linux/fs/btrfs/ioctl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/fsnotify.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/namei.h>
  18#include <linux/writeback.h>
  19#include <linux/compat.h>
  20#include <linux/security.h>
  21#include <linux/xattr.h>
  22#include <linux/mm.h>
  23#include <linux/slab.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include <linux/btrfs.h>
  27#include <linux/uaccess.h>
  28#include <linux/iversion.h>
  29#include <linux/fileattr.h>
  30#include <linux/fsverity.h>
  31#include "ctree.h"
  32#include "disk-io.h"
  33#include "export.h"
  34#include "transaction.h"
  35#include "btrfs_inode.h"
  36#include "print-tree.h"
  37#include "volumes.h"
  38#include "locking.h"
  39#include "backref.h"
  40#include "rcu-string.h"
  41#include "send.h"
  42#include "dev-replace.h"
  43#include "props.h"
  44#include "sysfs.h"
  45#include "qgroup.h"
  46#include "tree-log.h"
  47#include "compression.h"
  48#include "space-info.h"
  49#include "delalloc-space.h"
  50#include "block-group.h"
  51
  52#ifdef CONFIG_64BIT
  53/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  54 * structures are incorrect, as the timespec structure from userspace
  55 * is 4 bytes too small. We define these alternatives here to teach
  56 * the kernel about the 32-bit struct packing.
  57 */
  58struct btrfs_ioctl_timespec_32 {
  59        __u64 sec;
  60        __u32 nsec;
  61} __attribute__ ((__packed__));
  62
  63struct btrfs_ioctl_received_subvol_args_32 {
  64        char    uuid[BTRFS_UUID_SIZE];  /* in */
  65        __u64   stransid;               /* in */
  66        __u64   rtransid;               /* out */
  67        struct btrfs_ioctl_timespec_32 stime; /* in */
  68        struct btrfs_ioctl_timespec_32 rtime; /* out */
  69        __u64   flags;                  /* in */
  70        __u64   reserved[16];           /* in */
  71} __attribute__ ((__packed__));
  72
  73#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  74                                struct btrfs_ioctl_received_subvol_args_32)
  75#endif
  76
  77#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
  78struct btrfs_ioctl_send_args_32 {
  79        __s64 send_fd;                  /* in */
  80        __u64 clone_sources_count;      /* in */
  81        compat_uptr_t clone_sources;    /* in */
  82        __u64 parent_root;              /* in */
  83        __u64 flags;                    /* in */
  84        __u64 reserved[4];              /* in */
  85} __attribute__ ((__packed__));
  86
  87#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
  88                               struct btrfs_ioctl_send_args_32)
  89#endif
  90
  91/* Mask out flags that are inappropriate for the given type of inode. */
  92static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
  93                unsigned int flags)
  94{
  95        if (S_ISDIR(inode->i_mode))
  96                return flags;
  97        else if (S_ISREG(inode->i_mode))
  98                return flags & ~FS_DIRSYNC_FL;
  99        else
 100                return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
 101}
 102
 103/*
 104 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
 105 * ioctl.
 106 */
 107static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
 108{
 109        unsigned int iflags = 0;
 110        u32 flags = binode->flags;
 111        u32 ro_flags = binode->ro_flags;
 112
 113        if (flags & BTRFS_INODE_SYNC)
 114                iflags |= FS_SYNC_FL;
 115        if (flags & BTRFS_INODE_IMMUTABLE)
 116                iflags |= FS_IMMUTABLE_FL;
 117        if (flags & BTRFS_INODE_APPEND)
 118                iflags |= FS_APPEND_FL;
 119        if (flags & BTRFS_INODE_NODUMP)
 120                iflags |= FS_NODUMP_FL;
 121        if (flags & BTRFS_INODE_NOATIME)
 122                iflags |= FS_NOATIME_FL;
 123        if (flags & BTRFS_INODE_DIRSYNC)
 124                iflags |= FS_DIRSYNC_FL;
 125        if (flags & BTRFS_INODE_NODATACOW)
 126                iflags |= FS_NOCOW_FL;
 127        if (ro_flags & BTRFS_INODE_RO_VERITY)
 128                iflags |= FS_VERITY_FL;
 129
 130        if (flags & BTRFS_INODE_NOCOMPRESS)
 131                iflags |= FS_NOCOMP_FL;
 132        else if (flags & BTRFS_INODE_COMPRESS)
 133                iflags |= FS_COMPR_FL;
 134
 135        return iflags;
 136}
 137
 138/*
 139 * Update inode->i_flags based on the btrfs internal flags.
 140 */
 141void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
 142{
 143        struct btrfs_inode *binode = BTRFS_I(inode);
 144        unsigned int new_fl = 0;
 145
 146        if (binode->flags & BTRFS_INODE_SYNC)
 147                new_fl |= S_SYNC;
 148        if (binode->flags & BTRFS_INODE_IMMUTABLE)
 149                new_fl |= S_IMMUTABLE;
 150        if (binode->flags & BTRFS_INODE_APPEND)
 151                new_fl |= S_APPEND;
 152        if (binode->flags & BTRFS_INODE_NOATIME)
 153                new_fl |= S_NOATIME;
 154        if (binode->flags & BTRFS_INODE_DIRSYNC)
 155                new_fl |= S_DIRSYNC;
 156        if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
 157                new_fl |= S_VERITY;
 158
 159        set_mask_bits(&inode->i_flags,
 160                      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
 161                      S_VERITY, new_fl);
 162}
 163
 164/*
 165 * Check if @flags are a supported and valid set of FS_*_FL flags and that
 166 * the old and new flags are not conflicting
 167 */
 168static int check_fsflags(unsigned int old_flags, unsigned int flags)
 169{
 170        if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 171                      FS_NOATIME_FL | FS_NODUMP_FL | \
 172                      FS_SYNC_FL | FS_DIRSYNC_FL | \
 173                      FS_NOCOMP_FL | FS_COMPR_FL |
 174                      FS_NOCOW_FL))
 175                return -EOPNOTSUPP;
 176
 177        /* COMPR and NOCOMP on new/old are valid */
 178        if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 179                return -EINVAL;
 180
 181        if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
 182                return -EINVAL;
 183
 184        /* NOCOW and compression options are mutually exclusive */
 185        if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 186                return -EINVAL;
 187        if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 188                return -EINVAL;
 189
 190        return 0;
 191}
 192
 193static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
 194                                    unsigned int flags)
 195{
 196        if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
 197                return -EPERM;
 198
 199        return 0;
 200}
 201
 202/*
 203 * Set flags/xflags from the internal inode flags. The remaining items of
 204 * fsxattr are zeroed.
 205 */
 206int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
 207{
 208        struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
 209
 210        fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
 211        return 0;
 212}
 213
 214int btrfs_fileattr_set(struct user_namespace *mnt_userns,
 215                       struct dentry *dentry, struct fileattr *fa)
 216{
 217        struct inode *inode = d_inode(dentry);
 218        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 219        struct btrfs_inode *binode = BTRFS_I(inode);
 220        struct btrfs_root *root = binode->root;
 221        struct btrfs_trans_handle *trans;
 222        unsigned int fsflags, old_fsflags;
 223        int ret;
 224        const char *comp = NULL;
 225        u32 binode_flags;
 226
 227        if (btrfs_root_readonly(root))
 228                return -EROFS;
 229
 230        if (fileattr_has_fsx(fa))
 231                return -EOPNOTSUPP;
 232
 233        fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
 234        old_fsflags = btrfs_inode_flags_to_fsflags(binode);
 235        ret = check_fsflags(old_fsflags, fsflags);
 236        if (ret)
 237                return ret;
 238
 239        ret = check_fsflags_compatible(fs_info, fsflags);
 240        if (ret)
 241                return ret;
 242
 243        binode_flags = binode->flags;
 244        if (fsflags & FS_SYNC_FL)
 245                binode_flags |= BTRFS_INODE_SYNC;
 246        else
 247                binode_flags &= ~BTRFS_INODE_SYNC;
 248        if (fsflags & FS_IMMUTABLE_FL)
 249                binode_flags |= BTRFS_INODE_IMMUTABLE;
 250        else
 251                binode_flags &= ~BTRFS_INODE_IMMUTABLE;
 252        if (fsflags & FS_APPEND_FL)
 253                binode_flags |= BTRFS_INODE_APPEND;
 254        else
 255                binode_flags &= ~BTRFS_INODE_APPEND;
 256        if (fsflags & FS_NODUMP_FL)
 257                binode_flags |= BTRFS_INODE_NODUMP;
 258        else
 259                binode_flags &= ~BTRFS_INODE_NODUMP;
 260        if (fsflags & FS_NOATIME_FL)
 261                binode_flags |= BTRFS_INODE_NOATIME;
 262        else
 263                binode_flags &= ~BTRFS_INODE_NOATIME;
 264
 265        /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
 266        if (!fa->flags_valid) {
 267                /* 1 item for the inode */
 268                trans = btrfs_start_transaction(root, 1);
 269                if (IS_ERR(trans))
 270                        return PTR_ERR(trans);
 271                goto update_flags;
 272        }
 273
 274        if (fsflags & FS_DIRSYNC_FL)
 275                binode_flags |= BTRFS_INODE_DIRSYNC;
 276        else
 277                binode_flags &= ~BTRFS_INODE_DIRSYNC;
 278        if (fsflags & FS_NOCOW_FL) {
 279                if (S_ISREG(inode->i_mode)) {
 280                        /*
 281                         * It's safe to turn csums off here, no extents exist.
 282                         * Otherwise we want the flag to reflect the real COW
 283                         * status of the file and will not set it.
 284                         */
 285                        if (inode->i_size == 0)
 286                                binode_flags |= BTRFS_INODE_NODATACOW |
 287                                                BTRFS_INODE_NODATASUM;
 288                } else {
 289                        binode_flags |= BTRFS_INODE_NODATACOW;
 290                }
 291        } else {
 292                /*
 293                 * Revert back under same assumptions as above
 294                 */
 295                if (S_ISREG(inode->i_mode)) {
 296                        if (inode->i_size == 0)
 297                                binode_flags &= ~(BTRFS_INODE_NODATACOW |
 298                                                  BTRFS_INODE_NODATASUM);
 299                } else {
 300                        binode_flags &= ~BTRFS_INODE_NODATACOW;
 301                }
 302        }
 303
 304        /*
 305         * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 306         * flag may be changed automatically if compression code won't make
 307         * things smaller.
 308         */
 309        if (fsflags & FS_NOCOMP_FL) {
 310                binode_flags &= ~BTRFS_INODE_COMPRESS;
 311                binode_flags |= BTRFS_INODE_NOCOMPRESS;
 312        } else if (fsflags & FS_COMPR_FL) {
 313
 314                if (IS_SWAPFILE(inode))
 315                        return -ETXTBSY;
 316
 317                binode_flags |= BTRFS_INODE_COMPRESS;
 318                binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
 319
 320                comp = btrfs_compress_type2str(fs_info->compress_type);
 321                if (!comp || comp[0] == 0)
 322                        comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
 323        } else {
 324                binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 325        }
 326
 327        /*
 328         * 1 for inode item
 329         * 2 for properties
 330         */
 331        trans = btrfs_start_transaction(root, 3);
 332        if (IS_ERR(trans))
 333                return PTR_ERR(trans);
 334
 335        if (comp) {
 336                ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
 337                                     strlen(comp), 0);
 338                if (ret) {
 339                        btrfs_abort_transaction(trans, ret);
 340                        goto out_end_trans;
 341                }
 342        } else {
 343                ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
 344                                     0, 0);
 345                if (ret && ret != -ENODATA) {
 346                        btrfs_abort_transaction(trans, ret);
 347                        goto out_end_trans;
 348                }
 349        }
 350
 351update_flags:
 352        binode->flags = binode_flags;
 353        btrfs_sync_inode_flags_to_i_flags(inode);
 354        inode_inc_iversion(inode);
 355        inode->i_ctime = current_time(inode);
 356        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 357
 358 out_end_trans:
 359        btrfs_end_transaction(trans);
 360        return ret;
 361}
 362
 363/*
 364 * Start exclusive operation @type, return true on success
 365 */
 366bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
 367                        enum btrfs_exclusive_operation type)
 368{
 369        bool ret = false;
 370
 371        spin_lock(&fs_info->super_lock);
 372        if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
 373                fs_info->exclusive_operation = type;
 374                ret = true;
 375        }
 376        spin_unlock(&fs_info->super_lock);
 377
 378        return ret;
 379}
 380
 381/*
 382 * Conditionally allow to enter the exclusive operation in case it's compatible
 383 * with the running one.  This must be paired with btrfs_exclop_start_unlock and
 384 * btrfs_exclop_finish.
 385 *
 386 * Compatibility:
 387 * - the same type is already running
 388 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
 389 *   must check the condition first that would allow none -> @type
 390 */
 391bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
 392                                 enum btrfs_exclusive_operation type)
 393{
 394        spin_lock(&fs_info->super_lock);
 395        if (fs_info->exclusive_operation == type)
 396                return true;
 397
 398        spin_unlock(&fs_info->super_lock);
 399        return false;
 400}
 401
 402void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
 403{
 404        spin_unlock(&fs_info->super_lock);
 405}
 406
 407void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
 408{
 409        spin_lock(&fs_info->super_lock);
 410        WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
 411        spin_unlock(&fs_info->super_lock);
 412        sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
 413}
 414
 415static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
 416{
 417        struct inode *inode = file_inode(file);
 418
 419        return put_user(inode->i_generation, arg);
 420}
 421
 422static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
 423                                        void __user *arg)
 424{
 425        struct btrfs_device *device;
 426        struct request_queue *q;
 427        struct fstrim_range range;
 428        u64 minlen = ULLONG_MAX;
 429        u64 num_devices = 0;
 430        int ret;
 431
 432        if (!capable(CAP_SYS_ADMIN))
 433                return -EPERM;
 434
 435        /*
 436         * btrfs_trim_block_group() depends on space cache, which is not
 437         * available in zoned filesystem. So, disallow fitrim on a zoned
 438         * filesystem for now.
 439         */
 440        if (btrfs_is_zoned(fs_info))
 441                return -EOPNOTSUPP;
 442
 443        /*
 444         * If the fs is mounted with nologreplay, which requires it to be
 445         * mounted in RO mode as well, we can not allow discard on free space
 446         * inside block groups, because log trees refer to extents that are not
 447         * pinned in a block group's free space cache (pinning the extents is
 448         * precisely the first phase of replaying a log tree).
 449         */
 450        if (btrfs_test_opt(fs_info, NOLOGREPLAY))
 451                return -EROFS;
 452
 453        rcu_read_lock();
 454        list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 455                                dev_list) {
 456                if (!device->bdev)
 457                        continue;
 458                q = bdev_get_queue(device->bdev);
 459                if (blk_queue_discard(q)) {
 460                        num_devices++;
 461                        minlen = min_t(u64, q->limits.discard_granularity,
 462                                     minlen);
 463                }
 464        }
 465        rcu_read_unlock();
 466
 467        if (!num_devices)
 468                return -EOPNOTSUPP;
 469        if (copy_from_user(&range, arg, sizeof(range)))
 470                return -EFAULT;
 471
 472        /*
 473         * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
 474         * block group is in the logical address space, which can be any
 475         * sectorsize aligned bytenr in  the range [0, U64_MAX].
 476         */
 477        if (range.len < fs_info->sb->s_blocksize)
 478                return -EINVAL;
 479
 480        range.minlen = max(range.minlen, minlen);
 481        ret = btrfs_trim_fs(fs_info, &range);
 482        if (ret < 0)
 483                return ret;
 484
 485        if (copy_to_user(arg, &range, sizeof(range)))
 486                return -EFAULT;
 487
 488        return 0;
 489}
 490
 491int __pure btrfs_is_empty_uuid(u8 *uuid)
 492{
 493        int i;
 494
 495        for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 496                if (uuid[i])
 497                        return 0;
 498        }
 499        return 1;
 500}
 501
 502static noinline int create_subvol(struct user_namespace *mnt_userns,
 503                                  struct inode *dir, struct dentry *dentry,
 504                                  const char *name, int namelen,
 505                                  struct btrfs_qgroup_inherit *inherit)
 506{
 507        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 508        struct btrfs_trans_handle *trans;
 509        struct btrfs_key key;
 510        struct btrfs_root_item *root_item;
 511        struct btrfs_inode_item *inode_item;
 512        struct extent_buffer *leaf;
 513        struct btrfs_root *root = BTRFS_I(dir)->root;
 514        struct btrfs_root *new_root;
 515        struct btrfs_block_rsv block_rsv;
 516        struct timespec64 cur_time = current_time(dir);
 517        struct inode *inode;
 518        int ret;
 519        int err;
 520        dev_t anon_dev = 0;
 521        u64 objectid;
 522        u64 index = 0;
 523
 524        root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
 525        if (!root_item)
 526                return -ENOMEM;
 527
 528        ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
 529        if (ret)
 530                goto fail_free;
 531
 532        ret = get_anon_bdev(&anon_dev);
 533        if (ret < 0)
 534                goto fail_free;
 535
 536        /*
 537         * Don't create subvolume whose level is not zero. Or qgroup will be
 538         * screwed up since it assumes subvolume qgroup's level to be 0.
 539         */
 540        if (btrfs_qgroup_level(objectid)) {
 541                ret = -ENOSPC;
 542                goto fail_free;
 543        }
 544
 545        btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 546        /*
 547         * The same as the snapshot creation, please see the comment
 548         * of create_snapshot().
 549         */
 550        ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
 551        if (ret)
 552                goto fail_free;
 553
 554        trans = btrfs_start_transaction(root, 0);
 555        if (IS_ERR(trans)) {
 556                ret = PTR_ERR(trans);
 557                btrfs_subvolume_release_metadata(root, &block_rsv);
 558                goto fail_free;
 559        }
 560        trans->block_rsv = &block_rsv;
 561        trans->bytes_reserved = block_rsv.size;
 562
 563        ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
 564        if (ret)
 565                goto fail;
 566
 567        leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
 568                                      BTRFS_NESTING_NORMAL);
 569        if (IS_ERR(leaf)) {
 570                ret = PTR_ERR(leaf);
 571                goto fail;
 572        }
 573
 574        btrfs_mark_buffer_dirty(leaf);
 575
 576        inode_item = &root_item->inode;
 577        btrfs_set_stack_inode_generation(inode_item, 1);
 578        btrfs_set_stack_inode_size(inode_item, 3);
 579        btrfs_set_stack_inode_nlink(inode_item, 1);
 580        btrfs_set_stack_inode_nbytes(inode_item,
 581                                     fs_info->nodesize);
 582        btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 583
 584        btrfs_set_root_flags(root_item, 0);
 585        btrfs_set_root_limit(root_item, 0);
 586        btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 587
 588        btrfs_set_root_bytenr(root_item, leaf->start);
 589        btrfs_set_root_generation(root_item, trans->transid);
 590        btrfs_set_root_level(root_item, 0);
 591        btrfs_set_root_refs(root_item, 1);
 592        btrfs_set_root_used(root_item, leaf->len);
 593        btrfs_set_root_last_snapshot(root_item, 0);
 594
 595        btrfs_set_root_generation_v2(root_item,
 596                        btrfs_root_generation(root_item));
 597        generate_random_guid(root_item->uuid);
 598        btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
 599        btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
 600        root_item->ctime = root_item->otime;
 601        btrfs_set_root_ctransid(root_item, trans->transid);
 602        btrfs_set_root_otransid(root_item, trans->transid);
 603
 604        btrfs_tree_unlock(leaf);
 605
 606        btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
 607
 608        key.objectid = objectid;
 609        key.offset = 0;
 610        key.type = BTRFS_ROOT_ITEM_KEY;
 611        ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
 612                                root_item);
 613        if (ret) {
 614                /*
 615                 * Since we don't abort the transaction in this case, free the
 616                 * tree block so that we don't leak space and leave the
 617                 * filesystem in an inconsistent state (an extent item in the
 618                 * extent tree without backreferences). Also no need to have
 619                 * the tree block locked since it is not in any tree at this
 620                 * point, so no other task can find it and use it.
