linux/fs/btrfs/ordered-data.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/slab.h>
   7#include <linux/blkdev.h>
   8#include <linux/writeback.h>
   9#include <linux/sched/mm.h>
  10#include "misc.h"
  11#include "ctree.h"
  12#include "transaction.h"
  13#include "btrfs_inode.h"
  14#include "extent_io.h"
  15#include "disk-io.h"
  16#include "compression.h"
  17#include "delalloc-space.h"
  18#include "qgroup.h"
  19#include "subpage.h"
  20
  21static struct kmem_cache *btrfs_ordered_extent_cache;
  22
  23static u64 entry_end(struct btrfs_ordered_extent *entry)
  24{
  25        if (entry->file_offset + entry->num_bytes < entry->file_offset)
  26                return (u64)-1;
  27        return entry->file_offset + entry->num_bytes;
  28}
  29
  30/* returns NULL if the insertion worked, or it returns the node it did find
  31 * in the tree
  32 */
  33static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  34                                   struct rb_node *node)
  35{
  36        struct rb_node **p = &root->rb_node;
  37        struct rb_node *parent = NULL;
  38        struct btrfs_ordered_extent *entry;
  39
  40        while (*p) {
  41                parent = *p;
  42                entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  43
  44                if (file_offset < entry->file_offset)
  45                        p = &(*p)->rb_left;
  46                else if (file_offset >= entry_end(entry))
  47                        p = &(*p)->rb_right;
  48                else
  49                        return parent;
  50        }
  51
  52        rb_link_node(node, parent, p);
  53        rb_insert_color(node, root);
  54        return NULL;
  55}
  56
  57/*
  58 * look for a given offset in the tree, and if it can't be found return the
  59 * first lesser offset
  60 */
  61static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  62                                     struct rb_node **prev_ret)
  63{
  64        struct rb_node *n = root->rb_node;
  65        struct rb_node *prev = NULL;
  66        struct rb_node *test;
  67        struct btrfs_ordered_extent *entry;
  68        struct btrfs_ordered_extent *prev_entry = NULL;
  69
  70        while (n) {
  71                entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  72                prev = n;
  73                prev_entry = entry;
  74
  75                if (file_offset < entry->file_offset)
  76                        n = n->rb_left;
  77                else if (file_offset >= entry_end(entry))
  78                        n = n->rb_right;
  79                else
  80                        return n;
  81        }
  82        if (!prev_ret)
  83                return NULL;
  84
  85        while (prev && file_offset >= entry_end(prev_entry)) {
  86                test = rb_next(prev);
  87                if (!test)
  88                        break;
  89                prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  90                                      rb_node);
  91                if (file_offset < entry_end(prev_entry))
  92                        break;
  93
  94                prev = test;
  95        }
  96        if (prev)
  97                prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  98                                      rb_node);
  99        while (prev && file_offset < entry_end(prev_entry)) {
 100                test = rb_prev(prev);
 101                if (!test)
 102                        break;
 103                prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 104                                      rb_node);
 105                prev = test;
 106        }
 107        *prev_ret = prev;
 108        return NULL;
 109}
 110
 111static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 112                          u64 len)
 113{
 114        if (file_offset + len <= entry->file_offset ||
 115            entry->file_offset + entry->num_bytes <= file_offset)
 116                return 0;
 117        return 1;
 118}
 119
 120/*
 121 * look find the first ordered struct that has this offset, otherwise
 122 * the first one less than this offset
 123 */
 124static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 125                                          u64 file_offset)
 126{
 127        struct rb_root *root = &tree->tree;
 128        struct rb_node *prev = NULL;
 129        struct rb_node *ret;
 130        struct btrfs_ordered_extent *entry;
 131
 132        if (tree->last) {
 133                entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 134                                 rb_node);
 135                if (in_range(file_offset, entry->file_offset, entry->num_bytes))
 136                        return tree->last;
 137        }
 138        ret = __tree_search(root, file_offset, &prev);
 139        if (!ret)
 140                ret = prev;
 141        if (ret)
 142                tree->last = ret;
 143        return ret;
 144}
 145
 146/*
 147 * Allocate and add a new ordered_extent into the per-inode tree.
 148 *
 149 * The tree is given a single reference on the ordered extent that was
 150 * inserted.
 151 */
 152static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
 153                                      u64 disk_bytenr, u64 num_bytes,
 154                                      u64 disk_num_bytes, int type, int dio,
 155                                      int compress_type)
 156{
 157        struct btrfs_root *root = inode->root;
 158        struct btrfs_fs_info *fs_info = root->fs_info;
 159        struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 160        struct rb_node *node;
 161        struct btrfs_ordered_extent *entry;
 162        int ret;
 163
 164        if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
 165                /* For nocow write, we can release the qgroup rsv right now */
 166                ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
 167                if (ret < 0)
 168                        return ret;
 169                ret = 0;
 170        } else {
 171                /*
 172                 * The ordered extent has reserved qgroup space, release now
 173                 * and pass the reserved number for qgroup_record to free.
