linux/fs/btrfs/send.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Alexander Block.  All rights reserved.
   4 */
   5
   6#include <linux/bsearch.h>
   7#include <linux/fs.h>
   8#include <linux/file.h>
   9#include <linux/sort.h>
  10#include <linux/mount.h>
  11#include <linux/xattr.h>
  12#include <linux/posix_acl_xattr.h>
  13#include <linux/radix-tree.h>
  14#include <linux/vmalloc.h>
  15#include <linux/string.h>
  16#include <linux/compat.h>
  17#include <linux/crc32c.h>
  18
  19#include "send.h"
  20#include "backref.h"
  21#include "locking.h"
  22#include "disk-io.h"
  23#include "btrfs_inode.h"
  24#include "transaction.h"
  25#include "compression.h"
  26#include "xattr.h"
  27
  28/*
  29 * Maximum number of references an extent can have in order for us to attempt to
  30 * issue clone operations instead of write operations. This currently exists to
  31 * avoid hitting limitations of the backreference walking code (taking a lot of
  32 * time and using too much memory for extents with large number of references).
  33 */
  34#define SEND_MAX_EXTENT_REFS    64
  35
  36/*
  37 * A fs_path is a helper to dynamically build path names with unknown size.
  38 * It reallocates the internal buffer on demand.
  39 * It allows fast adding of path elements on the right side (normal path) and
  40 * fast adding to the left side (reversed path). A reversed path can also be
  41 * unreversed if needed.
  42 */
  43struct fs_path {
  44        union {
  45                struct {
  46                        char *start;
  47                        char *end;
  48
  49                        char *buf;
  50                        unsigned short buf_len:15;
  51                        unsigned short reversed:1;
  52                        char inline_buf[];
  53                };
  54                /*
  55                 * Average path length does not exceed 200 bytes, we'll have
  56                 * better packing in the slab and higher chance to satisfy
  57                 * a allocation later during send.
  58                 */
  59                char pad[256];
  60        };
  61};
  62#define FS_PATH_INLINE_SIZE \
  63        (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
  64
  65
  66/* reused for each extent */
  67struct clone_root {
  68        struct btrfs_root *root;
  69        u64 ino;
  70        u64 offset;
  71
  72        u64 found_refs;
  73};
  74
  75#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
  76#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
  77
  78struct send_ctx {
  79        struct file *send_filp;
  80        loff_t send_off;
  81        char *send_buf;
  82        u32 send_size;
  83        u32 send_max_size;
  84        u64 total_send_size;
  85        u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
  86        u64 flags;      /* 'flags' member of btrfs_ioctl_send_args is u64 */
  87
  88        struct btrfs_root *send_root;
  89        struct btrfs_root *parent_root;
  90        struct clone_root *clone_roots;
  91        int clone_roots_cnt;
  92
  93        /* current state of the compare_tree call */
  94        struct btrfs_path *left_path;
  95        struct btrfs_path *right_path;
  96        struct btrfs_key *cmp_key;
  97
  98        /*
  99         * infos of the currently processed inode. In case of deleted inodes,
 100         * these are the values from the deleted inode.
 101         */
 102        u64 cur_ino;
 103        u64 cur_inode_gen;
 104        int cur_inode_new;
 105        int cur_inode_new_gen;
 106        int cur_inode_deleted;
 107        u64 cur_inode_size;
 108        u64 cur_inode_mode;
 109        u64 cur_inode_rdev;
 110        u64 cur_inode_last_extent;
 111        u64 cur_inode_next_write_offset;
 112        bool ignore_cur_inode;
 113
 114        u64 send_progress;
 115
 116        struct list_head new_refs;
 117        struct list_head deleted_refs;
 118
 119        struct radix_tree_root name_cache;
 120        struct list_head name_cache_list;
 121        int name_cache_size;
 122
 123        struct file_ra_state ra;
 124
 125        /*
 126         * We process inodes by their increasing order, so if before an
 127         * incremental send we reverse the parent/child relationship of
 128         * directories such that a directory with a lower inode number was
 129         * the parent of a directory with a higher inode number, and the one
 130         * becoming the new parent got renamed too, we can't rename/move the
 131         * directory with lower inode number when we finish processing it - we
 132         * must process the directory with higher inode number first, then
 133         * rename/move it and then rename/move the directory with lower inode
 134         * number. Example follows.
 135         *
 136         * Tree state when the first send was performed:
 137         *
 138         * .
 139         * |-- a                   (ino 257)
 140         *     |-- b               (ino 258)
 141         *         |
 142         *         |
 143         *         |-- c           (ino 259)
 144         *         |   |-- d       (ino 260)
 145         *         |
 146         *         |-- c2          (ino 261)
 147         *
 148         * Tree state when the second (incremental) send is performed:
 149         *
 150         * .
 151         * |-- a                   (ino 257)
 152         *     |-- b               (ino 258)
 153         *         |-- c2          (ino 261)
 154         *             |-- d2      (ino 260)
 155         *                 |-- cc  (ino 259)
 156         *
 157         * The sequence of steps that lead to the second state was:
 158         *
 159         * mv /a/b/c/d /a/b/c2/d2
 160         * mv /a/b/c /a/b/c2/d2/cc
 161         *
 162         * "c" has lower inode number, but we can't move it (2nd mv operation)
 163         * before we move "d", which has higher inode number.
 164         *
 165         * So we just memorize which move/rename operations must be performed
 166         * later when their respective parent is processed and moved/renamed.
 167         */
 168
 169        /* Indexed by parent directory inode number. */
 170        struct rb_root pending_dir_moves;
 171
 172        /*
 173         * Reverse index, indexed by the inode number of a directory that
 174         * is waiting for the move/rename of its immediate parent before its
 175         * own move/rename can be performed.
 176         */
 177        struct rb_root waiting_dir_moves;
 178
 179        /*
 180         * A directory that is going to be rm'ed might have a child directory
 181         * which is in the pending directory moves index above. In this case,
 182         * the directory can only be removed after the move/rename of its child
 183         * is performed. Example:
 184         *
 185         * Parent snapshot:
 186         *
 187         * .                        (ino 256)
 188         * |-- a/                   (ino 257)
 189         *     |-- b/               (ino 258)
 190         *         |-- c/           (ino 259)
 191         *         |   |-- x/       (ino 260)
 192         *         |
 193         *         |-- y/           (ino 261)
 194         *
 195         * Send snapshot:
 196         *
 197         * .                        (ino 256)
 198         * |-- a/                   (ino 257)
 199         *     |-- b/               (ino 258)
 200         *         |-- YY/          (ino 261)
 201         *              |-- x/      (ino 260)
 202         *
 203         * Sequence of steps that lead to the send snapshot:
 204         * rm -f /a/b/c/foo.txt
 205         * mv /a/b/y /a/b/YY
 206         * mv /a/b/c/x /a/b/YY
 207         * rmdir /a/b/c
 208         *
 209         * When the child is processed, its move/rename is delayed until its
 210         * parent is processed (as explained above), but all other operations
 211         * like update utimes, chown, chgrp, etc, are performed and the paths
 212         * that it uses for those operations must use the orphanized name of
 213         * its parent (the directory we're going to rm later), so we need to
 214         * memorize that name.
 215         *
 216         * Indexed by the inode number of the directory to be deleted.
 217         */
 218        struct rb_root orphan_dirs;
 219};
 220
 221struct pending_dir_move {
 222        struct rb_node node;
 223        struct list_head list;
 224        u64 parent_ino;
 225        u64 ino;
 226        u64 gen;
 227        struct list_head update_refs;
 228};
 229
 230struct waiting_dir_move {
 231        struct rb_node node;
 232        u64 ino;
 233        /*
 234         * There might be some directory that could not be removed because it
 235         * was waiting for this directory inode to be moved first. Therefore
 236         * after this directory is moved, we can try to rmdir the ino rmdir_ino.
 237         */
 238        u64 rmdir_ino;
 239        u64 rmdir_gen;
 240        bool orphanized;
 241};
 242
 243struct orphan_dir_info {
 244        struct rb_node node;
 245        u64 ino;
 246        u64 gen;
 247        u64 last_dir_index_offset;
 248};
 249
 250struct name_cache_entry {
 251        struct list_head list;
 252        /*
 253         * radix_tree has only 32bit entries but we need to handle 64bit inums.
 254         * We use the lower 32bit of the 64bit inum to store it in the tree. If
 255         * more then one inum would fall into the same entry, we use radix_list
 256         * to store the additional entries. radix_list is also used to store
 257         * entries where two entries have the same inum but different
 258         * generations.
 259         */
 260        struct list_head radix_list;
 261        u64 ino;
 262        u64 gen;
 263        u64 parent_ino;
 264        u64 parent_gen;
 265        int ret;
 266        int need_later_update;
 267        int name_len;
 268        char name[];
 269};
 270
 271#define ADVANCE                                                 1
 272#define ADVANCE_ONLY_NEXT                                       -1
 273
 274enum btrfs_compare_tree_result {
 275        BTRFS_COMPARE_TREE_NEW,
 276        BTRFS_COMPARE_TREE_DELETED,
 277        BTRFS_COMPARE_TREE_CHANGED,
 278        BTRFS_COMPARE_TREE_SAME,
 279};
 280
 281__cold
 282static void inconsistent_snapshot_error(struct send_ctx *sctx,
 283                                        enum btrfs_compare_tree_result result,
 284                                        const char *what)
 285{
 286        const char *result_string;
 287
 288        switch (result) {
 289        case BTRFS_COMPARE_TREE_NEW:
 290                result_string = "new";
 291                break;
 292        case BTRFS_COMPARE_TREE_DELETED:
 293                result_string = "deleted";
 294                break;
 295        case BTRFS_COMPARE_TREE_CHANGED:
 296                result_string = "updated";
 297                break;
 298        case BTRFS_COMPARE_TREE_SAME:
 299                ASSERT(0);
 300                result_string = "unchanged";
 301                break;
 302        default:
 303                ASSERT(0);
 304                result_string = "unexpected";
 305        }
 306
 307        btrfs_err(sctx->send_root->fs_info,
 308                  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
 309                  result_string, what, sctx->cmp_key->objectid,
 310                  sctx->send_root->root_key.objectid,
 311                  (sctx->parent_root ?
 312                   sctx->parent_root->root_key.objectid : 0));
 313}
 314
 315static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
 316
 317static struct waiting_dir_move *
 318get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
 319
 320static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
 321
 322static int need_send_hole(struct send_ctx *sctx)
 323{
 324        return (sctx->parent_root && !sctx->cur_inode_new &&
 325                !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
 326                S_ISREG(sctx->cur_inode_mode));
 327}
 328
 329static void fs_path_reset(struct fs_path *p)
 330{
 331        if (p->reversed) {
 332                p->start = p->buf + p->buf_len - 1;
 333                p->end = p->start;
 334                *p->start = 0;
 335        } else {
 336                p->start = p->buf;
 337                p->end = p->start;
 338                *p->start = 0;
 339        }
 340}
 341
 342static struct fs_path *fs_path_alloc(void)
 343{
 344        struct fs_path *p;
 345
 346        p = kmalloc(sizeof(*p), GFP_KERNEL);
 347        if (!p)
 348                return NULL;
 349        p->reversed = 0;
 350        p->buf = p->inline_buf;
 351        p->buf_len = FS_PATH_INLINE_SIZE;
 352        fs_path_reset(p);
 353        return p;
 354}
 355
 356static struct fs_path *fs_path_alloc_reversed(void)
 357{
 358        struct fs_path *p;
 359
 360        p = fs_path_alloc();
 361        if (!p)
 362                return NULL;
 363        p->reversed = 1;
 364        fs_path_reset(p);
 365        return p;
 366}
 367
 368static void fs_path_free(struct fs_path *p)
 369{
 370        if (!p)
 371                return;
 372        if (p->buf != p->inline_buf)
 373                kfree(p->buf);
 374        kfree(p);
 375}
 376
 377static int fs_path_len(struct fs_path *p)
 378{
 379        return p->end - p->start;
 380}
 381
 382static int fs_path_ensure_buf(struct fs_path *p, int len)
 383{
 384        char *tmp_buf;
 385        int path_len;
 386        int old_buf_len;
 387
 388        len++;
 389
 390        if (p->buf_len >= len)
 391                return 0;
 392
 393        if (len > PATH_MAX) {
 394                WARN_ON(1);
 395                return -ENOMEM;
 396        }
 397
 398        path_len = p->end - p->start;
 399        old_buf_len = p->buf_len;
 400
 401        /*
 402         * First time the inline_buf does not suffice
 403         */
 404        if (p->buf == p->inline_buf) {
 405                tmp_buf = kmalloc(len, GFP_KERNEL);
 406                if (tmp_buf)
 407                        memcpy(tmp_buf, p->buf, old_buf_len);
 408        } else {
 409                tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
 410        }
 411        if (!tmp_buf)
 412                return -ENOMEM;
 413        p->buf = tmp_buf;
 414        /*
 415         * The real size of the buffer is bigger, this will let the fast path
 416         * happen most of the time
 417         */
 418        p->buf_len = ksize(p->buf);
 419
 420        if (p->reversed) {
 421                tmp_buf = p->buf + old_buf_len - path_len - 1;
 422                p->end = p->buf + p->buf_len - 1;
 423                p->start = p->end - path_len;
 424                memmove(p->start, tmp_buf, path_len + 1);
 425        } else {
 426                p->start = p->buf;
 427                p->end = p->start + path_len;
 428        }
 429        return 0;
 430}
 431
 432static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
 433                                   char **prepared)
 434{
 435        int ret;
 436        int new_len;
 437
 438        new_len = p->end - p->start + name_len;
 439        if (p->start != p->end)
 440                new_len++;
 441        ret = fs_path_ensure_buf(p, new_len);
 442        if (ret < 0)
 443                goto out;
 444
 445        if (p->reversed) {
 446                if (p->start != p->end)
 447                        *--p->start = '/';
 448                p->start -= name_len;
 449                *prepared = p->start;
 450        } else {
 451                if (p->start != p->end)
 452                        *p->end++ = '/';
 453                *prepared = p->end;
 454                p->end += name_len;
 455                *p->end = 0;
 456        }
 457
 458out:
 459        return ret;
 460}
 461
 462static int fs_path_add(struct fs_path *p, const char *name, int name_len)
 463{
 464        int ret;
 465        char *prepared;
 466
 467        ret = fs_path_prepare_for_add(p, name_len, &prepared);
 468        if (ret < 0)
 469                goto out;
 470        memcpy(prepared, name, name_len);
 471
 472out:
 473        return ret;
 474}
 475
 476static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
 477{
 478        int ret;
 479        char *prepared;
 480
 481        ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
 482        if (ret < 0)
 483                goto out;
 484        memcpy(prepared, p2->start, p2->end - p2->start);
 485
 486out:
 487        return ret;
 488}
 489
 490static int fs_path_add_from_extent_buffer(struct fs_path *p,
 491                                          struct extent_buffer *eb,
 492                                          unsigned long off, int len)
 493{
 494        int ret;
 495        char *prepared;
 496
 497        ret = fs_path_prepare_for_add(p, len, &prepared);
 498        if (ret < 0)
 499                goto out;
 500
 501        read_extent_buffer(eb, prepared, off, len);
 502
 503out:
 504        return ret;
 505}
 506
 507static int fs_path_copy(struct fs_path *p, struct fs_path *from)
 508{
 509        int ret;
 510
 511        p->reversed = from->reversed;
 512        fs_path_reset(p);
 513
 514        ret = fs_path_add_path(p, from);
 515
 516        return ret;
 517}
 518
 519
 520static void fs_path_unreverse(struct fs_path *p)
 521{
 522        char *tmp;
 523        int len;
 524
 525        if (!p->reversed)
 526                return;
 527
 528        tmp = p->start;
 529        len = p->end - p->start;
 530        p->start = p->buf;
 531        p->end = p->start + len;
 532        memmove(p->start, tmp, len + 1);
 533        p->reversed = 0;
 534}
 535
 536static struct btrfs_path *alloc_path_for_send(void)
 537{
 538        struct btrfs_path *path;
 539
 540        path = btrfs_alloc_path();
 541        if (!path)
 542                return NULL;
 543        path->search_commit_root = 1;
 544        path->skip_locking = 1;
 545        path->need_commit_sem = 1;
 546        return path;
 547}
 548
 549static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
 550{
 551        int ret;
 552        u32 pos = 0;
 553
 554        while (pos < len) {
 555                ret = kernel_write(filp, buf + pos, len - pos, off);
 556                /* TODO handle that correctly */
 557                /*if (ret == -ERESTARTSYS) {
 558                        continue;
 559                }*/
 560                if (ret < 0)
 561                        return ret;
 562                if (ret == 0) {
 563                        return -EIO;
 564                }
 565                pos += ret;
 566        }
 567
 568        return 0;
 569}
 570
 571static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
 572{
 573        struct btrfs_tlv_header *hdr;
 574        int total_len = sizeof(*hdr) + len;
 575        int left = sctx->send_max_size - sctx->send_size;
 576
 577        if (unlikely(left < total_len))
 578                return -EOVERFLOW;
 579
 580        hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
 581        put_unaligned_le16(attr, &hdr->tlv_type);
 582        put_unaligned_le16(len, &hdr->tlv_len);
 583        memcpy(hdr + 1, data, len);
 584        sctx->send_size += total_len;
 585
 586        return 0;
 587}
 588
 589#define TLV_PUT_DEFINE_INT(bits) \
 590        static int tlv_put_u##bits(struct send_ctx *sctx,               \
 591                        u##bits attr, u##bits value)                    \
 592        {                                                               \
 593                __le##bits __tmp = cpu_to_le##bits(value);              \
 594                return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));      \
 595        }
 596
 597TLV_PUT_DEFINE_INT(64)
 598
 599static int tlv_put_string(struct send_ctx *sctx, u16 attr,
 600                          const char *str, int len)
 601{
 602        if (len == -1)
 603                len = strlen(str);
 604        return tlv_put(sctx, attr, str, len);
 605}
 606
 607static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
 608                        const u8 *uuid)
 609{
 610        return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
 611}
 612
 613static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
 614                                  struct extent_buffer *eb,
 615                                  struct btrfs_timespec *ts)
 616{
 617        struct btrfs_timespec bts;
 618        read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
 619        return tlv_put(sctx, attr, &bts, sizeof(bts));
 620}
 621
 622
 623#define TLV_PUT(sctx, attrtype, data, attrlen) \
 624        do { \
 625                ret = tlv_put(sctx, attrtype, data, attrlen); \
 626                if (ret < 0) \
 627                        goto tlv_put_failure; \
 628        } while (0)
 629
 630#define TLV_PUT_INT(sctx, attrtype, bits, value) \
 631        do { \
 632                ret = tlv_put_u##bits(sctx, attrtype, value); \
 633                if (ret < 0) \
 634                        goto tlv_put_failure; \
 635        } while (0)
 636
 637#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
 638#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
 639#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
 640#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
 641#define TLV_PUT_STRING(sctx, attrtype, str, len) \
 642        do { \
 643                ret = tlv_put_string(sctx, attrtype, str, len); \
 644                if (ret < 0) \
 645                        goto tlv_put_failure; \
 646        } while (0)
 647#define TLV_PUT_PATH(sctx, attrtype, p) \
 648        do { \
 649                ret = tlv_put_string(sctx, attrtype, p->start, \
 650                        p->end - p->start); \
 651                if (ret < 0) \
 652                        goto tlv_put_failure; \
 653        } while(0)
 654#define TLV_PUT_UUID(sctx, attrtype, uuid) \
 655        do { \
 656                ret = tlv_put_uuid(sctx, attrtype, uuid); \
 657                if (ret < 0) \
 658                        goto tlv_put_failure; \
 659        } while (0)
 660#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
 661        do { \
 662                ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
 663                if (ret < 0) \
 664                        goto tlv_put_failure; \
 665        } while (0)
 666
 667static int send_header(struct send_ctx *sctx)
 668{
 669        struct btrfs_stream_header hdr;
 670
 671        strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
 672        hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
 673
 674        return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
 675                                        &sctx->send_off);
 676}
 677
 678/*
 679 * For each command/item we want to send to userspace, we call this function.