 621                 */
 622                btrfs_free_tree_block(trans, root, leaf, 0, 1);
 623                free_extent_buffer(leaf);
 624                goto fail;
 625        }
 626
 627        free_extent_buffer(leaf);
 628        leaf = NULL;
 629
 630        key.offset = (u64)-1;
 631        new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
 632        if (IS_ERR(new_root)) {
 633                free_anon_bdev(anon_dev);
 634                ret = PTR_ERR(new_root);
 635                btrfs_abort_transaction(trans, ret);
 636                goto fail;
 637        }
 638        /* Freeing will be done in btrfs_put_root() of new_root */
 639        anon_dev = 0;
 640
 641        ret = btrfs_record_root_in_trans(trans, new_root);
 642        if (ret) {
 643                btrfs_put_root(new_root);
 644                btrfs_abort_transaction(trans, ret);
 645                goto fail;
 646        }
 647
 648        ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns);
 649        btrfs_put_root(new_root);
 650        if (ret) {
 651                /* We potentially lose an unused inode item here */
 652                btrfs_abort_transaction(trans, ret);
 653                goto fail;
 654        }
 655
 656        /*
 657         * insert the directory item
 658         */
 659        ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
 660        if (ret) {
 661                btrfs_abort_transaction(trans, ret);
 662                goto fail;
 663        }
 664
 665        ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
 666                                    BTRFS_FT_DIR, index);
 667        if (ret) {
 668                btrfs_abort_transaction(trans, ret);
 669                goto fail;
 670        }
 671
 672        btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
 673        ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
 674        if (ret) {
 675                btrfs_abort_transaction(trans, ret);
 676                goto fail;
 677        }
 678
 679        ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
 680                                 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
 681        if (ret) {
 682                btrfs_abort_transaction(trans, ret);
 683                goto fail;
 684        }
 685
 686        ret = btrfs_uuid_tree_add(trans, root_item->uuid,
 687                                  BTRFS_UUID_KEY_SUBVOL, objectid);
 688        if (ret)
 689                btrfs_abort_transaction(trans, ret);
 690
 691fail:
 692        kfree(root_item);
 693        trans->block_rsv = NULL;
 694        trans->bytes_reserved = 0;
 695        btrfs_subvolume_release_metadata(root, &block_rsv);
 696
 697        err = btrfs_commit_transaction(trans);
 698        if (err && !ret)
 699                ret = err;
 700
 701        if (!ret) {
 702                inode = btrfs_lookup_dentry(dir, dentry);
 703                if (IS_ERR(inode))
 704                        return PTR_ERR(inode);
 705                d_instantiate(dentry, inode);
 706        }
 707        return ret;
 708
 709fail_free:
 710        if (anon_dev)
 711                free_anon_bdev(anon_dev);
 712        kfree(root_item);
 713        return ret;
 714}
 715
 716static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 717                           struct dentry *dentry, bool readonly,
 718                           struct btrfs_qgroup_inherit *inherit)
 719{
 720        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 721        struct inode *inode;
 722        struct btrfs_pending_snapshot *pending_snapshot;
 723        struct btrfs_trans_handle *trans;
 724        int ret;
 725
 726        if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 727                return -EINVAL;
 728
 729        if (atomic_read(&root->nr_swapfiles)) {
 730                btrfs_warn(fs_info,
 731                           "cannot snapshot subvolume with active swapfile");
 732                return -ETXTBSY;
 733        }
 734
 735        pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
 736        if (!pending_snapshot)
 737                return -ENOMEM;
 738
 739        ret = get_anon_bdev(&pending_snapshot->anon_dev);
 740        if (ret < 0)
 741                goto free_pending;
 742        pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
 743                        GFP_KERNEL);
 744        pending_snapshot->path = btrfs_alloc_path();
 745        if (!pending_snapshot->root_item || !pending_snapshot->path) {
 746                ret = -ENOMEM;
 747                goto free_pending;
 748        }
 749
 750        btrfs_init_block_rsv(&pending_snapshot->block_rsv,
 751                             BTRFS_BLOCK_RSV_TEMP);
 752        /*
 753         * 1 - parent dir inode
 754         * 2 - dir entries
 755         * 1 - root item
 756         * 2 - root ref/backref
 757         * 1 - root of snapshot
 758         * 1 - UUID item
 759         */
 760        ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
 761                                        &pending_snapshot->block_rsv, 8,
 762                                        false);
 763        if (ret)
 764                goto free_pending;
 765
 766        pending_snapshot->dentry = dentry;
 767        pending_snapshot->root = root;
 768        pending_snapshot->readonly = readonly;
 769        pending_snapshot->dir = dir;
 770        pending_snapshot->inherit = inherit;
 771
 772        trans = btrfs_start_transaction(root, 0);
 773        if (IS_ERR(trans)) {
 774                ret = PTR_ERR(trans);
 775                goto fail;
 776        }
 777
 778        spin_lock(&fs_info->trans_lock);
 779        list_add(&pending_snapshot->list,
 780                 &trans->transaction->pending_snapshots);
 781        spin_unlock(&fs_info->trans_lock);
 782
 783        ret = btrfs_commit_transaction(trans);
 784        if (ret)
 785                goto fail;
 786
 787        ret = pending_snapshot->error;
 788        if (ret)
 789                goto fail;
 790
 791        ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 792        if (ret)
 793                goto fail;
 794
 795        inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
 796        if (IS_ERR(inode)) {
 797                ret = PTR_ERR(inode);
 798                goto fail;
 799        }
 800
 801        d_instantiate(dentry, inode);
 802        ret = 0;
 803        pending_snapshot->anon_dev = 0;
 804fail:
 805        /* Prevent double freeing of anon_dev */
 806        if (ret && pending_snapshot->snap)
 807                pending_snapshot->snap->anon_dev = 0;
 808        btrfs_put_root(pending_snapshot->snap);
 809        btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
 810free_pending:
 811        if (pending_snapshot->anon_dev)
 812                free_anon_bdev(pending_snapshot->anon_dev);
 813        kfree(pending_snapshot->root_item);
 814        btrfs_free_path(pending_snapshot->path);
 815        kfree(pending_snapshot);
 816
 817        return ret;
 818}
 819
 820/*  copy of may_delete in fs/namei.c()
 821 *      Check whether we can remove a link victim from directory dir, check
 822 *  whether the type of victim is right.
 823 *  1. We can't do it if dir is read-only (done in permission())
 824 *  2. We should have write and exec permissions on dir
 825 *  3. We can't remove anything from append-only dir
 826 *  4. We can't do anything with immutable dir (done in permission())
 827 *  5. If the sticky bit on dir is set we should either
 828 *      a. be owner of dir, or
 829 *      b. be owner of victim, or
 830 *      c. have CAP_FOWNER capability
 831 *  6. If the victim is append-only or immutable we can't do anything with
 832 *     links pointing to it.
 833 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 834 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 835 *  9. We can't remove a root or mountpoint.
 836 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 837 *     nfs_async_unlink().
 838 */
 839
 840static int btrfs_may_delete(struct user_namespace *mnt_userns,
 841                            struct inode *dir, struct dentry *victim, int isdir)
 842{
 843        int error;
 844
 845        if (d_really_is_negative(victim))
 846                return -ENOENT;
 847
 848        BUG_ON(d_inode(victim->d_parent) != dir);
 849        audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 850
 851        error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
 852        if (error)
 853                return error;
 854        if (IS_APPEND(dir))
 855                return -EPERM;
 856        if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
 857            IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
 858            IS_SWAPFILE(d_inode(victim)))
 859                return -EPERM;
 860        if (isdir) {
 861                if (!d_is_dir(victim))
 862                        return -ENOTDIR;
 863                if (IS_ROOT(victim))
 864                        return -EBUSY;
 865        } else if (d_is_dir(victim))
 866                return -EISDIR;
 867        if (IS_DEADDIR(dir))
 868                return -ENOENT;
 869        if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 870                return -EBUSY;
 871        return 0;
 872}
 873
 874/* copy of may_create in fs/namei.c() */
 875static inline int btrfs_may_create(struct user_namespace *mnt_userns,
 876                                   struct inode *dir, struct dentry *child)
 877{
 878        if (d_really_is_positive(child))
 879                return -EEXIST;
 880        if (IS_DEADDIR(dir))
 881                return -ENOENT;
 882        if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
 883                return -EOVERFLOW;
 884        return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
 885}
 886
 887/*
 888 * Create a new subvolume below @parent.  This is largely modeled after
 889 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 890 * inside this filesystem so it's quite a bit simpler.
 891 */
 892static noinline int btrfs_mksubvol(const struct path *parent,
 893                                   struct user_namespace *mnt_userns,
 894                                   const char *name, int namelen,
 895                                   struct btrfs_root *snap_src,
 896                                   bool readonly,
 897                                   struct btrfs_qgroup_inherit *inherit)
 898{
 899        struct inode *dir = d_inode(parent->dentry);
 900        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 901        struct dentry *dentry;
 902        int error;
 903
 904        error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
 905        if (error == -EINTR)
 906                return error;
 907
 908        dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
 909        error = PTR_ERR(dentry);
 910        if (IS_ERR(dentry))
 911                goto out_unlock;
 912
 913        error = btrfs_may_create(mnt_userns, dir, dentry);
 914        if (error)
 915                goto out_dput;
 916
 917        /*
 918         * even if this name doesn't exist, we may get hash collisions.
 919         * check for them now when we can safely fail
 920         */
 921        error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
 922                                               dir->i_ino, name,
 923                                               namelen);
 924        if (error)
 925                goto out_dput;
 926
 927        down_read(&fs_info->subvol_sem);
 928
 929        if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
 930                goto out_up_read;
 931
 932        if (snap_src)
 933                error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
 934        else
 935                error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit);
 936
 937        if (!error)
 938                fsnotify_mkdir(dir, dentry);
 939out_up_read:
 940        up_read(&fs_info->subvol_sem);
 941out_dput:
 942        dput(dentry);
 943out_unlock:
 944        btrfs_inode_unlock(dir, 0);
 945        return error;
 946}
 947
 948static noinline int btrfs_mksnapshot(const struct path *parent,
 949                                   struct user_namespace *mnt_userns,
 950                                   const char *name, int namelen,
 951                                   struct btrfs_root *root,
 952                                   bool readonly,
 953                                   struct btrfs_qgroup_inherit *inherit)
 954{
 955        int ret;
 956        bool snapshot_force_cow = false;
 957
 958        /*
 959         * Force new buffered writes to reserve space even when NOCOW is
 960         * possible. This is to avoid later writeback (running dealloc) to
 961         * fallback to COW mode and unexpectedly fail with ENOSPC.
 962         */
 963        btrfs_drew_read_lock(&root->snapshot_lock);
 964
 965        ret = btrfs_start_delalloc_snapshot(root, false);
 966        if (ret)
 967                goto out;
 968
 969        /*
 970         * All previous writes have started writeback in NOCOW mode, so now
 971         * we force future writes to fallback to COW mode during snapshot
 972         * creation.
 973         */
 974        atomic_inc(&root->snapshot_force_cow);
 975        snapshot_force_cow = true;
 976
 977        btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
 978
 979        ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
 980                             root, readonly, inherit);
 981out:
 982        if (snapshot_force_cow)
 983                atomic_dec(&root->snapshot_force_cow);
 984        btrfs_drew_read_unlock(&root->snapshot_lock);
 985        return ret;
 986}
 987
 988/*
 989 * When we're defragging a range, we don't want to kick it off again
 990 * if it is really just waiting for delalloc to send it down.
 991 * If we find a nice big extent or delalloc range for the bytes in the
 992 * file you want to defrag, we return 0 to let you know to skip this
 993 * part of the file
 994 */
 995static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
 996{
 997        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 998        struct extent_map *em = NULL;
 999        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1000        u64 end;
1001
1002        read_lock(&em_tree->lock);
1003        em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1004        read_unlock(&em_tree->lock);
1005
1006        if (em) {
1007                end = extent_map_end(em);
1008                free_extent_map(em);
1009                if (end - offset > thresh)
1010                        return 0;
1011        }
1012        /* if we already have a nice delalloc here, just stop */
1013        thresh /= 2;
1014        end = count_range_bits(io_tree, &offset, offset + thresh,
1015                               thresh, EXTENT_DELALLOC, 1);
1016        if (end >= thresh)
1017                return 0;
1018        return 1;
1019}
1020
1021/*
1022 * helper function to walk through a file and find extents
1023 * newer than a specific transid, and smaller than thresh.
1024 *
1025 * This is used by the defragging code to find new and small
1026 * extents
1027 */
1028static int find_new_extents(struct btrfs_root *root,
1029                            struct inode *inode, u64 newer_than,
1030                            u64 *off, u32 thresh)
1031{
1032        struct btrfs_path *path;
1033        struct btrfs_key min_key;
1034        struct extent_buffer *leaf;
1035        struct btrfs_file_extent_item *extent;
1036        int type;
1037        int ret;
1038        u64 ino = btrfs_ino(BTRFS_I(inode));
1039
1040        path = btrfs_alloc_path();
1041        if (!path)
1042                return -ENOMEM;
1043
1044        min_key.objectid = ino;
1045        min_key.type = BTRFS_EXTENT_DATA_KEY;
1046        min_key.offset = *off;
1047
1048        while (1) {
1049                ret = btrfs_search_forward(root, &min_key, path, newer_than);
1050                if (ret != 0)
1051                        goto none;
1052process_slot:
1053                if (min_key.objectid != ino)
1054                        goto none;
1055                if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1056                        goto none;
1057
1058                leaf = path->nodes[0];
1059                extent = btrfs_item_ptr(leaf, path->slots[0],
1060                                        struct btrfs_file_extent_item);
1061
1062                type = btrfs_file_extent_type(leaf, extent);
1063                if (type == BTRFS_FILE_EXTENT_REG &&
1064                    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1065                    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1066                        *off = min_key.offset;
1067                        btrfs_free_path(path);
1068                        return 0;
1069                }
1070
1071                path->slots[0]++;
1072                if (path->slots[0] < btrfs_header_nritems(leaf)) {
1073                        btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1074                        goto process_slot;
1075                }
1076
1077                if (min_key.offset == (u64)-1)
1078                        goto none;
1079
1080                min_key.offset++;
1081                btrfs_release_path(path);
1082        }
1083none:
1084        btrfs_free_path(path);
1085        return -ENOENT;
1086}
1087
1088static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1089{
1090        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1091        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1092        struct extent_map *em;
1093        u64 len = PAGE_SIZE;
1094
1095        /*
1096         * hopefully we have this extent in the tree already, try without
1097         * the full extent lock
1098         */
1099        read_lock(&em_tree->lock);
1100        em = lookup_extent_mapping(em_tree, start, len);
1101        read_unlock(&em_tree->lock);
1102
1103        if (!em) {
1104                struct extent_state *cached = NULL;
1105                u64 end = start + len - 1;
1106
1107                /* get the big lock and read metadata off disk */
1108                lock_extent_bits(io_tree, start, end, &cached);
1109                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1110                unlock_extent_cached(io_tree, start, end, &cached);
1111
1112                if (IS_ERR(em))
1113                        return NULL;
1114        }
1115
1116        return em;
1117}
1118
1119static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1120{
1121        struct extent_map *next;
1122        bool ret = true;
1123
1124        /* this is the last extent */
1125        if (em->start + em->len >= i_size_read(inode))
1126                return false;
1127
1128        next = defrag_lookup_extent(inode, em->start + em->len);
1129        if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1130                ret = false;
1131        else if ((em->block_start + em->block_len == next->block_start) &&
1132                 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1133                ret = false;
1134
1135        free_extent_map(next);
1136        return ret;
1137}
1138
1139static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1140                               u64 *last_len, u64 *skip, u64 *defrag_end,
1141                               int compress)
1142{
1143        struct extent_map *em;
1144        int ret = 1;
1145        bool next_mergeable = true;
1146        bool prev_mergeable = true;
1147
1148        /*
1149         * make sure that once we start defragging an extent, we keep on
1150         * defragging it
1151         */
1152        if (start < *defrag_end)
1153                return 1;
1154
1155        *skip = 0;
1156
1157        em = defrag_lookup_extent(inode, start);
1158        if (!em)
1159                return 0;
1160
1161        /* this will cover holes, and inline extents */
1162        if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1163                ret = 0;
1164                goto out;
1165        }
1166
1167        if (!*defrag_end)
1168                prev_mergeable = false;
1169
1170        next_mergeable = defrag_check_next_extent(inode, em);
1171        /*
1172         * we hit a real extent, if it is big or the next extent is not a
1173         * real extent, don't bother defragging it
1174         */
1175        if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1176            (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1177                ret = 0;
1178out:
1179        /*
1180         * last_len ends up being a counter of how many bytes we've defragged.
1181         * every time we choose not to defrag an extent, we reset *last_len
1182         * so that the next tiny extent will force a defrag.
1183         *
1184         * The end result of this is that tiny extents before a single big
1185         * extent will force at least part of that big extent to be defragged.
1186         */
1187        if (ret) {
1188                *defrag_end = extent_map_end(em);
1189        } else {
1190                *last_len = 0;
1191                *skip = extent_map_end(em);
1192                *defrag_end = 0;
1193        }
1194
1195        free_extent_map(em);
1196        return ret;
1197}
1198
1199/*
1200 * it doesn't do much good to defrag one or two pages
1201 * at a time.  This pulls in a nice chunk of pages
1202 * to COW and defrag.
1203 *
1204 * It also makes sure the delalloc code has enough
1205 * dirty data to avoid making new small extents as part
1206 * of the defrag
1207 *
1208 * It's a good idea to start RA on this range
1209 * before calling this.
1210 */
1211static int cluster_pages_for_defrag(struct inode *inode,
1212                                    struct page **pages,
1213                                    unsigned long start_index,
1214                                    unsigned long num_pages)
1215{
1216        unsigned long file_end;
1217        u64 isize = i_size_read(inode);
1218        u64 page_start;
1219        u64 page_end;
1220        u64 page_cnt;
1221        u64 start = (u64)start_index << PAGE_SHIFT;
1222        u64 search_start;
1223        int ret;
1224        int i;
1225        int i_done;
1226        struct btrfs_ordered_extent *ordered;
1227        struct extent_state *cached_state = NULL;
1228        struct extent_io_tree *tree;
1229        struct extent_changeset *data_reserved = NULL;
1230        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1231
1232        file_end = (isize - 1) >> PAGE_SHIFT;
1233        if (!isize || start_index > file_end)
1234                return 0;
1235
1236        page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1237
1238        ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1239                        start, page_cnt << PAGE_SHIFT);
1240        if (ret)
1241                return ret;
1242        i_done = 0;
1243        tree = &BTRFS_I(inode)->io_tree;
1244
1245        /* step one, lock all the pages */
1246        for (i = 0; i < page_cnt; i++) {
1247                struct page *page;
1248again:
1249                page = find_or_create_page(inode->i_mapping,
1250                                           start_index + i, mask);
1251                if (!page)
1252                        break;
1253
1254                ret = set_page_extent_mapped(page);
1255                if (ret < 0) {
1256                        unlock_page(page);
1257                        put_page(page);
1258                        break;
1259                }
1260
1261                page_start = page_offset(page);
1262                page_end = page_start + PAGE_SIZE - 1;
1263                while (1) {
1264                        lock_extent_bits(tree, page_start, page_end,
1265                                         &cached_state);
1266                        ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1267                                                              page_start);
1268                        unlock_extent_cached(tree, page_start, page_end,
1269                                             &cached_state);
1270                        if (!ordered)
1271                                break;
1272
1273                        unlock_page(page);
1274                        btrfs_start_ordered_extent(ordered, 1);
1275                        btrfs_put_ordered_extent(ordered);
1276                        lock_page(page);
1277                        /*
1278                         * we unlocked the page above, so we need check if
1279                         * it was released or not.
