5483        struct fiemap_cache cache = { 0 };
5484        struct ulist *roots;
5485        struct ulist *tmp_ulist;
5486        int end = 0;
5487        u64 em_start = 0;
5488        u64 em_len = 0;
5489        u64 em_end = 0;
5490
5491        if (len == 0)
5492                return -EINVAL;
5493
5494        path = btrfs_alloc_path();
5495        if (!path)
5496                return -ENOMEM;
5497
5498        roots = ulist_alloc(GFP_KERNEL);
5499        tmp_ulist = ulist_alloc(GFP_KERNEL);
5500        if (!roots || !tmp_ulist) {
5501                ret = -ENOMEM;
5502                goto out_free_ulist;
5503        }
5504
5505        /*
5506         * We can't initialize that to 'start' as this could miss extents due
5507         * to extent item merging
5508         */
5509        off = 0;
5510        start = round_down(start, btrfs_inode_sectorsize(inode));
5511        len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5512
5513        /*
5514         * lookup the last file extent.  We're not using i_size here
5515         * because there might be preallocation past i_size
5516         */
5517        ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5518                                       0);
5519        if (ret < 0) {
5520                goto out_free_ulist;
5521        } else {
5522                WARN_ON(!ret);
5523                if (ret == 1)
5524                        ret = 0;
5525        }
5526
5527        path->slots[0]--;
5528        btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5529        found_type = found_key.type;
5530
5531        /* No extents, but there might be delalloc bits */
5532        if (found_key.objectid != btrfs_ino(inode) ||
5533            found_type != BTRFS_EXTENT_DATA_KEY) {
5534                /* have to trust i_size as the end */
5535                last = (u64)-1;
5536                last_for_get_extent = isize;
5537        } else {
5538                /*
5539                 * remember the start of the last extent.  There are a
5540                 * bunch of different factors that go into the length of the
5541                 * extent, so its much less complex to remember where it started
5542                 */
5543                last = found_key.offset;
5544                last_for_get_extent = last + 1;
5545        }
5546        btrfs_release_path(path);
5547
5548        /*
5549         * we might have some extents allocated but more delalloc past those
5550         * extents.  so, we trust isize unless the start of the last extent is
5551         * beyond isize
5552         */
5553        if (last < isize) {
5554                last = (u64)-1;
5555                last_for_get_extent = isize;
5556        }
5557
5558        lock_extent_bits(&inode->io_tree, start, start + len - 1,
5559                         &cached_state);
5560
5561        em = get_extent_skip_holes(inode, start, last_for_get_extent);
5562        if (!em)
5563                goto out;
5564        if (IS_ERR(em)) {
5565                ret = PTR_ERR(em);
5566                goto out;
5567        }
5568
5569        while (!end) {
5570                u64 offset_in_extent = 0;
5571
5572                /* break if the extent we found is outside the range */
5573                if (em->start >= max || extent_map_end(em) < off)
5574                        break;
5575
5576                /*
5577                 * get_extent may return an extent that starts before our
5578                 * requested range.  We have to make sure the ranges
5579                 * we return to fiemap always move forward and don't
5580                 * overlap, so adjust the offsets here
5581                 */
5582                em_start = max(em->start, off);
5583
5584                /*
5585                 * record the offset from the start of the extent
5586                 * for adjusting the disk offset below.  Only do this if the
5587                 * extent isn't compressed since our in ram offset may be past
5588                 * what we have actually allocated on disk.
5589                 */
5590                if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5591                        offset_in_extent = em_start - em->start;
5592                em_end = extent_map_end(em);
5593                em_len = em_end - em_start;
5594                flags = 0;
5595                if (em->block_start < EXTENT_MAP_LAST_BYTE)
5596                        disko = em->block_start + offset_in_extent;
5597                else
5598                        disko = 0;
5599
5600                /*
5601                 * bump off for our next call to get_extent
5602                 */
5603                off = extent_map_end(em);
5604                if (off >= max)
5605                        end = 1;
5606
5607                if (em->block_start == EXTENT_MAP_LAST_BYTE) {
5608                        end = 1;
5609                        flags |= FIEMAP_EXTENT_LAST;
5610                } else if (em->block_start == EXTENT_MAP_INLINE) {
5611                        flags |= (FIEMAP_EXTENT_DATA_INLINE |
5612                                  FIEMAP_EXTENT_NOT_ALIGNED);
5613                } else if (em->block_start == EXTENT_MAP_DELALLOC) {
5614                        flags |= (FIEMAP_EXTENT_DELALLOC |
5615                                  FIEMAP_EXTENT_UNKNOWN);
5616                } else if (fieinfo->fi_extents_max) {
5617                        u64 bytenr = em->block_start -
5618                                (em->start - em->orig_start);
5619
5620                        /*
5621                         * As btrfs supports shared space, this information
5622                         * can be exported to userspace tools via
5623                         * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
5624                         * then we're just getting a count and we can skip the
5625                         * lookup stuff.
5626                         */
5627                        ret = btrfs_check_shared(root, btrfs_ino(inode),
5628                                                 bytenr, roots, tmp_ulist);
5629                        if (ret < 0)
5630                                goto out_free;
5631                        if (ret)
5632                                flags |= FIEMAP_EXTENT_SHARED;
5633                        ret = 0;
5634                }
5635                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5636                        flags |= FIEMAP_EXTENT_ENCODED;
5637                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5638                        flags |= FIEMAP_EXTENT_UNWRITTEN;
5639
5640                free_extent_map(em);
5641                em = NULL;
5642                if ((em_start >= last) || em_len == (u64)-1 ||
5643                   (last == (u64)-1 && isize <= em_end)) {
5644                        flags |= FIEMAP_EXTENT_LAST;
5645                        end = 1;
5646                }
5647
5648                /* now scan forward to see if this is really the last extent. */
5649                em = get_extent_skip_holes(inode, off, last_for_get_extent);
5650                if (IS_ERR(em)) {
5651                        ret = PTR_ERR(em);
5652                        goto out;
5653                }
5654                if (!em) {
5655                        flags |= FIEMAP_EXTENT_LAST;
5656                        end = 1;
5657                }
5658                ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5659                                           em_len, flags);
5660                if (ret) {
5661                        if (ret == 1)
5662                                ret = 0;
5663                        goto out_free;
5664                }
5665        }
5666out_free:
5667        if (!ret)
5668                ret = emit_last_fiemap_cache(fieinfo, &cache);
5669        free_extent_map(em);
5670out:
5671        unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5672                             &cached_state);
5673
5674out_free_ulist:
5675        btrfs_free_path(path);
5676        ulist_free(roots);
5677        ulist_free(tmp_ulist);
5678        return ret;
5679}
5680
5681static void __free_extent_buffer(struct extent_buffer *eb)
5682{
5683        kmem_cache_free(extent_buffer_cache, eb);
5684}
5685
5686int extent_buffer_under_io(const struct extent_buffer *eb)
5687{
5688        return (atomic_read(&eb->io_pages) ||
5689                test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5690                test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5691}
5692
5693static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5694{
5695        struct btrfs_subpage *subpage;
5696
5697        lockdep_assert_held(&page->mapping->private_lock);
5698
5699        if (PagePrivate(page)) {
5700                subpage = (struct btrfs_subpage *)page->private;
5701                if (atomic_read(&subpage->eb_refs))
5702                        return true;
5703                /*
5704                 * Even there is no eb refs here, we may still have
5705                 * end_page_read() call relying on page::private.