 680 */
 681static int begin_cmd(struct send_ctx *sctx, int cmd)
 682{
 683        struct btrfs_cmd_header *hdr;
 684
 685        if (WARN_ON(!sctx->send_buf))
 686                return -EINVAL;
 687
 688        BUG_ON(sctx->send_size);
 689
 690        sctx->send_size += sizeof(*hdr);
 691        hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 692        put_unaligned_le16(cmd, &hdr->cmd);
 693
 694        return 0;
 695}
 696
 697static int send_cmd(struct send_ctx *sctx)
 698{
 699        int ret;
 700        struct btrfs_cmd_header *hdr;
 701        u32 crc;
 702
 703        hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 704        put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
 705        put_unaligned_le32(0, &hdr->crc);
 706
 707        crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
 708        put_unaligned_le32(crc, &hdr->crc);
 709
 710        ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
 711                                        &sctx->send_off);
 712
 713        sctx->total_send_size += sctx->send_size;
 714        sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size;
 715        sctx->send_size = 0;
 716
 717        return ret;
 718}
 719
 720/*
 721 * Sends a move instruction to user space
 722 */
 723static int send_rename(struct send_ctx *sctx,
 724                     struct fs_path *from, struct fs_path *to)
 725{
 726        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 727        int ret;
 728
 729        btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
 730
 731        ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
 732        if (ret < 0)
 733                goto out;
 734
 735        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
 736        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
 737
 738        ret = send_cmd(sctx);
 739
 740tlv_put_failure:
 741out:
 742        return ret;
 743}
 744
 745/*
 746 * Sends a link instruction to user space
 747 */
 748static int send_link(struct send_ctx *sctx,
 749                     struct fs_path *path, struct fs_path *lnk)
 750{
 751        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 752        int ret;
 753
 754        btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
 755
 756        ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
 757        if (ret < 0)
 758                goto out;
 759
 760        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 761        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
 762
 763        ret = send_cmd(sctx);
 764
 765tlv_put_failure:
 766out:
 767        return ret;
 768}
 769
 770/*
 771 * Sends an unlink instruction to user space
 772 */
 773static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
 774{
 775        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 776        int ret;
 777
 778        btrfs_debug(fs_info, "send_unlink %s", path->start);
 779
 780        ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
 781        if (ret < 0)
 782                goto out;
 783
 784        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 785
 786        ret = send_cmd(sctx);
 787
 788tlv_put_failure:
 789out:
 790        return ret;
 791}
 792
 793/*
 794 * Sends a rmdir instruction to user space
 795 */
 796static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
 797{
 798        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 799        int ret;
 800
 801        btrfs_debug(fs_info, "send_rmdir %s", path->start);
 802
 803        ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
 804        if (ret < 0)
 805                goto out;
 806
 807        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 808
 809        ret = send_cmd(sctx);
 810
 811tlv_put_failure:
 812out:
 813        return ret;
 814}
 815
 816/*
 817 * Helper function to retrieve some fields from an inode item.
 818 */
 819static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
 820                          u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
 821                          u64 *gid, u64 *rdev)
 822{
 823        int ret;
 824        struct btrfs_inode_item *ii;
 825        struct btrfs_key key;
 826
 827        key.objectid = ino;
 828        key.type = BTRFS_INODE_ITEM_KEY;
 829        key.offset = 0;
 830        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 831        if (ret) {
 832                if (ret > 0)
 833                        ret = -ENOENT;
 834                return ret;
 835        }
 836
 837        ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
 838                        struct btrfs_inode_item);
 839        if (size)
 840                *size = btrfs_inode_size(path->nodes[0], ii);
 841        if (gen)
 842                *gen = btrfs_inode_generation(path->nodes[0], ii);
 843        if (mode)
 844                *mode = btrfs_inode_mode(path->nodes[0], ii);
 845        if (uid)
 846                *uid = btrfs_inode_uid(path->nodes[0], ii);
 847        if (gid)
 848                *gid = btrfs_inode_gid(path->nodes[0], ii);
 849        if (rdev)
 850                *rdev = btrfs_inode_rdev(path->nodes[0], ii);
 851
 852        return ret;
 853}
 854
 855static int get_inode_info(struct btrfs_root *root,
 856                          u64 ino, u64 *size, u64 *gen,
 857                          u64 *mode, u64 *uid, u64 *gid,
 858                          u64 *rdev)
 859{
 860        struct btrfs_path *path;
 861        int ret;
 862
 863        path = alloc_path_for_send();
 864        if (!path)
 865                return -ENOMEM;
 866        ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
 867                               rdev);
 868        btrfs_free_path(path);
 869        return ret;
 870}
 871
 872typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
 873                                   struct fs_path *p,
 874                                   void *ctx);
 875
 876/*
 877 * Helper function to iterate the entries in ONE btrfs_inode_ref or
 878 * btrfs_inode_extref.
 879 * The iterate callback may return a non zero value to stop iteration. This can
 880 * be a negative value for error codes or 1 to simply stop it.
 881 *
 882 * path must point to the INODE_REF or INODE_EXTREF when called.
 883 */
 884static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
 885                             struct btrfs_key *found_key, int resolve,
 886                             iterate_inode_ref_t iterate, void *ctx)
 887{
 888        struct extent_buffer *eb = path->nodes[0];
 889        struct btrfs_item *item;
 890        struct btrfs_inode_ref *iref;
 891        struct btrfs_inode_extref *extref;
 892        struct btrfs_path *tmp_path;
 893        struct fs_path *p;
 894        u32 cur = 0;
 895        u32 total;
 896        int slot = path->slots[0];
 897        u32 name_len;
 898        char *start;
 899        int ret = 0;
 900        int num = 0;
 901        int index;
 902        u64 dir;
 903        unsigned long name_off;
 904        unsigned long elem_size;
 905        unsigned long ptr;
 906
 907        p = fs_path_alloc_reversed();
 908        if (!p)
 909                return -ENOMEM;
 910
 911        tmp_path = alloc_path_for_send();
 912        if (!tmp_path) {
 913                fs_path_free(p);
 914                return -ENOMEM;
 915        }
 916
 917
 918        if (found_key->type == BTRFS_INODE_REF_KEY) {
 919                ptr = (unsigned long)btrfs_item_ptr(eb, slot,
 920                                                    struct btrfs_inode_ref);
 921                item = btrfs_item_nr(slot);
 922                total = btrfs_item_size(eb, item);
 923                elem_size = sizeof(*iref);
 924        } else {
 925                ptr = btrfs_item_ptr_offset(eb, slot);
 926                total = btrfs_item_size_nr(eb, slot);
 927                elem_size = sizeof(*extref);
 928        }
 929
 930        while (cur < total) {
 931                fs_path_reset(p);
 932
 933                if (found_key->type == BTRFS_INODE_REF_KEY) {
 934                        iref = (struct btrfs_inode_ref *)(ptr + cur);
 935                        name_len = btrfs_inode_ref_name_len(eb, iref);
 936                        name_off = (unsigned long)(iref + 1);
 937                        index = btrfs_inode_ref_index(eb, iref);
 938                        dir = found_key->offset;
 939                } else {
 940                        extref = (struct btrfs_inode_extref *)(ptr + cur);
 941                        name_len = btrfs_inode_extref_name_len(eb, extref);
 942                        name_off = (unsigned long)&extref->name;
 943                        index = btrfs_inode_extref_index(eb, extref);
 944                        dir = btrfs_inode_extref_parent(eb, extref);
 945                }
 946
 947                if (resolve) {
 948                        start = btrfs_ref_to_path(root, tmp_path, name_len,
 949                                                  name_off, eb, dir,
 950                                                  p->buf, p->buf_len);
 951                        if (IS_ERR(start)) {
 952                                ret = PTR_ERR(start);
 953                                goto out;
 954                        }
 955                        if (start < p->buf) {
 956                                /* overflow , try again with larger buffer */
 957                                ret = fs_path_ensure_buf(p,
 958                                                p->buf_len + p->buf - start);
 959                                if (ret < 0)
 960                                        goto out;
 961                                start = btrfs_ref_to_path(root, tmp_path,
 962                                                          name_len, name_off,
 963                                                          eb, dir,
 964                                                          p->buf, p->buf_len);
 965                                if (IS_ERR(start)) {
 966                                        ret = PTR_ERR(start);
 967                                        goto out;
 968                                }
 969                                BUG_ON(start < p->buf);
 970                        }
 971                        p->start = start;
 972                } else {
 973                        ret = fs_path_add_from_extent_buffer(p, eb, name_off,
 974                                                             name_len);
 975                        if (ret < 0)
 976                                goto out;
 977                }
 978
 979                cur += elem_size + name_len;
 980                ret = iterate(num, dir, index, p, ctx);
 981                if (ret)
 982                        goto out;
 983                num++;
 984        }
 985
 986out:
 987        btrfs_free_path(tmp_path);
 988        fs_path_free(p);
 989        return ret;
 990}
 991
 992typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
 993                                  const char *name, int name_len,
 994                                  const char *data, int data_len,
 995                                  u8 type, void *ctx);
 996
 997/*
 998 * Helper function to iterate the entries in ONE btrfs_dir_item.
 999 * The iterate callback may return a non zero value to stop iteration. This can
1000 * be a negative value for error codes or 1 to simply stop it.
1001 *
1002 * path must point to the dir item when called.
1003 */
1004static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005                            iterate_dir_item_t iterate, void *ctx)
1006{
1007        int ret = 0;
1008        struct extent_buffer *eb;
1009        struct btrfs_item *item;
1010        struct btrfs_dir_item *di;
1011        struct btrfs_key di_key;
1012        char *buf = NULL;
1013        int buf_len;
1014        u32 name_len;
1015        u32 data_len;
1016        u32 cur;
1017        u32 len;
1018        u32 total;
1019        int slot;
1020        int num;
1021        u8 type;
1022
1023        /*
1024         * Start with a small buffer (1 page). If later we end up needing more
1025         * space, which can happen for xattrs on a fs with a leaf size greater
1026         * then the page size, attempt to increase the buffer. Typically xattr
1027         * values are small.
1028         */
1029        buf_len = PATH_MAX;
1030        buf = kmalloc(buf_len, GFP_KERNEL);
1031        if (!buf) {
1032                ret = -ENOMEM;
1033                goto out;
1034        }
1035
1036        eb = path->nodes[0];
1037        slot = path->slots[0];
1038        item = btrfs_item_nr(slot);
1039        di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1040        cur = 0;
1041        len = 0;
1042        total = btrfs_item_size(eb, item);
1043
1044        num = 0;
1045        while (cur < total) {
1046                name_len = btrfs_dir_name_len(eb, di);
1047                data_len = btrfs_dir_data_len(eb, di);
1048                type = btrfs_dir_type(eb, di);
1049                btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1050
1051                if (type == BTRFS_FT_XATTR) {
1052                        if (name_len > XATTR_NAME_MAX) {
1053                                ret = -ENAMETOOLONG;
1054                                goto out;
1055                        }
1056                        if (name_len + data_len >
1057                                        BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1058                                ret = -E2BIG;
1059                                goto out;
1060                        }
1061                } else {
1062                        /*
1063                         * Path too long
1064                         */
1065                        if (name_len + data_len > PATH_MAX) {
1066                                ret = -ENAMETOOLONG;
1067                                goto out;
1068                        }
1069                }
1070
1071                if (name_len + data_len > buf_len) {
1072                        buf_len = name_len + data_len;
1073                        if (is_vmalloc_addr(buf)) {
1074                                vfree(buf);
1075                                buf = NULL;
1076                        } else {
1077                                char *tmp = krealloc(buf, buf_len,
1078                                                GFP_KERNEL | __GFP_NOWARN);
1079
1080                                if (!tmp)
1081                                        kfree(buf);
1082                                buf = tmp;
1083                        }
1084                        if (!buf) {
1085                                buf = kvmalloc(buf_len, GFP_KERNEL);
1086                                if (!buf) {
1087                                        ret = -ENOMEM;
1088                                        goto out;
1089                                }
1090                        }
1091                }
1092
1093                read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1094                                name_len + data_len);
1095
1096                len = sizeof(*di) + name_len + data_len;
1097                di = (struct btrfs_dir_item *)((char *)di + len);
1098                cur += len;
1099
1100                ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1101                                data_len, type, ctx);
1102                if (ret < 0)
1103                        goto out;
1104                if (ret) {
1105                        ret = 0;
1106                        goto out;
1107                }
1108
1109                num++;
1110        }
1111
1112out:
1113        kvfree(buf);
1114        return ret;
1115}
1116
1117static int __copy_first_ref(int num, u64 dir, int index,
1118                            struct fs_path *p, void *ctx)
1119{
1120        int ret;
1121        struct fs_path *pt = ctx;
1122
1123        ret = fs_path_copy(pt, p);
1124        if (ret < 0)
1125                return ret;
1126
1127        /* we want the first only */
1128        return 1;
1129}
1130
1131/*
1132 * Retrieve the first path of an inode. If an inode has more then one
1133 * ref/hardlink, this is ignored.
1134 */
1135static int get_inode_path(struct btrfs_root *root,
1136                          u64 ino, struct fs_path *path)
1137{
1138        int ret;
1139        struct btrfs_key key, found_key;
1140        struct btrfs_path *p;
1141
1142        p = alloc_path_for_send();
1143        if (!p)
1144                return -ENOMEM;
1145
1146        fs_path_reset(path);
1147
1148        key.objectid = ino;
1149        key.type = BTRFS_INODE_REF_KEY;
1150        key.offset = 0;
1151
1152        ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1153        if (ret < 0)
1154                goto out;
1155        if (ret) {
1156                ret = 1;
1157                goto out;
1158        }
1159        btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1160        if (found_key.objectid != ino ||
1161            (found_key.type != BTRFS_INODE_REF_KEY &&
1162             found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1163                ret = -ENOENT;
1164                goto out;
1165        }
1166
1167        ret = iterate_inode_ref(root, p, &found_key, 1,
1168                                __copy_first_ref, path);
1169        if (ret < 0)
1170                goto out;
1171        ret = 0;
1172
1173out:
1174        btrfs_free_path(p);
1175        return ret;
1176}
1177
1178struct backref_ctx {
1179        struct send_ctx *sctx;
1180
1181        /* number of total found references */
1182        u64 found;
1183
1184        /*
1185         * used for clones found in send_root. clones found behind cur_objectid
1186         * and cur_offset are not considered as allowed clones.
1187         */
1188        u64 cur_objectid;
1189        u64 cur_offset;
1190
1191        /* may be truncated in case it's the last extent in a file */
1192        u64 extent_len;
1193
1194        /* Just to check for bugs in backref resolving */
1195        int found_itself;
1196};
1197
1198static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1199{
1200        u64 root = (u64)(uintptr_t)key;
1201        const struct clone_root *cr = elt;
1202
1203        if (root < cr->root->root_key.objectid)
1204                return -1;
1205        if (root > cr->root->root_key.objectid)
1206                return 1;
1207        return 0;
1208}
1209
1210static int __clone_root_cmp_sort(const void *e1, const void *e2)
1211{
1212        const struct clone_root *cr1 = e1;
1213        const struct clone_root *cr2 = e2;
1214
1215        if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1216                return -1;
1217        if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1218                return 1;
1219        return 0;
1220}
1221
1222/*
1223 * Called for every backref that is found for the current extent.
1224 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1225 */
1226static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1227{
1228        struct backref_ctx *bctx = ctx_;
1229        struct clone_root *found;
1230
1231        /* First check if the root is in the list of accepted clone sources */
1232        found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1233                        bctx->sctx->clone_roots_cnt,
1234                        sizeof(struct clone_root),
1235                        __clone_root_cmp_bsearch);
1236        if (!found)
1237                return 0;
1238
1239        if (found->root == bctx->sctx->send_root &&
1240            ino == bctx->cur_objectid &&
1241            offset == bctx->cur_offset) {
1242                bctx->found_itself = 1;
1243        }
1244
1245        /*
1246         * Make sure we don't consider clones from send_root that are
1247         * behind the current inode/offset.
1248         */
1249        if (found->root == bctx->sctx->send_root) {
1250                /*
1251                 * If the source inode was not yet processed we can't issue a
1252                 * clone operation, as the source extent does not exist yet at
1253                 * the destination of the stream.
1254                 */
1255                if (ino > bctx->cur_objectid)
1256                        return 0;
1257                /*
1258                 * We clone from the inode currently being sent as long as the
1259                 * source extent is already processed, otherwise we could try
1260                 * to clone from an extent that does not exist yet at the
1261                 * destination of the stream.
1262                 */
1263                if (ino == bctx->cur_objectid &&
1264                    offset + bctx->extent_len >
1265                    bctx->sctx->cur_inode_next_write_offset)
1266                        return 0;
1267        }
1268
1269        bctx->found++;
1270        found->found_refs++;
1271        if (ino < found->ino) {
1272                found->ino = ino;
1273                found->offset = offset;
1274        } else if (found->ino == ino) {
1275                /*
1276                 * same extent found more then once in the same file.
1277                 */
1278                if (found->offset > offset + bctx->extent_len)
1279                        found->offset = offset;
1280        }
1281
1282        return 0;
1283}
1284
1285/*
1286 * Given an inode, offset and extent item, it finds a good clone for a clone
1287 * instruction. Returns -ENOENT when none could be found. The function makes
1288 * sure that the returned clone is usable at the point where sending is at the
1289 * moment. This means, that no clones are accepted which lie behind the current
1290 * inode+offset.
1291 *
1292 * path must point to the extent item when called.
1293 */
1294static int find_extent_clone(struct send_ctx *sctx,
1295                             struct btrfs_path *path,
1296                             u64 ino, u64 data_offset,
1297                             u64 ino_size,
1298                             struct clone_root **found)
1299{
1300        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1301        int ret;
1302        int extent_type;
1303        u64 logical;
1304        u64 disk_byte;
1305        u64 num_bytes;
1306        u64 extent_item_pos;
1307        u64 flags = 0;
1308        struct btrfs_file_extent_item *fi;
1309        struct extent_buffer *eb = path->nodes[0];
1310        struct backref_ctx backref_ctx = {0};
1311        struct clone_root *cur_clone_root;
1312        struct btrfs_key found_key;
1313        struct btrfs_path *tmp_path;
1314        struct btrfs_extent_item *ei;
1315        int compressed;
1316        u32 i;
1317
1318        tmp_path = alloc_path_for_send();
1319        if (!tmp_path)
1320                return -ENOMEM;
1321
1322        /* We only use this path under the commit sem */
1323        tmp_path->need_commit_sem = 0;
1324
1325        if (data_offset >= ino_size) {
1326                /*
1327                 * There may be extents that lie behind the file's size.
1328                 * I at least had this in combination with snapshotting while
1329                 * writing large files.
1330                 */
1331                ret = 0;
1332                goto out;
1333        }
1334
1335        fi = btrfs_item_ptr(eb, path->slots[0],
1336                        struct btrfs_file_extent_item);
1337        extent_type = btrfs_file_extent_type(eb, fi);
1338        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1339                ret = -ENOENT;
1340                goto out;
1341        }
1342        compressed = btrfs_file_extent_compression(eb, fi);
1343
1344        num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1345        disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1346        if (disk_byte == 0) {
1347                ret = -ENOENT;
1348                goto out;
1349        }
1350        logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1351
1352        down_read(&fs_info->commit_root_sem);
1353        ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1354                                  &found_key, &flags);
1355        up_read(&fs_info->commit_root_sem);
1356
1357        if (ret < 0)
1358                goto out;
1359        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1360                ret = -EIO;
1361                goto out;
1362        }
1363
1364        ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1365                            struct btrfs_extent_item);
1366        /*
1367         * Backreference walking (iterate_extent_inodes() below) is currently
1368         * too expensive when an extent has a large number of references, both
1369         * in time spent and used memory. So for now just fallback to write
1370         * operations instead of clone operations when an extent has more than
1371         * a certain amount of references.
1372         */
1373        if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1374                ret = -ENOENT;
1375                goto out;
1376        }
1377        btrfs_release_path(tmp_path);
1378
1379        /*
1380         * Setup the clone roots.
1381         */
1382        for (i = 0; i < sctx->clone_roots_cnt; i++) {
1383                cur_clone_root = sctx->clone_roots + i;
1384                cur_clone_root->ino = (u64)-1;
1385                cur_clone_root->offset = 0;
1386                cur_clone_root->found_refs = 0;
1387        }
1388
1389        backref_ctx.sctx = sctx;
1390        backref_ctx.found = 0;
1391        backref_ctx.cur_objectid = ino;
1392        backref_ctx.cur_offset = data_offset;
1393        backref_ctx.found_itself = 0;
1394        backref_ctx.extent_len = num_bytes;
1395
1396        /*
1397         * The last extent of a file may be too large due to page alignment.
1398         * We need to adjust extent_len in this case so that the checks in
1399         * __iterate_backrefs work.
1400         */
1401        if (data_offset + num_bytes >= ino_size)
1402                backref_ctx.extent_len = ino_size - data_offset;
1403
1404        /*
1405         * Now collect all backrefs.