 174                 */
 175                ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
 176                if (ret < 0)
 177                        return ret;
 178        }
 179        entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 180        if (!entry)
 181                return -ENOMEM;
 182
 183        entry->file_offset = file_offset;
 184        entry->disk_bytenr = disk_bytenr;
 185        entry->num_bytes = num_bytes;
 186        entry->disk_num_bytes = disk_num_bytes;
 187        entry->bytes_left = num_bytes;
 188        entry->inode = igrab(&inode->vfs_inode);
 189        entry->compress_type = compress_type;
 190        entry->truncated_len = (u64)-1;
 191        entry->qgroup_rsv = ret;
 192        entry->physical = (u64)-1;
 193
 194        ASSERT(type == BTRFS_ORDERED_REGULAR ||
 195               type == BTRFS_ORDERED_NOCOW ||
 196               type == BTRFS_ORDERED_PREALLOC ||
 197               type == BTRFS_ORDERED_COMPRESSED);
 198        set_bit(type, &entry->flags);
 199
 200        percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
 201                                 fs_info->delalloc_batch);
 202
 203        if (dio)
 204                set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 205
 206        /* one ref for the tree */
 207        refcount_set(&entry->refs, 1);
 208        init_waitqueue_head(&entry->wait);
 209        INIT_LIST_HEAD(&entry->list);
 210        INIT_LIST_HEAD(&entry->log_list);
 211        INIT_LIST_HEAD(&entry->root_extent_list);
 212        INIT_LIST_HEAD(&entry->work_list);
 213        init_completion(&entry->completion);
 214
 215        trace_btrfs_ordered_extent_add(inode, entry);
 216
 217        spin_lock_irq(&tree->lock);
 218        node = tree_insert(&tree->tree, file_offset,
 219                           &entry->rb_node);
 220        if (node)
 221                btrfs_panic(fs_info, -EEXIST,
 222                                "inconsistency in ordered tree at offset %llu",
 223                                file_offset);
 224        spin_unlock_irq(&tree->lock);
 225
 226        spin_lock(&root->ordered_extent_lock);
 227        list_add_tail(&entry->root_extent_list,
 228                      &root->ordered_extents);
 229        root->nr_ordered_extents++;
 230        if (root->nr_ordered_extents == 1) {
 231                spin_lock(&fs_info->ordered_root_lock);
 232                BUG_ON(!list_empty(&root->ordered_root));
 233                list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 234                spin_unlock(&fs_info->ordered_root_lock);
 235        }
 236        spin_unlock(&root->ordered_extent_lock);
 237
 238        /*
 239         * We don't need the count_max_extents here, we can assume that all of
 240         * that work has been done at higher layers, so this is truly the
 241         * smallest the extent is going to get.
 242         */
 243        spin_lock(&inode->lock);
 244        btrfs_mod_outstanding_extents(inode, 1);
 245        spin_unlock(&inode->lock);
 246
 247        return 0;
 248}
 249
 250int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
 251                             u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
 252                             int type)
 253{
 254        ASSERT(type == BTRFS_ORDERED_REGULAR ||
 255               type == BTRFS_ORDERED_NOCOW ||
 256               type == BTRFS_ORDERED_PREALLOC);
 257        return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
 258                                          num_bytes, disk_num_bytes, type, 0,
 259                                          BTRFS_COMPRESS_NONE);
 260}
 261
 262int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
 263                                 u64 disk_bytenr, u64 num_bytes,
 264                                 u64 disk_num_bytes, int type)
 265{
 266        ASSERT(type == BTRFS_ORDERED_REGULAR ||
 267               type == BTRFS_ORDERED_NOCOW ||
 268               type == BTRFS_ORDERED_PREALLOC);
 269        return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
 270                                          num_bytes, disk_num_bytes, type, 1,
 271                                          BTRFS_COMPRESS_NONE);
 272}
 273
 274int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
 275                                      u64 disk_bytenr, u64 num_bytes,
 276                                      u64 disk_num_bytes, int compress_type)
 277{
 278        ASSERT(compress_type != BTRFS_COMPRESS_NONE);
 279        return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
 280                                          num_bytes, disk_num_bytes,
 281                                          BTRFS_ORDERED_COMPRESSED, 0,
 282                                          compress_type);
 283}
 284
 285/*
 286 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 287 * when an ordered extent is finished.  If the list covers more than one
 288 * ordered extent, it is split across multiples.