5706                 */
5707                if (atomic_read(&subpage->readers))
5708                        return true;
5709        }
5710        return false;
5711}
5712
5713static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5714{
5715        struct btrfs_fs_info *fs_info = eb->fs_info;
5716        const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5717
5718        /*
5719         * For mapped eb, we're going to change the page private, which should
5720         * be done under the private_lock.
5721         */
5722        if (mapped)
5723                spin_lock(&page->mapping->private_lock);
5724
5725        if (!PagePrivate(page)) {
5726                if (mapped)
5727                        spin_unlock(&page->mapping->private_lock);
5728                return;
5729        }
5730
5731        if (fs_info->sectorsize == PAGE_SIZE) {
5732                /*
5733                 * We do this since we'll remove the pages after we've
5734                 * removed the eb from the radix tree, so we could race
5735                 * and have this page now attached to the new eb.  So
5736                 * only clear page_private if it's still connected to
5737                 * this eb.
5738                 */
5739                if (PagePrivate(page) &&
5740                    page->private == (unsigned long)eb) {
5741                        BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5742                        BUG_ON(PageDirty(page));
5743                        BUG_ON(PageWriteback(page));
5744                        /*
5745                         * We need to make sure we haven't be attached
5746                         * to a new eb.
5747                         */
5748                        detach_page_private(page);
5749                }
5750                if (mapped)
5751                        spin_unlock(&page->mapping->private_lock);
5752                return;
5753        }
5754
5755        /*
5756         * For subpage, we can have dummy eb with page private.  In this case,
5757         * we can directly detach the private as such page is only attached to
5758         * one dummy eb, no sharing.
5759         */
5760        if (!mapped) {
5761                btrfs_detach_subpage(fs_info, page);
5762                return;
5763        }
5764
5765        btrfs_page_dec_eb_refs(fs_info, page);
5766
5767        /*
5768         * We can only detach the page private if there are no other ebs in the
5769         * page range and no unfinished IO.
5770         */
5771        if (!page_range_has_eb(fs_info, page))
5772                btrfs_detach_subpage(fs_info, page);
5773
5774        spin_unlock(&page->mapping->private_lock);
5775}
5776
5777/* Release all pages attached to the extent buffer */
5778static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5779{
5780        int i;
5781        int num_pages;
5782
5783        ASSERT(!extent_buffer_under_io(eb));
5784
5785        num_pages = num_extent_pages(eb);
5786        for (i = 0; i < num_pages; i++) {
5787                struct page *page = eb->pages[i];
5788
5789                if (!page)
5790                        continue;
5791
5792                detach_extent_buffer_page(eb, page);
5793
5794                /* One for when we allocated the page */
5795                put_page(page);
5796        }
5797}
5798
5799/*
5800 * Helper for releasing the extent buffer.
5801 */
5802static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5803{
5804        btrfs_release_extent_buffer_pages(eb);
5805        btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5806        __free_extent_buffer(eb);
5807}
5808
5809static struct extent_buffer *
5810__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5811                      unsigned long len)
5812{
5813        struct extent_buffer *eb = NULL;
5814
5815        eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5816        eb->start = start;
5817        eb->len = len;
5818        eb->fs_info = fs_info;
5819        eb->bflags = 0;
5820        init_rwsem(&eb->lock);
5821
5822        btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5823                             &fs_info->allocated_ebs);
5824        INIT_LIST_HEAD(&eb->release_list);
5825
5826        spin_lock_init(&eb->refs_lock);
5827        atomic_set(&eb->refs, 1);
5828        atomic_set(&eb->io_pages, 0);
5829
5830        ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5831
5832        return eb;
5833}
5834
5835struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5836{
5837        int i;
5838        struct page *p;
5839        struct extent_buffer *new;
5840        int num_pages = num_extent_pages(src);
5841
5842        new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5843        if (new == NULL)
5844                return NULL;
5845
5846        /*
5847         * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5848         * btrfs_release_extent_buffer() have different behavior for
5849         * UNMAPPED subpage extent buffer.
5850         */
5851        set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5852
5853        for (i = 0; i < num_pages; i++) {
5854                int ret;
5855
5856                p = alloc_page(GFP_NOFS);
5857                if (!p) {
5858                        btrfs_release_extent_buffer(new);
5859                        return NULL;
5860                }
5861                ret = attach_extent_buffer_page(new, p, NULL);
5862                if (ret < 0) {
5863                        put_page(p);
5864                        btrfs_release_extent_buffer(new);
5865                        return NULL;
5866                }
5867                WARN_ON(PageDirty(p));
5868                new->pages[i] = p;
5869                copy_page(page_address(p), page_address(src->pages[i]));
5870        }
5871        set_extent_buffer_uptodate(new);
5872
5873        return new;
5874}
5875
5876struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5877                                                  u64 start, unsigned long len)
5878{
5879        struct extent_buffer *eb;
5880        int num_pages;
5881        int i;
5882
5883        eb = __alloc_extent_buffer(fs_info, start, len);
5884        if (!eb)
5885                return NULL;
5886
5887        num_pages = num_extent_pages(eb);
5888        for (i = 0; i < num_pages; i++) {
5889                int ret;
5890
5891                eb->pages[i] = alloc_page(GFP_NOFS);
5892                if (!eb->pages[i])
5893                        goto err;
5894                ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
5895                if (ret < 0)
5896                        goto err;
5897        }
5898        set_extent_buffer_uptodate(eb);
5899        btrfs_set_header_nritems(eb, 0);
5900        set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5901
5902        return eb;
5903err:
5904        for (; i > 0; i--) {
5905                detach_extent_buffer_page(eb, eb->pages[i - 1]);
5906                __free_page(eb->pages[i - 1]);
5907        }
5908        __free_extent_buffer(eb);
5909        return NULL;
5910}
5911
5912struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5913                                                u64 start)
5914{
5915        return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5916}
5917
5918static void check_buffer_tree_ref(struct extent_buffer *eb)
5919{
5920        int refs;
5921        /*
5922         * The TREE_REF bit is first set when the extent_buffer is added
5923         * to the radix tree. It is also reset, if unset, when a new reference
5924         * is created by find_extent_buffer.
5925         *
5926         * It is only cleared in two cases: freeing the last non-tree
5927         * reference to the extent_buffer when its STALE bit is set or
5928         * calling releasepage when the tree reference is the only reference.
5929         *
5930         * In both cases, care is taken to ensure that the extent_buffer's
5931         * pages are not under io. However, releasepage can be concurrently
5932         * called with creating new references, which is prone to race
5933         * conditions between the calls to check_buffer_tree_ref in those
5934         * codepaths and clearing TREE_REF in try_release_extent_buffer.
5935         *
5936         * The actual lifetime of the extent_buffer in the radix tree is
5937         * adequately protected by the refcount, but the TREE_REF bit and
5938         * its corresponding reference are not. To protect against this
5939         * class of races, we call check_buffer_tree_ref from the codepaths
5940         * which trigger io after they set eb->io_pages. Note that once io is
5941         * initiated, TREE_REF can no longer be cleared, so that is the
5942         * moment at which any such race is best fixed.