1406         */
1407        if (compressed == BTRFS_COMPRESS_NONE)
1408                extent_item_pos = logical - found_key.objectid;
1409        else
1410                extent_item_pos = 0;
1411        ret = iterate_extent_inodes(fs_info, found_key.objectid,
1412                                    extent_item_pos, 1, __iterate_backrefs,
1413                                    &backref_ctx, false);
1414
1415        if (ret < 0)
1416                goto out;
1417
1418        if (!backref_ctx.found_itself) {
1419                /* found a bug in backref code? */
1420                ret = -EIO;
1421                btrfs_err(fs_info,
1422                          "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1423                          ino, data_offset, disk_byte, found_key.objectid);
1424                goto out;
1425        }
1426
1427        btrfs_debug(fs_info,
1428                    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1429                    data_offset, ino, num_bytes, logical);
1430
1431        if (!backref_ctx.found)
1432                btrfs_debug(fs_info, "no clones found");
1433
1434        cur_clone_root = NULL;
1435        for (i = 0; i < sctx->clone_roots_cnt; i++) {
1436                if (sctx->clone_roots[i].found_refs) {
1437                        if (!cur_clone_root)
1438                                cur_clone_root = sctx->clone_roots + i;
1439                        else if (sctx->clone_roots[i].root == sctx->send_root)
1440                                /* prefer clones from send_root over others */
1441                                cur_clone_root = sctx->clone_roots + i;
1442                }
1443
1444        }
1445
1446        if (cur_clone_root) {
1447                *found = cur_clone_root;
1448                ret = 0;
1449        } else {
1450                ret = -ENOENT;
1451        }
1452
1453out:
1454        btrfs_free_path(tmp_path);
1455        return ret;
1456}
1457
1458static int read_symlink(struct btrfs_root *root,
1459                        u64 ino,
1460                        struct fs_path *dest)
1461{
1462        int ret;
1463        struct btrfs_path *path;
1464        struct btrfs_key key;
1465        struct btrfs_file_extent_item *ei;
1466        u8 type;
1467        u8 compression;
1468        unsigned long off;
1469        int len;
1470
1471        path = alloc_path_for_send();
1472        if (!path)
1473                return -ENOMEM;
1474
1475        key.objectid = ino;
1476        key.type = BTRFS_EXTENT_DATA_KEY;
1477        key.offset = 0;
1478        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1479        if (ret < 0)
1480                goto out;
1481        if (ret) {
1482                /*
1483                 * An empty symlink inode. Can happen in rare error paths when
1484                 * creating a symlink (transaction committed before the inode
1485                 * eviction handler removed the symlink inode items and a crash
1486                 * happened in between or the subvol was snapshoted in between).
1487                 * Print an informative message to dmesg/syslog so that the user
1488                 * can delete the symlink.
1489                 */
1490                btrfs_err(root->fs_info,
1491                          "Found empty symlink inode %llu at root %llu",
1492                          ino, root->root_key.objectid);
1493                ret = -EIO;
1494                goto out;
1495        }
1496
1497        ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1498                        struct btrfs_file_extent_item);
1499        type = btrfs_file_extent_type(path->nodes[0], ei);
1500        compression = btrfs_file_extent_compression(path->nodes[0], ei);
1501        BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1502        BUG_ON(compression);
1503
1504        off = btrfs_file_extent_inline_start(ei);
1505        len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1506
1507        ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1508
1509out:
1510        btrfs_free_path(path);
1511        return ret;
1512}
1513
1514/*
1515 * Helper function to generate a file name that is unique in the root of
1516 * send_root and parent_root. This is used to generate names for orphan inodes.
1517 */
1518static int gen_unique_name(struct send_ctx *sctx,
1519                           u64 ino, u64 gen,
1520                           struct fs_path *dest)
1521{
1522        int ret = 0;
1523        struct btrfs_path *path;
1524        struct btrfs_dir_item *di;
1525        char tmp[64];
1526        int len;
1527        u64 idx = 0;
1528
1529        path = alloc_path_for_send();
1530        if (!path)
1531                return -ENOMEM;
1532
1533        while (1) {
1534                len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1535                                ino, gen, idx);
1536                ASSERT(len < sizeof(tmp));
1537
1538                di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1539                                path, BTRFS_FIRST_FREE_OBJECTID,
1540                                tmp, strlen(tmp), 0);
1541                btrfs_release_path(path);
1542                if (IS_ERR(di)) {
1543                        ret = PTR_ERR(di);
1544                        goto out;
1545                }
1546                if (di) {
1547                        /* not unique, try again */
1548                        idx++;
1549                        continue;
1550                }
1551
1552                if (!sctx->parent_root) {
1553                        /* unique */
1554                        ret = 0;
1555                        break;
1556                }
1557
1558                di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1559                                path, BTRFS_FIRST_FREE_OBJECTID,
1560                                tmp, strlen(tmp), 0);
1561                btrfs_release_path(path);
1562                if (IS_ERR(di)) {
1563                        ret = PTR_ERR(di);
1564                        goto out;
1565                }
1566                if (di) {
1567                        /* not unique, try again */
1568                        idx++;
1569                        continue;
1570                }
1571                /* unique */
1572                break;
1573        }
1574
1575        ret = fs_path_add(dest, tmp, strlen(tmp));
1576
1577out:
1578        btrfs_free_path(path);
1579        return ret;
1580}
1581
1582enum inode_state {
1583        inode_state_no_change,
1584        inode_state_will_create,
1585        inode_state_did_create,
1586        inode_state_will_delete,
1587        inode_state_did_delete,
1588};
1589
1590static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1591{
1592        int ret;
1593        int left_ret;
1594        int right_ret;
1595        u64 left_gen;
1596        u64 right_gen;
1597
1598        ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1599                        NULL, NULL);
1600        if (ret < 0 && ret != -ENOENT)
1601                goto out;
1602        left_ret = ret;
1603
1604        if (!sctx->parent_root) {
1605                right_ret = -ENOENT;
1606        } else {
1607                ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1608                                NULL, NULL, NULL, NULL);
1609                if (ret < 0 && ret != -ENOENT)
1610                        goto out;
1611                right_ret = ret;
1612        }
1613
1614        if (!left_ret && !right_ret) {
1615                if (left_gen == gen && right_gen == gen) {
1616                        ret = inode_state_no_change;
1617                } else if (left_gen == gen) {
1618                        if (ino < sctx->send_progress)
1619                                ret = inode_state_did_create;
1620                        else
1621                                ret = inode_state_will_create;
1622                } else if (right_gen == gen) {
1623                        if (ino < sctx->send_progress)
1624                                ret = inode_state_did_delete;
1625                        else
1626                                ret = inode_state_will_delete;
1627                } else  {
1628                        ret = -ENOENT;
1629                }
1630        } else if (!left_ret) {
1631                if (left_gen == gen) {
1632                        if (ino < sctx->send_progress)
1633                                ret = inode_state_did_create;
1634                        else
1635                                ret = inode_state_will_create;
1636                } else {
1637                        ret = -ENOENT;
1638                }
1639        } else if (!right_ret) {
1640                if (right_gen == gen) {
1641                        if (ino < sctx->send_progress)
1642                                ret = inode_state_did_delete;
1643                        else
1644                                ret = inode_state_will_delete;
1645                } else {
1646                        ret = -ENOENT;
1647                }
1648        } else {
1649                ret = -ENOENT;
1650        }
1651
1652out:
1653        return ret;
1654}
1655
1656static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1657{
1658        int ret;
1659
1660        if (ino == BTRFS_FIRST_FREE_OBJECTID)
1661                return 1;
1662
1663        ret = get_cur_inode_state(sctx, ino, gen);
1664        if (ret < 0)
1665                goto out;
1666
1667        if (ret == inode_state_no_change ||
1668            ret == inode_state_did_create ||
1669            ret == inode_state_will_delete)
1670                ret = 1;
1671        else
1672                ret = 0;
1673
1674out:
1675        return ret;
1676}
1677
1678/*
1679 * Helper function to lookup a dir item in a dir.
1680 */
1681static int lookup_dir_item_inode(struct btrfs_root *root,
1682                                 u64 dir, const char *name, int name_len,
1683                                 u64 *found_inode,
1684                                 u8 *found_type)
1685{
1686        int ret = 0;
1687        struct btrfs_dir_item *di;
1688        struct btrfs_key key;
1689        struct btrfs_path *path;
1690
1691        path = alloc_path_for_send();
1692        if (!path)
1693                return -ENOMEM;
1694
1695        di = btrfs_lookup_dir_item(NULL, root, path,
1696                        dir, name, name_len, 0);
1697        if (IS_ERR_OR_NULL(di)) {
1698                ret = di ? PTR_ERR(di) : -ENOENT;
1699                goto out;
1700        }
1701        btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1702        if (key.type == BTRFS_ROOT_ITEM_KEY) {
1703                ret = -ENOENT;
1704                goto out;
1705        }
1706        *found_inode = key.objectid;
1707        *found_type = btrfs_dir_type(path->nodes[0], di);
1708
1709out:
1710        btrfs_free_path(path);
1711        return ret;
1712}
1713
1714/*
1715 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1716 * generation of the parent dir and the name of the dir entry.
1717 */
1718static int get_first_ref(struct btrfs_root *root, u64 ino,
1719                         u64 *dir, u64 *dir_gen, struct fs_path *name)
1720{
1721        int ret;
1722        struct btrfs_key key;
1723        struct btrfs_key found_key;
1724        struct btrfs_path *path;
1725        int len;
1726        u64 parent_dir;
1727
1728        path = alloc_path_for_send();
1729        if (!path)
1730                return -ENOMEM;
1731
1732        key.objectid = ino;
1733        key.type = BTRFS_INODE_REF_KEY;
1734        key.offset = 0;
1735
1736        ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1737        if (ret < 0)
1738                goto out;
1739        if (!ret)
1740                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1741                                path->slots[0]);
1742        if (ret || found_key.objectid != ino ||
1743            (found_key.type != BTRFS_INODE_REF_KEY &&
1744             found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1745                ret = -ENOENT;
1746                goto out;
1747        }
1748
1749        if (found_key.type == BTRFS_INODE_REF_KEY) {
1750                struct btrfs_inode_ref *iref;
1751                iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1752                                      struct btrfs_inode_ref);
1753                len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1754                ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1755                                                     (unsigned long)(iref + 1),
1756                                                     len);
1757                parent_dir = found_key.offset;
1758        } else {
1759                struct btrfs_inode_extref *extref;
1760                extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1761                                        struct btrfs_inode_extref);
1762                len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1763                ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1764                                        (unsigned long)&extref->name, len);
1765                parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1766        }
1767        if (ret < 0)
1768                goto out;
1769        btrfs_release_path(path);
1770
1771        if (dir_gen) {
1772                ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1773                                     NULL, NULL, NULL);
1774                if (ret < 0)
1775                        goto out;
1776        }
1777
1778        *dir = parent_dir;
1779
1780out:
1781        btrfs_free_path(path);
1782        return ret;
1783}
1784
1785static int is_first_ref(struct btrfs_root *root,
1786                        u64 ino, u64 dir,
1787                        const char *name, int name_len)
1788{
1789        int ret;
1790        struct fs_path *tmp_name;
1791        u64 tmp_dir;
1792
1793        tmp_name = fs_path_alloc();
1794        if (!tmp_name)
1795                return -ENOMEM;
1796
1797        ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1798        if (ret < 0)
1799                goto out;
1800
1801        if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1802                ret = 0;
1803                goto out;
1804        }
1805
1806        ret = !memcmp(tmp_name->start, name, name_len);
1807
1808out:
1809        fs_path_free(tmp_name);
1810        return ret;
1811}
1812
1813/*
1814 * Used by process_recorded_refs to determine if a new ref would overwrite an
1815 * already existing ref. In case it detects an overwrite, it returns the
1816 * inode/gen in who_ino/who_gen.
1817 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1818 * to make sure later references to the overwritten inode are possible.
1819 * Orphanizing is however only required for the first ref of an inode.
1820 * process_recorded_refs does an additional is_first_ref check to see if
1821 * orphanizing is really required.
1822 */
1823static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1824                              const char *name, int name_len,
1825                              u64 *who_ino, u64 *who_gen, u64 *who_mode)
1826{
1827        int ret = 0;
1828        u64 gen;
1829        u64 other_inode = 0;
1830        u8 other_type = 0;
1831
1832        if (!sctx->parent_root)
1833                goto out;
1834
1835        ret = is_inode_existent(sctx, dir, dir_gen);
1836        if (ret <= 0)
1837                goto out;
1838
1839        /*
1840         * If we have a parent root we need to verify that the parent dir was
1841         * not deleted and then re-created, if it was then we have no overwrite
1842         * and we can just unlink this entry.
1843         */
1844        if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1845                ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1846                                     NULL, NULL, NULL);
1847                if (ret < 0 && ret != -ENOENT)
1848                        goto out;
1849                if (ret) {
1850                        ret = 0;
1851                        goto out;
1852                }
1853                if (gen != dir_gen)
1854                        goto out;
1855        }
1856
1857        ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1858                        &other_inode, &other_type);
1859        if (ret < 0 && ret != -ENOENT)
1860                goto out;
1861        if (ret) {
1862                ret = 0;
1863                goto out;
1864        }
1865
1866        /*
1867         * Check if the overwritten ref was already processed. If yes, the ref
1868         * was already unlinked/moved, so we can safely assume that we will not
1869         * overwrite anything at this point in time.
1870         */
1871        if (other_inode > sctx->send_progress ||
1872            is_waiting_for_move(sctx, other_inode)) {
1873                ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1874                                who_gen, who_mode, NULL, NULL, NULL);
1875                if (ret < 0)
1876                        goto out;
1877
1878                ret = 1;
1879                *who_ino = other_inode;
1880        } else {
1881                ret = 0;
1882        }
1883
1884out:
1885        return ret;
1886}
1887
1888/*
1889 * Checks if the ref was overwritten by an already processed inode. This is
1890 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1891 * thus the orphan name needs be used.
1892 * process_recorded_refs also uses it to avoid unlinking of refs that were
1893 * overwritten.
1894 */
1895static int did_overwrite_ref(struct send_ctx *sctx,
1896                            u64 dir, u64 dir_gen,
1897                            u64 ino, u64 ino_gen,
1898                            const char *name, int name_len)
1899{
1900        int ret = 0;
1901        u64 gen;
1902        u64 ow_inode;
1903        u8 other_type;
1904
1905        if (!sctx->parent_root)
1906                goto out;
1907
1908        ret = is_inode_existent(sctx, dir, dir_gen);
1909        if (ret <= 0)
1910                goto out;
1911
1912        if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1913                ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1914                                     NULL, NULL, NULL);
1915                if (ret < 0 && ret != -ENOENT)
1916                        goto out;
1917                if (ret) {
1918                        ret = 0;
1919                        goto out;
1920                }
1921                if (gen != dir_gen)
1922                        goto out;
1923        }
1924
1925        /* check if the ref was overwritten by another ref */
1926        ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1927                        &ow_inode, &other_type);
1928        if (ret < 0 && ret != -ENOENT)
1929                goto out;
1930        if (ret) {
1931                /* was never and will never be overwritten */
1932                ret = 0;
1933                goto out;
1934        }
1935
1936        ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1937                        NULL, NULL);
1938        if (ret < 0)
1939                goto out;
1940
1941        if (ow_inode == ino && gen == ino_gen) {
1942                ret = 0;
1943                goto out;
1944        }
1945
1946        /*
1947         * We know that it is or will be overwritten. Check this now.
1948         * The current inode being processed might have been the one that caused
1949         * inode 'ino' to be orphanized, therefore check if ow_inode matches
1950         * the current inode being processed.
1951         */
1952        if ((ow_inode < sctx->send_progress) ||
1953            (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1954             gen == sctx->cur_inode_gen))
1955                ret = 1;
1956        else
1957                ret = 0;
1958
1959out:
1960        return ret;
1961}
1962
1963/*
1964 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1965 * that got overwritten. This is used by process_recorded_refs to determine
1966 * if it has to use the path as returned by get_cur_path or the orphan name.
1967 */
1968static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1969{
1970        int ret = 0;
1971        struct fs_path *name = NULL;
1972        u64 dir;
1973        u64 dir_gen;
1974
1975        if (!sctx->parent_root)
1976                goto out;
1977
1978        name = fs_path_alloc();
1979        if (!name)
1980                return -ENOMEM;
1981
1982        ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1983        if (ret < 0)
1984                goto out;
1985
1986        ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1987                        name->start, fs_path_len(name));
1988
1989out:
1990        fs_path_free(name);
1991        return ret;
1992}
1993
1994/*
1995 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1996 * so we need to do some special handling in case we have clashes. This function
1997 * takes care of this with the help of name_cache_entry::radix_list.
1998 * In case of error, nce is kfreed.
1999 */
2000static int name_cache_insert(struct send_ctx *sctx,
2001                             struct name_cache_entry *nce)
2002{
2003        int ret = 0;
2004        struct list_head *nce_head;
2005
2006        nce_head = radix_tree_lookup(&sctx->name_cache,
2007                        (unsigned long)nce->ino);
2008        if (!nce_head) {
2009                nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2010                if (!nce_head) {
2011                        kfree(nce);
2012                        return -ENOMEM;
2013                }
2014                INIT_LIST_HEAD(nce_head);
2015
2016                ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2017                if (ret < 0) {
2018                        kfree(nce_head);
2019                        kfree(nce);
2020                        return ret;
2021                }
2022        }
2023        list_add_tail(&nce->radix_list, nce_head);
2024        list_add_tail(&nce->list, &sctx->name_cache_list);
2025        sctx->name_cache_size++;
2026
2027        return ret;
2028}
2029
2030static void name_cache_delete(struct send_ctx *sctx,
2031                              struct name_cache_entry *nce)
2032{
2033        struct list_head *nce_head;
2034
2035        nce_head = radix_tree_lookup(&sctx->name_cache,
2036                        (unsigned long)nce->ino);
2037        if (!nce_head) {
2038                btrfs_err(sctx->send_root->fs_info,
2039              "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2040                        nce->ino, sctx->name_cache_size);
2041        }
2042
2043        list_del(&nce->radix_list);
2044        list_del(&nce->list);
2045        sctx->name_cache_size--;
2046
2047        /*
2048         * We may not get to the final release of nce_head if the lookup fails
2049         */
2050        if (nce_head && list_empty(nce_head)) {
2051                radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2052                kfree(nce_head);
2053        }
2054}
2055
2056static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2057                                                    u64 ino, u64 gen)
2058{
2059        struct list_head *nce_head;
2060        struct name_cache_entry *cur;
2061
2062        nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2063        if (!nce_head)
2064                return NULL;
2065
2066        list_for_each_entry(cur, nce_head, radix_list) {
2067                if (cur->ino == ino && cur->gen == gen)
2068                        return cur;
2069        }
2070        return NULL;
2071}
2072
2073/*
2074 * Remove some entries from the beginning of name_cache_list.
2075 */
2076static void name_cache_clean_unused(struct send_ctx *sctx)
2077{
2078        struct name_cache_entry *nce;
2079
2080        if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2081                return;
2082
2083        while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2084                nce = list_entry(sctx->name_cache_list.next,
2085                                struct name_cache_entry, list);
2086                name_cache_delete(sctx, nce);
2087                kfree(nce);
2088        }
2089}
2090
2091static void name_cache_free(struct send_ctx *sctx)
2092{
2093        struct name_cache_entry *nce;
2094
2095        while (!list_empty(&sctx->name_cache_list)) {
2096                nce = list_entry(sctx->name_cache_list.next,
2097                                struct name_cache_entry, list);
2098                name_cache_delete(sctx, nce);
2099                kfree(nce);
2100        }
2101}
2102
2103/*
2104 * Used by get_cur_path for each ref up to the root.
2105 * Returns 0 if it succeeded.
2106 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2107 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2108 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2109 * Returns <0 in case of error.
2110 */
2111static int __get_cur_name_and_parent(struct send_ctx *sctx,
2112                                     u64 ino, u64 gen,
2113                                     u64 *parent_ino,
2114                                     u64 *parent_gen,
2115                                     struct fs_path *dest)
2116{
2117        int ret;
2118        int nce_ret;
2119        struct name_cache_entry *nce = NULL;
2120
2121        /*
2122         * First check if we already did a call to this function with the same
2123         * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2124         * return the cached result.
2125         */
2126        nce = name_cache_search(sctx, ino, gen);
2127        if (nce) {
2128                if (ino < sctx->send_progress && nce->need_later_update) {
2129                        name_cache_delete(sctx, nce);
2130                        kfree(nce);
2131                        nce = NULL;
2132                } else {
2133                        /*
2134                         * Removes the entry from the list and adds it back to
2135                         * the end.  This marks the entry as recently used so
2136                         * that name_cache_clean_unused does not remove it.
2137                         */
2138                        list_move_tail(&nce->list, &sctx->name_cache_list);
2139
2140                        *parent_ino = nce->parent_ino;
2141                        *parent_gen = nce->parent_gen;
2142                        ret = fs_path_add(dest, nce->name, nce->name_len);
2143                        if (ret < 0)
2144                                goto out;
2145                        ret = nce->ret;
2146                        goto out;
2147                }
2148        }
2149
2150        /*
2151         * If the inode is not existent yet, add the orphan name and return 1.
2152         * This should only happen for the parent dir that we determine in
2153         * __record_new_ref
2154         */
2155        ret = is_inode_existent(sctx, ino, gen);
2156        if (ret < 0)
2157                goto out;
2158
2159        if (!ret) {
2160                ret = gen_unique_name(sctx, ino, gen, dest);
2161                if (ret < 0)
2162                        goto out;
2163                ret = 1;
2164                goto out_cache;
2165        }
2166
2167        /*
2168         * Depending on whether the inode was already processed or not, use
2169         * send_root or parent_root for ref lookup.