1280                         */
1281                        if (page->mapping != inode->i_mapping) {
1282                                unlock_page(page);
1283                                put_page(page);
1284                                goto again;
1285                        }
1286                }
1287
1288                if (!PageUptodate(page)) {
1289                        btrfs_readpage(NULL, page);
1290                        lock_page(page);
1291                        if (!PageUptodate(page)) {
1292                                unlock_page(page);
1293                                put_page(page);
1294                                ret = -EIO;
1295                                break;
1296                        }
1297                }
1298
1299                if (page->mapping != inode->i_mapping) {
1300                        unlock_page(page);
1301                        put_page(page);
1302                        goto again;
1303                }
1304
1305                pages[i] = page;
1306                i_done++;
1307        }
1308        if (!i_done || ret)
1309                goto out;
1310
1311        if (!(inode->i_sb->s_flags & SB_ACTIVE))
1312                goto out;
1313
1314        /*
1315         * so now we have a nice long stream of locked
1316         * and up to date pages, lets wait on them
1317         */
1318        for (i = 0; i < i_done; i++)
1319                wait_on_page_writeback(pages[i]);
1320
1321        page_start = page_offset(pages[0]);
1322        page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1323
1324        lock_extent_bits(&BTRFS_I(inode)->io_tree,
1325                         page_start, page_end - 1, &cached_state);
1326
1327        /*
1328         * When defragmenting we skip ranges that have holes or inline extents,
1329         * (check should_defrag_range()), to avoid unnecessary IO and wasting
1330         * space. At btrfs_defrag_file(), we check if a range should be defragged
1331         * before locking the inode and then, if it should, we trigger a sync
1332         * page cache readahead - we lock the inode only after that to avoid
1333         * blocking for too long other tasks that possibly want to operate on
1334         * other file ranges. But before we were able to get the inode lock,
1335         * some other task may have punched a hole in the range, or we may have
1336         * now an inline extent, in which case we should not defrag. So check
1337         * for that here, where we have the inode and the range locked, and bail
1338         * out if that happened.
1339         */
1340        search_start = page_start;
1341        while (search_start < page_end) {
1342                struct extent_map *em;
1343
1344                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1345                                      page_end - search_start);
1346                if (IS_ERR(em)) {
1347                        ret = PTR_ERR(em);
1348                        goto out_unlock_range;
1349                }
1350                if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1351                        free_extent_map(em);
1352                        /* Ok, 0 means we did not defrag anything */
1353                        ret = 0;
1354                        goto out_unlock_range;
1355                }
1356                search_start = extent_map_end(em);
1357                free_extent_map(em);
1358        }
1359
1360        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1361                          page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1362                          EXTENT_DEFRAG, 0, 0, &cached_state);
1363
1364        if (i_done != page_cnt) {
1365                spin_lock(&BTRFS_I(inode)->lock);
1366                btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1367                spin_unlock(&BTRFS_I(inode)->lock);
1368                btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1369                                start, (page_cnt - i_done) << PAGE_SHIFT, true);
1370        }
1371
1372
1373        set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1374                          &cached_state);
1375
1376        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1377                             page_start, page_end - 1, &cached_state);
1378
1379        for (i = 0; i < i_done; i++) {
1380                clear_page_dirty_for_io(pages[i]);
1381                ClearPageChecked(pages[i]);
1382                set_page_dirty(pages[i]);
1383                unlock_page(pages[i]);
1384                put_page(pages[i]);
1385        }
1386        btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1387        extent_changeset_free(data_reserved);
1388        return i_done;
1389
1390out_unlock_range:
1391        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1392                             page_start, page_end - 1, &cached_state);
1393out:
1394        for (i = 0; i < i_done; i++) {
1395                unlock_page(pages[i]);
1396                put_page(pages[i]);
1397        }
1398        btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1399                        start, page_cnt << PAGE_SHIFT, true);
1400        btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1401        extent_changeset_free(data_reserved);
1402        return ret;
1403
1404}
1405
1406int btrfs_defrag_file(struct inode *inode, struct file *file,
1407                      struct btrfs_ioctl_defrag_range_args *range,
1408                      u64 newer_than, unsigned long max_to_defrag)
1409{
1410        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1411        struct btrfs_root *root = BTRFS_I(inode)->root;
1412        struct file_ra_state *ra = NULL;
1413        unsigned long last_index;
1414        u64 isize = i_size_read(inode);
1415        u64 last_len = 0;
1416        u64 skip = 0;
1417        u64 defrag_end = 0;
1418        u64 newer_off = range->start;
1419        unsigned long i;
1420        unsigned long ra_index = 0;
1421        int ret;
1422        int defrag_count = 0;
1423        int compress_type = BTRFS_COMPRESS_ZLIB;
1424        u32 extent_thresh = range->extent_thresh;
1425        unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1426        unsigned long cluster = max_cluster;
1427        u64 new_align = ~((u64)SZ_128K - 1);
1428        struct page **pages = NULL;
1429        bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1430
1431        if (isize == 0)
1432                return 0;
1433
1434        if (range->start >= isize)
1435                return -EINVAL;
1436
1437        if (do_compress) {
1438                if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1439                        return -EINVAL;
1440                if (range->compress_type)
1441                        compress_type = range->compress_type;
1442        }
1443
1444        if (extent_thresh == 0)
1445                extent_thresh = SZ_256K;
1446
1447        /*
1448         * If we were not given a file, allocate a readahead context. As
1449         * readahead is just an optimization, defrag will work without it so
1450         * we don't error out.
1451         */
1452        if (!file) {
1453                ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1454                if (ra)
1455                        file_ra_state_init(ra, inode->i_mapping);
1456        } else {
1457                ra = &file->f_ra;
1458        }
1459
1460        pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1461        if (!pages) {
1462                ret = -ENOMEM;
1463                goto out_ra;
1464        }
1465
1466        /* find the last page to defrag */
1467        if (range->start + range->len > range->start) {
1468                last_index = min_t(u64, isize - 1,
1469                         range->start + range->len - 1) >> PAGE_SHIFT;
1470        } else {
1471                last_index = (isize - 1) >> PAGE_SHIFT;
1472        }
1473
1474        if (newer_than) {
1475                ret = find_new_extents(root, inode, newer_than,
1476                                       &newer_off, SZ_64K);
1477                if (!ret) {
1478                        range->start = newer_off;
1479                        /*
1480                         * we always align our defrag to help keep
1481                         * the extents in the file evenly spaced
1482                         */
1483                        i = (newer_off & new_align) >> PAGE_SHIFT;
1484                } else
1485                        goto out_ra;
1486        } else {
1487                i = range->start >> PAGE_SHIFT;
1488        }
1489        if (!max_to_defrag)
1490                max_to_defrag = last_index - i + 1;
1491
1492        /*
1493         * make writeback starts from i, so the defrag range can be
1494         * written sequentially.
1495         */
1496        if (i < inode->i_mapping->writeback_index)
1497                inode->i_mapping->writeback_index = i;
1498
1499        while (i <= last_index && defrag_count < max_to_defrag &&
1500               (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1501                /*
1502                 * make sure we stop running if someone unmounts
1503                 * the FS
1504                 */
1505                if (!(inode->i_sb->s_flags & SB_ACTIVE))
1506                        break;
1507
1508                if (btrfs_defrag_cancelled(fs_info)) {
1509                        btrfs_debug(fs_info, "defrag_file cancelled");
1510                        ret = -EAGAIN;
1511                        goto error;
1512                }
1513
1514                if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1515                                         extent_thresh, &last_len, &skip,
1516                                         &defrag_end, do_compress)){
1517                        unsigned long next;
1518                        /*
1519                         * the should_defrag function tells us how much to skip
1520                         * bump our counter by the suggested amount
1521                         */
1522                        next = DIV_ROUND_UP(skip, PAGE_SIZE);
1523                        i = max(i + 1, next);
1524                        continue;
1525                }
1526
1527                if (!newer_than) {
1528                        cluster = (PAGE_ALIGN(defrag_end) >>
1529                                   PAGE_SHIFT) - i;
1530                        cluster = min(cluster, max_cluster);
1531                } else {
1532                        cluster = max_cluster;
1533                }
1534
1535                if (i + cluster > ra_index) {
1536                        ra_index = max(i, ra_index);
1537                        if (ra)
1538                                page_cache_sync_readahead(inode->i_mapping, ra,
1539                                                file, ra_index, cluster);
1540                        ra_index += cluster;
1541                }
1542
1543                btrfs_inode_lock(inode, 0);
1544                if (IS_SWAPFILE(inode)) {
1545                        ret = -ETXTBSY;
1546                } else {
1547                        if (do_compress)
1548                                BTRFS_I(inode)->defrag_compress = compress_type;
1549                        ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1550                }
1551                if (ret < 0) {
1552                        btrfs_inode_unlock(inode, 0);
1553                        goto out_ra;
1554                }
1555
1556                defrag_count += ret;
1557                balance_dirty_pages_ratelimited(inode->i_mapping);
1558                btrfs_inode_unlock(inode, 0);
1559
1560                if (newer_than) {
1561                        if (newer_off == (u64)-1)
1562                                break;
1563
1564                        if (ret > 0)
1565                                i += ret;
1566
1567                        newer_off = max(newer_off + 1,
1568                                        (u64)i << PAGE_SHIFT);
1569
1570                        ret = find_new_extents(root, inode, newer_than,
1571                                               &newer_off, SZ_64K);
1572                        if (!ret) {
1573                                range->start = newer_off;
1574                                i = (newer_off & new_align) >> PAGE_SHIFT;
1575                        } else {
1576                                break;
1577                        }
1578                } else {
1579                        if (ret > 0) {
1580                                i += ret;
1581                                last_len += ret << PAGE_SHIFT;
1582                        } else {
1583                                i++;
1584                                last_len = 0;
1585                        }
1586                }
1587        }
1588
1589        ret = defrag_count;
1590error:
1591        if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1592                filemap_flush(inode->i_mapping);
1593                if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1594                             &BTRFS_I(inode)->runtime_flags))
1595                        filemap_flush(inode->i_mapping);
1596        }
1597
1598        if (range->compress_type == BTRFS_COMPRESS_LZO) {
1599                btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1600        } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1601                btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1602        }
1603
1604out_ra:
1605        if (do_compress) {
1606                btrfs_inode_lock(inode, 0);
1607                BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1608                btrfs_inode_unlock(inode, 0);
1609        }
1610        if (!file)
1611                kfree(ra);
1612        kfree(pages);
1613        return ret;
1614}
1615
1616/*
1617 * Try to start exclusive operation @type or cancel it if it's running.
1618 *
1619 * Return:
1620 *   0        - normal mode, newly claimed op started
1621 *  >0        - normal mode, something else is running,
1622 *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1623 * ECANCELED  - cancel mode, successful cancel
1624 * ENOTCONN   - cancel mode, operation not running anymore
1625 */
1626static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1627                        enum btrfs_exclusive_operation type, bool cancel)
1628{
1629        if (!cancel) {
1630                /* Start normal op */
1631                if (!btrfs_exclop_start(fs_info, type))
1632                        return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1633                /* Exclusive operation is now claimed */
1634                return 0;
1635        }
1636
1637        /* Cancel running op */
1638        if (btrfs_exclop_start_try_lock(fs_info, type)) {
1639                /*
1640                 * This blocks any exclop finish from setting it to NONE, so we
1641                 * request cancellation. Either it runs and we will wait for it,
1642                 * or it has finished and no waiting will happen.
1643                 */
1644                atomic_inc(&fs_info->reloc_cancel_req);
1645                btrfs_exclop_start_unlock(fs_info);
1646
1647                if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1648                        wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1649                                    TASK_INTERRUPTIBLE);
1650
1651                return -ECANCELED;
1652        }
1653
1654        /* Something else is running or none */
1655        return -ENOTCONN;
1656}
1657
1658static noinline int btrfs_ioctl_resize(struct file *file,
1659                                        void __user *arg)
1660{
1661        struct inode *inode = file_inode(file);
1662        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1663        u64 new_size;
1664        u64 old_size;
1665        u64 devid = 1;
1666        struct btrfs_root *root = BTRFS_I(inode)->root;
1667        struct btrfs_ioctl_vol_args *vol_args;
1668        struct btrfs_trans_handle *trans;
1669        struct btrfs_device *device = NULL;
1670        char *sizestr;
1671        char *retptr;
1672        char *devstr = NULL;
1673        int ret = 0;
1674        int mod = 0;
1675        bool cancel;
1676
1677        if (!capable(CAP_SYS_ADMIN))
1678                return -EPERM;
1679
1680        ret = mnt_want_write_file(file);
1681        if (ret)
1682                return ret;
1683
1684        /*
1685         * Read the arguments before checking exclusivity to be able to
1686         * distinguish regular resize and cancel
1687         */
1688        vol_args = memdup_user(arg, sizeof(*vol_args));
1689        if (IS_ERR(vol_args)) {
1690                ret = PTR_ERR(vol_args);
1691                goto out_drop;
1692        }
1693        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1694        sizestr = vol_args->name;
1695        cancel = (strcmp("cancel", sizestr) == 0);
1696        ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1697        if (ret)
1698                goto out_free;
1699        /* Exclusive operation is now claimed */
1700
1701        devstr = strchr(sizestr, ':');
1702        if (devstr) {
1703                sizestr = devstr + 1;
1704                *devstr = '\0';
1705                devstr = vol_args->name;
1706                ret = kstrtoull(devstr, 10, &devid);
1707                if (ret)
1708                        goto out_finish;
1709                if (!devid) {
1710                        ret = -EINVAL;
1711                        goto out_finish;
1712                }
1713                btrfs_info(fs_info, "resizing devid %llu", devid);
1714        }
1715
1716        device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
1717        if (!device) {
1718                btrfs_info(fs_info, "resizer unable to find device %llu",
1719                           devid);
1720                ret = -ENODEV;
1721                goto out_finish;
1722        }
1723
1724        if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1725                btrfs_info(fs_info,
1726                           "resizer unable to apply on readonly device %llu",
1727                       devid);
1728                ret = -EPERM;
1729                goto out_finish;
1730        }
1731
1732        if (!strcmp(sizestr, "max"))
1733                new_size = device->bdev->bd_inode->i_size;
1734        else {
1735                if (sizestr[0] == '-') {
1736                        mod = -1;
1737                        sizestr++;
1738                } else if (sizestr[0] == '+') {
1739                        mod = 1;
1740                        sizestr++;
1741                }
1742                new_size = memparse(sizestr, &retptr);
1743                if (*retptr != '\0' || new_size == 0) {
1744                        ret = -EINVAL;
1745                        goto out_finish;
1746                }
1747        }
1748
1749        if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1750                ret = -EPERM;
1751                goto out_finish;
1752        }
1753
1754        old_size = btrfs_device_get_total_bytes(device);
1755
1756        if (mod < 0) {
1757                if (new_size > old_size) {
1758                        ret = -EINVAL;
1759                        goto out_finish;
1760                }
1761                new_size = old_size - new_size;
1762        } else if (mod > 0) {
1763                if (new_size > ULLONG_MAX - old_size) {
1764                        ret = -ERANGE;
1765                        goto out_finish;
1766                }
1767                new_size = old_size + new_size;
1768        }
1769
1770        if (new_size < SZ_256M) {
1771                ret = -EINVAL;
1772                goto out_finish;
1773        }
1774        if (new_size > device->bdev->bd_inode->i_size) {
1775                ret = -EFBIG;
1776                goto out_finish;
1777        }
1778
1779        new_size = round_down(new_size, fs_info->sectorsize);
1780
1781        if (new_size > old_size) {
1782                trans = btrfs_start_transaction(root, 0);
1783                if (IS_ERR(trans)) {
1784                        ret = PTR_ERR(trans);
1785                        goto out_finish;
1786                }
1787                ret = btrfs_grow_device(trans, device, new_size);
1788                btrfs_commit_transaction(trans);
1789        } else if (new_size < old_size) {
1790                ret = btrfs_shrink_device(device, new_size);
1791        } /* equal, nothing need to do */
1792
1793        if (ret == 0 && new_size != old_size)
1794                btrfs_info_in_rcu(fs_info,
1795                        "resize device %s (devid %llu) from %llu to %llu",
1796                        rcu_str_deref(device->name), device->devid,
1797                        old_size, new_size);
1798out_finish:
1799        btrfs_exclop_finish(fs_info);
1800out_free:
1801        kfree(vol_args);
1802out_drop:
1803        mnt_drop_write_file(file);
1804        return ret;
1805}
1806
1807static noinline int __btrfs_ioctl_snap_create(struct file *file,
1808                                struct user_namespace *mnt_userns,
1809                                const char *name, unsigned long fd, int subvol,
1810                                bool readonly,
1811                                struct btrfs_qgroup_inherit *inherit)
1812{
1813        int namelen;
1814        int ret = 0;
1815
1816        if (!S_ISDIR(file_inode(file)->i_mode))
1817                return -ENOTDIR;
1818
1819        ret = mnt_want_write_file(file);
1820        if (ret)
1821                goto out;
1822
1823        namelen = strlen(name);
1824        if (strchr(name, '/')) {
1825                ret = -EINVAL;
1826                goto out_drop_write;
1827        }
1828
1829        if (name[0] == '.' &&
1830           (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1831                ret = -EEXIST;
1832                goto out_drop_write;
1833        }
1834
1835        if (subvol) {
1836                ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
1837                                     namelen, NULL, readonly, inherit);
1838        } else {
1839                struct fd src = fdget(fd);
1840                struct inode *src_inode;
1841                if (!src.file) {
1842                        ret = -EINVAL;
1843                        goto out_drop_write;
1844                }
1845
1846                src_inode = file_inode(src.file);
1847                if (src_inode->i_sb != file_inode(file)->i_sb) {
1848                        btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1849                                   "Snapshot src from another FS");