5943         */
5944        refs = atomic_read(&eb->refs);
5945        if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5946                return;
5947
5948        spin_lock(&eb->refs_lock);
5949        if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5950                atomic_inc(&eb->refs);
5951        spin_unlock(&eb->refs_lock);
5952}
5953
5954static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5955                struct page *accessed)
5956{
5957        int num_pages, i;
5958
5959        check_buffer_tree_ref(eb);
5960
5961        num_pages = num_extent_pages(eb);
5962        for (i = 0; i < num_pages; i++) {
5963                struct page *p = eb->pages[i];
5964
5965                if (p != accessed)
5966                        mark_page_accessed(p);
5967        }
5968}
5969
5970struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5971                                         u64 start)
5972{
5973        struct extent_buffer *eb;
5974
5975        eb = find_extent_buffer_nolock(fs_info, start);
5976        if (!eb)
5977                return NULL;
5978        /*
5979         * Lock our eb's refs_lock to avoid races with free_extent_buffer().
5980         * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
5981         * another task running free_extent_buffer() might have seen that flag
5982         * set, eb->refs == 2, that the buffer isn't under IO (dirty and
5983         * writeback flags not set) and it's still in the tree (flag
5984         * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
5985         * decrementing the extent buffer's reference count twice.  So here we
5986         * could race and increment the eb's reference count, clear its stale
5987         * flag, mark it as dirty and drop our reference before the other task
5988         * finishes executing free_extent_buffer, which would later result in
5989         * an attempt to free an extent buffer that is dirty.
5990         */
5991        if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5992                spin_lock(&eb->refs_lock);
5993                spin_unlock(&eb->refs_lock);
5994        }
5995        mark_extent_buffer_accessed(eb, NULL);
5996        return eb;
5997}
5998
5999#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6000struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
6001                                        u64 start)
6002{
6003        struct extent_buffer *eb, *exists = NULL;
6004        int ret;
6005
6006        eb = find_extent_buffer(fs_info, start);
6007        if (eb)
6008                return eb;
6009        eb = alloc_dummy_extent_buffer(fs_info, start);
6010        if (!eb)
6011                return ERR_PTR(-ENOMEM);
6012        eb->fs_info = fs_info;
6013again:
6014        ret = radix_tree_preload(GFP_NOFS);
6015        if (ret) {
6016                exists = ERR_PTR(ret);
6017                goto free_eb;
6018        }
6019        spin_lock(&fs_info->buffer_lock);
6020        ret = radix_tree_insert(&fs_info->buffer_radix,
6021                                start >> fs_info->sectorsize_bits, eb);
6022        spin_unlock(&fs_info->buffer_lock);
6023        radix_tree_preload_end();
6024        if (ret == -EEXIST) {
6025                exists = find_extent_buffer(fs_info, start);
6026                if (exists)
6027                        goto free_eb;
6028                else
6029                        goto again;
6030        }
6031        check_buffer_tree_ref(eb);
6032        set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6033
6034        return eb;
6035free_eb:
6036        btrfs_release_extent_buffer(eb);
6037        return exists;
6038}
6039#endif
6040
6041static struct extent_buffer *grab_extent_buffer(
6042                struct btrfs_fs_info *fs_info, struct page *page)
6043{
6044        struct extent_buffer *exists;
6045
6046        /*
6047         * For subpage case, we completely rely on radix tree to ensure we
6048         * don't try to insert two ebs for the same bytenr.  So here we always
6049         * return NULL and just continue.
6050         */
6051        if (fs_info->sectorsize < PAGE_SIZE)
6052                return NULL;
6053
6054        /* Page not yet attached to an extent buffer */
6055        if (!PagePrivate(page))
6056                return NULL;
6057
6058        /*
6059         * We could have already allocated an eb for this page and attached one
6060         * so lets see if we can get a ref on the existing eb, and if we can we
6061         * know it's good and we can just return that one, else we know we can
6062         * just overwrite page->private.
6063         */
6064        exists = (struct extent_buffer *)page->private;
6065        if (atomic_inc_not_zero(&exists->refs))
6066                return exists;
6067
6068        WARN_ON(PageDirty(page));
6069        detach_page_private(page);
6070        return NULL;
6071}
6072
6073struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6074                                          u64 start, u64 owner_root, int level)
6075{
6076        unsigned long len = fs_info->nodesize;
6077        int num_pages;
6078        int i;
6079        unsigned long index = start >> PAGE_SHIFT;
6080        struct extent_buffer *eb;
6081        struct extent_buffer *exists = NULL;
6082        struct page *p;
6083        struct address_space *mapping = fs_info->btree_inode->i_mapping;
6084        int uptodate = 1;
6085        int ret;
6086
6087        if (!IS_ALIGNED(start, fs_info->sectorsize)) {
6088                btrfs_err(fs_info, "bad tree block start %llu", start);
6089                return ERR_PTR(-EINVAL);
6090        }
6091
6092#if BITS_PER_LONG == 32
6093        if (start >= MAX_LFS_FILESIZE) {
6094                btrfs_err_rl(fs_info,
6095                "extent buffer %llu is beyond 32bit page cache limit", start);
6096                btrfs_err_32bit_limit(fs_info);
6097                return ERR_PTR(-EOVERFLOW);
6098        }
6099        if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6100                btrfs_warn_32bit_limit(fs_info);
6101#endif
6102
6103        if (fs_info->sectorsize < PAGE_SIZE &&
6104            offset_in_page(start) + len > PAGE_SIZE) {
6105                btrfs_err(fs_info,
6106                "tree block crosses page boundary, start %llu nodesize %lu",
6107                          start, len);
6108                return ERR_PTR(-EINVAL);
6109        }
6110
6111        eb = find_extent_buffer(fs_info, start);
6112        if (eb)
6113                return eb;
6114
6115        eb = __alloc_extent_buffer(fs_info, start, len);
6116        if (!eb)
6117                return ERR_PTR(-ENOMEM);
6118        btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6119
6120        num_pages = num_extent_pages(eb);
6121        for (i = 0; i < num_pages; i++, index++) {
6122                struct btrfs_subpage *prealloc = NULL;
6123
6124                p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6125                if (!p) {
6126                        exists = ERR_PTR(-ENOMEM);
6127                        goto free_eb;
6128                }
6129
6130                /*
6131                 * Preallocate page->private for subpage case, so that we won't
6132                 * allocate memory with private_lock hold.  The memory will be
6133                 * freed by attach_extent_buffer_page() or freed manually if
6134                 * we exit earlier.
6135                 *
6136                 * Although we have ensured one subpage eb can only have one
6137                 * page, but it may change in the future for 16K page size
6138                 * support, so we still preallocate the memory in the loop.
6139                 */
6140                ret = btrfs_alloc_subpage(fs_info, &prealloc,
6141                                          BTRFS_SUBPAGE_METADATA);
6142                if (ret < 0) {
6143                        unlock_page(p);
6144                        put_page(p);
6145                        exists = ERR_PTR(ret);
6146                        goto free_eb;
6147                }
6148
6149                spin_lock(&mapping->private_lock);
6150                exists = grab_extent_buffer(fs_info, p);
6151                if (exists) {
6152                        spin_unlock(&mapping->private_lock);
6153                        unlock_page(p);
6154                        put_page(p);
6155                        mark_extent_buffer_accessed(exists, p);
6156                        btrfs_free_subpage(prealloc);
6157                        goto free_eb;
6158                }
6159                /* Should not fail, as we have preallocated the memory */
6160                ret = attach_extent_buffer_page(eb, p, prealloc);
6161                ASSERT(!ret);
6162                /*
6163                 * To inform we have extra eb under allocation, so that
6164                 * detach_extent_buffer_page() won't release the page private
6165                 * when the eb hasn't yet been inserted into radix tree.