2170         */
2171        if (ino < sctx->send_progress)
2172                ret = get_first_ref(sctx->send_root, ino,
2173                                    parent_ino, parent_gen, dest);
2174        else
2175                ret = get_first_ref(sctx->parent_root, ino,
2176                                    parent_ino, parent_gen, dest);
2177        if (ret < 0)
2178                goto out;
2179
2180        /*
2181         * Check if the ref was overwritten by an inode's ref that was processed
2182         * earlier. If yes, treat as orphan and return 1.
2183         */
2184        ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2185                        dest->start, dest->end - dest->start);
2186        if (ret < 0)
2187                goto out;
2188        if (ret) {
2189                fs_path_reset(dest);
2190                ret = gen_unique_name(sctx, ino, gen, dest);
2191                if (ret < 0)
2192                        goto out;
2193                ret = 1;
2194        }
2195
2196out_cache:
2197        /*
2198         * Store the result of the lookup in the name cache.
2199         */
2200        nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2201        if (!nce) {
2202                ret = -ENOMEM;
2203                goto out;
2204        }
2205
2206        nce->ino = ino;
2207        nce->gen = gen;
2208        nce->parent_ino = *parent_ino;
2209        nce->parent_gen = *parent_gen;
2210        nce->name_len = fs_path_len(dest);
2211        nce->ret = ret;
2212        strcpy(nce->name, dest->start);
2213
2214        if (ino < sctx->send_progress)
2215                nce->need_later_update = 0;
2216        else
2217                nce->need_later_update = 1;
2218
2219        nce_ret = name_cache_insert(sctx, nce);
2220        if (nce_ret < 0)
2221                ret = nce_ret;
2222        name_cache_clean_unused(sctx);
2223
2224out:
2225        return ret;
2226}
2227
2228/*
2229 * Magic happens here. This function returns the first ref to an inode as it
2230 * would look like while receiving the stream at this point in time.
2231 * We walk the path up to the root. For every inode in between, we check if it
2232 * was already processed/sent. If yes, we continue with the parent as found
2233 * in send_root. If not, we continue with the parent as found in parent_root.
2234 * If we encounter an inode that was deleted at this point in time, we use the
2235 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2236 * that were not created yet and overwritten inodes/refs.
2237 *
2238 * When do we have orphan inodes:
2239 * 1. When an inode is freshly created and thus no valid refs are available yet
2240 * 2. When a directory lost all it's refs (deleted) but still has dir items
2241 *    inside which were not processed yet (pending for move/delete). If anyone
2242 *    tried to get the path to the dir items, it would get a path inside that
2243 *    orphan directory.
2244 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2245 *    of an unprocessed inode. If in that case the first ref would be
2246 *    overwritten, the overwritten inode gets "orphanized". Later when we
2247 *    process this overwritten inode, it is restored at a new place by moving
2248 *    the orphan inode.
2249 *
2250 * sctx->send_progress tells this function at which point in time receiving
2251 * would be.
2252 */
2253static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2254                        struct fs_path *dest)
2255{
2256        int ret = 0;
2257        struct fs_path *name = NULL;
2258        u64 parent_inode = 0;
2259        u64 parent_gen = 0;
2260        int stop = 0;
2261
2262        name = fs_path_alloc();
2263        if (!name) {
2264                ret = -ENOMEM;
2265                goto out;
2266        }
2267
2268        dest->reversed = 1;
2269        fs_path_reset(dest);
2270
2271        while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2272                struct waiting_dir_move *wdm;
2273
2274                fs_path_reset(name);
2275
2276                if (is_waiting_for_rm(sctx, ino, gen)) {
2277                        ret = gen_unique_name(sctx, ino, gen, name);
2278                        if (ret < 0)
2279                                goto out;
2280                        ret = fs_path_add_path(dest, name);
2281                        break;
2282                }
2283
2284                wdm = get_waiting_dir_move(sctx, ino);
2285                if (wdm && wdm->orphanized) {
2286                        ret = gen_unique_name(sctx, ino, gen, name);
2287                        stop = 1;
2288                } else if (wdm) {
2289                        ret = get_first_ref(sctx->parent_root, ino,
2290                                            &parent_inode, &parent_gen, name);
2291                } else {
2292                        ret = __get_cur_name_and_parent(sctx, ino, gen,
2293                                                        &parent_inode,
2294                                                        &parent_gen, name);
2295                        if (ret)
2296                                stop = 1;
2297                }
2298
2299                if (ret < 0)
2300                        goto out;
2301
2302                ret = fs_path_add_path(dest, name);
2303                if (ret < 0)
2304                        goto out;
2305
2306                ino = parent_inode;
2307                gen = parent_gen;
2308        }
2309
2310out:
2311        fs_path_free(name);
2312        if (!ret)
2313                fs_path_unreverse(dest);
2314        return ret;
2315}
2316
2317/*
2318 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2319 */
2320static int send_subvol_begin(struct send_ctx *sctx)
2321{
2322        int ret;
2323        struct btrfs_root *send_root = sctx->send_root;
2324        struct btrfs_root *parent_root = sctx->parent_root;
2325        struct btrfs_path *path;
2326        struct btrfs_key key;
2327        struct btrfs_root_ref *ref;
2328        struct extent_buffer *leaf;
2329        char *name = NULL;
2330        int namelen;
2331
2332        path = btrfs_alloc_path();
2333        if (!path)
2334                return -ENOMEM;
2335
2336        name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2337        if (!name) {
2338                btrfs_free_path(path);
2339                return -ENOMEM;
2340        }
2341
2342        key.objectid = send_root->root_key.objectid;
2343        key.type = BTRFS_ROOT_BACKREF_KEY;
2344        key.offset = 0;
2345
2346        ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2347                                &key, path, 1, 0);
2348        if (ret < 0)
2349                goto out;
2350        if (ret) {
2351                ret = -ENOENT;
2352                goto out;
2353        }
2354
2355        leaf = path->nodes[0];
2356        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2357        if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2358            key.objectid != send_root->root_key.objectid) {
2359                ret = -ENOENT;
2360                goto out;
2361        }
2362        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2363        namelen = btrfs_root_ref_name_len(leaf, ref);
2364        read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2365        btrfs_release_path(path);
2366
2367        if (parent_root) {
2368                ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2369                if (ret < 0)
2370                        goto out;
2371        } else {
2372                ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2373                if (ret < 0)
2374                        goto out;
2375        }
2376
2377        TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2378
2379        if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2380                TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2381                            sctx->send_root->root_item.received_uuid);
2382        else
2383                TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2384                            sctx->send_root->root_item.uuid);
2385
2386        TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2387                    btrfs_root_ctransid(&sctx->send_root->root_item));
2388        if (parent_root) {
2389                if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2390                        TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2391                                     parent_root->root_item.received_uuid);
2392                else
2393                        TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2394                                     parent_root->root_item.uuid);
2395                TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2396                            btrfs_root_ctransid(&sctx->parent_root->root_item));
2397        }
2398
2399        ret = send_cmd(sctx);
2400
2401tlv_put_failure:
2402out:
2403        btrfs_free_path(path);
2404        kfree(name);
2405        return ret;
2406}
2407
2408static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2409{
2410        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2411        int ret = 0;
2412        struct fs_path *p;
2413
2414        btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2415
2416        p = fs_path_alloc();
2417        if (!p)
2418                return -ENOMEM;
2419
2420        ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2421        if (ret < 0)
2422                goto out;
2423
2424        ret = get_cur_path(sctx, ino, gen, p);
2425        if (ret < 0)
2426                goto out;
2427        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2428        TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2429
2430        ret = send_cmd(sctx);
2431
2432tlv_put_failure:
2433out:
2434        fs_path_free(p);
2435        return ret;
2436}
2437
2438static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2439{
2440        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2441        int ret = 0;
2442        struct fs_path *p;
2443
2444        btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2445
2446        p = fs_path_alloc();
2447        if (!p)
2448                return -ENOMEM;
2449
2450        ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2451        if (ret < 0)
2452                goto out;
2453
2454        ret = get_cur_path(sctx, ino, gen, p);
2455        if (ret < 0)
2456                goto out;
2457        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2458        TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2459
2460        ret = send_cmd(sctx);
2461
2462tlv_put_failure:
2463out:
2464        fs_path_free(p);
2465        return ret;
2466}
2467
2468static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2469{
2470        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2471        int ret = 0;
2472        struct fs_path *p;
2473
2474        btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2475                    ino, uid, gid);
2476
2477        p = fs_path_alloc();
2478        if (!p)
2479                return -ENOMEM;
2480
2481        ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2482        if (ret < 0)
2483                goto out;
2484
2485        ret = get_cur_path(sctx, ino, gen, p);
2486        if (ret < 0)
2487                goto out;
2488        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2489        TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2490        TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2491
2492        ret = send_cmd(sctx);
2493
2494tlv_put_failure:
2495out:
2496        fs_path_free(p);
2497        return ret;
2498}
2499
2500static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2501{
2502        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2503        int ret = 0;
2504        struct fs_path *p = NULL;
2505        struct btrfs_inode_item *ii;
2506        struct btrfs_path *path = NULL;
2507        struct extent_buffer *eb;
2508        struct btrfs_key key;
2509        int slot;
2510
2511        btrfs_debug(fs_info, "send_utimes %llu", ino);
2512
2513        p = fs_path_alloc();
2514        if (!p)
2515                return -ENOMEM;
2516
2517        path = alloc_path_for_send();
2518        if (!path) {
2519                ret = -ENOMEM;
2520                goto out;
2521        }
2522
2523        key.objectid = ino;
2524        key.type = BTRFS_INODE_ITEM_KEY;
2525        key.offset = 0;
2526        ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2527        if (ret > 0)
2528                ret = -ENOENT;
2529        if (ret < 0)
2530                goto out;
2531
2532        eb = path->nodes[0];
2533        slot = path->slots[0];
2534        ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2535
2536        ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2537        if (ret < 0)
2538                goto out;
2539
2540        ret = get_cur_path(sctx, ino, gen, p);
2541        if (ret < 0)
2542                goto out;
2543        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2544        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2545        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2546        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2547        /* TODO Add otime support when the otime patches get into upstream */
2548
2549        ret = send_cmd(sctx);
2550
2551tlv_put_failure:
2552out:
2553        fs_path_free(p);
2554        btrfs_free_path(path);
2555        return ret;
2556}
2557
2558/*
2559 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2560 * a valid path yet because we did not process the refs yet. So, the inode
2561 * is created as orphan.
2562 */
2563static int send_create_inode(struct send_ctx *sctx, u64 ino)
2564{
2565        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2566        int ret = 0;
2567        struct fs_path *p;
2568        int cmd;
2569        u64 gen;
2570        u64 mode;
2571        u64 rdev;
2572
2573        btrfs_debug(fs_info, "send_create_inode %llu", ino);
2574
2575        p = fs_path_alloc();
2576        if (!p)
2577                return -ENOMEM;
2578
2579        if (ino != sctx->cur_ino) {
2580                ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2581                                     NULL, NULL, &rdev);
2582                if (ret < 0)
2583                        goto out;
2584        } else {
2585                gen = sctx->cur_inode_gen;
2586                mode = sctx->cur_inode_mode;
2587                rdev = sctx->cur_inode_rdev;
2588        }
2589
2590        if (S_ISREG(mode)) {
2591                cmd = BTRFS_SEND_C_MKFILE;
2592        } else if (S_ISDIR(mode)) {
2593                cmd = BTRFS_SEND_C_MKDIR;
2594        } else if (S_ISLNK(mode)) {
2595                cmd = BTRFS_SEND_C_SYMLINK;
2596        } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2597                cmd = BTRFS_SEND_C_MKNOD;
2598        } else if (S_ISFIFO(mode)) {
2599                cmd = BTRFS_SEND_C_MKFIFO;
2600        } else if (S_ISSOCK(mode)) {
2601                cmd = BTRFS_SEND_C_MKSOCK;
2602        } else {
2603                btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2604                                (int)(mode & S_IFMT));
2605                ret = -EOPNOTSUPP;
2606                goto out;
2607        }
2608
2609        ret = begin_cmd(sctx, cmd);
2610        if (ret < 0)
2611                goto out;
2612
2613        ret = gen_unique_name(sctx, ino, gen, p);
2614        if (ret < 0)
2615                goto out;
2616
2617        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2618        TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2619
2620        if (S_ISLNK(mode)) {
2621                fs_path_reset(p);
2622                ret = read_symlink(sctx->send_root, ino, p);
2623                if (ret < 0)
2624                        goto out;
2625                TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2626        } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2627                   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2628                TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2629                TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2630        }
2631
2632        ret = send_cmd(sctx);
2633        if (ret < 0)
2634                goto out;
2635
2636
2637tlv_put_failure:
2638out:
2639        fs_path_free(p);
2640        return ret;
2641}
2642
2643/*
2644 * We need some special handling for inodes that get processed before the parent
2645 * directory got created. See process_recorded_refs for details.
2646 * This function does the check if we already created the dir out of order.
2647 */
2648static int did_create_dir(struct send_ctx *sctx, u64 dir)
2649{
2650        int ret = 0;
2651        struct btrfs_path *path = NULL;
2652        struct btrfs_key key;
2653        struct btrfs_key found_key;
2654        struct btrfs_key di_key;
2655        struct extent_buffer *eb;
2656        struct btrfs_dir_item *di;
2657        int slot;
2658
2659        path = alloc_path_for_send();
2660        if (!path) {
2661                ret = -ENOMEM;
2662                goto out;
2663        }
2664
2665        key.objectid = dir;
2666        key.type = BTRFS_DIR_INDEX_KEY;
2667        key.offset = 0;
2668        ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2669        if (ret < 0)
2670                goto out;
2671
2672        while (1) {
2673                eb = path->nodes[0];
2674                slot = path->slots[0];
2675                if (slot >= btrfs_header_nritems(eb)) {
2676                        ret = btrfs_next_leaf(sctx->send_root, path);
2677                        if (ret < 0) {
2678                                goto out;
2679                        } else if (ret > 0) {
2680                                ret = 0;
2681                                break;
2682                        }
2683                        continue;
2684                }
2685
2686                btrfs_item_key_to_cpu(eb, &found_key, slot);
2687                if (found_key.objectid != key.objectid ||
2688                    found_key.type != key.type) {
2689                        ret = 0;
2690                        goto out;
2691                }
2692
2693                di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2694                btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2695
2696                if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2697                    di_key.objectid < sctx->send_progress) {
2698                        ret = 1;
2699                        goto out;
2700                }
2701
2702                path->slots[0]++;
2703        }
2704
2705out:
2706        btrfs_free_path(path);
2707        return ret;
2708}
2709
2710/*
2711 * Only creates the inode if it is:
2712 * 1. Not a directory
2713 * 2. Or a directory which was not created already due to out of order
2714 *    directories. See did_create_dir and process_recorded_refs for details.
2715 */
2716static int send_create_inode_if_needed(struct send_ctx *sctx)
2717{
2718        int ret;
2719
2720        if (S_ISDIR(sctx->cur_inode_mode)) {
2721                ret = did_create_dir(sctx, sctx->cur_ino);
2722                if (ret < 0)
2723                        goto out;
2724                if (ret) {
2725                        ret = 0;
2726                        goto out;
2727                }
2728        }
2729
2730        ret = send_create_inode(sctx, sctx->cur_ino);
2731        if (ret < 0)
2732                goto out;
2733
2734out:
2735        return ret;
2736}
2737
2738struct recorded_ref {
2739        struct list_head list;
2740        char *name;
2741        struct fs_path *full_path;
2742        u64 dir;
2743        u64 dir_gen;
2744        int name_len;
2745};
2746
2747static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2748{
2749        ref->full_path = path;
2750        ref->name = (char *)kbasename(ref->full_path->start);
2751        ref->name_len = ref->full_path->end - ref->name;
2752}
2753
2754/*
2755 * We need to process new refs before deleted refs, but compare_tree gives us
2756 * everything mixed. So we first record all refs and later process them.
2757 * This function is a helper to record one ref.
2758 */
2759static int __record_ref(struct list_head *head, u64 dir,
2760                      u64 dir_gen, struct fs_path *path)
2761{
2762        struct recorded_ref *ref;
2763
2764        ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2765        if (!ref)
2766                return -ENOMEM;
2767
2768        ref->dir = dir;
2769        ref->dir_gen = dir_gen;
2770        set_ref_path(ref, path);
2771        list_add_tail(&ref->list, head);
2772        return 0;
2773}
2774
2775static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2776{
2777        struct recorded_ref *new;
2778
2779        new = kmalloc(sizeof(*ref), GFP_KERNEL);
2780        if (!new)
2781                return -ENOMEM;
2782
2783        new->dir = ref->dir;
2784        new->dir_gen = ref->dir_gen;
2785        new->full_path = NULL;
2786        INIT_LIST_HEAD(&new->list);
2787        list_add_tail(&new->list, list);
2788        return 0;
2789}
2790
2791static void __free_recorded_refs(struct list_head *head)
2792{
2793        struct recorded_ref *cur;
2794
2795        while (!list_empty(head)) {
2796                cur = list_entry(head->next, struct recorded_ref, list);
2797                fs_path_free(cur->full_path);
2798                list_del(&cur->list);
2799                kfree(cur);
2800        }
2801}
2802
2803static void free_recorded_refs(struct send_ctx *sctx)
2804{
2805        __free_recorded_refs(&sctx->new_refs);
2806        __free_recorded_refs(&sctx->deleted_refs);
2807}
2808
2809/*
2810 * Renames/moves a file/dir to its orphan name. Used when the first
2811 * ref of an unprocessed inode gets overwritten and for all non empty
2812 * directories.
2813 */
2814static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2815                          struct fs_path *path)
2816{
2817        int ret;
2818        struct fs_path *orphan;
2819
2820        orphan = fs_path_alloc();
2821        if (!orphan)
2822                return -ENOMEM;
2823
2824        ret = gen_unique_name(sctx, ino, gen, orphan);
2825        if (ret < 0)
2826                goto out;
2827
2828        ret = send_rename(sctx, path, orphan);
2829
2830out:
2831        fs_path_free(orphan);
2832        return ret;
2833}
2834
2835static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
2836                                                   u64 dir_ino, u64 dir_gen)
2837{
2838        struct rb_node **p = &sctx->orphan_dirs.rb_node;
2839        struct rb_node *parent = NULL;
2840        struct orphan_dir_info *entry, *odi;
2841
2842        while (*p) {
2843                parent = *p;
2844                entry = rb_entry(parent, struct orphan_dir_info, node);
2845                if (dir_ino < entry->ino)
2846                        p = &(*p)->rb_left;
2847                else if (dir_ino > entry->ino)
2848                        p = &(*p)->rb_right;
2849                else if (dir_gen < entry->gen)
2850                        p = &(*p)->rb_left;
2851                else if (dir_gen > entry->gen)
2852                        p = &(*p)->rb_right;
2853                else
2854                        return entry;
2855        }
2856
2857        odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2858        if (!odi)
2859                return ERR_PTR(-ENOMEM);
2860        odi->ino = dir_ino;
2861        odi->gen = dir_gen;
2862        odi->last_dir_index_offset = 0;
2863
2864        rb_link_node(&odi->node, parent, p);
2865        rb_insert_color(&odi->node, &sctx->orphan_dirs);
2866        return odi;
2867}
2868
2869static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
2870                                                   u64 dir_ino, u64 gen)
2871{
2872        struct rb_node *n = sctx->orphan_dirs.rb_node;
2873        struct orphan_dir_info *entry;
2874
2875        while (n) {
2876                entry = rb_entry(n, struct orphan_dir_info, node);
2877                if (dir_ino < entry->ino)
2878                        n = n->rb_left;
2879                else if (dir_ino > entry->ino)
2880                        n = n->rb_right;
2881                else if (gen < entry->gen)
2882                        n = n->rb_left;
2883                else if (gen > entry->gen)
2884                        n = n->rb_right;
2885                else
2886                        return entry;
2887        }
2888        return NULL;
2889}
2890
2891static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
2892{
2893        struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
2894
2895        return odi != NULL;
2896}
2897
2898static void free_orphan_dir_info(struct send_ctx *sctx,
2899                                 struct orphan_dir_info *odi)
2900{
2901        if (!odi)
2902                return;
2903        rb_erase(&odi->node, &sctx->orphan_dirs);
2904        kfree(odi);
2905}
2906
2907/*
2908 * Returns 1 if a directory can be removed at this point in time.
2909 * We check this by iterating all dir items and checking if the inode behind
2910 * the dir item was already processed.
2911 */
2912static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2913                     u64 send_progress)
2914{
2915        int ret = 0;
2916        struct btrfs_root *root = sctx->parent_root;
2917        struct btrfs_path *path;
2918        struct btrfs_key key;
2919        struct btrfs_key found_key;
2920        struct btrfs_key loc;
2921        struct btrfs_dir_item *di;
2922        struct orphan_dir_info *odi = NULL;
2923
2924        /*
2925         * Don't try to rmdir the top/root subvolume dir.