 289 */
 290void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
 291                           struct btrfs_ordered_sum *sum)
 292{
 293        struct btrfs_ordered_inode_tree *tree;
 294
 295        tree = &BTRFS_I(entry->inode)->ordered_tree;
 296        spin_lock_irq(&tree->lock);
 297        list_add_tail(&sum->list, &entry->list);
 298        spin_unlock_irq(&tree->lock);
 299}
 300
 301/*
 302 * Mark all ordered extents io inside the specified range finished.
 303 *
 304 * @page:        The invovled page for the opeartion.
 305 *               For uncompressed buffered IO, the page status also needs to be
 306 *               updated to indicate whether the pending ordered io is finished.
 307 *               Can be NULL for direct IO and compressed write.
 308 *               For these cases, callers are ensured they won't execute the
 309 *               endio function twice.
 310 * @finish_func: The function to be executed when all the IO of an ordered
 311 *               extent are finished.
 312 *
 313 * This function is called for endio, thus the range must have ordered
 314 * extent(s) coveri it.
 315 */
 316void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
 317                                struct page *page, u64 file_offset,
 318                                u64 num_bytes, btrfs_func_t finish_func,
 319                                bool uptodate)
 320{
 321        struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 322        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 323        struct btrfs_workqueue *wq;
 324        struct rb_node *node;
 325        struct btrfs_ordered_extent *entry = NULL;
 326        unsigned long flags;
 327        u64 cur = file_offset;
 328
 329        if (btrfs_is_free_space_inode(inode))
 330                wq = fs_info->endio_freespace_worker;
 331        else
 332                wq = fs_info->endio_write_workers;
 333
 334        if (page)
 335                ASSERT(page->mapping && page_offset(page) <= file_offset &&
 336                       file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
 337
 338        spin_lock_irqsave(&tree->lock, flags);
 339        while (cur < file_offset + num_bytes) {
 340                u64 entry_end;
 341                u64 end;
 342                u32 len;
 343
 344                node = tree_search(tree, cur);
 345                /* No ordered extents at all */
 346                if (!node)
 347                        break;
 348
 349                entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 350                entry_end = entry->file_offset + entry->num_bytes;
 351                /*
 352                 * |<-- OE --->|  |
 353                 *                cur
 354                 * Go to next OE.
 355                 */
 356                if (cur >= entry_end) {
 357                        node = rb_next(node);
 358                        /* No more ordered extents, exit */
 359                        if (!node)
 360                                break;
 361                        entry = rb_entry(node, struct btrfs_ordered_extent,
 362                                         rb_node);
 363
 364                        /* Go to next ordered extent and continue */
 365                        cur = entry->file_offset;
 366                        continue;
 367                }
 368                /*
 369                 * |    |<--- OE --->|
 370                 * cur
 371                 * Go to the start of OE.
 372                 */
 373                if (cur < entry->file_offset) {
 374                        cur = entry->file_offset;
 375                        continue;
 376                }
 377
 378                /*
 379                 * Now we are definitely inside one ordered extent.
 380                 *
 381                 * |<--- OE --->|
 382                 *      |
 383                 *      cur
 384                 */
 385                end = min(entry->file_offset + entry->num_bytes,
 386                          file_offset + num_bytes) - 1;
 387                ASSERT(end + 1 - cur < U32_MAX);
 388                len = end + 1 - cur;
 389
 390                if (page) {
 391                        /*
 392                         * Ordered (Private2) bit indicates whether we still
 393                         * have pending io unfinished for the ordered extent.
 394                         *
 395                         * If there's no such bit, we need to skip to next range.
 396                         */
 397                        if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
 398                                cur += len;
 399                                continue;
 400                        }
 401                        btrfs_page_clear_ordered(fs_info, page, cur, len);
 402                }
 403
 404                /* Now we're fine to update the accounting */
 405                if (unlikely(len > entry->bytes_left)) {
 406                        WARN_ON(1);
 407                        btrfs_crit(fs_info,
 408"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
 409                                   inode->root->root_key.objectid,
 410                                   btrfs_ino(inode),
 411                                   entry->file_offset,
 412                                   entry->num_bytes,
 413                                   len, entry->bytes_left);
 414                        entry->bytes_left = 0;
 415                } else {
 416                        entry->bytes_left -= len;
 417                }
 418
 419                if (!uptodate)
 420                        set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 421
 422                /*
 423                 * All the IO of the ordered extent is finished, we need to queue
 424                 * the finish_func to be executed.