6166                 *
6167                 * The ref will be decreased when the eb released the page, in
6168                 * detach_extent_buffer_page().
6169                 * Thus needs no special handling in error path.
6170                 */
6171                btrfs_page_inc_eb_refs(fs_info, p);
6172                spin_unlock(&mapping->private_lock);
6173
6174                WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6175                eb->pages[i] = p;
6176                if (!PageUptodate(p))
6177                        uptodate = 0;
6178
6179                /*
6180                 * We can't unlock the pages just yet since the extent buffer
6181                 * hasn't been properly inserted in the radix tree, this
6182                 * opens a race with btree_releasepage which can free a page
6183                 * while we are still filling in all pages for the buffer and
6184                 * we could crash.
6185                 */
6186        }
6187        if (uptodate)
6188                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6189again:
6190        ret = radix_tree_preload(GFP_NOFS);
6191        if (ret) {
6192                exists = ERR_PTR(ret);
6193                goto free_eb;
6194        }
6195
6196        spin_lock(&fs_info->buffer_lock);
6197        ret = radix_tree_insert(&fs_info->buffer_radix,
6198                                start >> fs_info->sectorsize_bits, eb);
6199        spin_unlock(&fs_info->buffer_lock);
6200        radix_tree_preload_end();
6201        if (ret == -EEXIST) {
6202                exists = find_extent_buffer(fs_info, start);
6203                if (exists)
6204                        goto free_eb;
6205                else
6206                        goto again;
6207        }
6208        /* add one reference for the tree */
6209        check_buffer_tree_ref(eb);
6210        set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6211
6212        /*
6213         * Now it's safe to unlock the pages because any calls to
6214         * btree_releasepage will correctly detect that a page belongs to a
6215         * live buffer and won't free them prematurely.
6216         */
6217        for (i = 0; i < num_pages; i++)
6218                unlock_page(eb->pages[i]);
6219        return eb;
6220
6221free_eb:
6222        WARN_ON(!atomic_dec_and_test(&eb->refs));
6223        for (i = 0; i < num_pages; i++) {
6224                if (eb->pages[i])
6225                        unlock_page(eb->pages[i]);
6226        }
6227
6228        btrfs_release_extent_buffer(eb);
6229        return exists;
6230}
6231
6232static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6233{
6234        struct extent_buffer *eb =
6235                        container_of(head, struct extent_buffer, rcu_head);
6236
6237        __free_extent_buffer(eb);
6238}
6239
6240static int release_extent_buffer(struct extent_buffer *eb)
6241        __releases(&eb->refs_lock)
6242{
6243        lockdep_assert_held(&eb->refs_lock);
6244
6245        WARN_ON(atomic_read(&eb->refs) == 0);
6246        if (atomic_dec_and_test(&eb->refs)) {
6247                if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6248                        struct btrfs_fs_info *fs_info = eb->fs_info;
6249
6250                        spin_unlock(&eb->refs_lock);
6251
6252                        spin_lock(&fs_info->buffer_lock);
6253                        radix_tree_delete(&fs_info->buffer_radix,
6254                                          eb->start >> fs_info->sectorsize_bits);
6255                        spin_unlock(&fs_info->buffer_lock);
6256                } else {
6257                        spin_unlock(&eb->refs_lock);
6258                }
6259
6260                btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6261                /* Should be safe to release our pages at this point */
6262                btrfs_release_extent_buffer_pages(eb);
6263#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6264                if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6265                        __free_extent_buffer(eb);
6266                        return 1;
6267                }
6268#endif
6269                call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6270                return 1;
6271        }
6272        spin_unlock(&eb->refs_lock);
6273
6274        return 0;
6275}
6276
6277void free_extent_buffer(struct extent_buffer *eb)
6278{
6279        int refs;
6280        int old;
6281        if (!eb)
6282                return;
6283
6284        while (1) {
6285                refs = atomic_read(&eb->refs);
6286                if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6287                    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6288                        refs == 1))
6289                        break;
6290                old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6291                if (old == refs)
6292                        return;
6293        }
6294
6295        spin_lock(&eb->refs_lock);
6296        if (atomic_read(&eb->refs) == 2 &&
6297            test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6298            !extent_buffer_under_io(eb) &&
6299            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6300                atomic_dec(&eb->refs);
6301
6302        /*
6303         * I know this is terrible, but it's temporary until we stop tracking
6304         * the uptodate bits and such for the extent buffers.
6305         */
6306        release_extent_buffer(eb);
6307}
6308
6309void free_extent_buffer_stale(struct extent_buffer *eb)
6310{
6311        if (!eb)
6312                return;
6313
6314        spin_lock(&eb->refs_lock);
6315        set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6316
6317        if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6318            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6319                atomic_dec(&eb->refs);
6320        release_extent_buffer(eb);
6321}
6322
6323static void btree_clear_page_dirty(struct page *page)
6324{
6325        ASSERT(PageDirty(page));
6326        ASSERT(PageLocked(page));
6327        clear_page_dirty_for_io(page);
6328        xa_lock_irq(&page->mapping->i_pages);
6329        if (!PageDirty(page))
6330                __xa_clear_mark(&page->mapping->i_pages,
6331                                page_index(page), PAGECACHE_TAG_DIRTY);
6332        xa_unlock_irq(&page->mapping->i_pages);
6333}
6334
6335static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6336{
6337        struct btrfs_fs_info *fs_info = eb->fs_info;
6338        struct page *page = eb->pages[0];
6339        bool last;
6340
6341        /* btree_clear_page_dirty() needs page locked */
6342        lock_page(page);
6343        last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6344                                                  eb->len);
6345        if (last)
6346                btree_clear_page_dirty(page);
6347        unlock_page(page);
6348        WARN_ON(atomic_read(&eb->refs) == 0);
6349}
6350
6351void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6352{
6353        int i;
6354        int num_pages;
6355        struct page *page;
6356
6357        if (eb->fs_info->sectorsize < PAGE_SIZE)
6358                return clear_subpage_extent_buffer_dirty(eb);
6359
6360        num_pages = num_extent_pages(eb);
6361
6362        for (i = 0; i < num_pages; i++) {
6363                page = eb->pages[i];
6364                if (!PageDirty(page))
6365                        continue;
6366                lock_page(page);
6367                btree_clear_page_dirty(page);
6368                ClearPageError(page);
6369                unlock_page(page);
6370        }
6371        WARN_ON(atomic_read(&eb->refs) == 0);
6372}
6373
6374bool set_extent_buffer_dirty(struct extent_buffer *eb)
6375{
6376        int i;
6377        int num_pages;
6378        bool was_dirty;
6379
6380        check_buffer_tree_ref(eb);
6381
6382        was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6383
6384        num_pages = num_extent_pages(eb);
6385        WARN_ON(atomic_read(&eb->refs) == 0);
6386        WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6387
6388        if (!was_dirty) {
6389                bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
6390
6391                /*
6392                 * For subpage case, we can have other extent buffers in the
6393                 * same page, and in clear_subpage_extent_buffer_dirty() we
6394                 * have to clear page dirty without subpage lock held.