1850                        ret = -EXDEV;
1851                } else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
1852                        /*
1853                         * Subvolume creation is not restricted, but snapshots
1854                         * are limited to own subvolumes only
1855                         */
1856                        ret = -EPERM;
1857                } else {
1858                        ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
1859                                               name, namelen,
1860                                               BTRFS_I(src_inode)->root,
1861                                               readonly, inherit);
1862                }
1863                fdput(src);
1864        }
1865out_drop_write:
1866        mnt_drop_write_file(file);
1867out:
1868        return ret;
1869}
1870
1871static noinline int btrfs_ioctl_snap_create(struct file *file,
1872                                            void __user *arg, int subvol)
1873{
1874        struct btrfs_ioctl_vol_args *vol_args;
1875        int ret;
1876
1877        if (!S_ISDIR(file_inode(file)->i_mode))
1878                return -ENOTDIR;
1879
1880        vol_args = memdup_user(arg, sizeof(*vol_args));
1881        if (IS_ERR(vol_args))
1882                return PTR_ERR(vol_args);
1883        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1884
1885        ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1886                                        vol_args->name, vol_args->fd, subvol,
1887                                        false, NULL);
1888
1889        kfree(vol_args);
1890        return ret;
1891}
1892
1893static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1894                                               void __user *arg, int subvol)
1895{
1896        struct btrfs_ioctl_vol_args_v2 *vol_args;
1897        int ret;
1898        bool readonly = false;
1899        struct btrfs_qgroup_inherit *inherit = NULL;
1900
1901        if (!S_ISDIR(file_inode(file)->i_mode))
1902                return -ENOTDIR;
1903
1904        vol_args = memdup_user(arg, sizeof(*vol_args));
1905        if (IS_ERR(vol_args))
1906                return PTR_ERR(vol_args);
1907        vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1908
1909        if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1910                ret = -EOPNOTSUPP;
1911                goto free_args;
1912        }
1913
1914        if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1915                readonly = true;
1916        if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1917                u64 nums;
1918
1919                if (vol_args->size < sizeof(*inherit) ||
1920                    vol_args->size > PAGE_SIZE) {
1921                        ret = -EINVAL;
1922                        goto free_args;
1923                }
1924                inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1925                if (IS_ERR(inherit)) {
1926                        ret = PTR_ERR(inherit);
1927                        goto free_args;
1928                }
1929
1930                if (inherit->num_qgroups > PAGE_SIZE ||
1931                    inherit->num_ref_copies > PAGE_SIZE ||
1932                    inherit->num_excl_copies > PAGE_SIZE) {
1933                        ret = -EINVAL;
1934                        goto free_inherit;
1935                }
1936
1937                nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1938                       2 * inherit->num_excl_copies;
1939                if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1940                        ret = -EINVAL;
1941                        goto free_inherit;
1942                }
1943        }
1944
1945        ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1946                                        vol_args->name, vol_args->fd, subvol,
1947                                        readonly, inherit);
1948        if (ret)
1949                goto free_inherit;
1950free_inherit:
1951        kfree(inherit);
1952free_args:
1953        kfree(vol_args);
1954        return ret;
1955}
1956
1957static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1958                                                void __user *arg)
1959{
1960        struct inode *inode = file_inode(file);
1961        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1962        struct btrfs_root *root = BTRFS_I(inode)->root;
1963        int ret = 0;
1964        u64 flags = 0;
1965
1966        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1967                return -EINVAL;
1968
1969        down_read(&fs_info->subvol_sem);
1970        if (btrfs_root_readonly(root))
1971                flags |= BTRFS_SUBVOL_RDONLY;
1972        up_read(&fs_info->subvol_sem);
1973
1974        if (copy_to_user(arg, &flags, sizeof(flags)))
1975                ret = -EFAULT;
1976
1977        return ret;
1978}
1979
1980static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1981                                              void __user *arg)
1982{
1983        struct inode *inode = file_inode(file);
1984        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1985        struct btrfs_root *root = BTRFS_I(inode)->root;
1986        struct btrfs_trans_handle *trans;
1987        u64 root_flags;
1988        u64 flags;
1989        int ret = 0;
1990
1991        if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
1992                return -EPERM;
1993
1994        ret = mnt_want_write_file(file);
1995        if (ret)
1996                goto out;
1997
1998        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1999                ret = -EINVAL;
2000                goto out_drop_write;
2001        }
2002
2003        if (copy_from_user(&flags, arg, sizeof(flags))) {
2004                ret = -EFAULT;
2005                goto out_drop_write;
2006        }
2007
2008        if (flags & ~BTRFS_SUBVOL_RDONLY) {
2009                ret = -EOPNOTSUPP;
2010                goto out_drop_write;
2011        }
2012
2013        down_write(&fs_info->subvol_sem);
2014
2015        /* nothing to do */
2016        if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2017                goto out_drop_sem;
2018
2019        root_flags = btrfs_root_flags(&root->root_item);
2020        if (flags & BTRFS_SUBVOL_RDONLY) {
2021                btrfs_set_root_flags(&root->root_item,
2022                                     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2023        } else {
2024                /*
2025                 * Block RO -> RW transition if this subvolume is involved in
2026                 * send
2027                 */
2028                spin_lock(&root->root_item_lock);
2029                if (root->send_in_progress == 0) {
2030                        btrfs_set_root_flags(&root->root_item,
2031                                     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2032                        spin_unlock(&root->root_item_lock);
2033                } else {
2034                        spin_unlock(&root->root_item_lock);
2035                        btrfs_warn(fs_info,
2036                                   "Attempt to set subvolume %llu read-write during send",
2037                                   root->root_key.objectid);
2038                        ret = -EPERM;
2039                        goto out_drop_sem;
2040                }
2041        }
2042
2043        trans = btrfs_start_transaction(root, 1);
2044        if (IS_ERR(trans)) {
2045                ret = PTR_ERR(trans);
2046                goto out_reset;
2047        }
2048
2049        ret = btrfs_update_root(trans, fs_info->tree_root,
2050                                &root->root_key, &root->root_item);
2051        if (ret < 0) {
2052                btrfs_end_transaction(trans);
2053                goto out_reset;
2054        }
2055
2056        ret = btrfs_commit_transaction(trans);
2057
2058out_reset:
2059        if (ret)
2060                btrfs_set_root_flags(&root->root_item, root_flags);
2061out_drop_sem:
2062        up_write(&fs_info->subvol_sem);
2063out_drop_write:
2064        mnt_drop_write_file(file);
2065out:
2066        return ret;
2067}
2068
2069static noinline int key_in_sk(struct btrfs_key *key,
2070                              struct btrfs_ioctl_search_key *sk)
2071{
2072        struct btrfs_key test;
2073        int ret;
2074
2075        test.objectid = sk->min_objectid;
2076        test.type = sk->min_type;
2077        test.offset = sk->min_offset;
2078
2079        ret = btrfs_comp_cpu_keys(key, &test);
2080        if (ret < 0)
2081                return 0;
2082
2083        test.objectid = sk->max_objectid;
2084        test.type = sk->max_type;
2085        test.offset = sk->max_offset;
2086
2087        ret = btrfs_comp_cpu_keys(key, &test);
2088        if (ret > 0)
2089                return 0;
2090        return 1;
2091}
2092
2093static noinline int copy_to_sk(struct btrfs_path *path,
2094                               struct btrfs_key *key,
2095                               struct btrfs_ioctl_search_key *sk,
2096                               size_t *buf_size,
2097                               char __user *ubuf,
2098                               unsigned long *sk_offset,
2099                               int *num_found)
2100{
2101        u64 found_transid;
2102        struct extent_buffer *leaf;
2103        struct btrfs_ioctl_search_header sh;
2104        struct btrfs_key test;
2105        unsigned long item_off;
2106        unsigned long item_len;
2107        int nritems;
2108        int i;
2109        int slot;
2110        int ret = 0;
2111
2112        leaf = path->nodes[0];
2113        slot = path->slots[0];
2114        nritems = btrfs_header_nritems(leaf);
2115
2116        if (btrfs_header_generation(leaf) > sk->max_transid) {
2117                i = nritems;
2118                goto advance_key;
2119        }
2120        found_transid = btrfs_header_generation(leaf);
2121
2122        for (i = slot; i < nritems; i++) {
2123                item_off = btrfs_item_ptr_offset(leaf, i);
2124                item_len = btrfs_item_size_nr(leaf, i);
2125
2126                btrfs_item_key_to_cpu(leaf, key, i);
2127                if (!key_in_sk(key, sk))
2128                        continue;
2129
2130                if (sizeof(sh) + item_len > *buf_size) {
2131                        if (*num_found) {
2132                                ret = 1;
2133                                goto out;
2134                        }
2135
2136                        /*
2137                         * return one empty item back for v1, which does not
2138                         * handle -EOVERFLOW
2139                         */
2140
2141                        *buf_size = sizeof(sh) + item_len;
2142                        item_len = 0;
2143                        ret = -EOVERFLOW;
2144                }
2145
2146                if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2147                        ret = 1;
2148                        goto out;
2149                }
2150
2151                sh.objectid = key->objectid;
2152                sh.offset = key->offset;
2153                sh.type = key->type;
2154                sh.len = item_len;
2155                sh.transid = found_transid;
2156
2157                /*
2158                 * Copy search result header. If we fault then loop again so we
2159                 * can fault in the pages and -EFAULT there if there's a
2160                 * problem. Otherwise we'll fault and then copy the buffer in
2161                 * properly this next time through
2162                 */
2163                if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2164                        ret = 0;
2165                        goto out;
2166                }
2167
2168                *sk_offset += sizeof(sh);
2169
2170                if (item_len) {
2171                        char __user *up = ubuf + *sk_offset;
2172                        /*
2173                         * Copy the item, same behavior as above, but reset the
2174                         * * sk_offset so we copy the full thing again.
2175                         */
2176                        if (read_extent_buffer_to_user_nofault(leaf, up,
2177                                                item_off, item_len)) {
2178                                ret = 0;
2179                                *sk_offset -= sizeof(sh);
2180                                goto out;
2181                        }
2182
2183                        *sk_offset += item_len;
2184                }
2185                (*num_found)++;
2186
2187                if (ret) /* -EOVERFLOW from above */
2188                        goto out;
2189
2190                if (*num_found >= sk->nr_items) {
2191                        ret = 1;
2192                        goto out;
2193                }
2194        }
2195advance_key:
2196        ret = 0;
2197        test.objectid = sk->max_objectid;
2198        test.type = sk->max_type;
2199        test.offset = sk->max_offset;
2200        if (btrfs_comp_cpu_keys(key, &test) >= 0)
2201                ret = 1;
2202        else if (key->offset < (u64)-1)
2203                key->offset++;
2204        else if (key->type < (u8)-1) {
2205                key->offset = 0;
2206                key->type++;
2207        } else if (key->objectid < (u64)-1) {
2208                key->offset = 0;
2209                key->type = 0;
2210                key->objectid++;
2211        } else
2212                ret = 1;
2213out:
2214        /*
2215         *  0: all items from this leaf copied, continue with next
2216         *  1: * more items can be copied, but unused buffer is too small
2217         *     * all items were found
2218         *     Either way, it will stops the loop which iterates to the next
2219         *     leaf
2220         *  -EOVERFLOW: item was to large for buffer
2221         *  -EFAULT: could not copy extent buffer back to userspace
2222         */
2223        return ret;
2224}
2225
2226static noinline int search_ioctl(struct inode *inode,
2227                                 struct btrfs_ioctl_search_key *sk,
2228                                 size_t *buf_size,
2229                                 char __user *ubuf)
2230{
2231        struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2232        struct btrfs_root *root;
2233        struct btrfs_key key;
2234        struct btrfs_path *path;
2235        int ret;
2236        int num_found = 0;
2237        unsigned long sk_offset = 0;
2238
2239        if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2240                *buf_size = sizeof(struct btrfs_ioctl_search_header);
2241                return -EOVERFLOW;
2242        }
2243
2244        path = btrfs_alloc_path();
2245        if (!path)
2246                return -ENOMEM;
2247
2248        if (sk->tree_id == 0) {
2249                /* search the root of the inode that was passed */
2250                root = btrfs_grab_root(BTRFS_I(inode)->root);
2251        } else {
2252                root = btrfs_get_fs_root(info, sk->tree_id, true);
2253                if (IS_ERR(root)) {
2254                        btrfs_free_path(path);
2255                        return PTR_ERR(root);
2256                }
2257        }
2258
2259        key.objectid = sk->min_objectid;
2260        key.type = sk->min_type;
2261        key.offset = sk->min_offset;
2262
2263        while (1) {
2264                ret = fault_in_pages_writeable(ubuf + sk_offset,
2265                                               *buf_size - sk_offset);
2266                if (ret)
2267                        break;
2268
2269                ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2270                if (ret != 0) {
2271                        if (ret > 0)
2272                                ret = 0;
2273                        goto err;
2274                }
2275                ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2276                                 &sk_offset, &num_found);
2277                btrfs_release_path(path);
2278                if (ret)
2279                        break;
2280
2281        }
2282        if (ret > 0)
2283                ret = 0;
2284err:
2285        sk->nr_items = num_found;
2286        btrfs_put_root(root);
2287        btrfs_free_path(path);
2288        return ret;
2289}
2290
2291static noinline int btrfs_ioctl_tree_search(struct file *file,
2292                                           void __user *argp)
2293{
2294        struct btrfs_ioctl_search_args __user *uargs;
2295        struct btrfs_ioctl_search_key sk;
2296        struct inode *inode;
2297        int ret;
2298        size_t buf_size;
2299
2300        if (!capable(CAP_SYS_ADMIN))
2301                return -EPERM;
2302
2303        uargs = (struct btrfs_ioctl_search_args __user *)argp;
2304
2305        if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2306                return -EFAULT;
2307
2308        buf_size = sizeof(uargs->buf);
2309
2310        inode = file_inode(file);
2311        ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2312
2313        /*
2314         * In the origin implementation an overflow is handled by returning a
2315         * search header with a len of zero, so reset ret.
2316         */
2317        if (ret == -EOVERFLOW)
2318                ret = 0;
2319
2320        if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2321                ret = -EFAULT;
2322        return ret;
2323}
2324
2325static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2326                                               void __user *argp)
2327{
2328        struct btrfs_ioctl_search_args_v2 __user *uarg;
2329        struct btrfs_ioctl_search_args_v2 args;
2330        struct inode *inode;
2331        int ret;
2332        size_t buf_size;
2333        const size_t buf_limit = SZ_16M;
2334
2335        if (!capable(CAP_SYS_ADMIN))
2336                return -EPERM;
2337
2338        /* copy search header and buffer size */
2339        uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2340        if (copy_from_user(&args, uarg, sizeof(args)))
2341                return -EFAULT;
2342
2343        buf_size = args.buf_size;
2344
2345        /* limit result size to 16MB */
2346        if (buf_size > buf_limit)
2347                buf_size = buf_limit;
2348
2349        inode = file_inode(file);
2350        ret = search_ioctl(inode, &args.key, &buf_size,
2351                           (char __user *)(&uarg->buf[0]));
2352        if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2353                ret = -EFAULT;
2354        else if (ret == -EOVERFLOW &&
2355                copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2356                ret = -EFAULT;
2357
2358        return ret;
2359}
2360
2361/*
2362 * Search INODE_REFs to identify path name of 'dirid' directory
2363 * in a 'tree_id' tree. and sets path name to 'name'.
2364 */
2365static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2366                                u64 tree_id, u64 dirid, char *name)
2367{
2368        struct btrfs_root *root;
2369        struct btrfs_key key;
2370        char *ptr;
2371        int ret = -1;
2372        int slot;
2373        int len;
2374        int total_len = 0;
2375        struct btrfs_inode_ref *iref;
2376        struct extent_buffer *l;
2377        struct btrfs_path *path;
2378
2379        if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2380                name[0]='\0';
2381                return 0;
2382        }
2383
2384        path = btrfs_alloc_path();
2385        if (!path)
2386                return -ENOMEM;
2387
2388        ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2389
2390        root = btrfs_get_fs_root(info, tree_id, true);
2391        if (IS_ERR(root)) {
2392                ret = PTR_ERR(root);
2393                root = NULL;
2394                goto out;
2395        }
2396
2397        key.objectid = dirid;
2398        key.type = BTRFS_INODE_REF_KEY;
2399        key.offset = (u64)-1;
2400
2401        while (1) {
2402                ret = btrfs_search_backwards(root, &key, path);
2403                if (ret < 0)
2404                        goto out;
2405                else if (ret > 0) {
2406                        ret = -ENOENT;
2407                        goto out;
2408                }
2409
2410                l = path->nodes[0];
2411                slot = path->slots[0];
2412
2413                iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2414                len = btrfs_inode_ref_name_len(l, iref);
2415                ptr -= len + 1;
2416                total_len += len + 1;
2417                if (ptr < name) {
2418                        ret = -ENAMETOOLONG;
2419                        goto out;
2420                }
2421
2422                *(ptr + len) = '/';
2423                read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2424
2425                if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2426                        break;
2427
2428                btrfs_release_path(path);
2429                key.objectid = key.offset;
2430                key.offset = (u64)-1;
2431                dirid = key.objectid;
2432        }
2433        memmove(name, ptr, total_len);
2434        name[total_len] = '\0';
2435        ret = 0;
2436out:
2437        btrfs_put_root(root);
2438        btrfs_free_path(path);
2439        return ret;
2440}
2441
2442static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2443                                struct inode *inode,
2444                                struct btrfs_ioctl_ino_lookup_user_args *args)
2445{
2446        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2447        struct super_block *sb = inode->i_sb;
2448        struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2449        u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2450        u64 dirid = args->dirid;
2451        unsigned long item_off;
2452        unsigned long item_len;
2453        struct btrfs_inode_ref *iref;
2454        struct btrfs_root_ref *rref;
2455        struct btrfs_root *root = NULL;
2456        struct btrfs_path *path;
2457        struct btrfs_key key, key2;
2458        struct extent_buffer *leaf;
2459        struct inode *temp_inode;
2460        char *ptr;
2461        int slot;
2462        int len;
2463        int total_len = 0;
2464        int ret;
2465
2466        path = btrfs_alloc_path();
2467        if (!path)
2468                return -ENOMEM;
2469
2470        /*
2471         * If the bottom subvolume does not exist directly under upper_limit,
2472         * construct the path in from the bottom up.