2926         */
2927        if (dir == BTRFS_FIRST_FREE_OBJECTID)
2928                return 0;
2929
2930        path = alloc_path_for_send();
2931        if (!path)
2932                return -ENOMEM;
2933
2934        key.objectid = dir;
2935        key.type = BTRFS_DIR_INDEX_KEY;
2936        key.offset = 0;
2937
2938        odi = get_orphan_dir_info(sctx, dir, dir_gen);
2939        if (odi)
2940                key.offset = odi->last_dir_index_offset;
2941
2942        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2943        if (ret < 0)
2944                goto out;
2945
2946        while (1) {
2947                struct waiting_dir_move *dm;
2948
2949                if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2950                        ret = btrfs_next_leaf(root, path);
2951                        if (ret < 0)
2952                                goto out;
2953                        else if (ret > 0)
2954                                break;
2955                        continue;
2956                }
2957                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2958                                      path->slots[0]);
2959                if (found_key.objectid != key.objectid ||
2960                    found_key.type != key.type)
2961                        break;
2962
2963                di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2964                                struct btrfs_dir_item);
2965                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2966
2967                dm = get_waiting_dir_move(sctx, loc.objectid);
2968                if (dm) {
2969                        odi = add_orphan_dir_info(sctx, dir, dir_gen);
2970                        if (IS_ERR(odi)) {
2971                                ret = PTR_ERR(odi);
2972                                goto out;
2973                        }
2974                        odi->gen = dir_gen;
2975                        odi->last_dir_index_offset = found_key.offset;
2976                        dm->rmdir_ino = dir;
2977                        dm->rmdir_gen = dir_gen;
2978                        ret = 0;
2979                        goto out;
2980                }
2981
2982                if (loc.objectid > send_progress) {
2983                        odi = add_orphan_dir_info(sctx, dir, dir_gen);
2984                        if (IS_ERR(odi)) {
2985                                ret = PTR_ERR(odi);
2986                                goto out;
2987                        }
2988                        odi->gen = dir_gen;
2989                        odi->last_dir_index_offset = found_key.offset;
2990                        ret = 0;
2991                        goto out;
2992                }
2993
2994                path->slots[0]++;
2995        }
2996        free_orphan_dir_info(sctx, odi);
2997
2998        ret = 1;
2999
3000out:
3001        btrfs_free_path(path);
3002        return ret;
3003}
3004
3005static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3006{
3007        struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3008
3009        return entry != NULL;
3010}
3011
3012static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3013{
3014        struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3015        struct rb_node *parent = NULL;
3016        struct waiting_dir_move *entry, *dm;
3017
3018        dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3019        if (!dm)
3020                return -ENOMEM;
3021        dm->ino = ino;
3022        dm->rmdir_ino = 0;
3023        dm->rmdir_gen = 0;
3024        dm->orphanized = orphanized;
3025
3026        while (*p) {
3027                parent = *p;
3028                entry = rb_entry(parent, struct waiting_dir_move, node);
3029                if (ino < entry->ino) {
3030                        p = &(*p)->rb_left;
3031                } else if (ino > entry->ino) {
3032                        p = &(*p)->rb_right;
3033                } else {
3034                        kfree(dm);
3035                        return -EEXIST;
3036                }
3037        }
3038
3039        rb_link_node(&dm->node, parent, p);
3040        rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3041        return 0;
3042}
3043
3044static struct waiting_dir_move *
3045get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3046{
3047        struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3048        struct waiting_dir_move *entry;
3049
3050        while (n) {
3051                entry = rb_entry(n, struct waiting_dir_move, node);
3052                if (ino < entry->ino)
3053                        n = n->rb_left;
3054                else if (ino > entry->ino)
3055                        n = n->rb_right;
3056                else
3057                        return entry;
3058        }
3059        return NULL;
3060}
3061
3062static void free_waiting_dir_move(struct send_ctx *sctx,
3063                                  struct waiting_dir_move *dm)
3064{
3065        if (!dm)
3066                return;
3067        rb_erase(&dm->node, &sctx->waiting_dir_moves);
3068        kfree(dm);
3069}
3070
3071static int add_pending_dir_move(struct send_ctx *sctx,
3072                                u64 ino,
3073                                u64 ino_gen,
3074                                u64 parent_ino,
3075                                struct list_head *new_refs,
3076                                struct list_head *deleted_refs,
3077                                const bool is_orphan)
3078{
3079        struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3080        struct rb_node *parent = NULL;
3081        struct pending_dir_move *entry = NULL, *pm;
3082        struct recorded_ref *cur;
3083        int exists = 0;
3084        int ret;
3085
3086        pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3087        if (!pm)
3088                return -ENOMEM;
3089        pm->parent_ino = parent_ino;
3090        pm->ino = ino;
3091        pm->gen = ino_gen;
3092        INIT_LIST_HEAD(&pm->list);
3093        INIT_LIST_HEAD(&pm->update_refs);
3094        RB_CLEAR_NODE(&pm->node);
3095
3096        while (*p) {
3097                parent = *p;
3098                entry = rb_entry(parent, struct pending_dir_move, node);
3099                if (parent_ino < entry->parent_ino) {
3100                        p = &(*p)->rb_left;
3101                } else if (parent_ino > entry->parent_ino) {
3102                        p = &(*p)->rb_right;
3103                } else {
3104                        exists = 1;
3105                        break;
3106                }
3107        }
3108
3109        list_for_each_entry(cur, deleted_refs, list) {
3110                ret = dup_ref(cur, &pm->update_refs);
3111                if (ret < 0)
3112                        goto out;
3113        }
3114        list_for_each_entry(cur, new_refs, list) {
3115                ret = dup_ref(cur, &pm->update_refs);
3116                if (ret < 0)
3117                        goto out;
3118        }
3119
3120        ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3121        if (ret)
3122                goto out;
3123
3124        if (exists) {
3125                list_add_tail(&pm->list, &entry->list);
3126        } else {
3127                rb_link_node(&pm->node, parent, p);
3128                rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3129        }
3130        ret = 0;
3131out:
3132        if (ret) {
3133                __free_recorded_refs(&pm->update_refs);
3134                kfree(pm);
3135        }
3136        return ret;
3137}
3138
3139static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3140                                                      u64 parent_ino)
3141{
3142        struct rb_node *n = sctx->pending_dir_moves.rb_node;
3143        struct pending_dir_move *entry;
3144
3145        while (n) {
3146                entry = rb_entry(n, struct pending_dir_move, node);
3147                if (parent_ino < entry->parent_ino)
3148                        n = n->rb_left;
3149                else if (parent_ino > entry->parent_ino)
3150                        n = n->rb_right;
3151                else
3152                        return entry;
3153        }
3154        return NULL;
3155}
3156
3157static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3158                     u64 ino, u64 gen, u64 *ancestor_ino)
3159{
3160        int ret = 0;
3161        u64 parent_inode = 0;
3162        u64 parent_gen = 0;
3163        u64 start_ino = ino;
3164
3165        *ancestor_ino = 0;
3166        while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3167                fs_path_reset(name);
3168
3169                if (is_waiting_for_rm(sctx, ino, gen))
3170                        break;
3171                if (is_waiting_for_move(sctx, ino)) {
3172                        if (*ancestor_ino == 0)
3173                                *ancestor_ino = ino;
3174                        ret = get_first_ref(sctx->parent_root, ino,
3175                                            &parent_inode, &parent_gen, name);
3176                } else {
3177                        ret = __get_cur_name_and_parent(sctx, ino, gen,
3178                                                        &parent_inode,
3179                                                        &parent_gen, name);
3180                        if (ret > 0) {
3181                                ret = 0;
3182                                break;
3183                        }
3184                }
3185                if (ret < 0)
3186                        break;
3187                if (parent_inode == start_ino) {
3188                        ret = 1;
3189                        if (*ancestor_ino == 0)
3190                                *ancestor_ino = ino;
3191                        break;
3192                }
3193                ino = parent_inode;
3194                gen = parent_gen;
3195        }
3196        return ret;
3197}
3198
3199static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3200{
3201        struct fs_path *from_path = NULL;
3202        struct fs_path *to_path = NULL;
3203        struct fs_path *name = NULL;
3204        u64 orig_progress = sctx->send_progress;
3205        struct recorded_ref *cur;
3206        u64 parent_ino, parent_gen;
3207        struct waiting_dir_move *dm = NULL;
3208        u64 rmdir_ino = 0;
3209        u64 rmdir_gen;
3210        u64 ancestor;
3211        bool is_orphan;
3212        int ret;
3213
3214        name = fs_path_alloc();
3215        from_path = fs_path_alloc();
3216        if (!name || !from_path) {
3217                ret = -ENOMEM;
3218                goto out;
3219        }
3220
3221        dm = get_waiting_dir_move(sctx, pm->ino);
3222        ASSERT(dm);
3223        rmdir_ino = dm->rmdir_ino;
3224        rmdir_gen = dm->rmdir_gen;
3225        is_orphan = dm->orphanized;
3226        free_waiting_dir_move(sctx, dm);
3227
3228        if (is_orphan) {
3229                ret = gen_unique_name(sctx, pm->ino,
3230                                      pm->gen, from_path);
3231        } else {
3232                ret = get_first_ref(sctx->parent_root, pm->ino,
3233                                    &parent_ino, &parent_gen, name);
3234                if (ret < 0)
3235                        goto out;
3236                ret = get_cur_path(sctx, parent_ino, parent_gen,
3237                                   from_path);
3238                if (ret < 0)
3239                        goto out;
3240                ret = fs_path_add_path(from_path, name);
3241        }
3242        if (ret < 0)
3243                goto out;
3244
3245        sctx->send_progress = sctx->cur_ino + 1;
3246        ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3247        if (ret < 0)
3248                goto out;
3249        if (ret) {
3250                LIST_HEAD(deleted_refs);
3251                ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3252                ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3253                                           &pm->update_refs, &deleted_refs,
3254                                           is_orphan);
3255                if (ret < 0)
3256                        goto out;
3257                if (rmdir_ino) {
3258                        dm = get_waiting_dir_move(sctx, pm->ino);
3259                        ASSERT(dm);
3260                        dm->rmdir_ino = rmdir_ino;
3261                        dm->rmdir_gen = rmdir_gen;
3262                }
3263                goto out;
3264        }
3265        fs_path_reset(name);
3266        to_path = name;
3267        name = NULL;
3268        ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3269        if (ret < 0)
3270                goto out;
3271
3272        ret = send_rename(sctx, from_path, to_path);
3273        if (ret < 0)
3274                goto out;
3275
3276        if (rmdir_ino) {
3277                struct orphan_dir_info *odi;
3278                u64 gen;
3279
3280                odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3281                if (!odi) {
3282                        /* already deleted */
3283                        goto finish;
3284                }
3285                gen = odi->gen;
3286
3287                ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3288                if (ret < 0)
3289                        goto out;
3290                if (!ret)
3291                        goto finish;
3292
3293                name = fs_path_alloc();
3294                if (!name) {
3295                        ret = -ENOMEM;
3296                        goto out;
3297                }
3298                ret = get_cur_path(sctx, rmdir_ino, gen, name);
3299                if (ret < 0)
3300                        goto out;
3301                ret = send_rmdir(sctx, name);
3302                if (ret < 0)
3303                        goto out;
3304        }
3305
3306finish:
3307        ret = send_utimes(sctx, pm->ino, pm->gen);
3308        if (ret < 0)
3309                goto out;
3310
3311        /*
3312         * After rename/move, need to update the utimes of both new parent(s)
3313         * and old parent(s).
3314         */
3315        list_for_each_entry(cur, &pm->update_refs, list) {
3316                /*
3317                 * The parent inode might have been deleted in the send snapshot
3318                 */
3319                ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3320                                     NULL, NULL, NULL, NULL, NULL);
3321                if (ret == -ENOENT) {
3322                        ret = 0;
3323                        continue;
3324                }
3325                if (ret < 0)
3326                        goto out;
3327
3328                ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3329                if (ret < 0)
3330                        goto out;
3331        }
3332
3333out:
3334        fs_path_free(name);
3335        fs_path_free(from_path);
3336        fs_path_free(to_path);
3337        sctx->send_progress = orig_progress;
3338
3339        return ret;
3340}
3341
3342static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3343{
3344        if (!list_empty(&m->list))
3345                list_del(&m->list);
3346        if (!RB_EMPTY_NODE(&m->node))
3347                rb_erase(&m->node, &sctx->pending_dir_moves);
3348        __free_recorded_refs(&m->update_refs);
3349        kfree(m);
3350}
3351
3352static void tail_append_pending_moves(struct send_ctx *sctx,
3353                                      struct pending_dir_move *moves,
3354                                      struct list_head *stack)
3355{
3356        if (list_empty(&moves->list)) {
3357                list_add_tail(&moves->list, stack);
3358        } else {
3359                LIST_HEAD(list);
3360                list_splice_init(&moves->list, &list);
3361                list_add_tail(&moves->list, stack);
3362                list_splice_tail(&list, stack);
3363        }
3364        if (!RB_EMPTY_NODE(&moves->node)) {
3365                rb_erase(&moves->node, &sctx->pending_dir_moves);
3366                RB_CLEAR_NODE(&moves->node);
3367        }
3368}
3369
3370static int apply_children_dir_moves(struct send_ctx *sctx)
3371{
3372        struct pending_dir_move *pm;
3373        struct list_head stack;
3374        u64 parent_ino = sctx->cur_ino;
3375        int ret = 0;
3376
3377        pm = get_pending_dir_moves(sctx, parent_ino);
3378        if (!pm)
3379                return 0;
3380
3381        INIT_LIST_HEAD(&stack);
3382        tail_append_pending_moves(sctx, pm, &stack);
3383
3384        while (!list_empty(&stack)) {
3385                pm = list_first_entry(&stack, struct pending_dir_move, list);
3386                parent_ino = pm->ino;
3387                ret = apply_dir_move(sctx, pm);
3388                free_pending_move(sctx, pm);
3389                if (ret)
3390                        goto out;
3391                pm = get_pending_dir_moves(sctx, parent_ino);
3392                if (pm)
3393                        tail_append_pending_moves(sctx, pm, &stack);
3394        }
3395        return 0;
3396
3397out:
3398        while (!list_empty(&stack)) {
3399                pm = list_first_entry(&stack, struct pending_dir_move, list);
3400                free_pending_move(sctx, pm);
3401        }
3402        return ret;
3403}
3404
3405/*
3406 * We might need to delay a directory rename even when no ancestor directory
3407 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3408 * renamed. This happens when we rename a directory to the old name (the name
3409 * in the parent root) of some other unrelated directory that got its rename
3410 * delayed due to some ancestor with higher number that got renamed.
3411 *
3412 * Example:
3413 *
3414 * Parent snapshot:
3415 * .                                       (ino 256)
3416 * |---- a/                                (ino 257)
3417 * |     |---- file                        (ino 260)
3418 * |
3419 * |---- b/                                (ino 258)
3420 * |---- c/                                (ino 259)
3421 *
3422 * Send snapshot:
3423 * .                                       (ino 256)
3424 * |---- a/                                (ino 258)
3425 * |---- x/                                (ino 259)
3426 *       |---- y/                          (ino 257)
3427 *             |----- file                 (ino 260)
3428 *
3429 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3430 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3431 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3432 * must issue is:
3433 *
3434 * 1 - rename 259 from 'c' to 'x'
3435 * 2 - rename 257 from 'a' to 'x/y'
3436 * 3 - rename 258 from 'b' to 'a'
3437 *
3438 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3439 * be done right away and < 0 on error.
3440 */
3441static int wait_for_dest_dir_move(struct send_ctx *sctx,
3442                                  struct recorded_ref *parent_ref,
3443                                  const bool is_orphan)
3444{
3445        struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3446        struct btrfs_path *path;
3447        struct btrfs_key key;
3448        struct btrfs_key di_key;
3449        struct btrfs_dir_item *di;
3450        u64 left_gen;
3451        u64 right_gen;
3452        int ret = 0;
3453        struct waiting_dir_move *wdm;
3454
3455        if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3456                return 0;
3457
3458        path = alloc_path_for_send();
3459        if (!path)
3460                return -ENOMEM;
3461
3462        key.objectid = parent_ref->dir;
3463        key.type = BTRFS_DIR_ITEM_KEY;
3464        key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3465
3466        ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3467        if (ret < 0) {
3468                goto out;
3469        } else if (ret > 0) {
3470                ret = 0;
3471                goto out;
3472        }
3473
3474        di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3475                                       parent_ref->name_len);
3476        if (!di) {
3477                ret = 0;
3478                goto out;
3479        }
3480        /*
3481         * di_key.objectid has the number of the inode that has a dentry in the
3482         * parent directory with the same name that sctx->cur_ino is being
3483         * renamed to. We need to check if that inode is in the send root as
3484         * well and if it is currently marked as an inode with a pending rename,
3485         * if it is, we need to delay the rename of sctx->cur_ino as well, so
3486         * that it happens after that other inode is renamed.
3487         */
3488        btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3489        if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3490                ret = 0;
3491                goto out;
3492        }
3493
3494        ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3495                             &left_gen, NULL, NULL, NULL, NULL);
3496        if (ret < 0)
3497                goto out;
3498        ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3499                             &right_gen, NULL, NULL, NULL, NULL);
3500        if (ret < 0) {
3501                if (ret == -ENOENT)
3502                        ret = 0;
3503                goto out;
3504        }
3505
3506        /* Different inode, no need to delay the rename of sctx->cur_ino */
3507        if (right_gen != left_gen) {
3508                ret = 0;
3509                goto out;
3510        }
3511
3512        wdm = get_waiting_dir_move(sctx, di_key.objectid);
3513        if (wdm && !wdm->orphanized) {
3514                ret = add_pending_dir_move(sctx,
3515                                           sctx->cur_ino,
3516                                           sctx->cur_inode_gen,
3517                                           di_key.objectid,
3518                                           &sctx->new_refs,
3519                                           &sctx->deleted_refs,
3520                                           is_orphan);
3521                if (!ret)
3522                        ret = 1;
3523        }
3524out:
3525        btrfs_free_path(path);
3526        return ret;
3527}
3528
3529/*
3530 * Check if inode ino2, or any of its ancestors, is inode ino1.
3531 * Return 1 if true, 0 if false and < 0 on error.
3532 */
3533static int check_ino_in_path(struct btrfs_root *root,
3534                             const u64 ino1,
3535                             const u64 ino1_gen,
3536                             const u64 ino2,
3537                             const u64 ino2_gen,
3538                             struct fs_path *fs_path)
3539{
3540        u64 ino = ino2;
3541
3542        if (ino1 == ino2)
3543                return ino1_gen == ino2_gen;
3544
3545        while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3546                u64 parent;
3547                u64 parent_gen;
3548                int ret;
3549
3550                fs_path_reset(fs_path);
3551                ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3552                if (ret < 0)
3553                        return ret;
3554                if (parent == ino1)
3555                        return parent_gen == ino1_gen;
3556                ino = parent;
3557        }
3558        return 0;
3559}
3560
3561/*
3562 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3563 * possible path (in case ino2 is not a directory and has multiple hard links).
3564 * Return 1 if true, 0 if false and < 0 on error.