6395                 * This can cause race where our page gets dirty cleared after
6396                 * we just set it.
6397                 *
6398                 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6399                 * its page for other reasons, we can use page lock to prevent
6400                 * the above race.
6401                 */
6402                if (subpage)
6403                        lock_page(eb->pages[0]);
6404                for (i = 0; i < num_pages; i++)
6405                        btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6406                                             eb->start, eb->len);
6407                if (subpage)
6408                        unlock_page(eb->pages[0]);
6409        }
6410#ifdef CONFIG_BTRFS_DEBUG
6411        for (i = 0; i < num_pages; i++)
6412                ASSERT(PageDirty(eb->pages[i]));
6413#endif
6414
6415        return was_dirty;
6416}
6417
6418void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6419{
6420        struct btrfs_fs_info *fs_info = eb->fs_info;
6421        struct page *page;
6422        int num_pages;
6423        int i;
6424
6425        clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6426        num_pages = num_extent_pages(eb);
6427        for (i = 0; i < num_pages; i++) {
6428                page = eb->pages[i];
6429                if (page)
6430                        btrfs_page_clear_uptodate(fs_info, page,
6431                                                  eb->start, eb->len);
6432        }
6433}
6434
6435void set_extent_buffer_uptodate(struct extent_buffer *eb)
6436{
6437        struct btrfs_fs_info *fs_info = eb->fs_info;
6438        struct page *page;
6439        int num_pages;
6440        int i;
6441
6442        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6443        num_pages = num_extent_pages(eb);
6444        for (i = 0; i < num_pages; i++) {
6445                page = eb->pages[i];
6446                btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
6447        }
6448}
6449
6450static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6451                                      int mirror_num)
6452{
6453        struct btrfs_fs_info *fs_info = eb->fs_info;
6454        struct extent_io_tree *io_tree;
6455        struct page *page = eb->pages[0];
6456        struct btrfs_bio_ctrl bio_ctrl = { 0 };
6457        int ret = 0;
6458
6459        ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6460        ASSERT(PagePrivate(page));
6461        io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6462
6463        if (wait == WAIT_NONE) {
6464                if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6465                        return -EAGAIN;
6466        } else {
6467                ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6468                if (ret < 0)
6469                        return ret;
6470        }
6471
6472        ret = 0;
6473        if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6474            PageUptodate(page) ||
6475            btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6476                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6477                unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6478                return ret;
6479        }
6480
6481        clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6482        eb->read_mirror = 0;
6483        atomic_set(&eb->io_pages, 1);
6484        check_buffer_tree_ref(eb);
6485        btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6486
6487        btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6488        ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
6489                                 page, eb->start, eb->len,
6490                                 eb->start - page_offset(page),
6491                                 end_bio_extent_readpage, mirror_num, 0,
6492                                 true);
6493        if (ret) {
6494                /*
6495                 * In the endio function, if we hit something wrong we will
6496                 * increase the io_pages, so here we need to decrease it for
6497                 * error path.
6498                 */
6499                atomic_dec(&eb->io_pages);
6500        }
6501        if (bio_ctrl.bio) {
6502                int tmp;
6503
6504                tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6505                bio_ctrl.bio = NULL;
6506                if (tmp < 0)
6507                        return tmp;
6508        }
6509        if (ret || wait != WAIT_COMPLETE)
6510                return ret;
6511
6512        wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6513        if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6514                ret = -EIO;
6515        return ret;
6516}
6517
6518int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6519{
6520        int i;
6521        struct page *page;
6522        int err;
6523        int ret = 0;
6524        int locked_pages = 0;
6525        int all_uptodate = 1;
6526        int num_pages;
6527        unsigned long num_reads = 0;
6528        struct btrfs_bio_ctrl bio_ctrl = { 0 };
6529
6530        if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6531                return 0;
6532
6533        if (eb->fs_info->sectorsize < PAGE_SIZE)
6534                return read_extent_buffer_subpage(eb, wait, mirror_num);
6535
6536        num_pages = num_extent_pages(eb);
6537        for (i = 0; i < num_pages; i++) {
6538                page = eb->pages[i];
6539                if (wait == WAIT_NONE) {
6540                        /*
6541                         * WAIT_NONE is only utilized by readahead. If we can't
6542                         * acquire the lock atomically it means either the eb
6543                         * is being read out or under modification.
6544                         * Either way the eb will be or has been cached,
6545                         * readahead can exit safely.
6546                         */
6547                        if (!trylock_page(page))
6548                                goto unlock_exit;
6549                } else {
6550                        lock_page(page);
6551                }
6552                locked_pages++;
6553        }
6554        /*
6555         * We need to firstly lock all pages to make sure that
6556         * the uptodate bit of our pages won't be affected by
6557         * clear_extent_buffer_uptodate().
6558         */
6559        for (i = 0; i < num_pages; i++) {
6560                page = eb->pages[i];
6561                if (!PageUptodate(page)) {
6562                        num_reads++;
6563                        all_uptodate = 0;
6564                }
6565        }
6566
6567        if (all_uptodate) {
6568                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6569                goto unlock_exit;
6570        }
6571
6572        clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6573        eb->read_mirror = 0;
6574        atomic_set(&eb->io_pages, num_reads);
6575        /*
6576         * It is possible for releasepage to clear the TREE_REF bit before we
6577         * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6578         */
6579        check_buffer_tree_ref(eb);
6580        for (i = 0; i < num_pages; i++) {
6581                page = eb->pages[i];
6582
6583                if (!PageUptodate(page)) {
6584                        if (ret) {
6585                                atomic_dec(&eb->io_pages);
6586                                unlock_page(page);
6587                                continue;
6588                        }
6589
6590                        ClearPageError(page);
6591                        err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6592                                         &bio_ctrl, page, page_offset(page),
6593                                         PAGE_SIZE, 0, end_bio_extent_readpage,
6594                                         mirror_num, 0, false);
6595                        if (err) {
6596                                /*
6597                                 * We failed to submit the bio so it's the
6598                                 * caller's responsibility to perform cleanup
6599                                 * i.e unlock page/set error bit.
6600                                 */
6601                                ret = err;
6602                                SetPageError(page);
6603                                unlock_page(page);
6604                                atomic_dec(&eb->io_pages);
6605                        }
6606                } else {
6607                        unlock_page(page);
6608                }
6609        }
6610
6611        if (bio_ctrl.bio) {
6612                err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
6613                bio_ctrl.bio = NULL;
6614                if (err)
6615                        return err;
6616        }
6617
6618        if (ret || wait != WAIT_COMPLETE)
6619                return ret;
6620
6621        for (i = 0; i < num_pages; i++) {
6622                page = eb->pages[i];
6623                wait_on_page_locked(page);
6624                if (!PageUptodate(page))
6625                        ret = -EIO;
6626        }
6627
6628        return ret;
6629
6630unlock_exit:
6631        while (locked_pages > 0) {
6632                locked_pages--;
6633                page = eb->pages[locked_pages];
6634                unlock_page(page);
6635        }
6636        return ret;
6637}
6638
6639static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6640                            unsigned long len)
6641{
6642        btrfs_warn(eb->fs_info,
6643                "access to eb bytenr %llu len %lu out of range start %lu len %lu",
6644                eb->start, eb->len, start, len);
6645        WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6646
6647        return true;
6648}
6649
6650/*
6651 * Check if the [start, start + len) range is valid before reading/writing
6652 * the eb.