 425                 */
 426                if (entry->bytes_left == 0) {
 427                        set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 428                        cond_wake_up(&entry->wait);
 429                        refcount_inc(&entry->refs);
 430                        spin_unlock_irqrestore(&tree->lock, flags);
 431                        btrfs_init_work(&entry->work, finish_func, NULL, NULL);
 432                        btrfs_queue_work(wq, &entry->work);
 433                        spin_lock_irqsave(&tree->lock, flags);
 434                }
 435                cur += len;
 436        }
 437        spin_unlock_irqrestore(&tree->lock, flags);
 438}
 439
 440/*
 441 * Finish IO for one ordered extent across a given range.  The range can only
 442 * contain one ordered extent.
 443 *
 444 * @cached:      The cached ordered extent. If not NULL, we can skip the tree
 445 *               search and use the ordered extent directly.
 446 *               Will be also used to store the finished ordered extent.
 447 * @file_offset: File offset for the finished IO
 448 * @io_size:     Length of the finish IO range
 449 *
 450 * Return true if the ordered extent is finished in the range, and update
 451 * @cached.
 452 * Return false otherwise.
 453 *
 454 * NOTE: The range can NOT cross multiple ordered extents.
 455 * Thus caller should ensure the range doesn't cross ordered extents.
 456 */
 457bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
 458                                    struct btrfs_ordered_extent **cached,
 459                                    u64 file_offset, u64 io_size)
 460{
 461        struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 462        struct rb_node *node;
 463        struct btrfs_ordered_extent *entry = NULL;
 464        unsigned long flags;
 465        bool finished = false;
 466
 467        spin_lock_irqsave(&tree->lock, flags);
 468        if (cached && *cached) {
 469                entry = *cached;
 470                goto have_entry;
 471        }
 472
 473        node = tree_search(tree, file_offset);
 474        if (!node)
 475                goto out;
 476
 477        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 478have_entry:
 479        if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 480                goto out;
 481
 482        if (io_size > entry->bytes_left)
 483                btrfs_crit(inode->root->fs_info,
 484                           "bad ordered accounting left %llu size %llu",
 485                       entry->bytes_left, io_size);
 486
 487        entry->bytes_left -= io_size;
 488
 489        if (entry->bytes_left == 0) {
 490                /*
 491                 * Ensure only one caller can set the flag and finished_ret
 492                 * accordingly
 493                 */
 494                finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 495                /* test_and_set_bit implies a barrier */
 496                cond_wake_up_nomb(&entry->wait);
 497        }
 498out:
 499        if (finished && cached && entry) {
 500                *cached = entry;
 501                refcount_inc(&entry->refs);
 502        }
 503        spin_unlock_irqrestore(&tree->lock, flags);
 504        return finished;
 505}
 506
 507/*
 508 * used to drop a reference on an ordered extent.  This will free
 509 * the extent if the last reference is dropped
 510 */
 511void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 512{
 513        struct list_head *cur;
 514        struct btrfs_ordered_sum *sum;
 515
 516        trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
 517
 518        if (refcount_dec_and_test(&entry->refs)) {
 519                ASSERT(list_empty(&entry->root_extent_list));
 520                ASSERT(list_empty(&entry->log_list));
 521                ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 522                if (entry->inode)
 523                        btrfs_add_delayed_iput(entry->inode);
 524                while (!list_empty(&entry->list)) {
 525                        cur = entry->list.next;
 526                        sum = list_entry(cur, struct btrfs_ordered_sum, list);
 527                        list_del(&sum->list);
 528                        kvfree(sum);
 529                }
 530                kmem_cache_free(btrfs_ordered_extent_cache, entry);
 531        }
 532}
 533
 534/*
 535 * remove an ordered extent from the tree.  No references are dropped
 536 * and waiters are woken up.
 537 */
 538void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
 539                                 struct btrfs_ordered_extent *entry)
 540{
 541        struct btrfs_ordered_inode_tree *tree;
 542        struct btrfs_root *root = btrfs_inode->root;
 543        struct btrfs_fs_info *fs_info = root->fs_info;
 544        struct rb_node *node;
 545        bool pending;
 546
 547        /* This is paired with btrfs_add_ordered_extent. */
 548        spin_lock(&btrfs_inode->lock);
 549        btrfs_mod_outstanding_extents(btrfs_inode, -1);
 550        spin_unlock(&btrfs_inode->lock);
 551        if (root != fs_info->tree_root)
 552                btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
 553                                                false);
 554
 555        percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
 556                                 fs_info->delalloc_batch);
 557
 558        tree = &btrfs_inode->ordered_tree;
 559        spin_lock_irq(&tree->lock);
 560        node = &entry->rb_node;
 561        rb_erase(node, &tree->tree);
 562        RB_CLEAR_NODE(node);
 563        if (tree->last == node)
 564                tree->last = NULL;
 565        set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 566        pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
 567        spin_unlock_irq(&tree->lock);
 568
 569        /*
 570         * The current running transaction is waiting on us, we need to let it
 571         * know that we're complete and wake it up.