2473         */
2474        if (dirid != upper_limit.objectid) {
2475                ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2476
2477                root = btrfs_get_fs_root(fs_info, treeid, true);
2478                if (IS_ERR(root)) {
2479                        ret = PTR_ERR(root);
2480                        goto out;
2481                }
2482
2483                key.objectid = dirid;
2484                key.type = BTRFS_INODE_REF_KEY;
2485                key.offset = (u64)-1;
2486                while (1) {
2487                        ret = btrfs_search_backwards(root, &key, path);
2488                        if (ret < 0)
2489                                goto out_put;
2490                        else if (ret > 0) {
2491                                ret = -ENOENT;
2492                                goto out_put;
2493                        }
2494
2495                        leaf = path->nodes[0];
2496                        slot = path->slots[0];
2497
2498                        iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2499                        len = btrfs_inode_ref_name_len(leaf, iref);
2500                        ptr -= len + 1;
2501                        total_len += len + 1;
2502                        if (ptr < args->path) {
2503                                ret = -ENAMETOOLONG;
2504                                goto out_put;
2505                        }
2506
2507                        *(ptr + len) = '/';
2508                        read_extent_buffer(leaf, ptr,
2509                                        (unsigned long)(iref + 1), len);
2510
2511                        /* Check the read+exec permission of this directory */
2512                        ret = btrfs_previous_item(root, path, dirid,
2513                                                  BTRFS_INODE_ITEM_KEY);
2514                        if (ret < 0) {
2515                                goto out_put;
2516                        } else if (ret > 0) {
2517                                ret = -ENOENT;
2518                                goto out_put;
2519                        }
2520
2521                        leaf = path->nodes[0];
2522                        slot = path->slots[0];
2523                        btrfs_item_key_to_cpu(leaf, &key2, slot);
2524                        if (key2.objectid != dirid) {
2525                                ret = -ENOENT;
2526                                goto out_put;
2527                        }
2528
2529                        temp_inode = btrfs_iget(sb, key2.objectid, root);
2530                        if (IS_ERR(temp_inode)) {
2531                                ret = PTR_ERR(temp_inode);
2532                                goto out_put;
2533                        }
2534                        ret = inode_permission(mnt_userns, temp_inode,
2535                                               MAY_READ | MAY_EXEC);
2536                        iput(temp_inode);
2537                        if (ret) {
2538                                ret = -EACCES;
2539                                goto out_put;
2540                        }
2541
2542                        if (key.offset == upper_limit.objectid)
2543                                break;
2544                        if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2545                                ret = -EACCES;
2546                                goto out_put;
2547                        }
2548
2549                        btrfs_release_path(path);
2550                        key.objectid = key.offset;
2551                        key.offset = (u64)-1;
2552                        dirid = key.objectid;
2553                }
2554
2555                memmove(args->path, ptr, total_len);
2556                args->path[total_len] = '\0';
2557                btrfs_put_root(root);
2558                root = NULL;
2559                btrfs_release_path(path);
2560        }
2561
2562        /* Get the bottom subvolume's name from ROOT_REF */
2563        key.objectid = treeid;
2564        key.type = BTRFS_ROOT_REF_KEY;
2565        key.offset = args->treeid;
2566        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2567        if (ret < 0) {
2568                goto out;
2569        } else if (ret > 0) {
2570                ret = -ENOENT;
2571                goto out;
2572        }
2573
2574        leaf = path->nodes[0];
2575        slot = path->slots[0];
2576        btrfs_item_key_to_cpu(leaf, &key, slot);
2577
2578        item_off = btrfs_item_ptr_offset(leaf, slot);
2579        item_len = btrfs_item_size_nr(leaf, slot);
2580        /* Check if dirid in ROOT_REF corresponds to passed dirid */
2581        rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2582        if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2583                ret = -EINVAL;
2584                goto out;
2585        }
2586
2587        /* Copy subvolume's name */
2588        item_off += sizeof(struct btrfs_root_ref);
2589        item_len -= sizeof(struct btrfs_root_ref);
2590        read_extent_buffer(leaf, args->name, item_off, item_len);
2591        args->name[item_len] = 0;
2592
2593out_put:
2594        btrfs_put_root(root);
2595out:
2596        btrfs_free_path(path);
2597        return ret;
2598}
2599
2600static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2601                                           void __user *argp)
2602{
2603        struct btrfs_ioctl_ino_lookup_args *args;
2604        struct inode *inode;
2605        int ret = 0;
2606
2607        args = memdup_user(argp, sizeof(*args));
2608        if (IS_ERR(args))
2609                return PTR_ERR(args);
2610
2611        inode = file_inode(file);
2612
2613        /*
2614         * Unprivileged query to obtain the containing subvolume root id. The
2615         * path is reset so it's consistent with btrfs_search_path_in_tree.
2616         */
2617        if (args->treeid == 0)
2618                args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2619
2620        if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2621                args->name[0] = 0;
2622                goto out;
2623        }
2624
2625        if (!capable(CAP_SYS_ADMIN)) {
2626                ret = -EPERM;
2627                goto out;
2628        }
2629
2630        ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2631                                        args->treeid, args->objectid,
2632                                        args->name);
2633
2634out:
2635        if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2636                ret = -EFAULT;
2637
2638        kfree(args);
2639        return ret;
2640}
2641
2642/*
2643 * Version of ino_lookup ioctl (unprivileged)
2644 *
2645 * The main differences from ino_lookup ioctl are:
2646 *
2647 *   1. Read + Exec permission will be checked using inode_permission() during
2648 *      path construction. -EACCES will be returned in case of failure.
2649 *   2. Path construction will be stopped at the inode number which corresponds
2650 *      to the fd with which this ioctl is called. If constructed path does not
2651 *      exist under fd's inode, -EACCES will be returned.
2652 *   3. The name of bottom subvolume is also searched and filled.
2653 */
2654static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2655{
2656        struct btrfs_ioctl_ino_lookup_user_args *args;
2657        struct inode *inode;
2658        int ret;
2659
2660        args = memdup_user(argp, sizeof(*args));
2661        if (IS_ERR(args))
2662                return PTR_ERR(args);
2663
2664        inode = file_inode(file);
2665
2666        if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2667            BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2668                /*
2669                 * The subvolume does not exist under fd with which this is
2670                 * called
2671                 */
2672                kfree(args);
2673                return -EACCES;
2674        }
2675
2676        ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2677
2678        if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2679                ret = -EFAULT;
2680
2681        kfree(args);
2682        return ret;
2683}
2684
2685/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2686static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2687{
2688        struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2689        struct btrfs_fs_info *fs_info;
2690        struct btrfs_root *root;
2691        struct btrfs_path *path;
2692        struct btrfs_key key;
2693        struct btrfs_root_item *root_item;
2694        struct btrfs_root_ref *rref;
2695        struct extent_buffer *leaf;
2696        unsigned long item_off;
2697        unsigned long item_len;
2698        struct inode *inode;
2699        int slot;
2700        int ret = 0;
2701
2702        path = btrfs_alloc_path();
2703        if (!path)
2704                return -ENOMEM;
2705
2706        subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2707        if (!subvol_info) {
2708                btrfs_free_path(path);
2709                return -ENOMEM;
2710        }
2711
2712        inode = file_inode(file);
2713        fs_info = BTRFS_I(inode)->root->fs_info;
2714
2715        /* Get root_item of inode's subvolume */
2716        key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2717        root = btrfs_get_fs_root(fs_info, key.objectid, true);
2718        if (IS_ERR(root)) {
2719                ret = PTR_ERR(root);
2720                goto out_free;
2721        }
2722        root_item = &root->root_item;
2723
2724        subvol_info->treeid = key.objectid;
2725
2726        subvol_info->generation = btrfs_root_generation(root_item);
2727        subvol_info->flags = btrfs_root_flags(root_item);
2728
2729        memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2730        memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2731                                                    BTRFS_UUID_SIZE);
2732        memcpy(subvol_info->received_uuid, root_item->received_uuid,
2733                                                    BTRFS_UUID_SIZE);
2734
2735        subvol_info->ctransid = btrfs_root_ctransid(root_item);
2736        subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2737        subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2738
2739        subvol_info->otransid = btrfs_root_otransid(root_item);
2740        subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2741        subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2742
2743        subvol_info->stransid = btrfs_root_stransid(root_item);
2744        subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2745        subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2746
2747        subvol_info->rtransid = btrfs_root_rtransid(root_item);
2748        subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2749        subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2750
2751        if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2752                /* Search root tree for ROOT_BACKREF of this subvolume */
2753                key.type = BTRFS_ROOT_BACKREF_KEY;
2754                key.offset = 0;
2755                ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2756                if (ret < 0) {
2757                        goto out;
2758                } else if (path->slots[0] >=
2759                           btrfs_header_nritems(path->nodes[0])) {
2760                        ret = btrfs_next_leaf(fs_info->tree_root, path);
2761                        if (ret < 0) {
2762                                goto out;
2763                        } else if (ret > 0) {
2764                                ret = -EUCLEAN;
2765                                goto out;
2766                        }
2767                }
2768
2769                leaf = path->nodes[0];
2770                slot = path->slots[0];
2771                btrfs_item_key_to_cpu(leaf, &key, slot);
2772                if (key.objectid == subvol_info->treeid &&
2773                    key.type == BTRFS_ROOT_BACKREF_KEY) {
2774                        subvol_info->parent_id = key.offset;
2775
2776                        rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2777                        subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2778
2779                        item_off = btrfs_item_ptr_offset(leaf, slot)
2780                                        + sizeof(struct btrfs_root_ref);
2781                        item_len = btrfs_item_size_nr(leaf, slot)
2782                                        - sizeof(struct btrfs_root_ref);
2783                        read_extent_buffer(leaf, subvol_info->name,
2784                                           item_off, item_len);
2785                } else {
2786                        ret = -ENOENT;
2787                        goto out;
2788                }
2789        }
2790
2791        if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2792                ret = -EFAULT;
2793
2794out:
2795        btrfs_put_root(root);
2796out_free:
2797        btrfs_free_path(path);
2798        kfree(subvol_info);
2799        return ret;
2800}
2801
2802/*
2803 * Return ROOT_REF information of the subvolume containing this inode
2804 * except the subvolume name.
2805 */
2806static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2807{
2808        struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2809        struct btrfs_root_ref *rref;
2810        struct btrfs_root *root;
2811        struct btrfs_path *path;
2812        struct btrfs_key key;
2813        struct extent_buffer *leaf;
2814        struct inode *inode;
2815        u64 objectid;
2816        int slot;
2817        int ret;
2818        u8 found;
2819
2820        path = btrfs_alloc_path();
2821        if (!path)
2822                return -ENOMEM;
2823
2824        rootrefs = memdup_user(argp, sizeof(*rootrefs));
2825        if (IS_ERR(rootrefs)) {
2826                btrfs_free_path(path);
2827                return PTR_ERR(rootrefs);
2828        }
2829
2830        inode = file_inode(file);
2831        root = BTRFS_I(inode)->root->fs_info->tree_root;
2832        objectid = BTRFS_I(inode)->root->root_key.objectid;
2833
2834        key.objectid = objectid;
2835        key.type = BTRFS_ROOT_REF_KEY;
2836        key.offset = rootrefs->min_treeid;
2837        found = 0;
2838
2839        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2840        if (ret < 0) {
2841                goto out;
2842        } else if (path->slots[0] >=
2843                   btrfs_header_nritems(path->nodes[0])) {
2844                ret = btrfs_next_leaf(root, path);
2845                if (ret < 0) {
2846                        goto out;
2847                } else if (ret > 0) {
2848                        ret = -EUCLEAN;
2849                        goto out;
2850                }
2851        }
2852        while (1) {
2853                leaf = path->nodes[0];
2854                slot = path->slots[0];
2855
2856                btrfs_item_key_to_cpu(leaf, &key, slot);
2857                if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2858                        ret = 0;
2859                        goto out;
2860                }
2861
2862                if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2863                        ret = -EOVERFLOW;
2864                        goto out;
2865                }
2866
2867                rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2868                rootrefs->rootref[found].treeid = key.offset;
2869                rootrefs->rootref[found].dirid =
2870                                  btrfs_root_ref_dirid(leaf, rref);
2871                found++;
2872
2873                ret = btrfs_next_item(root, path);
2874                if (ret < 0) {
2875                        goto out;
2876                } else if (ret > 0) {
2877                        ret = -EUCLEAN;
2878                        goto out;
2879                }
2880        }
2881
2882out:
2883        if (!ret || ret == -EOVERFLOW) {
2884                rootrefs->num_items = found;
2885                /* update min_treeid for next search */
2886                if (found)
2887                        rootrefs->min_treeid =
2888                                rootrefs->rootref[found - 1].treeid + 1;
2889                if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2890                        ret = -EFAULT;
2891        }
2892
2893        kfree(rootrefs);
2894        btrfs_free_path(path);
2895
2896        return ret;
2897}
2898
2899static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2900                                             void __user *arg,
2901                                             bool destroy_v2)
2902{
2903        struct dentry *parent = file->f_path.dentry;
2904        struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2905        struct dentry *dentry;
2906        struct inode *dir = d_inode(parent);
2907        struct inode *inode;
2908        struct btrfs_root *root = BTRFS_I(dir)->root;
2909        struct btrfs_root *dest = NULL;
2910        struct btrfs_ioctl_vol_args *vol_args = NULL;
2911        struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2912        struct user_namespace *mnt_userns = file_mnt_user_ns(file);
2913        char *subvol_name, *subvol_name_ptr = NULL;
2914        int subvol_namelen;
2915        int err = 0;
2916        bool destroy_parent = false;
2917
2918        if (destroy_v2) {
2919                vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2920                if (IS_ERR(vol_args2))
2921                        return PTR_ERR(vol_args2);
2922
2923                if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2924                        err = -EOPNOTSUPP;
2925                        goto out;
2926                }
2927
2928                /*
2929                 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2930                 * name, same as v1 currently does.
2931                 */
2932                if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2933                        vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2934                        subvol_name = vol_args2->name;
2935
2936                        err = mnt_want_write_file(file);
2937                        if (err)
2938                                goto out;
2939                } else {
2940                        struct inode *old_dir;
2941
2942                        if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2943                                err = -EINVAL;
2944                                goto out;
2945                        }
2946
2947                        err = mnt_want_write_file(file);
2948                        if (err)
2949                                goto out;
2950
2951                        dentry = btrfs_get_dentry(fs_info->sb,
2952                                        BTRFS_FIRST_FREE_OBJECTID,
2953                                        vol_args2->subvolid, 0, 0);
2954                        if (IS_ERR(dentry)) {
2955                                err = PTR_ERR(dentry);
2956                                goto out_drop_write;
2957                        }
2958
2959                        /*
2960                         * Change the default parent since the subvolume being
2961                         * deleted can be outside of the current mount point.
2962                         */
2963                        parent = btrfs_get_parent(dentry);
2964
2965                        /*
2966                         * At this point dentry->d_name can point to '/' if the
2967                         * subvolume we want to destroy is outsite of the
2968                         * current mount point, so we need to release the
2969                         * current dentry and execute the lookup to return a new
2970                         * one with ->d_name pointing to the
2971                         * <mount point>/subvol_name.
2972                         */
2973                        dput(dentry);
2974                        if (IS_ERR(parent)) {
2975                                err = PTR_ERR(parent);
2976                                goto out_drop_write;
2977                        }
2978                        old_dir = dir;
2979                        dir = d_inode(parent);
2980
2981                        /*
2982                         * If v2 was used with SPEC_BY_ID, a new parent was
2983                         * allocated since the subvolume can be outside of the
2984                         * current mount point. Later on we need to release this
2985                         * new parent dentry.
2986                         */
2987                        destroy_parent = true;
2988
2989                        /*
2990                         * On idmapped mounts, deletion via subvolid is
2991                         * restricted to subvolumes that are immediate
2992                         * ancestors of the inode referenced by the file
2993                         * descriptor in the ioctl. Otherwise the idmapping
2994                         * could potentially be abused to delete subvolumes
2995                         * anywhere in the filesystem the user wouldn't be able
2996                         * to delete without an idmapped mount.
2997                         */
2998                        if (old_dir != dir && mnt_userns != &init_user_ns) {
2999                                err = -EOPNOTSUPP;
3000                                goto free_parent;
3001                        }
3002
3003                        subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3004                                                fs_info, vol_args2->subvolid);
3005                        if (IS_ERR(subvol_name_ptr)) {
3006                                err = PTR_ERR(subvol_name_ptr);
3007                                goto free_parent;
3008                        }
3009                        /* subvol_name_ptr is already nul terminated */
3010                        subvol_name = (char *)kbasename(subvol_name_ptr);
3011                }
3012        } else {
3013                vol_args = memdup_user(arg, sizeof(*vol_args));
3014                if (IS_ERR(vol_args))
3015                        return PTR_ERR(vol_args);
3016
3017                vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3018                subvol_name = vol_args->name;
3019
3020                err = mnt_want_write_file(file);
3021                if (err)
3022                        goto out;
3023        }
3024
3025        subvol_namelen = strlen(subvol_name);
3026
3027        if (strchr(subvol_name, '/') ||
3028            strncmp(subvol_name, "..", subvol_namelen) == 0) {
3029                err = -EINVAL;
3030                goto free_subvol_name;
3031        }
3032
3033        if (!S_ISDIR(dir->i_mode)) {
3034                err = -ENOTDIR;
3035                goto free_subvol_name;
3036        }
3037
3038        err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3039        if (err == -EINTR)
3040                goto free_subvol_name;
3041        dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3042        if (IS_ERR(dentry)) {
3043                err = PTR_ERR(dentry);
3044                goto out_unlock_dir;
3045        }
3046
3047        if (d_really_is_negative(dentry)) {
3048                err = -ENOENT;
3049                goto out_dput;
3050        }
3051
3052        inode = d_inode(dentry);
3053        dest = BTRFS_I(inode)->root;
3054        if (!capable(CAP_SYS_ADMIN)) {
3055                /*
3056                 * Regular user.  Only allow this with a special mount
3057                 * option, when the user has write+exec access to the
3058                 * subvol root, and when rmdir(2) would have been
3059                 * allowed.
3060                 *
3061                 * Note that this is _not_ check that the subvol is
3062                 * empty or doesn't contain data that we wouldn't
3063                 * otherwise be able to delete.
3064                 *
3065                 * Users who want to delete empty subvols should try
3066                 * rmdir(2).
3067                 */
3068                err = -EPERM;
3069                if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3070                        goto out_dput;
3071
3072                /*
3073                 * Do not allow deletion if the parent dir is the same
3074                 * as the dir to be deleted.  That means the ioctl
3075                 * must be called on the dentry referencing the root
3076                 * of the subvol, not a random directory contained
3077                 * within it.
3078                 */
3079                err = -EINVAL;
3080                if (root == dest)
3081                        goto out_dput;
3082
3083                err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3084                if (err)
3085                        goto out_dput;
3086        }
3087
3088        /* check if subvolume may be deleted by a user */
3089        err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3090        if (err)
3091                goto out_dput;
3092
3093        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3094                err = -EINVAL;
3095                goto out_dput;
3096        }
3097
3098        btrfs_inode_lock(inode, 0);
3099        err = btrfs_delete_subvolume(dir, dentry);
3100        btrfs_inode_unlock(inode, 0);
3101        if (!err) {
3102                fsnotify_rmdir(dir, dentry);
3103                d_delete(dentry);
3104        }
3105
3106out_dput:
3107        dput(dentry);
3108out_unlock_dir:
3109        btrfs_inode_unlock(dir, 0);
3110free_subvol_name:
3111        kfree(subvol_name_ptr);
3112free_parent:
3113        if (destroy_parent)
3114                dput(parent);
3115out_drop_write:
3116        mnt_drop_write_file(file);
3117out:
3118        kfree(vol_args2);
3119        kfree(vol_args);
3120        return err;
3121}
3122
3123static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3124{
3125        struct inode *inode = file_inode(file);
3126        struct btrfs_root *root = BTRFS_I(inode)->root;
3127        struct btrfs_ioctl_defrag_range_args range = {0};
3128        int ret;
3129
3130        ret = mnt_want_write_file(file);
3131        if (ret)
3132                return ret;
3133
3134        if (btrfs_root_readonly(root)) {
3135                ret = -EROFS;
3136                goto out;
3137        }
3138
3139        /* Subpage defrag will be supported in later commits */
3140        if (root->fs_info->sectorsize < PAGE_SIZE) {
3141                ret = -ENOTTY;
3142                goto out;
3143        }
3144
3145        switch (inode->i_mode & S_IFMT) {
3146        case S_IFDIR:
3147                if (!capable(CAP_SYS_ADMIN)) {
3148                        ret = -EPERM;
3149                        goto out;
3150                }
3151                ret = btrfs_defrag_root(root);
3152                break;
3153        case S_IFREG:
3154                /*
3155                 * Note that this does not check the file descriptor for write
3156                 * access. This prevents defragmenting executables that are
3157                 * running and allows defrag on files open in read-only mode.