6653 * NOTE: @start and @len are offset inside the eb, not logical address.
6654 *
6655 * Caller should not touch the dst/src memory if this function returns error.
6656 */
6657static inline int check_eb_range(const struct extent_buffer *eb,
6658                                 unsigned long start, unsigned long len)
6659{
6660        unsigned long offset;
6661
6662        /* start, start + len should not go beyond eb->len nor overflow */
6663        if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6664                return report_eb_range(eb, start, len);
6665
6666        return false;
6667}
6668
6669void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6670                        unsigned long start, unsigned long len)
6671{
6672        size_t cur;
6673        size_t offset;
6674        struct page *page;
6675        char *kaddr;
6676        char *dst = (char *)dstv;
6677        unsigned long i = get_eb_page_index(start);
6678
6679        if (check_eb_range(eb, start, len))
6680                return;
6681
6682        offset = get_eb_offset_in_page(eb, start);
6683
6684        while (len > 0) {
6685                page = eb->pages[i];
6686
6687                cur = min(len, (PAGE_SIZE - offset));
6688                kaddr = page_address(page);
6689                memcpy(dst, kaddr + offset, cur);
6690
6691                dst += cur;
6692                len -= cur;
6693                offset = 0;
6694                i++;
6695        }
6696}
6697
6698int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6699                                       void __user *dstv,
6700                                       unsigned long start, unsigned long len)
6701{
6702        size_t cur;
6703        size_t offset;
6704        struct page *page;
6705        char *kaddr;
6706        char __user *dst = (char __user *)dstv;
6707        unsigned long i = get_eb_page_index(start);
6708        int ret = 0;
6709
6710        WARN_ON(start > eb->len);
6711        WARN_ON(start + len > eb->start + eb->len);
6712
6713        offset = get_eb_offset_in_page(eb, start);
6714
6715        while (len > 0) {
6716                page = eb->pages[i];
6717
6718                cur = min(len, (PAGE_SIZE - offset));
6719                kaddr = page_address(page);
6720                if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6721                        ret = -EFAULT;
6722                        break;
6723                }
6724
6725                dst += cur;
6726                len -= cur;
6727                offset = 0;
6728                i++;
6729        }
6730
6731        return ret;
6732}
6733
6734int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6735                         unsigned long start, unsigned long len)
6736{
6737        size_t cur;
6738        size_t offset;
6739        struct page *page;
6740        char *kaddr;
6741        char *ptr = (char *)ptrv;
6742        unsigned long i = get_eb_page_index(start);
6743        int ret = 0;
6744
6745        if (check_eb_range(eb, start, len))
6746                return -EINVAL;
6747
6748        offset = get_eb_offset_in_page(eb, start);
6749
6750        while (len > 0) {
6751                page = eb->pages[i];
6752
6753                cur = min(len, (PAGE_SIZE - offset));
6754
6755                kaddr = page_address(page);
6756                ret = memcmp(ptr, kaddr + offset, cur);
6757                if (ret)
6758                        break;
6759
6760                ptr += cur;
6761                len -= cur;
6762                offset = 0;
6763                i++;
6764        }
6765        return ret;
6766}
6767
6768/*
6769 * Check that the extent buffer is uptodate.
6770 *
6771 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6772 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6773 */
6774static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6775                                    struct page *page)
6776{
6777        struct btrfs_fs_info *fs_info = eb->fs_info;
6778
6779        if (fs_info->sectorsize < PAGE_SIZE) {
6780                bool uptodate;
6781
6782                uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6783                                                       eb->start, eb->len);
6784                WARN_ON(!uptodate);
6785        } else {
6786                WARN_ON(!PageUptodate(page));
6787        }
6788}
6789
6790void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6791                const void *srcv)
6792{
6793        char *kaddr;
6794
6795        assert_eb_page_uptodate(eb, eb->pages[0]);
6796        kaddr = page_address(eb->pages[0]) +
6797                get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6798                                                   chunk_tree_uuid));
6799        memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6800}
6801
6802void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6803{
6804        char *kaddr;
6805
6806        assert_eb_page_uptodate(eb, eb->pages[0]);
6807        kaddr = page_address(eb->pages[0]) +
6808                get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6809        memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6810}
6811
6812void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6813                         unsigned long start, unsigned long len)
6814{
6815        size_t cur;
6816        size_t offset;
6817        struct page *page;
6818        char *kaddr;
6819        char *src = (char *)srcv;
6820        unsigned long i = get_eb_page_index(start);
6821
6822        WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
6823
6824        if (check_eb_range(eb, start, len))
6825                return;
6826
6827        offset = get_eb_offset_in_page(eb, start);
6828
6829        while (len > 0) {
6830                page = eb->pages[i];
6831                assert_eb_page_uptodate(eb, page);
6832
6833                cur = min(len, PAGE_SIZE - offset);
6834                kaddr = page_address(page);
6835                memcpy(kaddr + offset, src, cur);
6836
6837                src += cur;
6838                len -= cur;
6839                offset = 0;
6840                i++;
6841        }
6842}
6843
6844void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6845                unsigned long len)
6846{
6847        size_t cur;
6848        size_t offset;
6849        struct page *page;
6850        char *kaddr;
6851        unsigned long i = get_eb_page_index(start);
6852
6853        if (check_eb_range(eb, start, len))
6854                return;
6855
6856        offset = get_eb_offset_in_page(eb, start);
6857
6858        while (len > 0) {
6859                page = eb->pages[i];
6860                assert_eb_page_uptodate(eb, page);
6861
6862                cur = min(len, PAGE_SIZE - offset);
6863                kaddr = page_address(page);
6864                memset(kaddr + offset, 0, cur);
6865
6866                len -= cur;
6867                offset = 0;
6868                i++;
6869        }
6870}
6871
6872void copy_extent_buffer_full(const struct extent_buffer *dst,
6873                             const struct extent_buffer *src)
6874{
6875        int i;
6876        int num_pages;
6877
6878        ASSERT(dst->len == src->len);
6879
6880        if (dst->fs_info->sectorsize == PAGE_SIZE) {
6881                num_pages = num_extent_pages(dst);
6882                for (i = 0; i < num_pages; i++)
6883                        copy_page(page_address(dst->pages[i]),
6884                                  page_address(src->pages[i]));
6885        } else {
6886                size_t src_offset = get_eb_offset_in_page(src, 0);
6887                size_t dst_offset = get_eb_offset_in_page(dst, 0);
6888
6889                ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
6890                memcpy(page_address(dst->pages[0]) + dst_offset,
6891                       page_address(src->pages[0]) + src_offset,
6892                       src->len);
6893        }
6894}
6895
6896void copy_extent_buffer(const struct extent_buffer *dst,
6897                        const struct extent_buffer *src,
6898                        unsigned long dst_offset, unsigned long src_offset,
6899                        unsigned long len)
6900{
6901        u64 dst_len = dst->len;
6902        size_t cur;
6903        size_t offset;
6904        struct page *page;
6905        char *kaddr;
6906        unsigned long i = get_eb_page_index(dst_offset);
6907
6908        if (check_eb_range(dst, dst_offset, len) ||
6909            check_eb_range(src, src_offset, len))
6910                return;
6911
6912        WARN_ON(src->len != dst_len);
6913
6914        offset = get_eb_offset_in_page(dst, dst_offset);
6915
6916        while (len > 0) {
6917                page = dst->pages[i];
6918                assert_eb_page_uptodate(dst, page);
6919
6920                cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6921
6922                kaddr = page_address(page);
6923                read_extent_buffer(src, kaddr + offset, src_offset, cur);
6924
6925                src_offset += cur;
6926                len -= cur;
6927                offset = 0;
6928                i++;
6929        }
6930}
6931
6932/*
6933 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
6934 * given bit number
6935 * @eb: the extent buffer
6936 * @start: offset of the bitmap item in the extent buffer
6937 * @nr: bit number
6938 * @page_index: return index of the page in the extent buffer that contains the
6939 * given bit number
6940 * @page_offset: return offset into the page given by page_index
6941 *
6942 * This helper hides the ugliness of finding the byte in an extent buffer which
6943 * contains a given bit.