 572         */
 573        if (pending) {
 574                struct btrfs_transaction *trans;
 575
 576                /*
 577                 * The checks for trans are just a formality, it should be set,
 578                 * but if it isn't we don't want to deref/assert under the spin
 579                 * lock, so be nice and check if trans is set, but ASSERT() so
 580                 * if it isn't set a developer will notice.
 581                 */
 582                spin_lock(&fs_info->trans_lock);
 583                trans = fs_info->running_transaction;
 584                if (trans)
 585                        refcount_inc(&trans->use_count);
 586                spin_unlock(&fs_info->trans_lock);
 587
 588                ASSERT(trans);
 589                if (trans) {
 590                        if (atomic_dec_and_test(&trans->pending_ordered))
 591                                wake_up(&trans->pending_wait);
 592                        btrfs_put_transaction(trans);
 593                }
 594        }
 595
 596        spin_lock(&root->ordered_extent_lock);
 597        list_del_init(&entry->root_extent_list);
 598        root->nr_ordered_extents--;
 599
 600        trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
 601
 602        if (!root->nr_ordered_extents) {
 603                spin_lock(&fs_info->ordered_root_lock);
 604                BUG_ON(list_empty(&root->ordered_root));
 605                list_del_init(&root->ordered_root);
 606                spin_unlock(&fs_info->ordered_root_lock);
 607        }
 608        spin_unlock(&root->ordered_extent_lock);
 609        wake_up(&entry->wait);
 610}
 611
 612static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 613{
 614        struct btrfs_ordered_extent *ordered;
 615
 616        ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 617        btrfs_start_ordered_extent(ordered, 1);
 618        complete(&ordered->completion);
 619}
 620
 621/*
 622 * wait for all the ordered extents in a root.  This is done when balancing
 623 * space between drives.
 624 */
 625u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 626                               const u64 range_start, const u64 range_len)
 627{
 628        struct btrfs_fs_info *fs_info = root->fs_info;
 629        LIST_HEAD(splice);
 630        LIST_HEAD(skipped);
 631        LIST_HEAD(works);
 632        struct btrfs_ordered_extent *ordered, *next;
 633        u64 count = 0;
 634        const u64 range_end = range_start + range_len;
 635
 636        mutex_lock(&root->ordered_extent_mutex);
 637        spin_lock(&root->ordered_extent_lock);
 638        list_splice_init(&root->ordered_extents, &splice);
 639        while (!list_empty(&splice) && nr) {
 640                ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 641                                           root_extent_list);
 642
 643                if (range_end <= ordered->disk_bytenr ||
 644                    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
 645                        list_move_tail(&ordered->root_extent_list, &skipped);
 646                        cond_resched_lock(&root->ordered_extent_lock);
 647                        continue;
 648                }
 649
 650                list_move_tail(&ordered->root_extent_list,
 651                               &root->ordered_extents);
 652                refcount_inc(&ordered->refs);
 653                spin_unlock(&root->ordered_extent_lock);
 654
 655                btrfs_init_work(&ordered->flush_work,
 656                                btrfs_run_ordered_extent_work, NULL, NULL);
 657                list_add_tail(&ordered->work_list, &works);
 658                btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 659
 660                cond_resched();
 661                spin_lock(&root->ordered_extent_lock);
 662                if (nr != U64_MAX)
 663                        nr--;
 664                count++;
 665        }
 666        list_splice_tail(&skipped, &root->ordered_extents);
 667        list_splice_tail(&splice, &root->ordered_extents);
 668        spin_unlock(&root->ordered_extent_lock);
 669
 670        list_for_each_entry_safe(ordered, next, &works, work_list) {
 671                list_del_init(&ordered->work_list);
 672                wait_for_completion(&ordered->completion);
 673                btrfs_put_ordered_extent(ordered);
 674                cond_resched();
 675        }
 676        mutex_unlock(&root->ordered_extent_mutex);
 677
 678        return count;
 679}
 680
 681void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 682                             const u64 range_start, const u64 range_len)
 683{
 684        struct btrfs_root *root;
 685        struct list_head splice;
 686        u64 done;
 687
 688        INIT_LIST_HEAD(&splice);
 689
 690        mutex_lock(&fs_info->ordered_operations_mutex);
 691        spin_lock(&fs_info->ordered_root_lock);
 692        list_splice_init(&fs_info->ordered_roots, &splice);
 693        while (!list_empty(&splice) && nr) {
 694                root = list_first_entry(&splice, struct btrfs_root,
 695                                        ordered_root);
 696                root = btrfs_grab_root(root);
 697                BUG_ON(!root);
 698                list_move_tail(&root->ordered_root,
 699                               &fs_info->ordered_roots);
 700                spin_unlock(&fs_info->ordered_root_lock);
 701
 702                done = btrfs_wait_ordered_extents(root, nr,
 703                                                  range_start, range_len);
 704                btrfs_put_root(root);
 705
 706                spin_lock(&fs_info->ordered_root_lock);
 707                if (nr != U64_MAX) {
 708                        nr -= done;
 709                }
 710        }
 711        list_splice_tail(&splice, &fs_info->ordered_roots);
 712        spin_unlock(&fs_info->ordered_root_lock);
 713        mutex_unlock(&fs_info->ordered_operations_mutex);
 714}
 715
 716/*
 717 * Used to start IO or wait for a given ordered extent to finish.