3158                 */
3159                if (!capable(CAP_SYS_ADMIN) &&
3160                    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3161                        ret = -EPERM;
3162                        goto out;
3163                }
3164
3165                if (argp) {
3166                        if (copy_from_user(&range, argp, sizeof(range))) {
3167                                ret = -EFAULT;
3168                                goto out;
3169                        }
3170                        /* compression requires us to start the IO */
3171                        if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3172                                range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3173                                range.extent_thresh = (u32)-1;
3174                        }
3175                } else {
3176                        /* the rest are all set to zero by kzalloc */
3177                        range.len = (u64)-1;
3178                }
3179                ret = btrfs_defrag_file(file_inode(file), file,
3180                                        &range, BTRFS_OLDEST_GENERATION, 0);
3181                if (ret > 0)
3182                        ret = 0;
3183                break;
3184        default:
3185                ret = -EINVAL;
3186        }
3187out:
3188        mnt_drop_write_file(file);
3189        return ret;
3190}
3191
3192static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3193{
3194        struct btrfs_ioctl_vol_args *vol_args;
3195        int ret;
3196
3197        if (!capable(CAP_SYS_ADMIN))
3198                return -EPERM;
3199
3200        if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3201                return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3202
3203        vol_args = memdup_user(arg, sizeof(*vol_args));
3204        if (IS_ERR(vol_args)) {
3205                ret = PTR_ERR(vol_args);
3206                goto out;
3207        }
3208
3209        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3210        ret = btrfs_init_new_device(fs_info, vol_args->name);
3211
3212        if (!ret)
3213                btrfs_info(fs_info, "disk added %s", vol_args->name);
3214
3215        kfree(vol_args);
3216out:
3217        btrfs_exclop_finish(fs_info);
3218        return ret;
3219}
3220
3221static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3222{
3223        struct inode *inode = file_inode(file);
3224        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3225        struct btrfs_ioctl_vol_args_v2 *vol_args;
3226        struct block_device *bdev = NULL;
3227        fmode_t mode;
3228        int ret;
3229        bool cancel = false;
3230
3231        if (!capable(CAP_SYS_ADMIN))
3232                return -EPERM;
3233
3234        ret = mnt_want_write_file(file);
3235        if (ret)
3236                return ret;
3237
3238        vol_args = memdup_user(arg, sizeof(*vol_args));
3239        if (IS_ERR(vol_args)) {
3240                ret = PTR_ERR(vol_args);
3241                goto err_drop;
3242        }
3243
3244        if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3245                ret = -EOPNOTSUPP;
3246                goto out;
3247        }
3248        vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3249        if (!(vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) &&
3250            strcmp("cancel", vol_args->name) == 0)
3251                cancel = true;
3252
3253        ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3254                                           cancel);
3255        if (ret)
3256                goto out;
3257        /* Exclusive operation is now claimed */
3258
3259        if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3260                ret = btrfs_rm_device(fs_info, NULL, vol_args->devid, &bdev, &mode);
3261        else
3262                ret = btrfs_rm_device(fs_info, vol_args->name, 0, &bdev, &mode);
3263
3264        btrfs_exclop_finish(fs_info);
3265
3266        if (!ret) {
3267                if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3268                        btrfs_info(fs_info, "device deleted: id %llu",
3269                                        vol_args->devid);
3270                else
3271                        btrfs_info(fs_info, "device deleted: %s",
3272                                        vol_args->name);
3273        }
3274out:
3275        kfree(vol_args);
3276err_drop:
3277        mnt_drop_write_file(file);
3278        if (bdev)
3279                blkdev_put(bdev, mode);
3280        return ret;
3281}
3282
3283static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3284{
3285        struct inode *inode = file_inode(file);
3286        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3287        struct btrfs_ioctl_vol_args *vol_args;
3288        struct block_device *bdev = NULL;
3289        fmode_t mode;
3290        int ret;
3291        bool cancel;
3292
3293        if (!capable(CAP_SYS_ADMIN))
3294                return -EPERM;
3295
3296        ret = mnt_want_write_file(file);
3297        if (ret)
3298                return ret;
3299
3300        vol_args = memdup_user(arg, sizeof(*vol_args));
3301        if (IS_ERR(vol_args)) {
3302                ret = PTR_ERR(vol_args);
3303                goto out_drop_write;
3304        }
3305        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3306        cancel = (strcmp("cancel", vol_args->name) == 0);
3307
3308        ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3309                                           cancel);
3310        if (ret == 0) {
3311                ret = btrfs_rm_device(fs_info, vol_args->name, 0, &bdev, &mode);
3312                if (!ret)
3313                        btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3314                btrfs_exclop_finish(fs_info);
3315        }
3316
3317        kfree(vol_args);
3318out_drop_write:
3319        mnt_drop_write_file(file);
3320        if (bdev)
3321                blkdev_put(bdev, mode);
3322        return ret;
3323}
3324
3325static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3326                                void __user *arg)
3327{
3328        struct btrfs_ioctl_fs_info_args *fi_args;
3329        struct btrfs_device *device;
3330        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3331        u64 flags_in;
3332        int ret = 0;
3333
3334        fi_args = memdup_user(arg, sizeof(*fi_args));
3335        if (IS_ERR(fi_args))
3336                return PTR_ERR(fi_args);
3337
3338        flags_in = fi_args->flags;
3339        memset(fi_args, 0, sizeof(*fi_args));
3340
3341        rcu_read_lock();
3342        fi_args->num_devices = fs_devices->num_devices;
3343
3344        list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3345                if (device->devid > fi_args->max_id)
3346                        fi_args->max_id = device->devid;
3347        }
3348        rcu_read_unlock();
3349
3350        memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3351        fi_args->nodesize = fs_info->nodesize;
3352        fi_args->sectorsize = fs_info->sectorsize;
3353        fi_args->clone_alignment = fs_info->sectorsize;
3354
3355        if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3356                fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3357                fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3358                fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3359        }
3360
3361        if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3362                fi_args->generation = fs_info->generation;
3363                fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3364        }
3365
3366        if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3367                memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3368                       sizeof(fi_args->metadata_uuid));
3369                fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3370        }
3371
3372        if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3373                ret = -EFAULT;
3374
3375        kfree(fi_args);
3376        return ret;
3377}
3378
3379static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3380                                 void __user *arg)
3381{
3382        struct btrfs_ioctl_dev_info_args *di_args;
3383        struct btrfs_device *dev;
3384        int ret = 0;
3385        char *s_uuid = NULL;
3386
3387        di_args = memdup_user(arg, sizeof(*di_args));
3388        if (IS_ERR(di_args))
3389                return PTR_ERR(di_args);
3390
3391        if (!btrfs_is_empty_uuid(di_args->uuid))
3392                s_uuid = di_args->uuid;
3393
3394        rcu_read_lock();
3395        dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3396                                NULL);
3397
3398        if (!dev) {
3399                ret = -ENODEV;
3400                goto out;
3401        }
3402
3403        di_args->devid = dev->devid;
3404        di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3405        di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3406        memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3407        if (dev->name) {
3408                strncpy(di_args->path, rcu_str_deref(dev->name),
3409                                sizeof(di_args->path) - 1);
3410                di_args->path[sizeof(di_args->path) - 1] = 0;
3411        } else {
3412                di_args->path[0] = '\0';
3413        }
3414
3415out:
3416        rcu_read_unlock();
3417        if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3418                ret = -EFAULT;
3419
3420        kfree(di_args);
3421        return ret;
3422}
3423
3424static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3425{
3426        struct inode *inode = file_inode(file);
3427        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3428        struct btrfs_root *root = BTRFS_I(inode)->root;
3429        struct btrfs_root *new_root;
3430        struct btrfs_dir_item *di;
3431        struct btrfs_trans_handle *trans;
3432        struct btrfs_path *path = NULL;
3433        struct btrfs_disk_key disk_key;
3434        u64 objectid = 0;
3435        u64 dir_id;
3436        int ret;
3437
3438        if (!capable(CAP_SYS_ADMIN))
3439                return -EPERM;
3440
3441        ret = mnt_want_write_file(file);
3442        if (ret)
3443                return ret;
3444
3445        if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3446                ret = -EFAULT;
3447                goto out;
3448        }
3449
3450        if (!objectid)
3451                objectid = BTRFS_FS_TREE_OBJECTID;
3452
3453        new_root = btrfs_get_fs_root(fs_info, objectid, true);
3454        if (IS_ERR(new_root)) {
3455                ret = PTR_ERR(new_root);
3456                goto out;
3457        }
3458        if (!is_fstree(new_root->root_key.objectid)) {
3459                ret = -ENOENT;
3460                goto out_free;
3461        }
3462
3463        path = btrfs_alloc_path();
3464        if (!path) {
3465                ret = -ENOMEM;
3466                goto out_free;
3467        }
3468
3469        trans = btrfs_start_transaction(root, 1);
3470        if (IS_ERR(trans)) {
3471                ret = PTR_ERR(trans);
3472                goto out_free;
3473        }
3474
3475        dir_id = btrfs_super_root_dir(fs_info->super_copy);
3476        di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3477                                   dir_id, "default", 7, 1);
3478        if (IS_ERR_OR_NULL(di)) {
3479                btrfs_release_path(path);
3480                btrfs_end_transaction(trans);
3481                btrfs_err(fs_info,
3482                          "Umm, you don't have the default diritem, this isn't going to work");
3483                ret = -ENOENT;
3484                goto out_free;
3485        }
3486
3487        btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3488        btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3489        btrfs_mark_buffer_dirty(path->nodes[0]);
3490        btrfs_release_path(path);
3491
3492        btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3493        btrfs_end_transaction(trans);
3494out_free:
3495        btrfs_put_root(new_root);
3496        btrfs_free_path(path);
3497out:
3498        mnt_drop_write_file(file);
3499        return ret;
3500}
3501
3502static void get_block_group_info(struct list_head *groups_list,
3503                                 struct btrfs_ioctl_space_info *space)
3504{
3505        struct btrfs_block_group *block_group;
3506
3507        space->total_bytes = 0;
3508        space->used_bytes = 0;
3509        space->flags = 0;
3510        list_for_each_entry(block_group, groups_list, list) {
3511                space->flags = block_group->flags;
3512                space->total_bytes += block_group->length;
3513                space->used_bytes += block_group->used;
3514        }
3515}
3516
3517static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3518                                   void __user *arg)
3519{
3520        struct btrfs_ioctl_space_args space_args;
3521        struct btrfs_ioctl_space_info space;
3522        struct btrfs_ioctl_space_info *dest;
3523        struct btrfs_ioctl_space_info *dest_orig;
3524        struct btrfs_ioctl_space_info __user *user_dest;
3525        struct btrfs_space_info *info;
3526        static const u64 types[] = {
3527                BTRFS_BLOCK_GROUP_DATA,
3528                BTRFS_BLOCK_GROUP_SYSTEM,
3529                BTRFS_BLOCK_GROUP_METADATA,
3530                BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3531        };
3532        int num_types = 4;
3533        int alloc_size;
3534        int ret = 0;
3535        u64 slot_count = 0;
3536        int i, c;
3537
3538        if (copy_from_user(&space_args,
3539                           (struct btrfs_ioctl_space_args __user *)arg,
3540                           sizeof(space_args)))
3541                return -EFAULT;
3542
3543        for (i = 0; i < num_types; i++) {
3544                struct btrfs_space_info *tmp;
3545
3546                info = NULL;
3547                list_for_each_entry(tmp, &fs_info->space_info, list) {
3548                        if (tmp->flags == types[i]) {
3549                                info = tmp;
3550                                break;
3551                        }
3552                }
3553
3554                if (!info)
3555                        continue;
3556
3557                down_read(&info->groups_sem);
3558                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3559                        if (!list_empty(&info->block_groups[c]))
3560                                slot_count++;
3561                }
3562                up_read(&info->groups_sem);
3563        }
3564
3565        /*
3566         * Global block reserve, exported as a space_info
3567         */
3568        slot_count++;
3569
3570        /* space_slots == 0 means they are asking for a count */
3571        if (space_args.space_slots == 0) {
3572                space_args.total_spaces = slot_count;
3573                goto out;
3574        }
3575
3576        slot_count = min_t(u64, space_args.space_slots, slot_count);
3577
3578        alloc_size = sizeof(*dest) * slot_count;
3579
3580        /* we generally have at most 6 or so space infos, one for each raid
3581         * level.  So, a whole page should be more than enough for everyone
3582         */
3583        if (alloc_size > PAGE_SIZE)
3584                return -ENOMEM;
3585
3586        space_args.total_spaces = 0;
3587        dest = kmalloc(alloc_size, GFP_KERNEL);
3588        if (!dest)
3589                return -ENOMEM;
3590        dest_orig = dest;
3591
3592        /* now we have a buffer to copy into */
3593        for (i = 0; i < num_types; i++) {
3594                struct btrfs_space_info *tmp;
3595
3596                if (!slot_count)
3597                        break;
3598
3599                info = NULL;
3600                list_for_each_entry(tmp, &fs_info->space_info, list) {
3601                        if (tmp->flags == types[i]) {
3602                                info = tmp;
3603                                break;
3604                        }
3605                }
3606
3607                if (!info)
3608                        continue;
3609                down_read(&info->groups_sem);
3610                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3611                        if (!list_empty(&info->block_groups[c])) {
3612                                get_block_group_info(&info->block_groups[c],
3613                                                     &space);
3614                                memcpy(dest, &space, sizeof(space));
3615                                dest++;
3616                                space_args.total_spaces++;
3617                                slot_count--;
3618                        }
3619                        if (!slot_count)
3620                                break;
3621                }
3622                up_read(&info->groups_sem);
3623        }
3624
3625        /*
3626         * Add global block reserve
3627         */
3628        if (slot_count) {
3629                struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3630
3631                spin_lock(&block_rsv->lock);
3632                space.total_bytes = block_rsv->size;
3633                space.used_bytes = block_rsv->size - block_rsv->reserved;
3634                spin_unlock(&block_rsv->lock);
3635                space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3636                memcpy(dest, &space, sizeof(space));
3637                space_args.total_spaces++;
3638        }
3639
3640        user_dest = (struct btrfs_ioctl_space_info __user *)
3641                (arg + sizeof(struct btrfs_ioctl_space_args));
3642
3643        if (copy_to_user(user_dest, dest_orig, alloc_size))
3644                ret = -EFAULT;
3645
3646        kfree(dest_orig);
3647out:
3648        if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3649                ret = -EFAULT;
3650
3651        return ret;
3652}
3653
3654static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3655                                            void __user *argp)
3656{
3657        struct btrfs_trans_handle *trans;
3658        u64 transid;
3659        int ret;
3660
3661        trans = btrfs_attach_transaction_barrier(root);
3662        if (IS_ERR(trans)) {
3663                if (PTR_ERR(trans) != -ENOENT)
3664                        return PTR_ERR(trans);
3665
3666                /* No running transaction, don't bother */
3667                transid = root->fs_info->last_trans_committed;
3668                goto out;
3669        }
3670        transid = trans->transid;
3671        ret = btrfs_commit_transaction_async(trans);
3672        if (ret) {
3673                btrfs_end_transaction(trans);
3674                return ret;
3675        }
3676out:
3677        if (argp)
3678                if (copy_to_user(argp, &transid, sizeof(transid)))
3679                        return -EFAULT;
3680        return 0;
3681}
3682
3683static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3684                                           void __user *argp)
3685{
3686        u64 transid;
3687
3688        if (argp) {
3689                if (copy_from_user(&transid, argp, sizeof(transid)))
3690                        return -EFAULT;
3691        } else {
3692                transid = 0;  /* current trans */
3693        }
3694        return btrfs_wait_for_commit(fs_info, transid);
3695}
3696
3697static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3698{
3699        struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3700        struct btrfs_ioctl_scrub_args *sa;
3701        int ret;
3702
3703        if (!capable(CAP_SYS_ADMIN))
3704                return -EPERM;
3705
3706        sa = memdup_user(arg, sizeof(*sa));
3707        if (IS_ERR(sa))
3708                return PTR_ERR(sa);
3709
3710        if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3711                ret = mnt_want_write_file(file);
3712                if (ret)
3713                        goto out;
3714        }
3715
3716        ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3717                              &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3718                              0);
3719
3720        /*
3721         * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3722         * error. This is important as it allows user space to know how much
3723         * progress scrub has done. For example, if scrub is canceled we get
3724         * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3725         * space. Later user space can inspect the progress from the structure
3726         * btrfs_ioctl_scrub_args and resume scrub from where it left off
3727         * previously (btrfs-progs does this).
3728         * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3729         * then return -EFAULT to signal the structure was not copied or it may
3730         * be corrupt and unreliable due to a partial copy.