6944 */
6945static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6946                                    unsigned long start, unsigned long nr,
6947                                    unsigned long *page_index,
6948                                    size_t *page_offset)
6949{
6950        size_t byte_offset = BIT_BYTE(nr);
6951        size_t offset;
6952
6953        /*
6954         * The byte we want is the offset of the extent buffer + the offset of
6955         * the bitmap item in the extent buffer + the offset of the byte in the
6956         * bitmap item.
6957         */
6958        offset = start + offset_in_page(eb->start) + byte_offset;
6959
6960        *page_index = offset >> PAGE_SHIFT;
6961        *page_offset = offset_in_page(offset);
6962}
6963
6964/**
6965 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
6966 * @eb: the extent buffer
6967 * @start: offset of the bitmap item in the extent buffer
6968 * @nr: bit number to test
6969 */
6970int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6971                           unsigned long nr)
6972{
6973        u8 *kaddr;
6974        struct page *page;
6975        unsigned long i;
6976        size_t offset;
6977
6978        eb_bitmap_offset(eb, start, nr, &i, &offset);
6979        page = eb->pages[i];
6980        assert_eb_page_uptodate(eb, page);
6981        kaddr = page_address(page);
6982        return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
6983}
6984
6985/**
6986 * extent_buffer_bitmap_set - set an area of a bitmap
6987 * @eb: the extent buffer
6988 * @start: offset of the bitmap item in the extent buffer
6989 * @pos: bit number of the first bit
6990 * @len: number of bits to set
6991 */
6992void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6993                              unsigned long pos, unsigned long len)
6994{
6995        u8 *kaddr;
6996        struct page *page;
6997        unsigned long i;
6998        size_t offset;
6999        const unsigned int size = pos + len;
7000        int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7001        u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7002
7003        eb_bitmap_offset(eb, start, pos, &i, &offset);
7004        page = eb->pages[i];
7005        assert_eb_page_uptodate(eb, page);
7006        kaddr = page_address(page);
7007
7008        while (len >= bits_to_set) {
7009                kaddr[offset] |= mask_to_set;
7010                len -= bits_to_set;
7011                bits_to_set = BITS_PER_BYTE;
7012                mask_to_set = ~0;
7013                if (++offset >= PAGE_SIZE && len > 0) {
7014                        offset = 0;
7015                        page = eb->pages[++i];
7016                        assert_eb_page_uptodate(eb, page);
7017                        kaddr = page_address(page);
7018                }
7019        }
7020        if (len) {
7021                mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
7022                kaddr[offset] |= mask_to_set;
7023        }
7024}
7025
7026
7027/**
7028 * extent_buffer_bitmap_clear - clear an area of a bitmap
7029 * @eb: the extent buffer
7030 * @start: offset of the bitmap item in the extent buffer
7031 * @pos: bit number of the first bit
7032 * @len: number of bits to clear
7033 */
7034void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
7035                                unsigned long start, unsigned long pos,
7036                                unsigned long len)
7037{
7038        u8 *kaddr;
7039        struct page *page;
7040        unsigned long i;
7041        size_t offset;
7042        const unsigned int size = pos + len;
7043        int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7044        u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7045
7046        eb_bitmap_offset(eb, start, pos, &i, &offset);
7047        page = eb->pages[i];
7048        assert_eb_page_uptodate(eb, page);
7049        kaddr = page_address(page);
7050
7051        while (len >= bits_to_clear) {
7052                kaddr[offset] &= ~mask_to_clear;
7053                len -= bits_to_clear;
7054                bits_to_clear = BITS_PER_BYTE;
7055                mask_to_clear = ~0;
7056                if (++offset >= PAGE_SIZE && len > 0) {
7057                        offset = 0;
7058                        page = eb->pages[++i];
7059                        assert_eb_page_uptodate(eb, page);
7060                        kaddr = page_address(page);
7061                }
7062        }
7063        if (len) {
7064                mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
7065                kaddr[offset] &= ~mask_to_clear;
7066        }
7067}
7068
7069static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
7070{
7071        unsigned long distance = (src > dst) ? src - dst : dst - src;
7072        return distance < len;
7073}
7074
7075static void copy_pages(struct page *dst_page, struct page *src_page,
7076                       unsigned long dst_off, unsigned long src_off,
7077                       unsigned long len)
7078{
7079        char *dst_kaddr = page_address(dst_page);
7080        char *src_kaddr;
7081        int must_memmove = 0;
7082
7083        if (dst_page != src_page) {
7084                src_kaddr = page_address(src_page);
7085        } else {
7086                src_kaddr = dst_kaddr;
7087                if (areas_overlap(src_off, dst_off, len))
7088                        must_memmove = 1;
7089        }
7090
7091        if (must_memmove)
7092                memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
7093        else
7094                memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7095}
7096
7097void memcpy_extent_buffer(const struct extent_buffer *dst,
7098                          unsigned long dst_offset, unsigned long src_offset,
7099                          unsigned long len)
7100{
7101        size_t cur;
7102        size_t dst_off_in_page;
7103        size_t src_off_in_page;
7104        unsigned long dst_i;
7105        unsigned long src_i;
7106
7107        if (check_eb_range(dst, dst_offset, len) ||
7108            check_eb_range(dst, src_offset, len))
7109                return;
7110
7111        while (len > 0) {
7112                dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
7113                src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7114
7115                dst_i = get_eb_page_index(dst_offset);
7116                src_i = get_eb_page_index(src_offset);
7117
7118                cur = min(len, (unsigned long)(PAGE_SIZE -
7119                                               src_off_in_page));
7120                cur = min_t(unsigned long, cur,
7121                        (unsigned long)(PAGE_SIZE - dst_off_in_page));
7122
7123                copy_pages(dst->pages[dst_i], dst->pages[src_i],
7124                           dst_off_in_page, src_off_in_page, cur);
7125
7126                src_offset += cur;
7127                dst_offset += cur;
7128                len -= cur;
7129        }
7130}
7131
7132void memmove_extent_buffer(const struct extent_buffer *dst,
7133                           unsigned long dst_offset, unsigned long src_offset,
7134                           unsigned long len)
7135{
7136        size_t cur;
7137        size_t dst_off_in_page;
7138        size_t src_off_in_page;
7139        unsigned long dst_end = dst_offset + len - 1;
7140        unsigned long src_end = src_offset + len - 1;
7141        unsigned long dst_i;
7142        unsigned long src_i;
7143
7144        if (check_eb_range(dst, dst_offset, len) ||
7145            check_eb_range(dst, src_offset, len))
7146                return;
7147        if (dst_offset < src_offset) {
7148                memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7149                return;
7150        }
7151        while (len > 0) {
7152                dst_i = get_eb_page_index(dst_end);
7153                src_i = get_eb_page_index(src_end);
7154
7155                dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7156                src_off_in_page = get_eb_offset_in_page(dst, src_end);
7157