3565 */
3566static int is_ancestor(struct btrfs_root *root,
3567                       const u64 ino1,
3568                       const u64 ino1_gen,
3569                       const u64 ino2,
3570                       struct fs_path *fs_path)
3571{
3572        bool free_fs_path = false;
3573        int ret = 0;
3574        struct btrfs_path *path = NULL;
3575        struct btrfs_key key;
3576
3577        if (!fs_path) {
3578                fs_path = fs_path_alloc();
3579                if (!fs_path)
3580                        return -ENOMEM;
3581                free_fs_path = true;
3582        }
3583
3584        path = alloc_path_for_send();
3585        if (!path) {
3586                ret = -ENOMEM;
3587                goto out;
3588        }
3589
3590        key.objectid = ino2;
3591        key.type = BTRFS_INODE_REF_KEY;
3592        key.offset = 0;
3593
3594        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3595        if (ret < 0)
3596                goto out;
3597
3598        while (true) {
3599                struct extent_buffer *leaf = path->nodes[0];
3600                int slot = path->slots[0];
3601                u32 cur_offset = 0;
3602                u32 item_size;
3603
3604                if (slot >= btrfs_header_nritems(leaf)) {
3605                        ret = btrfs_next_leaf(root, path);
3606                        if (ret < 0)
3607                                goto out;
3608                        if (ret > 0)
3609                                break;
3610                        continue;
3611                }
3612
3613                btrfs_item_key_to_cpu(leaf, &key, slot);
3614                if (key.objectid != ino2)
3615                        break;
3616                if (key.type != BTRFS_INODE_REF_KEY &&
3617                    key.type != BTRFS_INODE_EXTREF_KEY)
3618                        break;
3619
3620                item_size = btrfs_item_size_nr(leaf, slot);
3621                while (cur_offset < item_size) {
3622                        u64 parent;
3623                        u64 parent_gen;
3624
3625                        if (key.type == BTRFS_INODE_EXTREF_KEY) {
3626                                unsigned long ptr;
3627                                struct btrfs_inode_extref *extref;
3628
3629                                ptr = btrfs_item_ptr_offset(leaf, slot);
3630                                extref = (struct btrfs_inode_extref *)
3631                                        (ptr + cur_offset);
3632                                parent = btrfs_inode_extref_parent(leaf,
3633                                                                   extref);
3634                                cur_offset += sizeof(*extref);
3635                                cur_offset += btrfs_inode_extref_name_len(leaf,
3636                                                                  extref);
3637                        } else {
3638                                parent = key.offset;
3639                                cur_offset = item_size;
3640                        }
3641
3642                        ret = get_inode_info(root, parent, NULL, &parent_gen,
3643                                             NULL, NULL, NULL, NULL);
3644                        if (ret < 0)
3645                                goto out;
3646                        ret = check_ino_in_path(root, ino1, ino1_gen,
3647                                                parent, parent_gen, fs_path);
3648                        if (ret)
3649                                goto out;
3650                }
3651                path->slots[0]++;
3652        }
3653        ret = 0;
3654 out:
3655        btrfs_free_path(path);
3656        if (free_fs_path)
3657                fs_path_free(fs_path);
3658        return ret;
3659}
3660
3661static int wait_for_parent_move(struct send_ctx *sctx,
3662                                struct recorded_ref *parent_ref,
3663                                const bool is_orphan)
3664{
3665        int ret = 0;
3666        u64 ino = parent_ref->dir;
3667        u64 ino_gen = parent_ref->dir_gen;
3668        u64 parent_ino_before, parent_ino_after;
3669        struct fs_path *path_before = NULL;
3670        struct fs_path *path_after = NULL;
3671        int len1, len2;
3672
3673        path_after = fs_path_alloc();
3674        path_before = fs_path_alloc();
3675        if (!path_after || !path_before) {
3676                ret = -ENOMEM;
3677                goto out;
3678        }
3679
3680        /*
3681         * Our current directory inode may not yet be renamed/moved because some
3682         * ancestor (immediate or not) has to be renamed/moved first. So find if
3683         * such ancestor exists and make sure our own rename/move happens after
3684         * that ancestor is processed to avoid path build infinite loops (done
3685         * at get_cur_path()).
3686         */
3687        while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3688                u64 parent_ino_after_gen;
3689
3690                if (is_waiting_for_move(sctx, ino)) {
3691                        /*
3692                         * If the current inode is an ancestor of ino in the
3693                         * parent root, we need to delay the rename of the
3694                         * current inode, otherwise don't delayed the rename
3695                         * because we can end up with a circular dependency
3696                         * of renames, resulting in some directories never
3697                         * getting the respective rename operations issued in
3698                         * the send stream or getting into infinite path build
3699                         * loops.
3700                         */
3701                        ret = is_ancestor(sctx->parent_root,
3702                                          sctx->cur_ino, sctx->cur_inode_gen,
3703                                          ino, path_before);
3704                        if (ret)
3705                                break;
3706                }
3707
3708                fs_path_reset(path_before);
3709                fs_path_reset(path_after);
3710
3711                ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3712                                    &parent_ino_after_gen, path_after);
3713                if (ret < 0)
3714                        goto out;
3715                ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3716                                    NULL, path_before);
3717                if (ret < 0 && ret != -ENOENT) {
3718                        goto out;
3719                } else if (ret == -ENOENT) {
3720                        ret = 0;
3721                        break;
3722                }
3723
3724                len1 = fs_path_len(path_before);
3725                len2 = fs_path_len(path_after);
3726                if (ino > sctx->cur_ino &&
3727                    (parent_ino_before != parent_ino_after || len1 != len2 ||
3728                     memcmp(path_before->start, path_after->start, len1))) {
3729                        u64 parent_ino_gen;
3730
3731                        ret = get_inode_info(sctx->parent_root, ino, NULL,
3732                                             &parent_ino_gen, NULL, NULL, NULL,
3733                                             NULL);
3734                        if (ret < 0)
3735                                goto out;
3736                        if (ino_gen == parent_ino_gen) {
3737                                ret = 1;
3738                                break;
3739                        }
3740                }
3741                ino = parent_ino_after;
3742                ino_gen = parent_ino_after_gen;
3743        }
3744
3745out:
3746        fs_path_free(path_before);
3747        fs_path_free(path_after);
3748
3749        if (ret == 1) {
3750                ret = add_pending_dir_move(sctx,
3751                                           sctx->cur_ino,
3752                                           sctx->cur_inode_gen,
3753                                           ino,
3754                                           &sctx->new_refs,
3755                                           &sctx->deleted_refs,
3756                                           is_orphan);
3757                if (!ret)
3758                        ret = 1;
3759        }
3760
3761        return ret;
3762}
3763
3764static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3765{
3766        int ret;
3767        struct fs_path *new_path;
3768
3769        /*
3770         * Our reference's name member points to its full_path member string, so
3771         * we use here a new path.
3772         */
3773        new_path = fs_path_alloc();
3774        if (!new_path)
3775                return -ENOMEM;
3776
3777        ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3778        if (ret < 0) {
3779                fs_path_free(new_path);
3780                return ret;
3781        }
3782        ret = fs_path_add(new_path, ref->name, ref->name_len);
3783        if (ret < 0) {
3784                fs_path_free(new_path);
3785                return ret;
3786        }
3787
3788        fs_path_free(ref->full_path);
3789        set_ref_path(ref, new_path);
3790
3791        return 0;
3792}
3793
3794/*
3795 * When processing the new references for an inode we may orphanize an existing
3796 * directory inode because its old name conflicts with one of the new references
3797 * of the current inode. Later, when processing another new reference of our
3798 * inode, we might need to orphanize another inode, but the path we have in the
3799 * reference reflects the pre-orphanization name of the directory we previously
3800 * orphanized. For example:
3801 *
3802 * parent snapshot looks like:
3803 *
3804 * .                                     (ino 256)
3805 * |----- f1                             (ino 257)
3806 * |----- f2                             (ino 258)
3807 * |----- d1/                            (ino 259)
3808 *        |----- d2/                     (ino 260)
3809 *
3810 * send snapshot looks like:
3811 *
3812 * .                                     (ino 256)
3813 * |----- d1                             (ino 258)
3814 * |----- f2/                            (ino 259)
3815 *        |----- f2_link/                (ino 260)
3816 *        |       |----- f1              (ino 257)
3817 *        |
3818 *        |----- d2                      (ino 258)
3819 *
3820 * When processing inode 257 we compute the name for inode 259 as "d1", and we
3821 * cache it in the name cache. Later when we start processing inode 258, when
3822 * collecting all its new references we set a full path of "d1/d2" for its new
3823 * reference with name "d2". When we start processing the new references we
3824 * start by processing the new reference with name "d1", and this results in
3825 * orphanizing inode 259, since its old reference causes a conflict. Then we
3826 * move on the next new reference, with name "d2", and we find out we must
3827 * orphanize inode 260, as its old reference conflicts with ours - but for the
3828 * orphanization we use a source path corresponding to the path we stored in the
3829 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3830 * receiver fail since the path component "d1/" no longer exists, it was renamed
3831 * to "o259-6-0/" when processing the previous new reference. So in this case we
3832 * must recompute the path in the new reference and use it for the new
3833 * orphanization operation.
3834 */
3835static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3836{
3837        char *name;
3838        int ret;
3839
3840        name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
3841        if (!name)
3842                return -ENOMEM;
3843
3844        fs_path_reset(ref->full_path);
3845        ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
3846        if (ret < 0)
3847                goto out;
3848
3849        ret = fs_path_add(ref->full_path, name, ref->name_len);
3850        if (ret < 0)
3851                goto out;
3852
3853        /* Update the reference's base name pointer. */
3854        set_ref_path(ref, ref->full_path);
3855out:
3856        kfree(name);
3857        return ret;
3858}
3859
3860/*
3861 * This does all the move/link/unlink/rmdir magic.
3862 */
3863static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3864{
3865        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3866        int ret = 0;
3867        struct recorded_ref *cur;
3868        struct recorded_ref *cur2;
3869        struct list_head check_dirs;
3870        struct fs_path *valid_path = NULL;
3871        u64 ow_inode = 0;
3872        u64 ow_gen;
3873        u64 ow_mode;
3874        int did_overwrite = 0;
3875        int is_orphan = 0;
3876        u64 last_dir_ino_rm = 0;
3877        bool can_rename = true;
3878        bool orphanized_dir = false;
3879        bool orphanized_ancestor = false;
3880
3881        btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3882
3883        /*
3884         * This should never happen as the root dir always has the same ref
3885         * which is always '..'
3886         */
3887        BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3888        INIT_LIST_HEAD(&check_dirs);
3889
3890        valid_path = fs_path_alloc();
3891        if (!valid_path) {
3892                ret = -ENOMEM;
3893                goto out;
3894        }
3895
3896        /*
3897         * First, check if the first ref of the current inode was overwritten
3898         * before. If yes, we know that the current inode was already orphanized
3899         * and thus use the orphan name. If not, we can use get_cur_path to
3900         * get the path of the first ref as it would like while receiving at
3901         * this point in time.
3902         * New inodes are always orphan at the beginning, so force to use the
3903         * orphan name in this case.
3904         * The first ref is stored in valid_path and will be updated if it
3905         * gets moved around.
3906         */
3907        if (!sctx->cur_inode_new) {
3908                ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3909                                sctx->cur_inode_gen);
3910                if (ret < 0)
3911                        goto out;
3912                if (ret)
3913                        did_overwrite = 1;
3914        }
3915        if (sctx->cur_inode_new || did_overwrite) {
3916                ret = gen_unique_name(sctx, sctx->cur_ino,
3917                                sctx->cur_inode_gen, valid_path);
3918                if (ret < 0)
3919                        goto out;
3920                is_orphan = 1;
3921        } else {
3922                ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3923                                valid_path);
3924                if (ret < 0)
3925                        goto out;
3926        }
3927
3928        /*
3929         * Before doing any rename and link operations, do a first pass on the
3930         * new references to orphanize any unprocessed inodes that may have a
3931         * reference that conflicts with one of the new references of the current
3932         * inode. This needs to happen first because a new reference may conflict
3933         * with the old reference of a parent directory, so we must make sure
3934         * that the path used for link and rename commands don't use an
3935         * orphanized name when an ancestor was not yet orphanized.
3936         *
3937         * Example:
3938         *
3939         * Parent snapshot:
3940         *
3941         * .                                                      (ino 256)
3942         * |----- testdir/                                        (ino 259)
3943         * |          |----- a                                    (ino 257)
3944         * |
3945         * |----- b                                               (ino 258)
3946         *
3947         * Send snapshot:
3948         *
3949         * .                                                      (ino 256)
3950         * |----- testdir_2/                                      (ino 259)
3951         * |          |----- a                                    (ino 260)
3952         * |
3953         * |----- testdir                                         (ino 257)
3954         * |----- b                                               (ino 257)
3955         * |----- b2                                              (ino 258)
3956         *
3957         * Processing the new reference for inode 257 with name "b" may happen
3958         * before processing the new reference with name "testdir". If so, we
3959         * must make sure that by the time we send a link command to create the
3960         * hard link "b", inode 259 was already orphanized, since the generated
3961         * path in "valid_path" already contains the orphanized name for 259.
3962         * We are processing inode 257, so only later when processing 259 we do
3963         * the rename operation to change its temporary (orphanized) name to
3964         * "testdir_2".
3965         */
3966        list_for_each_entry(cur, &sctx->new_refs, list) {
3967                ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3968                if (ret < 0)
3969                        goto out;
3970                if (ret == inode_state_will_create)
3971                        continue;
3972
3973                /*
3974                 * Check if this new ref would overwrite the first ref of another
3975                 * unprocessed inode. If yes, orphanize the overwritten inode.
3976                 * If we find an overwritten ref that is not the first ref,
3977                 * simply unlink it.
3978                 */
3979                ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3980                                cur->name, cur->name_len,
3981                                &ow_inode, &ow_gen, &ow_mode);
3982                if (ret < 0)
3983                        goto out;
3984                if (ret) {
3985                        ret = is_first_ref(sctx->parent_root,
3986                                           ow_inode, cur->dir, cur->name,
3987                                           cur->name_len);
3988                        if (ret < 0)
3989                                goto out;
3990                        if (ret) {
3991                                struct name_cache_entry *nce;
3992                                struct waiting_dir_move *wdm;
3993
3994                                if (orphanized_dir) {
3995                                        ret = refresh_ref_path(sctx, cur);
3996                                        if (ret < 0)
3997                                                goto out;
3998                                }
3999
4000                                ret = orphanize_inode(sctx, ow_inode, ow_gen,
4001                                                cur->full_path);
4002                                if (ret < 0)
4003                                        goto out;
4004                                if (S_ISDIR(ow_mode))
4005                                        orphanized_dir = true;
4006
4007                                /*
4008                                 * If ow_inode has its rename operation delayed
4009                                 * make sure that its orphanized name is used in
4010                                 * the source path when performing its rename
4011                                 * operation.
4012                                 */
4013                                if (is_waiting_for_move(sctx, ow_inode)) {
4014                                        wdm = get_waiting_dir_move(sctx,
4015                                                                   ow_inode);
4016                                        ASSERT(wdm);
4017                                        wdm->orphanized = true;
4018                                }
4019
4020                                /*
4021                                 * Make sure we clear our orphanized inode's
4022                                 * name from the name cache. This is because the
4023                                 * inode ow_inode might be an ancestor of some
4024                                 * other inode that will be orphanized as well
4025                                 * later and has an inode number greater than
4026                                 * sctx->send_progress. We need to prevent
4027                                 * future name lookups from using the old name
4028                                 * and get instead the orphan name.
4029                                 */
4030                                nce = name_cache_search(sctx, ow_inode, ow_gen);
4031                                if (nce) {
4032                                        name_cache_delete(sctx, nce);
4033                                        kfree(nce);
4034                                }
4035
4036                                /*
4037                                 * ow_inode might currently be an ancestor of
4038                                 * cur_ino, therefore compute valid_path (the
4039                                 * current path of cur_ino) again because it
4040                                 * might contain the pre-orphanization name of
4041                                 * ow_inode, which is no longer valid.
4042                                 */
4043                                ret = is_ancestor(sctx->parent_root,
4044                                                  ow_inode, ow_gen,
4045                                                  sctx->cur_ino, NULL);
4046                                if (ret > 0) {
4047                                        orphanized_ancestor = true;
4048                                        fs_path_reset(valid_path);
4049                                        ret = get_cur_path(sctx, sctx->cur_ino,
4050                                                           sctx->cur_inode_gen,
4051                                                           valid_path);
4052                                }
4053                                if (ret < 0)
4054                                        goto out;
4055                        } else {
4056                                /*
4057                                 * If we previously orphanized a directory that
4058                                 * collided with a new reference that we already
4059                                 * processed, recompute the current path because
4060                                 * that directory may be part of the path.
4061                                 */
4062                                if (orphanized_dir) {
4063                                        ret = refresh_ref_path(sctx, cur);
4064                                        if (ret < 0)
4065                                                goto out;
4066                                }
4067                                ret = send_unlink(sctx, cur->full_path);
4068                                if (ret < 0)
4069                                        goto out;
4070                        }
4071                }
4072
4073        }
4074
4075        list_for_each_entry(cur, &sctx->new_refs, list) {
4076                /*
4077                 * We may have refs where the parent directory does not exist
4078                 * yet. This happens if the parent directories inum is higher
4079                 * than the current inum. To handle this case, we create the
4080                 * parent directory out of order. But we need to check if this
4081                 * did already happen before due to other refs in the same dir.
4082                 */
4083                ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4084                if (ret < 0)
4085                        goto out;
4086                if (ret == inode_state_will_create) {
4087                        ret = 0;
4088                        /*
4089                         * First check if any of the current inodes refs did
4090                         * already create the dir.
4091                         */
4092                        list_for_each_entry(cur2, &sctx->new_refs, list) {
4093                                if (cur == cur2)
4094                                        break;
4095                                if (cur2->dir == cur->dir) {
4096                                        ret = 1;
4097                                        break;
4098                                }
4099                        }
4100
4101                        /*
4102                         * If that did not happen, check if a previous inode
4103                         * did already create the dir.
4104                         */
4105                        if (!ret)
4106                                ret = did_create_dir(sctx, cur->dir);
4107                        if (ret < 0)
4108                                goto out;
4109                        if (!ret) {
4110                                ret = send_create_inode(sctx, cur->dir);
4111                                if (ret < 0)
4112                                        goto out;
4113                        }
4114                }
4115
4116                if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4117                        ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4118                        if (ret < 0)
4119                                goto out;
4120                        if (ret == 1) {
4121                                can_rename = false;
4122                                *pending_move = 1;
4123                        }
4124                }
4125
4126                if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4127                    can_rename) {
4128                        ret = wait_for_parent_move(sctx, cur, is_orphan);
4129                        if (ret < 0)
4130                                goto out;
4131                        if (ret == 1) {
4132                                can_rename = false;
4133                                *pending_move = 1;
4134                        }
4135                }
4136
4137                /*
4138                 * link/move the ref to the new place. If we have an orphan
4139                 * inode, move it and update valid_path. If not, link or move
4140                 * it depending on the inode mode.
4141                 */
4142                if (is_orphan && can_rename) {
4143                        ret = send_rename(sctx, valid_path, cur->full_path);
4144                        if (ret < 0)
4145                                goto out;
4146                        is_orphan = 0;
4147                        ret = fs_path_copy(valid_path, cur->full_path);
4148                        if (ret < 0)
4149                                goto out;
4150                } else if (can_rename) {
4151                        if (S_ISDIR(sctx->cur_inode_mode)) {
4152                                /*
4153                                 * Dirs can't be linked, so move it. For moved
4154                                 * dirs, we always have one new and one deleted
4155                                 * ref. The deleted ref is ignored later.
4156                                 */
4157                                ret = send_rename(sctx, valid_path,
4158                                                  cur->full_path);
4159                                if (!ret)
4160                                        ret = fs_path_copy(valid_path,
4161                                                           cur->full_path);
4162                                if (ret < 0)
4163                                        goto out;
4164                        } else {
4165                                /*
4166                                 * We might have previously orphanized an inode
4167                                 * which is an ancestor of our current inode,
4168                                 * so our reference's full path, which was
4169                                 * computed before any such orphanizations, must
4170                                 * be updated.
4171                                 */
4172                                if (orphanized_dir) {
4173                                        ret = update_ref_path(sctx, cur);
4174                                        if (ret < 0)
4175                                                goto out;
4176                                }
4177                                ret = send_link(sctx, cur->full_path,
4178                                                valid_path);
4179                                if (ret < 0)
4180                                        goto out;
4181                        }
4182                }
4183                ret = dup_ref(cur, &check_dirs);
4184                if (ret < 0)
4185                        goto out;
4186        }
4187
4188        if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4189                /*
4190                 * Check if we can already rmdir the directory. If not,
4191                 * orphanize it. For every dir item inside that gets deleted
4192                 * later, we do this check again and rmdir it then if possible.
4193                 * See the use of check_dirs for more details.
4194                 */
4195                ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4196                                sctx->cur_ino);
4197                if (ret < 0)
4198                        goto out;
4199                if (ret) {
4200                        ret = send_rmdir(sctx, valid_path);
4201                        if (ret < 0)
4202                                goto out;
4203                } else if (!is_orphan) {
4204                        ret = orphanize_inode(sctx, sctx->cur_ino,
4205                                        sctx->cur_inode_gen, valid_path);
4206                        if (ret < 0)
4207                                goto out;
4208                        is_orphan = 1;
4209                }
4210
4211                list_for_each_entry(cur, &sctx->deleted_refs, list) {
4212                        ret = dup_ref(cur, &check_dirs);
4213                        if (ret < 0)
4214                                goto out;
4215                }
4216        } else if (S_ISDIR(sctx->cur_inode_mode) &&
4217                   !list_empty(&sctx->deleted_refs)) {
4218                /*
4219                 * We have a moved dir. Add the old parent to check_dirs
4220                 */
4221                cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4222                                list);
4223                ret = dup_ref(cur, &check_dirs);
4224                if (ret < 0)
4225                        goto out;
4226        } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4227                /*
4228                 * We have a non dir inode. Go through all deleted refs and
4229                 * unlink them if they were not already overwritten by other
4230                 * inodes.
4231                 */
4232                list_for_each_entry(cur, &sctx->deleted_refs, list) {
4233                        ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4234                                        sctx->cur_ino, sctx->cur_inode_gen,
4235                                        cur->name, cur->name_len);
4236                        if (ret < 0)
4237                                goto out;
4238                        if (!ret) {
4239                                /*
4240                                 * If we orphanized any ancestor before, we need
4241                                 * to recompute the full path for deleted names,
4242                                 * since any such path was computed before we
4243                                 * processed any references and orphanized any
4244                                 * ancestor inode.