3731         */
3732        if (copy_to_user(arg, sa, sizeof(*sa)))
3733                ret = -EFAULT;
3734
3735        if (!(sa->flags & BTRFS_SCRUB_READONLY))
3736                mnt_drop_write_file(file);
3737out:
3738        kfree(sa);
3739        return ret;
3740}
3741
3742static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3743{
3744        if (!capable(CAP_SYS_ADMIN))
3745                return -EPERM;
3746
3747        return btrfs_scrub_cancel(fs_info);
3748}
3749
3750static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3751                                       void __user *arg)
3752{
3753        struct btrfs_ioctl_scrub_args *sa;
3754        int ret;
3755
3756        if (!capable(CAP_SYS_ADMIN))
3757                return -EPERM;
3758
3759        sa = memdup_user(arg, sizeof(*sa));
3760        if (IS_ERR(sa))
3761                return PTR_ERR(sa);
3762
3763        ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3764
3765        if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3766                ret = -EFAULT;
3767
3768        kfree(sa);
3769        return ret;
3770}
3771
3772static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3773                                      void __user *arg)
3774{
3775        struct btrfs_ioctl_get_dev_stats *sa;
3776        int ret;
3777
3778        sa = memdup_user(arg, sizeof(*sa));
3779        if (IS_ERR(sa))
3780                return PTR_ERR(sa);
3781
3782        if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3783                kfree(sa);
3784                return -EPERM;
3785        }
3786
3787        ret = btrfs_get_dev_stats(fs_info, sa);
3788
3789        if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3790                ret = -EFAULT;
3791
3792        kfree(sa);
3793        return ret;
3794}
3795
3796static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3797                                    void __user *arg)
3798{
3799        struct btrfs_ioctl_dev_replace_args *p;
3800        int ret;
3801
3802        if (!capable(CAP_SYS_ADMIN))
3803                return -EPERM;
3804
3805        p = memdup_user(arg, sizeof(*p));
3806        if (IS_ERR(p))
3807                return PTR_ERR(p);
3808
3809        switch (p->cmd) {
3810        case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3811                if (sb_rdonly(fs_info->sb)) {
3812                        ret = -EROFS;
3813                        goto out;
3814                }
3815                if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3816                        ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3817                } else {
3818                        ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3819                        btrfs_exclop_finish(fs_info);
3820                }
3821                break;
3822        case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3823                btrfs_dev_replace_status(fs_info, p);
3824                ret = 0;
3825                break;
3826        case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3827                p->result = btrfs_dev_replace_cancel(fs_info);
3828                ret = 0;
3829                break;
3830        default:
3831                ret = -EINVAL;
3832                break;
3833        }
3834
3835        if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3836                ret = -EFAULT;
3837out:
3838        kfree(p);
3839        return ret;
3840}
3841
3842static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3843{
3844        int ret = 0;
3845        int i;
3846        u64 rel_ptr;
3847        int size;
3848        struct btrfs_ioctl_ino_path_args *ipa = NULL;
3849        struct inode_fs_paths *ipath = NULL;
3850        struct btrfs_path *path;
3851
3852        if (!capable(CAP_DAC_READ_SEARCH))
3853                return -EPERM;
3854
3855        path = btrfs_alloc_path();
3856        if (!path) {
3857                ret = -ENOMEM;
3858                goto out;
3859        }
3860
3861        ipa = memdup_user(arg, sizeof(*ipa));
3862        if (IS_ERR(ipa)) {
3863                ret = PTR_ERR(ipa);
3864                ipa = NULL;
3865                goto out;
3866        }
3867
3868        size = min_t(u32, ipa->size, 4096);
3869        ipath = init_ipath(size, root, path);
3870        if (IS_ERR(ipath)) {
3871                ret = PTR_ERR(ipath);
3872                ipath = NULL;
3873                goto out;
3874        }
3875
3876        ret = paths_from_inode(ipa->inum, ipath);
3877        if (ret < 0)
3878                goto out;
3879
3880        for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3881                rel_ptr = ipath->fspath->val[i] -
3882                          (u64)(unsigned long)ipath->fspath->val;
3883                ipath->fspath->val[i] = rel_ptr;
3884        }
3885
3886        ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3887                           ipath->fspath, size);
3888        if (ret) {
3889                ret = -EFAULT;
3890                goto out;
3891        }
3892
3893out:
3894        btrfs_free_path(path);
3895        free_ipath(ipath);
3896        kfree(ipa);
3897
3898        return ret;
3899}
3900
3901static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3902{
3903        struct btrfs_data_container *inodes = ctx;
3904        const size_t c = 3 * sizeof(u64);
3905
3906        if (inodes->bytes_left >= c) {
3907                inodes->bytes_left -= c;
3908                inodes->val[inodes->elem_cnt] = inum;
3909                inodes->val[inodes->elem_cnt + 1] = offset;
3910                inodes->val[inodes->elem_cnt + 2] = root;
3911                inodes->elem_cnt += 3;
3912        } else {
3913                inodes->bytes_missing += c - inodes->bytes_left;
3914                inodes->bytes_left = 0;
3915                inodes->elem_missed += 3;
3916        }
3917
3918        return 0;
3919}
3920
3921static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3922                                        void __user *arg, int version)
3923{
3924        int ret = 0;
3925        int size;
3926        struct btrfs_ioctl_logical_ino_args *loi;
3927        struct btrfs_data_container *inodes = NULL;
3928        struct btrfs_path *path = NULL;
3929        bool ignore_offset;
3930
3931        if (!capable(CAP_SYS_ADMIN))
3932                return -EPERM;
3933
3934        loi = memdup_user(arg, sizeof(*loi));
3935        if (IS_ERR(loi))
3936                return PTR_ERR(loi);
3937
3938        if (version == 1) {
3939                ignore_offset = false;
3940                size = min_t(u32, loi->size, SZ_64K);
3941        } else {
3942                /* All reserved bits must be 0 for now */
3943                if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3944                        ret = -EINVAL;
3945                        goto out_loi;
3946                }
3947                /* Only accept flags we have defined so far */
3948                if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3949                        ret = -EINVAL;
3950                        goto out_loi;
3951                }
3952                ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3953                size = min_t(u32, loi->size, SZ_16M);
3954        }
3955
3956        path = btrfs_alloc_path();
3957        if (!path) {
3958                ret = -ENOMEM;
3959                goto out;
3960        }
3961
3962        inodes = init_data_container(size);
3963        if (IS_ERR(inodes)) {
3964                ret = PTR_ERR(inodes);
3965                inodes = NULL;
3966                goto out;
3967        }
3968
3969        ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3970                                          build_ino_list, inodes, ignore_offset);
3971        if (ret == -EINVAL)
3972                ret = -ENOENT;
3973        if (ret < 0)
3974                goto out;
3975
3976        ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3977                           size);
3978        if (ret)
3979                ret = -EFAULT;
3980
3981out:
3982        btrfs_free_path(path);
3983        kvfree(inodes);
3984out_loi:
3985        kfree(loi);
3986
3987        return ret;
3988}
3989
3990void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3991                               struct btrfs_ioctl_balance_args *bargs)
3992{
3993        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3994
3995        bargs->flags = bctl->flags;
3996
3997        if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3998                bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3999        if (atomic_read(&fs_info->balance_pause_req))
4000                bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4001        if (atomic_read(&fs_info->balance_cancel_req))
4002                bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4003
4004        memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4005        memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4006        memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4007
4008        spin_lock(&fs_info->balance_lock);
4009        memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4010        spin_unlock(&fs_info->balance_lock);
4011}
4012
4013static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4014{
4015        struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4016        struct btrfs_fs_info *fs_info = root->fs_info;
4017        struct btrfs_ioctl_balance_args *bargs;
4018        struct btrfs_balance_control *bctl;
4019        bool need_unlock; /* for mut. excl. ops lock */
4020        int ret;
4021
4022        if (!capable(CAP_SYS_ADMIN))
4023                return -EPERM;
4024
4025        ret = mnt_want_write_file(file);
4026        if (ret)
4027                return ret;
4028
4029again:
4030        if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4031                mutex_lock(&fs_info->balance_mutex);
4032                need_unlock = true;
4033                goto locked;
4034        }
4035
4036        /*
4037         * mut. excl. ops lock is locked.  Three possibilities:
4038         *   (1) some other op is running
4039         *   (2) balance is running
4040         *   (3) balance is paused -- special case (think resume)
4041         */
4042        mutex_lock(&fs_info->balance_mutex);
4043        if (fs_info->balance_ctl) {
4044                /* this is either (2) or (3) */
4045                if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4046                        mutex_unlock(&fs_info->balance_mutex);
4047                        /*
4048                         * Lock released to allow other waiters to continue,
4049                         * we'll reexamine the status again.
4050                         */
4051                        mutex_lock(&fs_info->balance_mutex);
4052
4053                        if (fs_info->balance_ctl &&
4054                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4055                                /* this is (3) */
4056                                need_unlock = false;
4057                                goto locked;
4058                        }
4059
4060                        mutex_unlock(&fs_info->balance_mutex);
4061                        goto again;
4062                } else {
4063                        /* this is (2) */
4064                        mutex_unlock(&fs_info->balance_mutex);
4065                        ret = -EINPROGRESS;
4066                        goto out;
4067                }
4068        } else {
4069                /* this is (1) */
4070                mutex_unlock(&fs_info->balance_mutex);
4071                ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4072                goto out;
4073        }
4074
4075locked:
4076
4077        if (arg) {
4078                bargs = memdup_user(arg, sizeof(*bargs));
4079                if (IS_ERR(bargs)) {
4080                        ret = PTR_ERR(bargs);
4081                        goto out_unlock;
4082                }
4083
4084                if (bargs->flags & BTRFS_BALANCE_RESUME) {
4085                        if (!fs_info->balance_ctl) {
4086                                ret = -ENOTCONN;
4087                                goto out_bargs;
4088                        }
4089
4090                        bctl = fs_info->balance_ctl;
4091                        spin_lock(&fs_info->balance_lock);
4092                        bctl->flags |= BTRFS_BALANCE_RESUME;
4093                        spin_unlock(&fs_info->balance_lock);
4094
4095                        goto do_balance;
4096                }
4097        } else {
4098                bargs = NULL;
4099        }
4100
4101        if (fs_info->balance_ctl) {
4102                ret = -EINPROGRESS;
4103                goto out_bargs;
4104        }
4105
4106        bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4107        if (!bctl) {
4108                ret = -ENOMEM;
4109                goto out_bargs;
4110        }
4111
4112        if (arg) {
4113                memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4114                memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4115                memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4116
4117                bctl->flags = bargs->flags;
4118        } else {
4119                /* balance everything - no filters */
4120                bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4121        }
4122
4123        if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4124                ret = -EINVAL;
4125                goto out_bctl;
4126        }
4127
4128do_balance:
4129        /*
4130         * Ownership of bctl and exclusive operation goes to btrfs_balance.
4131         * bctl is freed in reset_balance_state, or, if restriper was paused
4132         * all the way until unmount, in free_fs_info.  The flag should be
4133         * cleared after reset_balance_state.
4134         */
4135        need_unlock = false;
4136
4137        ret = btrfs_balance(fs_info, bctl, bargs);
4138        bctl = NULL;
4139
4140        if ((ret == 0 || ret == -ECANCELED) && arg) {
4141                if (copy_to_user(arg, bargs, sizeof(*bargs)))
4142                        ret = -EFAULT;
4143        }
4144
4145out_bctl:
4146        kfree(bctl);
4147out_bargs:
4148        kfree(bargs);
4149out_unlock:
4150        mutex_unlock(&fs_info->balance_mutex);
4151        if (need_unlock)
4152                btrfs_exclop_finish(fs_info);
4153out:
4154        mnt_drop_write_file(file);
4155        return ret;
4156}
4157
4158static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4159{
4160        if (!capable(CAP_SYS_ADMIN))
4161                return -EPERM;
4162
4163        switch (cmd) {
4164        case BTRFS_BALANCE_CTL_PAUSE:
4165                return btrfs_pause_balance(fs_info);
4166        case BTRFS_BALANCE_CTL_CANCEL:
4167                return btrfs_cancel_balance(fs_info);
4168        }
4169
4170        return -EINVAL;
4171}
4172
4173static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4174                                         void __user *arg)
4175{
4176        struct btrfs_ioctl_balance_args *bargs;
4177        int ret = 0;
4178
4179        if (!capable(CAP_SYS_ADMIN))
4180                return -EPERM;
4181
4182        mutex_lock(&fs_info->balance_mutex);
4183        if (!fs_info->balance_ctl) {
4184                ret = -ENOTCONN;
4185                goto out;
4186        }
4187
4188        bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4189        if (!bargs) {
4190                ret = -ENOMEM;
4191                goto out;
4192        }
4193
4194        btrfs_update_ioctl_balance_args(fs_info, bargs);
4195
4196        if (copy_to_user(arg, bargs, sizeof(*bargs)))
4197                ret = -EFAULT;
4198
4199        kfree(bargs);
4200out:
4201        mutex_unlock(&fs_info->balance_mutex);
4202        return ret;
4203}
4204
4205static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4206{
4207        struct inode *inode = file_inode(file);
4208        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4209        struct btrfs_ioctl_quota_ctl_args *sa;
4210        int ret;
4211
4212        if (!capable(CAP_SYS_ADMIN))
4213                return -EPERM;
4214
4215        ret = mnt_want_write_file(file);
4216        if (ret)
4217                return ret;
4218
4219        sa = memdup_user(arg, sizeof(*sa));
4220        if (IS_ERR(sa)) {
4221                ret = PTR_ERR(sa);
4222                goto drop_write;
4223        }
4224
4225        down_write(&fs_info->subvol_sem);
4226
4227        switch (sa->cmd) {
4228        case BTRFS_QUOTA_CTL_ENABLE:
4229                ret = btrfs_quota_enable(fs_info);
4230                break;
4231        case BTRFS_QUOTA_CTL_DISABLE:
4232                ret = btrfs_quota_disable(fs_info);
4233                break;
4234        default:
4235                ret = -EINVAL;
4236                break;
4237        }
4238
4239        kfree(sa);
4240        up_write(&fs_info->subvol_sem);
4241drop_write:
4242        mnt_drop_write_file(file);
4243        return ret;
4244}
4245
4246static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4247{
4248        struct inode *inode = file_inode(file);
4249        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4250        struct btrfs_root *root = BTRFS_I(inode)->root;
4251        struct btrfs_ioctl_qgroup_assign_args *sa;
4252        struct btrfs_trans_handle *trans;
4253        int ret;
4254        int err;
4255
4256        if (!capable(CAP_SYS_ADMIN))
4257                return -EPERM;
4258
4259        ret = mnt_want_write_file(file);
4260        if (ret)
4261                return ret;
4262
4263        sa = memdup_user(arg, sizeof(*sa));
4264        if (IS_ERR(sa)) {
4265                ret = PTR_ERR(sa);
4266                goto drop_write;
4267        }
4268
4269        trans = btrfs_join_transaction(root);
4270        if (IS_ERR(trans)) {
4271                ret = PTR_ERR(trans);
4272                goto out;
4273        }
4274
4275        if (sa->assign) {
4276                ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4277        } else {
4278                ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4279        }
4280
4281        /* update qgroup status and info */
4282        err = btrfs_run_qgroups(trans);
4283        if (err < 0)
4284                btrfs_handle_fs_error(fs_info, err,
4285                                      "failed to update qgroup status and info");
4286        err = btrfs_end_transaction(trans);
4287        if (err && !ret)
4288                ret = err;
4289
4290out:
4291        kfree(sa);
4292drop_write:
4293        mnt_drop_write_file(file);
4294        return ret;
4295}
4296
4297static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4298{
4299        struct inode *inode = file_inode(file);
4300        struct btrfs_root *root = BTRFS_I(inode)->root;
4301        struct btrfs_ioctl_qgroup_create_args *sa;
4302        struct btrfs_trans_handle *trans;
4303        int ret;
4304        int err;
4305
4306        if (!capable(CAP_SYS_ADMIN))
4307                return -EPERM;
4308
4309        ret = mnt_want_write_file(file);
4310        if (ret)
4311                return ret;
4312
4313        sa = memdup_user(arg, sizeof(*sa));
4314        if (IS_ERR(sa)) {
4315                ret = PTR_ERR(sa);
4316                goto drop_write;
4317        }
4318
4319        if (!sa->qgroupid) {
4320                ret = -EINVAL;
4321                goto out;
4322        }
4323
4324        trans = btrfs_join_transaction(root);
4325        if (IS_ERR(trans)) {
4326                ret = PTR_ERR(trans);
4327                goto out;
4328        }
4329
4330        if (sa->create) {
4331                ret = btrfs_create_qgroup(trans, sa->qgroupid);
4332        } else {
4333                ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4334        }
4335
4336        err = btrfs_end_transaction(trans);
4337        if (err && !ret)
4338                ret = err;
4339
4340out:
4341        kfree(sa);
4342drop_write:
4343        mnt_drop_write_file(file);
4344        return ret;
4345}
4346
4347static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4348{
4349        struct inode *inode = file_inode(file);
4350        struct btrfs_root *root = BTRFS_I(inode)->root;
4351        struct btrfs_ioctl_qgroup_limit_args *sa;
4352        struct btrfs_trans_handle *trans;
4353        int ret;
4354        int err;
4355        u64 qgroupid;
4356
4357        if (!capable(CAP_SYS_ADMIN))
4358                return -EPERM;
4359
4360        ret = mnt_want_write_file(file);
4361        if (ret)
4362                return ret;
4363
4364        sa = memdup_user(arg, sizeof(*sa));
4365        if (IS_ERR(sa)) {
4366                ret = PTR_ERR(sa);
4367                goto drop_write;
4368        }
4369
4370        trans = btrfs_join_transaction(root);
4371        if (IS_ERR(trans)) {
4372                ret = PTR_ERR(trans);
4373                goto out;
4374        }
4375
4376        qgroupid = sa->qgroupid;
4377        if (!qgroupid) {
4378                /* take the current subvol as qgroup */
4379                qgroupid = root->root_key.objectid;
4380        }
4381
4382        ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4383
4384        err = btrfs_end_transaction(trans);
4385        if (err && !ret)
4386                ret = err;
4387
4388out:
4389        kfree(sa);
4390drop_write:
4391        mnt_drop_write_file(file);
4392        return ret;
4393}
4394
4395static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4396{
4397        struct inode *inode = file_inode(file);
4398        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4399        struct btrfs_ioctl_quota_rescan_args *qsa;
4400        int ret;
4401
4402        if (!capable(CAP_SYS_ADMIN))
4403                return -EPERM;
4404
4405        ret = mnt_want_write_file(file);
4406        if (ret)
4407                return ret;
4408
4409        qsa = memdup_user(arg, sizeof(*qsa));
4410        if (IS_ERR(qsa)) {
4411                ret = PTR_ERR(qsa);
4412                goto drop_write;
4413        }
4414
4415        if (qsa->flags) {
4416                ret = -EINVAL;
4417                goto out;
4418        }
4419
4420        ret = btrfs_qgroup_rescan(fs_info);
4421
4422out:
4423        kfree(qsa);
4424drop_write:
4425        mnt_drop_write_file(file);
4426        return ret;
4427}
4428
4429static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4430                                                void __user *arg)
4431{
4432        struct btrfs_ioctl_quota_rescan_args qsa = {0};
4433        int ret = 0;
4434
4435        if (!capable(CAP_SYS_ADMIN))
4436                return -EPERM;
4437
4438        if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4439                qsa.flags = 1;
4440                qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4441        }
4442
4443        if (copy_to_user(arg, &qsa, sizeof(qsa)))
4444                ret = -EFAULT;
4445
4446        return ret;
4447}
4448
4449static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4450                                                void __user *arg)
4451{
4452        if (!capable(CAP_SYS_ADMIN))
4453                return -EPERM;
4454
4455        return btrfs_qgroup_wait_for_completion(fs_info, true);
4456}
4457
4458static long _btrfs_ioctl_set_received_subvol(struct file *file,
4459                                            struct user_namespace *mnt_userns,
4460                                            struct btrfs_ioctl_received_subvol_args *sa)
4461{
4462        struct inode *inode = file_inode(file);
4463        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4464        struct btrfs_root *root = BTRFS_I(inode)->root;
4465        struct btrfs_root_item *root_item = &root->root_item;
4466        struct btrfs_trans_handle *trans;
4467        struct timespec64 ct = current_time(inode);
4468        int ret = 0;
4469        int received_uuid_changed;
4470
4471        if (!inode_owner_or_capable(mnt_userns, inode))