7158                cur = min_t(unsigned long, len, src_off_in_page + 1);
7159                cur = min(cur, dst_off_in_page + 1);
7160                copy_pages(dst->pages[dst_i], dst->pages[src_i],
7161                           dst_off_in_page - cur + 1,
7162                           src_off_in_page - cur + 1, cur);
7163
7164                dst_end -= cur;
7165                src_end -= cur;
7166                len -= cur;
7167        }
7168}
7169
7170static struct extent_buffer *get_next_extent_buffer(
7171                struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7172{
7173        struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
7174        struct extent_buffer *found = NULL;
7175        u64 page_start = page_offset(page);
7176        int ret;
7177        int i;
7178
7179        ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
7180        ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
7181        lockdep_assert_held(&fs_info->buffer_lock);
7182
7183        ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
7184                        bytenr >> fs_info->sectorsize_bits,
7185                        PAGE_SIZE / fs_info->nodesize);
7186        for (i = 0; i < ret; i++) {
7187                /* Already beyond page end */
7188                if (gang[i]->start >= page_start + PAGE_SIZE)
7189                        break;
7190                /* Found one */
7191                if (gang[i]->start >= bytenr) {
7192                        found = gang[i];
7193                        break;
7194                }
7195        }
7196        return found;
7197}
7198
7199static int try_release_subpage_extent_buffer(struct page *page)
7200{
7201        struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7202        u64 cur = page_offset(page);
7203        const u64 end = page_offset(page) + PAGE_SIZE;
7204        int ret;
7205
7206        while (cur < end) {
7207                struct extent_buffer *eb = NULL;
7208
7209                /*
7210                 * Unlike try_release_extent_buffer() which uses page->private
7211                 * to grab buffer, for subpage case we rely on radix tree, thus
7212                 * we need to ensure radix tree consistency.
7213                 *
7214                 * We also want an atomic snapshot of the radix tree, thus go
7215                 * with spinlock rather than RCU.
7216                 */
7217                spin_lock(&fs_info->buffer_lock);
7218                eb = get_next_extent_buffer(fs_info, page, cur);
7219                if (!eb) {
7220                        /* No more eb in the page range after or at cur */
7221                        spin_unlock(&fs_info->buffer_lock);
7222                        break;
7223                }
7224                cur = eb->start + eb->len;
7225
7226                /*
7227                 * The same as try_release_extent_buffer(), to ensure the eb
7228                 * won't disappear out from under us.
7229                 */
7230                spin_lock(&eb->refs_lock);
7231                if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7232                        spin_unlock(&eb->refs_lock);
7233                        spin_unlock(&fs_info->buffer_lock);
7234                        break;
7235                }
7236                spin_unlock(&fs_info->buffer_lock);
7237
7238                /*
7239                 * If tree ref isn't set then we know the ref on this eb is a
7240                 * real ref, so just return, this eb will likely be freed soon
7241                 * anyway.
7242                 */
7243                if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7244                        spin_unlock(&eb->refs_lock);
7245                        break;
7246                }
7247
7248                /*
7249                 * Here we don't care about the return value, we will always
7250                 * check the page private at the end.  And
7251                 * release_extent_buffer() will release the refs_lock.
7252                 */
7253                release_extent_buffer(eb);
7254        }
7255        /*
7256         * Finally to check if we have cleared page private, as if we have
7257         * released all ebs in the page, the page private should be cleared now.
7258         */
7259        spin_lock(&page->mapping->private_lock);
7260        if (!PagePrivate(page))
7261                ret = 1;
7262        else
7263                ret = 0;
7264        spin_unlock(&page->mapping->private_lock);
7265        return ret;
7266
7267}
7268
7269int try_release_extent_buffer(struct page *page)
7270{
7271        struct extent_buffer *eb;
7272
7273        if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
7274                return try_release_subpage_extent_buffer(page);
7275
7276        /*
7277         * We need to make sure nobody is changing page->private, as we rely on
7278         * page->private as the pointer to extent buffer.
7279         */
7280        spin_lock(&page->mapping->private_lock);
7281        if (!PagePrivate(page)) {
7282                spin_unlock(&page->mapping->private_lock);
7283                return 1;
7284        }
7285
7286        eb = (struct extent_buffer *)page->private;
7287        BUG_ON(!eb);
7288
7289        /*
7290         * This is a little awful but should be ok, we need to make sure that
7291         * the eb doesn't disappear out from under us while we're looking at
7292         * this page.
7293         */
7294        spin_lock(&eb->refs_lock);
7295        if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7296                spin_unlock(&eb->refs_lock);
7297                spin_unlock(&page->mapping->private_lock);
7298                return 0;
7299        }
7300        spin_unlock(&page->mapping->private_lock);
7301
7302        /*
7303         * If tree ref isn't set then we know the ref on this eb is a real ref,
7304         * so just return, this page will likely be freed soon anyway.
7305         */
7306        if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7307                spin_unlock(&eb->refs_lock);
7308                return 0;
7309        }
7310
7311        return release_extent_buffer(eb);
7312}
7313
7314/*
7315 * btrfs_readahead_tree_block - attempt to readahead a child block
7316 * @fs_info:    the fs_info
7317 * @bytenr:     bytenr to read
7318 * @owner_root: objectid of the root that owns this eb
7319 * @gen:        generation for the uptodate check, can be 0
7320 * @level:      level for the eb
7321 *
7322 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
7323 * normal uptodate check of the eb, without checking the generation.  If we have
7324 * to read the block we will not block on anything.
7325 */
7326void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7327                                u64 bytenr, u64 owner_root, u64 gen, int level)
7328{
7329        struct extent_buffer *eb;
7330        int ret;
7331
7332        eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7333        if (IS_ERR(eb))
7334                return;
7335
7336        if (btrfs_buffer_uptodate(eb, gen, 1)) {
7337                free_extent_buffer(eb);
7338                return;
7339        }
7340
7341        ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7342        if (ret < 0)
7343                free_extent_buffer_stale(eb);
7344        else
7345                free_extent_buffer(eb);
7346}
7347
7348/*
7349 * btrfs_readahead_node_child - readahead a node's child block
7350 * @node:       parent node we're reading from
7351 * @slot:       slot in the parent node for the child we want to read
7352 *
7353 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7354 * the slot in the node provided.
7355 */
7356void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7357{
7358        btrfs_readahead_tree_block(node->fs_info,
7359                                   btrfs_node_blockptr(node, slot),
7360                                   btrfs_header_owner(node),
7361                                   btrfs_node_ptr_generation(node, slot),
7362                                   btrfs_header_level(node) - 1);
7363}
7364