4245                                 */
4246                                if (orphanized_ancestor) {
4247                                        ret = update_ref_path(sctx, cur);
4248                                        if (ret < 0)
4249                                                goto out;
4250                                }
4251                                ret = send_unlink(sctx, cur->full_path);
4252                                if (ret < 0)
4253                                        goto out;
4254                        }
4255                        ret = dup_ref(cur, &check_dirs);
4256                        if (ret < 0)
4257                                goto out;
4258                }
4259                /*
4260                 * If the inode is still orphan, unlink the orphan. This may
4261                 * happen when a previous inode did overwrite the first ref
4262                 * of this inode and no new refs were added for the current
4263                 * inode. Unlinking does not mean that the inode is deleted in
4264                 * all cases. There may still be links to this inode in other
4265                 * places.
4266                 */
4267                if (is_orphan) {
4268                        ret = send_unlink(sctx, valid_path);
4269                        if (ret < 0)
4270                                goto out;
4271                }
4272        }
4273
4274        /*
4275         * We did collect all parent dirs where cur_inode was once located. We
4276         * now go through all these dirs and check if they are pending for
4277         * deletion and if it's finally possible to perform the rmdir now.
4278         * We also update the inode stats of the parent dirs here.
4279         */
4280        list_for_each_entry(cur, &check_dirs, list) {
4281                /*
4282                 * In case we had refs into dirs that were not processed yet,
4283                 * we don't need to do the utime and rmdir logic for these dirs.
4284                 * The dir will be processed later.
4285                 */
4286                if (cur->dir > sctx->cur_ino)
4287                        continue;
4288
4289                ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4290                if (ret < 0)
4291                        goto out;
4292
4293                if (ret == inode_state_did_create ||
4294                    ret == inode_state_no_change) {
4295                        /* TODO delayed utimes */
4296                        ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4297                        if (ret < 0)
4298                                goto out;
4299                } else if (ret == inode_state_did_delete &&
4300                           cur->dir != last_dir_ino_rm) {
4301                        ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4302                                        sctx->cur_ino);
4303                        if (ret < 0)
4304                                goto out;
4305                        if (ret) {
4306                                ret = get_cur_path(sctx, cur->dir,
4307                                                   cur->dir_gen, valid_path);
4308                                if (ret < 0)
4309                                        goto out;
4310                                ret = send_rmdir(sctx, valid_path);
4311                                if (ret < 0)
4312                                        goto out;
4313                                last_dir_ino_rm = cur->dir;
4314                        }
4315                }
4316        }
4317
4318        ret = 0;
4319
4320out:
4321        __free_recorded_refs(&check_dirs);
4322        free_recorded_refs(sctx);
4323        fs_path_free(valid_path);
4324        return ret;
4325}
4326
4327static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4328                      void *ctx, struct list_head *refs)
4329{
4330        int ret = 0;
4331        struct send_ctx *sctx = ctx;
4332        struct fs_path *p;
4333        u64 gen;
4334
4335        p = fs_path_alloc();
4336        if (!p)
4337                return -ENOMEM;
4338
4339        ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4340                        NULL, NULL);
4341        if (ret < 0)
4342                goto out;
4343
4344        ret = get_cur_path(sctx, dir, gen, p);
4345        if (ret < 0)
4346                goto out;
4347        ret = fs_path_add_path(p, name);
4348        if (ret < 0)
4349                goto out;
4350
4351        ret = __record_ref(refs, dir, gen, p);
4352
4353out:
4354        if (ret)
4355                fs_path_free(p);
4356        return ret;
4357}
4358
4359static int __record_new_ref(int num, u64 dir, int index,
4360                            struct fs_path *name,
4361                            void *ctx)
4362{
4363        struct send_ctx *sctx = ctx;
4364        return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4365}
4366
4367
4368static int __record_deleted_ref(int num, u64 dir, int index,
4369                                struct fs_path *name,
4370                                void *ctx)
4371{
4372        struct send_ctx *sctx = ctx;
4373        return record_ref(sctx->parent_root, dir, name, ctx,
4374                          &sctx->deleted_refs);
4375}
4376
4377static int record_new_ref(struct send_ctx *sctx)
4378{
4379        int ret;
4380
4381        ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4382                                sctx->cmp_key, 0, __record_new_ref, sctx);
4383        if (ret < 0)
4384                goto out;
4385        ret = 0;
4386
4387out:
4388        return ret;
4389}
4390
4391static int record_deleted_ref(struct send_ctx *sctx)
4392{
4393        int ret;
4394
4395        ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4396                                sctx->cmp_key, 0, __record_deleted_ref, sctx);
4397        if (ret < 0)
4398                goto out;
4399        ret = 0;
4400
4401out:
4402        return ret;
4403}
4404
4405struct find_ref_ctx {
4406        u64 dir;
4407        u64 dir_gen;
4408        struct btrfs_root *root;
4409        struct fs_path *name;
4410        int found_idx;
4411};
4412
4413static int __find_iref(int num, u64 dir, int index,
4414                       struct fs_path *name,
4415                       void *ctx_)
4416{
4417        struct find_ref_ctx *ctx = ctx_;
4418        u64 dir_gen;
4419        int ret;
4420
4421        if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4422            strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4423                /*
4424                 * To avoid doing extra lookups we'll only do this if everything
4425                 * else matches.
4426                 */
4427                ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4428                                     NULL, NULL, NULL);
4429                if (ret)
4430                        return ret;
4431                if (dir_gen != ctx->dir_gen)
4432                        return 0;
4433                ctx->found_idx = num;
4434                return 1;
4435        }
4436        return 0;
4437}
4438
4439static int find_iref(struct btrfs_root *root,
4440                     struct btrfs_path *path,
4441                     struct btrfs_key *key,
4442                     u64 dir, u64 dir_gen, struct fs_path *name)
4443{
4444        int ret;
4445        struct find_ref_ctx ctx;
4446
4447        ctx.dir = dir;
4448        ctx.name = name;
4449        ctx.dir_gen = dir_gen;
4450        ctx.found_idx = -1;
4451        ctx.root = root;
4452
4453        ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4454        if (ret < 0)
4455                return ret;
4456
4457        if (ctx.found_idx == -1)
4458                return -ENOENT;
4459
4460        return ctx.found_idx;
4461}
4462
4463static int __record_changed_new_ref(int num, u64 dir, int index,
4464                                    struct fs_path *name,
4465                                    void *ctx)
4466{
4467        u64 dir_gen;
4468        int ret;
4469        struct send_ctx *sctx = ctx;
4470
4471        ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4472                             NULL, NULL, NULL);
4473        if (ret)
4474                return ret;
4475
4476        ret = find_iref(sctx->parent_root, sctx->right_path,
4477                        sctx->cmp_key, dir, dir_gen, name);
4478        if (ret == -ENOENT)
4479                ret = __record_new_ref(num, dir, index, name, sctx);
4480        else if (ret > 0)
4481                ret = 0;
4482
4483        return ret;
4484}
4485
4486static int __record_changed_deleted_ref(int num, u64 dir, int index,
4487                                        struct fs_path *name,
4488                                        void *ctx)
4489{
4490        u64 dir_gen;
4491        int ret;
4492        struct send_ctx *sctx = ctx;
4493
4494        ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4495                             NULL, NULL, NULL);
4496        if (ret)
4497                return ret;
4498
4499        ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4500                        dir, dir_gen, name);
4501        if (ret == -ENOENT)
4502                ret = __record_deleted_ref(num, dir, index, name, sctx);
4503        else if (ret > 0)
4504                ret = 0;
4505
4506        return ret;
4507}
4508
4509static int record_changed_ref(struct send_ctx *sctx)
4510{
4511        int ret = 0;
4512
4513        ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4514                        sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4515        if (ret < 0)
4516                goto out;
4517        ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4518                        sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4519        if (ret < 0)
4520                goto out;
4521        ret = 0;
4522
4523out:
4524        return ret;
4525}
4526
4527/*
4528 * Record and process all refs at once. Needed when an inode changes the
4529 * generation number, which means that it was deleted and recreated.
4530 */
4531static int process_all_refs(struct send_ctx *sctx,
4532                            enum btrfs_compare_tree_result cmd)
4533{
4534        int ret;
4535        struct btrfs_root *root;
4536        struct btrfs_path *path;
4537        struct btrfs_key key;
4538        struct btrfs_key found_key;
4539        struct extent_buffer *eb;
4540        int slot;
4541        iterate_inode_ref_t cb;
4542        int pending_move = 0;
4543
4544        path = alloc_path_for_send();
4545        if (!path)
4546                return -ENOMEM;
4547
4548        if (cmd == BTRFS_COMPARE_TREE_NEW) {
4549                root = sctx->send_root;
4550                cb = __record_new_ref;
4551        } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4552                root = sctx->parent_root;
4553                cb = __record_deleted_ref;
4554        } else {
4555                btrfs_err(sctx->send_root->fs_info,
4556                                "Wrong command %d in process_all_refs", cmd);
4557                ret = -EINVAL;
4558                goto out;
4559        }
4560
4561        key.objectid = sctx->cmp_key->objectid;
4562        key.type = BTRFS_INODE_REF_KEY;
4563        key.offset = 0;
4564        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4565        if (ret < 0)
4566                goto out;
4567
4568        while (1) {
4569                eb = path->nodes[0];
4570                slot = path->slots[0];
4571                if (slot >= btrfs_header_nritems(eb)) {
4572                        ret = btrfs_next_leaf(root, path);
4573                        if (ret < 0)
4574                                goto out;
4575                        else if (ret > 0)
4576                                break;
4577                        continue;
4578                }
4579
4580                btrfs_item_key_to_cpu(eb, &found_key, slot);
4581
4582                if (found_key.objectid != key.objectid ||
4583                    (found_key.type != BTRFS_INODE_REF_KEY &&
4584                     found_key.type != BTRFS_INODE_EXTREF_KEY))
4585                        break;
4586
4587                ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4588                if (ret < 0)
4589                        goto out;
4590
4591                path->slots[0]++;
4592        }
4593        btrfs_release_path(path);
4594
4595        /*
4596         * We don't actually care about pending_move as we are simply
4597         * re-creating this inode and will be rename'ing it into place once we
4598         * rename the parent directory.
4599         */
4600        ret = process_recorded_refs(sctx, &pending_move);
4601out:
4602        btrfs_free_path(path);
4603        return ret;
4604}
4605
4606static int send_set_xattr(struct send_ctx *sctx,
4607                          struct fs_path *path,
4608                          const char *name, int name_len,
4609                          const char *data, int data_len)
4610{
4611        int ret = 0;
4612
4613        ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4614        if (ret < 0)
4615                goto out;
4616
4617        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4618        TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4619        TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4620
4621        ret = send_cmd(sctx);
4622
4623tlv_put_failure:
4624out:
4625        return ret;
4626}
4627
4628static int send_remove_xattr(struct send_ctx *sctx,
4629                          struct fs_path *path,
4630                          const char *name, int name_len)
4631{
4632        int ret = 0;
4633
4634        ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4635        if (ret < 0)
4636                goto out;
4637
4638        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4639        TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4640
4641        ret = send_cmd(sctx);
4642
4643tlv_put_failure:
4644out:
4645        return ret;
4646}
4647
4648static int __process_new_xattr(int num, struct btrfs_key *di_key,
4649                               const char *name, int name_len,
4650                               const char *data, int data_len,
4651                               u8 type, void *ctx)
4652{
4653        int ret;
4654        struct send_ctx *sctx = ctx;
4655        struct fs_path *p;
4656        struct posix_acl_xattr_header dummy_acl;
4657
4658        /* Capabilities are emitted by finish_inode_if_needed */
4659        if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4660                return 0;
4661
4662        p = fs_path_alloc();
4663        if (!p)
4664                return -ENOMEM;
4665
4666        /*
4667         * This hack is needed because empty acls are stored as zero byte
4668         * data in xattrs. Problem with that is, that receiving these zero byte
4669         * acls will fail later. To fix this, we send a dummy acl list that
4670         * only contains the version number and no entries.
4671         */
4672        if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4673            !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4674                if (data_len == 0) {
4675                        dummy_acl.a_version =
4676                                        cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4677                        data = (char *)&dummy_acl;
4678                        data_len = sizeof(dummy_acl);
4679                }
4680        }
4681
4682        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4683        if (ret < 0)
4684                goto out;
4685
4686        ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4687
4688out:
4689        fs_path_free(p);
4690        return ret;
4691}
4692
4693static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4694                                   const char *name, int name_len,
4695                                   const char *data, int data_len,
4696                                   u8 type, void *ctx)
4697{
4698        int ret;
4699        struct send_ctx *sctx = ctx;
4700        struct fs_path *p;
4701
4702        p = fs_path_alloc();
4703        if (!p)
4704                return -ENOMEM;
4705
4706        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4707        if (ret < 0)
4708                goto out;
4709
4710        ret = send_remove_xattr(sctx, p, name, name_len);
4711
4712out:
4713        fs_path_free(p);
4714        return ret;
4715}
4716
4717static int process_new_xattr(struct send_ctx *sctx)
4718{
4719        int ret = 0;
4720
4721        ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4722                               __process_new_xattr, sctx);
4723
4724        return ret;
4725}
4726
4727static int process_deleted_xattr(struct send_ctx *sctx)
4728{
4729        return iterate_dir_item(sctx->parent_root, sctx->right_path,
4730                                __process_deleted_xattr, sctx);
4731}
4732
4733struct find_xattr_ctx {
4734        const char *name;
4735        int name_len;
4736        int found_idx;
4737        char *found_data;
4738        int found_data_len;
4739};
4740
4741static int __find_xattr(int num, struct btrfs_key *di_key,
4742                        const char *name, int name_len,
4743                        const char *data, int data_len,
4744                        u8 type, void *vctx)
4745{
4746        struct find_xattr_ctx *ctx = vctx;
4747
4748        if (name_len == ctx->name_len &&
4749            strncmp(name, ctx->name, name_len) == 0) {
4750                ctx->found_idx = num;
4751                ctx->found_data_len = data_len;
4752                ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4753                if (!ctx->found_data)
4754                        return -ENOMEM;
4755                return 1;
4756        }
4757        return 0;
4758}
4759
4760static int find_xattr(struct btrfs_root *root,
4761                      struct btrfs_path *path,
4762                      struct btrfs_key *key,
4763                      const char *name, int name_len,
4764                      char **data, int *data_len)
4765{
4766        int ret;
4767        struct find_xattr_ctx ctx;
4768
4769        ctx.name = name;
4770        ctx.name_len = name_len;
4771        ctx.found_idx = -1;
4772        ctx.found_data = NULL;
4773        ctx.found_data_len = 0;
4774
4775        ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4776        if (ret < 0)
4777                return ret;
4778
4779        if (ctx.found_idx == -1)
4780                return -ENOENT;
4781        if (data) {
4782                *data = ctx.found_data;
4783                *data_len = ctx.found_data_len;
4784        } else {
4785                kfree(ctx.found_data);
4786        }
4787        return ctx.found_idx;
4788}
4789
4790
4791static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4792                                       const char *name, int name_len,
4793                                       const char *data, int data_len,
4794                                       u8 type, void *ctx)
4795{
4796        int ret;
4797        struct send_ctx *sctx = ctx;
4798        char *found_data = NULL;
4799        int found_data_len  = 0;
4800
4801        ret = find_xattr(sctx->parent_root, sctx->right_path,
4802                         sctx->cmp_key, name, name_len, &found_data,
4803                         &found_data_len);
4804        if (ret == -ENOENT) {
4805                ret = __process_new_xattr(num, di_key, name, name_len, data,
4806                                data_len, type, ctx);
4807        } else if (ret >= 0) {
4808                if (data_len != found_data_len ||
4809                    memcmp(data, found_data, data_len)) {
4810                        ret = __process_new_xattr(num, di_key, name, name_len,
4811                                        data, data_len, type, ctx);
4812                } else {
4813                        ret = 0;
4814                }
4815        }
4816
4817        kfree(found_data);
4818        return ret;
4819}
4820
4821static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4822                                           const char *name, int name_len,
4823                                           const char *data, int data_len,
4824                                           u8 type, void *ctx)
4825{
4826        int ret;
4827        struct send_ctx *sctx = ctx;
4828
4829        ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4830                         name, name_len, NULL, NULL);
4831        if (ret == -ENOENT)
4832                ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4833                                data_len, type, ctx);
4834        else if (ret >= 0)
4835                ret = 0;
4836
4837        return ret;
4838}
4839
4840static int process_changed_xattr(struct send_ctx *sctx)
4841{
4842        int ret = 0;
4843
4844        ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4845                        __process_changed_new_xattr, sctx);
4846        if (ret < 0)
4847                goto out;
4848        ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4849                        __process_changed_deleted_xattr, sctx);
4850
4851out:
4852        return ret;
4853}
4854
4855static int process_all_new_xattrs(struct send_ctx *sctx)
4856{
4857        int ret;
4858        struct btrfs_root *root;
4859        struct btrfs_path *path;
4860        struct btrfs_key key;
4861        struct btrfs_key found_key;
4862        struct extent_buffer *eb;
4863        int slot;
4864
4865        path = alloc_path_for_send();
4866        if (!path)
4867                return -ENOMEM;
4868
4869        root = sctx->send_root;
4870
4871        key.objectid = sctx->cmp_key->objectid;
4872        key.type = BTRFS_XATTR_ITEM_KEY;
4873        key.offset = 0;
4874        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4875        if (ret < 0)
4876                goto out;
4877
4878        while (1) {
4879                eb = path->nodes[0];
4880                slot = path->slots[0];
4881                if (slot >= btrfs_header_nritems(eb)) {
4882                        ret = btrfs_next_leaf(root, path);
4883                        if (ret < 0) {
4884                                goto out;
4885                        } else if (ret > 0) {
4886                                ret = 0;
4887                                break;
4888                        }
4889                        continue;
4890                }
4891
4892                btrfs_item_key_to_cpu(eb, &found_key, slot);
4893                if (found_key.objectid != key.objectid ||
4894                    found_key.type != key.type) {
4895                        ret = 0;
4896                        goto out;
4897                }
4898
4899                ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4900                if (ret < 0)
4901                        goto out;
4902
4903                path->slots[0]++;
4904        }
4905
4906out:
4907        btrfs_free_path(path);
4908        return ret;
4909}
4910
4911static inline u64 max_send_read_size(const struct send_ctx *sctx)
4912{
4913        return sctx->send_max_size - SZ_16K;
4914}
4915
4916static int put_data_header(struct send_ctx *sctx, u32 len)
4917{
4918        struct btrfs_tlv_header *hdr;
4919
4920        if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
4921                return -EOVERFLOW;
4922        hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
4923        put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
4924        put_unaligned_le16(len, &hdr->tlv_len);
4925        sctx->send_size += sizeof(*hdr);
4926        return 0;
4927}
4928
4929static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
4930{
4931        struct btrfs_root *root = sctx->send_root;
4932        struct btrfs_fs_info *fs_info = root->fs_info;
4933        struct inode *inode;
4934        struct page *page;
4935        pgoff_t index = offset >> PAGE_SHIFT;
4936        pgoff_t last_index;
4937        unsigned pg_offset = offset_in_page(offset);
4938        int ret;
4939
4940        ret = put_data_header(sctx, len);
4941        if (ret)
4942                return ret;
4943
4944        inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
4945        if (IS_ERR(inode))
4946                return PTR_ERR(inode);
4947
4948        last_index = (offset + len - 1) >> PAGE_SHIFT;
4949
4950        /* initial readahead */
4951        memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4952        file_ra_state_init(&sctx->ra, inode->i_mapping);
4953
4954        while (index <= last_index) {
4955                unsigned cur_len = min_t(unsigned, len,
4956                                         PAGE_SIZE - pg_offset);
4957
4958                page = find_lock_page(inode->i_mapping, index);
4959                if (!page) {
4960                        page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4961                                NULL, index, last_index + 1 - index);
4962
4963                        page = find_or_create_page(inode->i_mapping, index,
4964                                        GFP_KERNEL);
4965                        if (!page) {
4966                                ret = -ENOMEM;
4967                                break;
4968                        }
4969                }
4970
4971                if (PageReadahead(page)) {
4972                        page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4973                                NULL, page, index, last_index + 1 - index);
4974                }
4975
4976                if (!PageUptodate(page)) {
4977                        btrfs_readpage(NULL, page);
4978                        lock_page(page);
4979                        if (!PageUptodate(page)) {
4980                                unlock_page(page);
4981                                put_page(page);
4982                                ret = -EIO;
4983                                break;
4984                        }
4985                }
4986
4987                memcpy_from_page(sctx->send_buf + sctx->send_size, page,
4988                                 pg_offset, cur_len);
4989                unlock_page(page);
4990                put_page(page);
4991                index++;
4992                pg_offset = 0;
4993                len -= cur_len;
4994                sctx->send_size += cur_len;
4995        }
4996        iput(inode);
4997        return ret;
4998}
4999
5000/*
5001 * Read some bytes from the current inode/file and send a write command to
5002 * user space.