 718 *
 719 * If wait is one, this effectively waits on page writeback for all the pages
 720 * in the extent, and it waits on the io completion code to insert
 721 * metadata into the btree corresponding to the extent
 722 */
 723void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
 724{
 725        u64 start = entry->file_offset;
 726        u64 end = start + entry->num_bytes - 1;
 727        struct btrfs_inode *inode = BTRFS_I(entry->inode);
 728
 729        trace_btrfs_ordered_extent_start(inode, entry);
 730
 731        /*
 732         * pages in the range can be dirty, clean or writeback.  We
 733         * start IO on any dirty ones so the wait doesn't stall waiting
 734         * for the flusher thread to find them
 735         */
 736        if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 737                filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
 738        if (wait) {
 739                wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 740                                                 &entry->flags));
 741        }
 742}
 743
 744/*
 745 * Used to wait on ordered extents across a large range of bytes.
 746 */
 747int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 748{
 749        int ret = 0;
 750        int ret_wb = 0;
 751        u64 end;
 752        u64 orig_end;
 753        struct btrfs_ordered_extent *ordered;
 754
 755        if (start + len < start) {
 756                orig_end = INT_LIMIT(loff_t);
 757        } else {
 758                orig_end = start + len - 1;
 759                if (orig_end > INT_LIMIT(loff_t))
 760                        orig_end = INT_LIMIT(loff_t);
 761        }
 762
 763        /* start IO across the range first to instantiate any delalloc
 764         * extents
 765         */
 766        ret = btrfs_fdatawrite_range(inode, start, orig_end);
 767        if (ret)
 768                return ret;
 769
 770        /*
 771         * If we have a writeback error don't return immediately. Wait first
 772         * for any ordered extents that haven't completed yet. This is to make
 773         * sure no one can dirty the same page ranges and call writepages()
 774         * before the ordered extents complete - to avoid failures (-EEXIST)
 775         * when adding the new ordered extents to the ordered tree.
 776         */
 777        ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 778
 779        end = orig_end;
 780        while (1) {
 781                ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
 782                if (!ordered)
 783                        break;
 784                if (ordered->file_offset > orig_end) {
 785                        btrfs_put_ordered_extent(ordered);
 786                        break;
 787                }
 788                if (ordered->file_offset + ordered->num_bytes <= start) {
 789                        btrfs_put_ordered_extent(ordered);
 790                        break;
 791                }
 792                btrfs_start_ordered_extent(ordered, 1);
 793                end = ordered->file_offset;
 794                /*
 795                 * If the ordered extent had an error save the error but don't
 796                 * exit without waiting first for all other ordered extents in
 797                 * the range to complete.
 798                 */
 799                if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 800                        ret = -EIO;
 801                btrfs_put_ordered_extent(ordered);
 802                if (end == 0 || end == start)
 803                        break;
 804                end--;
 805        }
 806        return ret_wb ? ret_wb : ret;
 807}
 808
 809/*
 810 * find an ordered extent corresponding to file_offset.  return NULL if
 811 * nothing is found, otherwise take a reference on the extent and return it
 812 */
 813struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
 814                                                         u64 file_offset)
 815{
 816        struct btrfs_ordered_inode_tree *tree;
 817        struct rb_node *node;
 818        struct btrfs_ordered_extent *entry = NULL;
 819        unsigned long flags;
 820
 821        tree = &inode->ordered_tree;
 822        spin_lock_irqsave(&tree->lock, flags);
 823        node = tree_search(tree, file_offset);
 824        if (!node)
 825                goto out;
 826
 827        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 828        if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 829                entry = NULL;
 830        if (entry)
 831                refcount_inc(&entry->refs);
 832out:
 833        spin_unlock_irqrestore(&tree->lock, flags);
 834        return entry;
 835}
 836
 837/* Since the DIO code tries to lock a wide area we need to look for any ordered
 838 * extents that exist in the range, rather than just the start of the range.