4472                return -EPERM;
4473
4474        ret = mnt_want_write_file(file);
4475        if (ret < 0)
4476                return ret;
4477
4478        down_write(&fs_info->subvol_sem);
4479
4480        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4481                ret = -EINVAL;
4482                goto out;
4483        }
4484
4485        if (btrfs_root_readonly(root)) {
4486                ret = -EROFS;
4487                goto out;
4488        }
4489
4490        /*
4491         * 1 - root item
4492         * 2 - uuid items (received uuid + subvol uuid)
4493         */
4494        trans = btrfs_start_transaction(root, 3);
4495        if (IS_ERR(trans)) {
4496                ret = PTR_ERR(trans);
4497                trans = NULL;
4498                goto out;
4499        }
4500
4501        sa->rtransid = trans->transid;
4502        sa->rtime.sec = ct.tv_sec;
4503        sa->rtime.nsec = ct.tv_nsec;
4504
4505        received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4506                                       BTRFS_UUID_SIZE);
4507        if (received_uuid_changed &&
4508            !btrfs_is_empty_uuid(root_item->received_uuid)) {
4509                ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4510                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4511                                          root->root_key.objectid);
4512                if (ret && ret != -ENOENT) {
4513                        btrfs_abort_transaction(trans, ret);
4514                        btrfs_end_transaction(trans);
4515                        goto out;
4516                }
4517        }
4518        memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4519        btrfs_set_root_stransid(root_item, sa->stransid);
4520        btrfs_set_root_rtransid(root_item, sa->rtransid);
4521        btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4522        btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4523        btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4524        btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4525
4526        ret = btrfs_update_root(trans, fs_info->tree_root,
4527                                &root->root_key, &root->root_item);
4528        if (ret < 0) {
4529                btrfs_end_transaction(trans);
4530                goto out;
4531        }
4532        if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4533                ret = btrfs_uuid_tree_add(trans, sa->uuid,
4534                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4535                                          root->root_key.objectid);
4536                if (ret < 0 && ret != -EEXIST) {
4537                        btrfs_abort_transaction(trans, ret);
4538                        btrfs_end_transaction(trans);
4539                        goto out;
4540                }
4541        }
4542        ret = btrfs_commit_transaction(trans);
4543out:
4544        up_write(&fs_info->subvol_sem);
4545        mnt_drop_write_file(file);
4546        return ret;
4547}
4548
4549#ifdef CONFIG_64BIT
4550static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4551                                                void __user *arg)
4552{
4553        struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4554        struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4555        int ret = 0;
4556
4557        args32 = memdup_user(arg, sizeof(*args32));
4558        if (IS_ERR(args32))
4559                return PTR_ERR(args32);
4560
4561        args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4562        if (!args64) {
4563                ret = -ENOMEM;
4564                goto out;
4565        }
4566
4567        memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4568        args64->stransid = args32->stransid;
4569        args64->rtransid = args32->rtransid;
4570        args64->stime.sec = args32->stime.sec;
4571        args64->stime.nsec = args32->stime.nsec;
4572        args64->rtime.sec = args32->rtime.sec;
4573        args64->rtime.nsec = args32->rtime.nsec;
4574        args64->flags = args32->flags;
4575
4576        ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4577        if (ret)
4578                goto out;
4579
4580        memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4581        args32->stransid = args64->stransid;
4582        args32->rtransid = args64->rtransid;
4583        args32->stime.sec = args64->stime.sec;
4584        args32->stime.nsec = args64->stime.nsec;
4585        args32->rtime.sec = args64->rtime.sec;
4586        args32->rtime.nsec = args64->rtime.nsec;
4587        args32->flags = args64->flags;
4588
4589        ret = copy_to_user(arg, args32, sizeof(*args32));
4590        if (ret)
4591                ret = -EFAULT;
4592
4593out:
4594        kfree(args32);
4595        kfree(args64);
4596        return ret;
4597}
4598#endif
4599
4600static long btrfs_ioctl_set_received_subvol(struct file *file,
4601                                            void __user *arg)
4602{
4603        struct btrfs_ioctl_received_subvol_args *sa = NULL;
4604        int ret = 0;
4605
4606        sa = memdup_user(arg, sizeof(*sa));
4607        if (IS_ERR(sa))
4608                return PTR_ERR(sa);
4609
4610        ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4611
4612        if (ret)
4613                goto out;
4614
4615        ret = copy_to_user(arg, sa, sizeof(*sa));
4616        if (ret)
4617                ret = -EFAULT;
4618
4619out:
4620        kfree(sa);
4621        return ret;
4622}
4623
4624static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4625                                        void __user *arg)
4626{
4627        size_t len;
4628        int ret;
4629        char label[BTRFS_LABEL_SIZE];
4630
4631        spin_lock(&fs_info->super_lock);
4632        memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4633        spin_unlock(&fs_info->super_lock);
4634
4635        len = strnlen(label, BTRFS_LABEL_SIZE);
4636
4637        if (len == BTRFS_LABEL_SIZE) {
4638                btrfs_warn(fs_info,
4639                           "label is too long, return the first %zu bytes",
4640                           --len);
4641        }
4642
4643        ret = copy_to_user(arg, label, len);
4644
4645        return ret ? -EFAULT : 0;
4646}
4647
4648static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4649{
4650        struct inode *inode = file_inode(file);
4651        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4652        struct btrfs_root *root = BTRFS_I(inode)->root;
4653        struct btrfs_super_block *super_block = fs_info->super_copy;
4654        struct btrfs_trans_handle *trans;
4655        char label[BTRFS_LABEL_SIZE];
4656        int ret;
4657
4658        if (!capable(CAP_SYS_ADMIN))
4659                return -EPERM;
4660
4661        if (copy_from_user(label, arg, sizeof(label)))
4662                return -EFAULT;
4663
4664        if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4665                btrfs_err(fs_info,
4666                          "unable to set label with more than %d bytes",
4667                          BTRFS_LABEL_SIZE - 1);
4668                return -EINVAL;
4669        }
4670
4671        ret = mnt_want_write_file(file);
4672        if (ret)
4673                return ret;
4674
4675        trans = btrfs_start_transaction(root, 0);
4676        if (IS_ERR(trans)) {
4677                ret = PTR_ERR(trans);
4678                goto out_unlock;
4679        }
4680
4681        spin_lock(&fs_info->super_lock);
4682        strcpy(super_block->label, label);
4683        spin_unlock(&fs_info->super_lock);
4684        ret = btrfs_commit_transaction(trans);
4685
4686out_unlock:
4687        mnt_drop_write_file(file);
4688        return ret;
4689}
4690
4691#define INIT_FEATURE_FLAGS(suffix) \
4692        { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4693          .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4694          .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4695
4696int btrfs_ioctl_get_supported_features(void __user *arg)
4697{
4698        static const struct btrfs_ioctl_feature_flags features[3] = {
4699                INIT_FEATURE_FLAGS(SUPP),
4700                INIT_FEATURE_FLAGS(SAFE_SET),
4701                INIT_FEATURE_FLAGS(SAFE_CLEAR)
4702        };
4703
4704        if (copy_to_user(arg, &features, sizeof(features)))
4705                return -EFAULT;
4706
4707        return 0;
4708}
4709
4710static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4711                                        void __user *arg)
4712{
4713        struct btrfs_super_block *super_block = fs_info->super_copy;
4714        struct btrfs_ioctl_feature_flags features;
4715
4716        features.compat_flags = btrfs_super_compat_flags(super_block);
4717        features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4718        features.incompat_flags = btrfs_super_incompat_flags(super_block);
4719
4720        if (copy_to_user(arg, &features, sizeof(features)))
4721                return -EFAULT;
4722
4723        return 0;
4724}
4725
4726static int check_feature_bits(struct btrfs_fs_info *fs_info,
4727                              enum btrfs_feature_set set,
4728                              u64 change_mask, u64 flags, u64 supported_flags,
4729                              u64 safe_set, u64 safe_clear)
4730{
4731        const char *type = btrfs_feature_set_name(set);
4732        char *names;
4733        u64 disallowed, unsupported;
4734        u64 set_mask = flags & change_mask;
4735        u64 clear_mask = ~flags & change_mask;
4736
4737        unsupported = set_mask & ~supported_flags;
4738        if (unsupported) {
4739                names = btrfs_printable_features(set, unsupported);
4740                if (names) {
4741                        btrfs_warn(fs_info,
4742                                   "this kernel does not support the %s feature bit%s",
4743                                   names, strchr(names, ',') ? "s" : "");
4744                        kfree(names);
4745                } else
4746                        btrfs_warn(fs_info,
4747                                   "this kernel does not support %s bits 0x%llx",
4748                                   type, unsupported);
4749                return -EOPNOTSUPP;
4750        }
4751
4752        disallowed = set_mask & ~safe_set;
4753        if (disallowed) {
4754                names = btrfs_printable_features(set, disallowed);
4755                if (names) {
4756                        btrfs_warn(fs_info,
4757                                   "can't set the %s feature bit%s while mounted",
4758                                   names, strchr(names, ',') ? "s" : "");
4759                        kfree(names);
4760                } else
4761                        btrfs_warn(fs_info,
4762                                   "can't set %s bits 0x%llx while mounted",
4763                                   type, disallowed);
4764                return -EPERM;
4765        }
4766
4767        disallowed = clear_mask & ~safe_clear;
4768        if (disallowed) {
4769                names = btrfs_printable_features(set, disallowed);
4770                if (names) {
4771                        btrfs_warn(fs_info,
4772                                   "can't clear the %s feature bit%s while mounted",
4773                                   names, strchr(names, ',') ? "s" : "");
4774                        kfree(names);
4775                } else
4776                        btrfs_warn(fs_info,
4777                                   "can't clear %s bits 0x%llx while mounted",
4778                                   type, disallowed);
4779                return -EPERM;
4780        }
4781
4782        return 0;
4783}
4784
4785#define check_feature(fs_info, change_mask, flags, mask_base)   \
4786check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,       \
4787                   BTRFS_FEATURE_ ## mask_base ## _SUPP,        \
4788                   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,    \
4789                   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4790
4791static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4792{
4793        struct inode *inode = file_inode(file);
4794        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4795        struct btrfs_root *root = BTRFS_I(inode)->root;
4796        struct btrfs_super_block *super_block = fs_info->super_copy;
4797        struct btrfs_ioctl_feature_flags flags[2];
4798        struct btrfs_trans_handle *trans;
4799        u64 newflags;
4800        int ret;
4801
4802        if (!capable(CAP_SYS_ADMIN))
4803                return -EPERM;
4804
4805        if (copy_from_user(flags, arg, sizeof(flags)))
4806                return -EFAULT;
4807
4808        /* Nothing to do */
4809        if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4810            !flags[0].incompat_flags)
4811                return 0;
4812
4813        ret = check_feature(fs_info, flags[0].compat_flags,
4814                            flags[1].compat_flags, COMPAT);
4815        if (ret)
4816                return ret;
4817
4818        ret = check_feature(fs_info, flags[0].compat_ro_flags,
4819                            flags[1].compat_ro_flags, COMPAT_RO);
4820        if (ret)
4821                return ret;
4822
4823        ret = check_feature(fs_info, flags[0].incompat_flags,
4824                            flags[1].incompat_flags, INCOMPAT);
4825        if (ret)
4826                return ret;
4827
4828        ret = mnt_want_write_file(file);
4829        if (ret)
4830                return ret;
4831
4832        trans = btrfs_start_transaction(root, 0);
4833        if (IS_ERR(trans)) {
4834                ret = PTR_ERR(trans);
4835                goto out_drop_write;
4836        }
4837
4838        spin_lock(&fs_info->super_lock);
4839        newflags = btrfs_super_compat_flags(super_block);
4840        newflags |= flags[0].compat_flags & flags[1].compat_flags;
4841        newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4842        btrfs_set_super_compat_flags(super_block, newflags);
4843
4844        newflags = btrfs_super_compat_ro_flags(super_block);
4845        newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4846        newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4847        btrfs_set_super_compat_ro_flags(super_block, newflags);
4848
4849        newflags = btrfs_super_incompat_flags(super_block);
4850        newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4851        newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4852        btrfs_set_super_incompat_flags(super_block, newflags);
4853        spin_unlock(&fs_info->super_lock);
4854
4855        ret = btrfs_commit_transaction(trans);
4856out_drop_write:
4857        mnt_drop_write_file(file);
4858
4859        return ret;
4860}
4861
4862static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4863{
4864        struct btrfs_ioctl_send_args *arg;
4865        int ret;
4866
4867        if (compat) {
4868#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4869                struct btrfs_ioctl_send_args_32 args32;
4870
4871                ret = copy_from_user(&args32, argp, sizeof(args32));
4872                if (ret)
4873                        return -EFAULT;
4874                arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4875                if (!arg)
4876                        return -ENOMEM;
4877                arg->send_fd = args32.send_fd;
4878                arg->clone_sources_count = args32.clone_sources_count;
4879                arg->clone_sources = compat_ptr(args32.clone_sources);
4880                arg->parent_root = args32.parent_root;
4881                arg->flags = args32.flags;
4882                memcpy(arg->reserved, args32.reserved,
4883                       sizeof(args32.reserved));
4884#else
4885                return -ENOTTY;
4886#endif
4887        } else {
4888                arg = memdup_user(argp, sizeof(*arg));
4889                if (IS_ERR(arg))
4890                        return PTR_ERR(arg);
4891        }
4892        ret = btrfs_ioctl_send(file, arg);
4893        kfree(arg);
4894        return ret;
4895}
4896
4897long btrfs_ioctl(struct file *file, unsigned int
4898                cmd, unsigned long arg)
4899{
4900        struct inode *inode = file_inode(file);
4901        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4902        struct btrfs_root *root = BTRFS_I(inode)->root;
4903        void __user *argp = (void __user *)arg;
4904
4905        switch (cmd) {
4906        case FS_IOC_GETVERSION:
4907                return btrfs_ioctl_getversion(file, argp);
4908        case FS_IOC_GETFSLABEL:
4909                return btrfs_ioctl_get_fslabel(fs_info, argp);
4910        case FS_IOC_SETFSLABEL:
4911                return btrfs_ioctl_set_fslabel(file, argp);
4912        case FITRIM:
4913                return btrfs_ioctl_fitrim(fs_info, argp);
4914        case BTRFS_IOC_SNAP_CREATE:
4915                return btrfs_ioctl_snap_create(file, argp, 0);
4916        case BTRFS_IOC_SNAP_CREATE_V2:
4917                return btrfs_ioctl_snap_create_v2(file, argp, 0);
4918        case BTRFS_IOC_SUBVOL_CREATE:
4919                return btrfs_ioctl_snap_create(file, argp, 1);
4920        case BTRFS_IOC_SUBVOL_CREATE_V2:
4921                return btrfs_ioctl_snap_create_v2(file, argp, 1);
4922        case BTRFS_IOC_SNAP_DESTROY:
4923                return btrfs_ioctl_snap_destroy(file, argp, false);
4924        case BTRFS_IOC_SNAP_DESTROY_V2:
4925                return btrfs_ioctl_snap_destroy(file, argp, true);
4926        case BTRFS_IOC_SUBVOL_GETFLAGS:
4927                return btrfs_ioctl_subvol_getflags(file, argp);
4928        case BTRFS_IOC_SUBVOL_SETFLAGS:
4929                return btrfs_ioctl_subvol_setflags(file, argp);
4930        case BTRFS_IOC_DEFAULT_SUBVOL:
4931                return btrfs_ioctl_default_subvol(file, argp);
4932        case BTRFS_IOC_DEFRAG:
4933                return btrfs_ioctl_defrag(file, NULL);
4934        case BTRFS_IOC_DEFRAG_RANGE:
4935                return btrfs_ioctl_defrag(file, argp);
4936        case BTRFS_IOC_RESIZE:
4937                return btrfs_ioctl_resize(file, argp);
4938        case BTRFS_IOC_ADD_DEV:
4939                return btrfs_ioctl_add_dev(fs_info, argp);
4940        case BTRFS_IOC_RM_DEV:
4941                return btrfs_ioctl_rm_dev(file, argp);
4942        case BTRFS_IOC_RM_DEV_V2:
4943                return btrfs_ioctl_rm_dev_v2(file, argp);
4944        case BTRFS_IOC_FS_INFO:
4945                return btrfs_ioctl_fs_info(fs_info, argp);
4946        case BTRFS_IOC_DEV_INFO:
4947                return btrfs_ioctl_dev_info(fs_info, argp);
4948        case BTRFS_IOC_BALANCE:
4949                return btrfs_ioctl_balance(file, NULL);
4950        case BTRFS_IOC_TREE_SEARCH:
4951                return btrfs_ioctl_tree_search(file, argp);
4952        case BTRFS_IOC_TREE_SEARCH_V2:
4953                return btrfs_ioctl_tree_search_v2(file, argp);
4954        case BTRFS_IOC_INO_LOOKUP:
4955                return btrfs_ioctl_ino_lookup(file, argp);
4956        case BTRFS_IOC_INO_PATHS:
4957                return btrfs_ioctl_ino_to_path(root, argp);
4958        case BTRFS_IOC_LOGICAL_INO:
4959                return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4960        case BTRFS_IOC_LOGICAL_INO_V2:
4961                return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4962        case BTRFS_IOC_SPACE_INFO:
4963                return btrfs_ioctl_space_info(fs_info, argp);
4964        case BTRFS_IOC_SYNC: {
4965                int ret;
4966
4967                ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4968                if (ret)
4969                        return ret;
4970                ret = btrfs_sync_fs(inode->i_sb, 1);
4971                /*
4972                 * The transaction thread may want to do more work,
4973                 * namely it pokes the cleaner kthread that will start
4974                 * processing uncleaned subvols.
4975                 */
4976                wake_up_process(fs_info->transaction_kthread);
4977                return ret;
4978        }
4979        case BTRFS_IOC_START_SYNC:
4980                return btrfs_ioctl_start_sync(root, argp);
4981        case BTRFS_IOC_WAIT_SYNC:
4982                return btrfs_ioctl_wait_sync(fs_info, argp);
4983        case BTRFS_IOC_SCRUB:
4984                return btrfs_ioctl_scrub(file, argp);
4985        case BTRFS_IOC_SCRUB_CANCEL:
4986                return btrfs_ioctl_scrub_cancel(fs_info);
4987        case BTRFS_IOC_SCRUB_PROGRESS:
4988                return btrfs_ioctl_scrub_progress(fs_info, argp);
4989        case BTRFS_IOC_BALANCE_V2:
4990                return btrfs_ioctl_balance(file, argp);
4991        case BTRFS_IOC_BALANCE_CTL:
4992                return btrfs_ioctl_balance_ctl(fs_info, arg);
4993        case BTRFS_IOC_BALANCE_PROGRESS:
4994                return btrfs_ioctl_balance_progress(fs_info, argp);
4995        case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4996                return btrfs_ioctl_set_received_subvol(file, argp);
4997#ifdef CONFIG_64BIT
4998        case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4999                return btrfs_ioctl_set_received_subvol_32(file, argp);
5000#endif
5001        case BTRFS_IOC_SEND:
5002                return _btrfs_ioctl_send(file, argp, false);
5003#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5004        case BTRFS_IOC_SEND_32:
5005                return _btrfs_ioctl_send(file, argp, true);
5006#endif
5007        case BTRFS_IOC_GET_DEV_STATS:
5008                return btrfs_ioctl_get_dev_stats(fs_info, argp);
5009        case BTRFS_IOC_QUOTA_CTL:
5010                return btrfs_ioctl_quota_ctl(file, argp);
5011        case BTRFS_IOC_QGROUP_ASSIGN:
5012                return btrfs_ioctl_qgroup_assign(file, argp);
5013        case BTRFS_IOC_QGROUP_CREATE:
5014                return btrfs_ioctl_qgroup_create(file, argp);
5015        case BTRFS_IOC_QGROUP_LIMIT:
5016                return btrfs_ioctl_qgroup_limit(file, argp);
5017        case BTRFS_IOC_QUOTA_RESCAN:
5018                return btrfs_ioctl_quota_rescan(file, argp);
5019        case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5020                return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5021        case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5022                return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5023        case BTRFS_IOC_DEV_REPLACE:
5024                return btrfs_ioctl_dev_replace(fs_info, argp);
5025        case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5026                return btrfs_ioctl_get_supported_features(argp);
5027        case BTRFS_IOC_GET_FEATURES:
5028                return btrfs_ioctl_get_features(fs_info, argp);
5029        case BTRFS_IOC_SET_FEATURES:
5030                return btrfs_ioctl_set_features(file, argp);
5031        case BTRFS_IOC_GET_SUBVOL_INFO:
5032                return btrfs_ioctl_get_subvol_info(file, argp);
5033        case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5034                return btrfs_ioctl_get_subvol_rootref(file, argp);
5035        case BTRFS_IOC_INO_LOOKUP_USER:
5036                return btrfs_ioctl_ino_lookup_user(file, argp);
5037        case FS_IOC_ENABLE_VERITY:
5038                return fsverity_ioctl_enable(file, (const void __user *)argp);
5039        case FS_IOC_MEASURE_VERITY:
5040                return fsverity_ioctl_measure(file, argp);
5041        }
5042
5043        return -ENOTTY;
5044}
5045
5046#ifdef CONFIG_COMPAT
5047long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5048{
5049        /*
5050         * These all access 32-bit values anyway so no further
5051         * handling is necessary.
5052         */
5053        switch (cmd) {
5054        case FS_IOC32_GETVERSION:
5055                cmd = FS_IOC_GETVERSION;
5056                break;
5057        }
5058
5059        return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5060}
5061#endif
5062