 839 */
 840struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 841                struct btrfs_inode *inode, u64 file_offset, u64 len)
 842{
 843        struct btrfs_ordered_inode_tree *tree;
 844        struct rb_node *node;
 845        struct btrfs_ordered_extent *entry = NULL;
 846
 847        tree = &inode->ordered_tree;
 848        spin_lock_irq(&tree->lock);
 849        node = tree_search(tree, file_offset);
 850        if (!node) {
 851                node = tree_search(tree, file_offset + len);
 852                if (!node)
 853                        goto out;
 854        }
 855
 856        while (1) {
 857                entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 858                if (range_overlaps(entry, file_offset, len))
 859                        break;
 860
 861                if (entry->file_offset >= file_offset + len) {
 862                        entry = NULL;
 863                        break;
 864                }
 865                entry = NULL;
 866                node = rb_next(node);
 867                if (!node)
 868                        break;
 869        }
 870out:
 871        if (entry)
 872                refcount_inc(&entry->refs);
 873        spin_unlock_irq(&tree->lock);
 874        return entry;
 875}
 876
 877/*
 878 * Adds all ordered extents to the given list. The list ends up sorted by the
 879 * file_offset of the ordered extents.
 880 */
 881void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
 882                                           struct list_head *list)
 883{
 884        struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 885        struct rb_node *n;
 886
 887        ASSERT(inode_is_locked(&inode->vfs_inode));
 888
 889        spin_lock_irq(&tree->lock);
 890        for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
 891                struct btrfs_ordered_extent *ordered;
 892
 893                ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 894
 895                if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
 896                        continue;
 897
 898                ASSERT(list_empty(&ordered->log_list));
 899                list_add_tail(&ordered->log_list, list);
 900                refcount_inc(&ordered->refs);
 901        }
 902        spin_unlock_irq(&tree->lock);
 903}
 904
 905/*
 906 * lookup and return any extent before 'file_offset'.  NULL is returned
 907 * if none is found
 908 */
 909struct btrfs_ordered_extent *
 910btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
 911{
 912        struct btrfs_ordered_inode_tree *tree;
 913        struct rb_node *node;
 914        struct btrfs_ordered_extent *entry = NULL;
 915
 916        tree = &inode->ordered_tree;
 917        spin_lock_irq(&tree->lock);
 918        node = tree_search(tree, file_offset);
 919        if (!node)
 920                goto out;
 921
 922        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 923        refcount_inc(&entry->refs);
 924out:
 925        spin_unlock_irq(&tree->lock);
 926        return entry;
 927}
 928
 929/*
 930 * Lookup the first ordered extent that overlaps the range
 931 * [@file_offset, @file_offset + @len).
 932 *
 933 * The difference between this and btrfs_lookup_first_ordered_extent() is
 934 * that this one won't return any ordered extent that does not overlap the range.
 935 * And the difference against btrfs_lookup_ordered_extent() is, this function
 936 * ensures the first ordered extent gets returned.
 937 */
 938struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
 939                        struct btrfs_inode *inode, u64 file_offset, u64 len)
 940{
 941        struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 942        struct rb_node *node;
 943        struct rb_node *cur;
 944        struct rb_node *prev;
 945        struct rb_node *next;
 946        struct btrfs_ordered_extent *entry = NULL;
 947
 948        spin_lock_irq(&tree->lock);
 949        node = tree->tree.rb_node;
 950        /*
 951         * Here we don't want to use tree_search() which will use tree->last
 952         * and screw up the search order.
 953         * And __tree_search() can't return the adjacent ordered extents
 954         * either, thus here we do our own search.
 955         */
 956        while (node) {
 957                entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 958
 959                if (file_offset < entry->file_offset) {
 960                        node = node->rb_left;
 961                } else if (file_offset >= entry_end(entry)) {
 962                        node = node->rb_right;
 963                } else {
 964                        /*
 965                         * Direct hit, got an ordered extent that starts at
 966                         * @file_offset
 967                         */
 968                        goto out;
 969                }
 970        }
 971        if (!entry) {
 972                /* Empty tree */
 973                goto out;
 974        }
 975
 976        cur = &entry->rb_node;
 977        /* We got an entry around @file_offset, check adjacent entries */
 978        if (entry->file_offset < file_offset) {
 979                prev = cur;
 980                next = rb_next(cur);
 981        } else {
 982                prev = rb_prev(cur);
 983                next = cur;
 984        }
 985        if (prev) {
 986                entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
 987                if (range_overlaps(entry, file_offset, len))
 988                        goto out;
 989        }
 990        if (next) {
 991                entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
 992                if (range_overlaps(entry, file_offset, len))
 993                        goto out;
 994        }
 995        /* No ordered extent in the range */
 996        entry = NULL;
 997out:
 998        if (entry)
 999                refcount_inc(&entry->refs);
1000        spin_unlock_irq(&tree->lock);
1001        return entry;
1002}
1003
1004/*
1005 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
1006 * ordered extents in it are run to completion.
1007 *
1008 * @inode:        Inode whose ordered tree is to be searched
1009 * @start:        Beginning of range to flush
1010 * @end:          Last byte of range to lock
1011 * @cached_state: If passed, will return the extent state responsible for the
1012 * locked range. It's the caller's responsibility to free the cached state.
1013 *
1014 * This function always returns with the given range locked, ensuring after it's
1015 * called no order extent can be pending.
1016 */
1017void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1018                                        u64 end,
1019                                        struct extent_state **cached_state)
1020{
1021        struct btrfs_ordered_extent *ordered;
1022        struct extent_state *cache = NULL;
1023        struct extent_state **cachedp = &cache;
1024
1025        if (cached_state)
1026                cachedp = cached_state;
1027
1028        while (1) {
1029                lock_extent_bits(&inode->io_tree, start, end, cachedp);
1030                ordered = btrfs_lookup_ordered_range(inode, start,
1031                                                     end - start + 1);
1032                if (!ordered) {
1033                        /*
1034                         * If no external cached_state has been passed then
1035                         * decrement the extra ref taken for cachedp since we
1036                         * aren't exposing it outside of this function
1037                         */
1038                        if (!cached_state)
1039                                refcount_dec(&cache->refs);
1040                        break;
1041                }
1042                unlock_extent_cached(&inode->io_tree, start, end, cachedp);
1043                btrfs_start_ordered_extent(ordered, 1);
1044                btrfs_put_ordered_extent(ordered);
1045        }
1046}
1047
1048static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1049                                u64 len)
1050{
1051        struct inode *inode = ordered->inode;
1052        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1053        u64 file_offset = ordered->file_offset + pos;
1054        u64 disk_bytenr = ordered->disk_bytenr + pos;
1055        u64 num_bytes = len;
1056        u64 disk_num_bytes = len;
1057        int type;
1058        unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT);
1059        int compress_type = ordered->compress_type;
1060        unsigned long weight;
1061        int ret;
1062
1063        weight = hweight_long(flags_masked);
1064        WARN_ON_ONCE(weight > 1);
1065        if (!weight)
1066                type = 0;
1067        else
1068                type = __ffs(flags_masked);
1069
1070        /*
1071         * The splitting extent is already counted and will be added again
1072         * in btrfs_add_ordered_extent_*(). Subtract num_bytes to avoid
1073         * double counting.
1074         */
1075        percpu_counter_add_batch(&fs_info->ordered_bytes, -num_bytes,
1076                                 fs_info->delalloc_batch);
1077        if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) {
1078                WARN_ON_ONCE(1);
1079                ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode),
1080                                file_offset, disk_bytenr, num_bytes,
1081                                disk_num_bytes, compress_type);
1082        } else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
1083                ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset,
1084                                disk_bytenr, num_bytes, disk_num_bytes, type);
1085        } else {
1086                ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset,
1087                                disk_bytenr, num_bytes, disk_num_bytes, type);
1088        }
1089
1090        return ret;
1091}
1092
1093int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1094                                u64 post)
1095{
1096        struct inode *inode = ordered->inode;
1097        struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1098        struct rb_node *node;
1099        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1100        int ret = 0;
1101
1102        spin_lock_irq(&tree->lock);
1103        /* Remove from tree once */
1104        node = &ordered->rb_node;
1105        rb_erase(node, &tree->tree);
1106        RB_CLEAR_NODE(node);
1107        if (tree->last == node)
1108                tree->last = NULL;
1109
1110        ordered->file_offset += pre;
1111        ordered->disk_bytenr += pre;
1112        ordered->num_bytes -= (pre + post);
1113        ordered->disk_num_bytes -= (pre + post);
1114        ordered->bytes_left -= (pre + post);
1115
1116        /* Re-insert the node */
1117        node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1118        if (node)
1119                btrfs_panic(fs_info, -EEXIST,
1120                        "zoned: inconsistency in ordered tree at offset %llu",
1121                            ordered->file_offset);
1122
1123        spin_unlock_irq(&tree->lock);
1124
1125        if (pre)
1126                ret = clone_ordered_extent(ordered, 0, pre);
1127        if (ret == 0 && post)
1128                ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1129                                           post);
1130
1131        return ret;
1132}
1133
1134int __init ordered_data_init(void)
1135{
1136        btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1137                                     sizeof(struct btrfs_ordered_extent), 0,
1138                                     SLAB_MEM_SPREAD,
1139                                     NULL);
1140        if (!btrfs_ordered_extent_cache)
1141                return -ENOMEM;
1142
1143        return 0;
1144}
1145
1146void __cold ordered_data_exit(void)
1147{
1148        kmem_cache_destroy(btrfs_ordered_extent_cache);
1149}
1150