5003 */
5004static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5005{
5006        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5007        int ret = 0;
5008        struct fs_path *p;
5009
5010        p = fs_path_alloc();
5011        if (!p)
5012                return -ENOMEM;
5013
5014        btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5015
5016        ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5017        if (ret < 0)
5018                goto out;
5019
5020        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5021        if (ret < 0)
5022                goto out;
5023
5024        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5025        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5026        ret = put_file_data(sctx, offset, len);
5027        if (ret < 0)
5028                goto out;
5029
5030        ret = send_cmd(sctx);
5031
5032tlv_put_failure:
5033out:
5034        fs_path_free(p);
5035        return ret;
5036}
5037
5038/*
5039 * Send a clone command to user space.
5040 */
5041static int send_clone(struct send_ctx *sctx,
5042                      u64 offset, u32 len,
5043                      struct clone_root *clone_root)
5044{
5045        int ret = 0;
5046        struct fs_path *p;
5047        u64 gen;
5048
5049        btrfs_debug(sctx->send_root->fs_info,
5050                    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5051                    offset, len, clone_root->root->root_key.objectid,
5052                    clone_root->ino, clone_root->offset);
5053
5054        p = fs_path_alloc();
5055        if (!p)
5056                return -ENOMEM;
5057
5058        ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5059        if (ret < 0)
5060                goto out;
5061
5062        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5063        if (ret < 0)
5064                goto out;
5065
5066        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5067        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5068        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5069
5070        if (clone_root->root == sctx->send_root) {
5071                ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
5072                                &gen, NULL, NULL, NULL, NULL);
5073                if (ret < 0)
5074                        goto out;
5075                ret = get_cur_path(sctx, clone_root->ino, gen, p);
5076        } else {
5077                ret = get_inode_path(clone_root->root, clone_root->ino, p);
5078        }
5079        if (ret < 0)
5080                goto out;
5081
5082        /*
5083         * If the parent we're using has a received_uuid set then use that as
5084         * our clone source as that is what we will look for when doing a
5085         * receive.
5086         *
5087         * This covers the case that we create a snapshot off of a received
5088         * subvolume and then use that as the parent and try to receive on a
5089         * different host.
5090         */
5091        if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5092                TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5093                             clone_root->root->root_item.received_uuid);
5094        else
5095                TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5096                             clone_root->root->root_item.uuid);
5097        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5098                    btrfs_root_ctransid(&clone_root->root->root_item));
5099        TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5100        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5101                        clone_root->offset);
5102
5103        ret = send_cmd(sctx);
5104
5105tlv_put_failure:
5106out:
5107        fs_path_free(p);
5108        return ret;
5109}
5110
5111/*
5112 * Send an update extent command to user space.
5113 */
5114static int send_update_extent(struct send_ctx *sctx,
5115                              u64 offset, u32 len)
5116{
5117        int ret = 0;
5118        struct fs_path *p;
5119
5120        p = fs_path_alloc();
5121        if (!p)
5122                return -ENOMEM;
5123
5124        ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5125        if (ret < 0)
5126                goto out;
5127
5128        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5129        if (ret < 0)
5130                goto out;
5131
5132        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5133        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5134        TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5135
5136        ret = send_cmd(sctx);
5137
5138tlv_put_failure:
5139out:
5140        fs_path_free(p);
5141        return ret;
5142}
5143
5144static int send_hole(struct send_ctx *sctx, u64 end)
5145{
5146        struct fs_path *p = NULL;
5147        u64 read_size = max_send_read_size(sctx);
5148        u64 offset = sctx->cur_inode_last_extent;
5149        int ret = 0;
5150
5151        /*
5152         * A hole that starts at EOF or beyond it. Since we do not yet support
5153         * fallocate (for extent preallocation and hole punching), sending a
5154         * write of zeroes starting at EOF or beyond would later require issuing
5155         * a truncate operation which would undo the write and achieve nothing.
5156         */
5157        if (offset >= sctx->cur_inode_size)
5158                return 0;
5159
5160        /*
5161         * Don't go beyond the inode's i_size due to prealloc extents that start
5162         * after the i_size.
5163         */
5164        end = min_t(u64, end, sctx->cur_inode_size);
5165
5166        if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5167                return send_update_extent(sctx, offset, end - offset);
5168
5169        p = fs_path_alloc();
5170        if (!p)
5171                return -ENOMEM;
5172        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5173        if (ret < 0)
5174                goto tlv_put_failure;
5175        while (offset < end) {
5176                u64 len = min(end - offset, read_size);
5177
5178                ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5179                if (ret < 0)
5180                        break;
5181                TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5182                TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5183                ret = put_data_header(sctx, len);
5184                if (ret < 0)
5185                        break;
5186                memset(sctx->send_buf + sctx->send_size, 0, len);
5187                sctx->send_size += len;
5188                ret = send_cmd(sctx);
5189                if (ret < 0)
5190                        break;
5191                offset += len;
5192        }
5193        sctx->cur_inode_next_write_offset = offset;
5194tlv_put_failure:
5195        fs_path_free(p);
5196        return ret;
5197}
5198
5199static int send_extent_data(struct send_ctx *sctx,
5200                            const u64 offset,
5201                            const u64 len)
5202{
5203        u64 read_size = max_send_read_size(sctx);
5204        u64 sent = 0;
5205
5206        if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5207                return send_update_extent(sctx, offset, len);
5208
5209        while (sent < len) {
5210                u64 size = min(len - sent, read_size);
5211                int ret;
5212
5213                ret = send_write(sctx, offset + sent, size);
5214                if (ret < 0)
5215                        return ret;
5216                sent += size;
5217        }
5218        return 0;
5219}
5220
5221/*
5222 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5223 * found, call send_set_xattr function to emit it.
5224 *
5225 * Return 0 if there isn't a capability, or when the capability was emitted
5226 * successfully, or < 0 if an error occurred.
5227 */
5228static int send_capabilities(struct send_ctx *sctx)
5229{
5230        struct fs_path *fspath = NULL;
5231        struct btrfs_path *path;
5232        struct btrfs_dir_item *di;
5233        struct extent_buffer *leaf;
5234        unsigned long data_ptr;
5235        char *buf = NULL;
5236        int buf_len;
5237        int ret = 0;
5238
5239        path = alloc_path_for_send();
5240        if (!path)
5241                return -ENOMEM;
5242
5243        di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5244                                XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5245        if (!di) {
5246                /* There is no xattr for this inode */
5247                goto out;
5248        } else if (IS_ERR(di)) {
5249                ret = PTR_ERR(di);
5250                goto out;
5251        }
5252
5253        leaf = path->nodes[0];
5254        buf_len = btrfs_dir_data_len(leaf, di);
5255
5256        fspath = fs_path_alloc();
5257        buf = kmalloc(buf_len, GFP_KERNEL);
5258        if (!fspath || !buf) {
5259                ret = -ENOMEM;
5260                goto out;
5261        }
5262
5263        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5264        if (ret < 0)
5265                goto out;
5266
5267        data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5268        read_extent_buffer(leaf, buf, data_ptr, buf_len);
5269
5270        ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5271                        strlen(XATTR_NAME_CAPS), buf, buf_len);
5272out:
5273        kfree(buf);
5274        fs_path_free(fspath);
5275        btrfs_free_path(path);
5276        return ret;
5277}
5278
5279static int clone_range(struct send_ctx *sctx,
5280                       struct clone_root *clone_root,
5281                       const u64 disk_byte,
5282                       u64 data_offset,
5283                       u64 offset,
5284                       u64 len)
5285{
5286        struct btrfs_path *path;
5287        struct btrfs_key key;
5288        int ret;
5289        u64 clone_src_i_size = 0;
5290
5291        /*
5292         * Prevent cloning from a zero offset with a length matching the sector
5293         * size because in some scenarios this will make the receiver fail.
5294         *
5295         * For example, if in the source filesystem the extent at offset 0
5296         * has a length of sectorsize and it was written using direct IO, then
5297         * it can never be an inline extent (even if compression is enabled).
5298         * Then this extent can be cloned in the original filesystem to a non
5299         * zero file offset, but it may not be possible to clone in the
5300         * destination filesystem because it can be inlined due to compression
5301         * on the destination filesystem (as the receiver's write operations are
5302         * always done using buffered IO). The same happens when the original
5303         * filesystem does not have compression enabled but the destination
5304         * filesystem has.
5305         */
5306        if (clone_root->offset == 0 &&
5307            len == sctx->send_root->fs_info->sectorsize)
5308                return send_extent_data(sctx, offset, len);
5309
5310        path = alloc_path_for_send();
5311        if (!path)
5312                return -ENOMEM;
5313
5314        /*
5315         * There are inodes that have extents that lie behind its i_size. Don't
5316         * accept clones from these extents.
5317         */
5318        ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5319                               &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5320        btrfs_release_path(path);
5321        if (ret < 0)
5322                goto out;
5323
5324        /*
5325         * We can't send a clone operation for the entire range if we find
5326         * extent items in the respective range in the source file that
5327         * refer to different extents or if we find holes.
5328         * So check for that and do a mix of clone and regular write/copy
5329         * operations if needed.
5330         *
5331         * Example:
5332         *
5333         * mkfs.btrfs -f /dev/sda
5334         * mount /dev/sda /mnt
5335         * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5336         * cp --reflink=always /mnt/foo /mnt/bar
5337         * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5338         * btrfs subvolume snapshot -r /mnt /mnt/snap
5339         *
5340         * If when we send the snapshot and we are processing file bar (which
5341         * has a higher inode number than foo) we blindly send a clone operation
5342         * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5343         * a file bar that matches the content of file foo - iow, doesn't match
5344         * the content from bar in the original filesystem.
5345         */
5346        key.objectid = clone_root->ino;
5347        key.type = BTRFS_EXTENT_DATA_KEY;
5348        key.offset = clone_root->offset;
5349        ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5350        if (ret < 0)
5351                goto out;
5352        if (ret > 0 && path->slots[0] > 0) {
5353                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5354                if (key.objectid == clone_root->ino &&
5355                    key.type == BTRFS_EXTENT_DATA_KEY)
5356                        path->slots[0]--;
5357        }
5358
5359        while (true) {
5360                struct extent_buffer *leaf = path->nodes[0];
5361                int slot = path->slots[0];
5362                struct btrfs_file_extent_item *ei;
5363                u8 type;
5364                u64 ext_len;
5365                u64 clone_len;
5366                u64 clone_data_offset;
5367
5368                if (slot >= btrfs_header_nritems(leaf)) {
5369                        ret = btrfs_next_leaf(clone_root->root, path);
5370                        if (ret < 0)
5371                                goto out;
5372                        else if (ret > 0)
5373                                break;
5374                        continue;
5375                }
5376
5377                btrfs_item_key_to_cpu(leaf, &key, slot);
5378
5379                /*
5380                 * We might have an implicit trailing hole (NO_HOLES feature
5381                 * enabled). We deal with it after leaving this loop.
5382                 */
5383                if (key.objectid != clone_root->ino ||
5384                    key.type != BTRFS_EXTENT_DATA_KEY)
5385                        break;
5386
5387                ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5388                type = btrfs_file_extent_type(leaf, ei);
5389                if (type == BTRFS_FILE_EXTENT_INLINE) {
5390                        ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5391                        ext_len = PAGE_ALIGN(ext_len);
5392                } else {
5393                        ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5394                }
5395
5396                if (key.offset + ext_len <= clone_root->offset)
5397                        goto next;
5398
5399                if (key.offset > clone_root->offset) {
5400                        /* Implicit hole, NO_HOLES feature enabled. */
5401                        u64 hole_len = key.offset - clone_root->offset;
5402
5403                        if (hole_len > len)
5404                                hole_len = len;
5405                        ret = send_extent_data(sctx, offset, hole_len);
5406                        if (ret < 0)
5407                                goto out;
5408
5409                        len -= hole_len;
5410                        if (len == 0)
5411                                break;
5412                        offset += hole_len;
5413                        clone_root->offset += hole_len;
5414                        data_offset += hole_len;
5415                }
5416
5417                if (key.offset >= clone_root->offset + len)
5418                        break;
5419
5420                if (key.offset >= clone_src_i_size)
5421                        break;
5422
5423                if (key.offset + ext_len > clone_src_i_size)
5424                        ext_len = clone_src_i_size - key.offset;
5425
5426                clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5427                if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5428                        clone_root->offset = key.offset;
5429                        if (clone_data_offset < data_offset &&
5430                                clone_data_offset + ext_len > data_offset) {
5431                                u64 extent_offset;
5432
5433                                extent_offset = data_offset - clone_data_offset;
5434                                ext_len -= extent_offset;
5435                                clone_data_offset += extent_offset;
5436                                clone_root->offset += extent_offset;
5437                        }
5438                }
5439
5440                clone_len = min_t(u64, ext_len, len);
5441
5442                if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5443                    clone_data_offset == data_offset) {
5444                        const u64 src_end = clone_root->offset + clone_len;
5445                        const u64 sectorsize = SZ_64K;
5446
5447                        /*
5448                         * We can't clone the last block, when its size is not
5449                         * sector size aligned, into the middle of a file. If we
5450                         * do so, the receiver will get a failure (-EINVAL) when
5451                         * trying to clone or will silently corrupt the data in
5452                         * the destination file if it's on a kernel without the
5453                         * fix introduced by commit ac765f83f1397646
5454                         * ("Btrfs: fix data corruption due to cloning of eof
5455                         * block).
5456                         *
5457                         * So issue a clone of the aligned down range plus a
5458                         * regular write for the eof block, if we hit that case.
5459                         *
5460                         * Also, we use the maximum possible sector size, 64K,
5461                         * because we don't know what's the sector size of the
5462                         * filesystem that receives the stream, so we have to
5463                         * assume the largest possible sector size.
5464                         */
5465                        if (src_end == clone_src_i_size &&
5466                            !IS_ALIGNED(src_end, sectorsize) &&
5467                            offset + clone_len < sctx->cur_inode_size) {
5468                                u64 slen;
5469
5470                                slen = ALIGN_DOWN(src_end - clone_root->offset,
5471                                                  sectorsize);
5472                                if (slen > 0) {
5473                                        ret = send_clone(sctx, offset, slen,
5474                                                         clone_root);
5475                                        if (ret < 0)
5476                                                goto out;
5477                                }
5478                                ret = send_extent_data(sctx, offset + slen,
5479                                                       clone_len - slen);
5480                        } else {
5481                                ret = send_clone(sctx, offset, clone_len,
5482                                                 clone_root);
5483                        }
5484                } else {
5485                        ret = send_extent_data(sctx, offset, clone_len);
5486                }
5487
5488                if (ret < 0)
5489                        goto out;
5490
5491                len -= clone_len;
5492                if (len == 0)
5493                        break;
5494                offset += clone_len;
5495                clone_root->offset += clone_len;
5496
5497                /*
5498                 * If we are cloning from the file we are currently processing,
5499                 * and using the send root as the clone root, we must stop once
5500                 * the current clone offset reaches the current eof of the file
5501                 * at the receiver, otherwise we would issue an invalid clone
5502                 * operation (source range going beyond eof) and cause the
5503                 * receiver to fail. So if we reach the current eof, bail out
5504                 * and fallback to a regular write.
5505                 */
5506                if (clone_root->root == sctx->send_root &&
5507                    clone_root->ino == sctx->cur_ino &&
5508                    clone_root->offset >= sctx->cur_inode_next_write_offset)
5509                        break;
5510
5511                data_offset += clone_len;
5512next:
5513                path->slots[0]++;
5514        }
5515
5516        if (len > 0)
5517                ret = send_extent_data(sctx, offset, len);
5518        else
5519                ret = 0;
5520out:
5521        btrfs_free_path(path);
5522        return ret;
5523}
5524
5525static int send_write_or_clone(struct send_ctx *sctx,
5526                               struct btrfs_path *path,
5527                               struct btrfs_key *key,
5528                               struct clone_root *clone_root)
5529{
5530        int ret = 0;
5531        u64 offset = key->offset;
5532        u64 end;
5533        u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5534
5535        end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
5536        if (offset >= end)
5537                return 0;
5538
5539        if (clone_root && IS_ALIGNED(end, bs)) {
5540                struct btrfs_file_extent_item *ei;
5541                u64 disk_byte;
5542                u64 data_offset;
5543
5544                ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5545                                    struct btrfs_file_extent_item);
5546                disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5547                data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5548                ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5549                                  offset, end - offset);
5550        } else {
5551                ret = send_extent_data(sctx, offset, end - offset);
5552        }
5553        sctx->cur_inode_next_write_offset = end;
5554        return ret;
5555}
5556
5557static int is_extent_unchanged(struct send_ctx *sctx,
5558                               struct btrfs_path *left_path,
5559                               struct btrfs_key *ekey)
5560{
5561        int ret = 0;
5562        struct btrfs_key key;
5563        struct btrfs_path *path = NULL;
5564        struct extent_buffer *eb;
5565        int slot;
5566        struct btrfs_key found_key;
5567        struct btrfs_file_extent_item *ei;
5568        u64 left_disknr;
5569        u64 right_disknr;
5570        u64 left_offset;
5571        u64 right_offset;
5572        u64 left_offset_fixed;
5573        u64 left_len;
5574        u64 right_len;
5575        u64 left_gen;
5576        u64 right_gen;
5577        u8 left_type;
5578        u8 right_type;
5579
5580        path = alloc_path_for_send();
5581        if (!path)
5582                return -ENOMEM;
5583
5584        eb = left_path->nodes[0];
5585        slot = left_path->slots[0];
5586        ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5587        left_type = btrfs_file_extent_type(eb, ei);
5588
5589        if (left_type != BTRFS_FILE_EXTENT_REG) {
5590                ret = 0;
5591                goto out;
5592        }
5593        left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5594        left_len = btrfs_file_extent_num_bytes(eb, ei);
5595        left_offset = btrfs_file_extent_offset(eb, ei);
5596        left_gen = btrfs_file_extent_generation(eb, ei);
5597
5598        /*
5599         * Following comments will refer to these graphics. L is the left
5600         * extents which we are checking at the moment. 1-8 are the right
5601         * extents that we iterate.
5602         *
5603         *       |-----L-----|
5604         * |-1-|-2a-|-3-|-4-|-5-|-6-|
5605         *
5606         *       |-----L-----|
5607         * |--1--|-2b-|...(same as above)
5608         *
5609         * Alternative situation. Happens on files where extents got split.
5610         *       |-----L-----|
5611         * |-----------7-----------|-6-|
5612         *
5613         * Alternative situation. Happens on files which got larger.
5614         *       |-----L-----|
5615         * |-8-|
5616         * Nothing follows after 8.
5617         */
5618
5619        key.objectid = ekey->objectid;
5620        key.type = BTRFS_EXTENT_DATA_KEY;
5621        key.offset = ekey->offset;
5622        ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5623        if (ret < 0)
5624                goto out;
5625        if (ret) {
5626                ret = 0;
5627                goto out;
5628        }
5629
5630        /*
5631         * Handle special case where the right side has no extents at all.
5632         */
5633        eb = path->nodes[0];
5634        slot = path->slots[0];
5635        btrfs_item_key_to_cpu(eb, &found_key, slot);
5636        if (found_key.objectid != key.objectid ||
5637            found_key.type != key.type) {
5638                /* If we're a hole then just pretend nothing changed */
5639                ret = (left_disknr) ? 0 : 1;
5640                goto out;
5641        }
5642
5643        /*
5644         * We're now on 2a, 2b or 7.
5645         */
5646        key = found_key;
5647        while (key.offset < ekey->offset + left_len) {
5648                ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5649                right_type = btrfs_file_extent_type(eb, ei);
5650                if (right_type != BTRFS_FILE_EXTENT_REG &&
5651                    right_type != BTRFS_FILE_EXTENT_INLINE) {
5652                        ret = 0;
5653                        goto out;
5654                }
5655
5656                if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5657                        right_len = btrfs_file_extent_ram_bytes(eb, ei);
5658                        right_len = PAGE_ALIGN(right_len);
5659                } else {
5660                        right_len = btrfs_file_extent_num_bytes(eb, ei);
5661                }
5662
5663                /*
5664                 * Are we at extent 8? If yes, we know the extent is changed.
5665                 * This may only happen on the first iteration.
5666                 */
5667                if (found_key.offset + right_len <= ekey->offset) {
5668                        /* If we're a hole just pretend nothing changed */
5669                        ret = (left_disknr) ? 0 : 1;
5670                        goto out;
5671                }
5672
5673                /*
5674                 * We just wanted to see if when we have an inline extent, what
5675                 * follows it is a regular extent (wanted to check the above
5676                 * condition for inline extents too). This should normally not
5677                 * happen but it's possible for example when we have an inline
5678                 * compressed extent representing data with a size matching
5679                 * the page size (currently the same as sector size).
5680                 */
5681                if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5682                        ret = 0;
5683                        goto out;
5684                }
5685
5686                right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5687                right_offset = btrfs_file_extent_offset(eb, ei);
5688                right_gen = btrfs_file_extent_generation(eb, ei);
5689
5690                left_offset_fixed = left_offset;
5691                if (key.offset < ekey->offset) {
5692                        /* Fix the right offset for 2a and 7. */
5693                        right_offset += ekey->offset - key.offset;
5694                } else {
5695                        /* Fix the left offset for all behind 2a and 2b */
5696                        left_offset_fixed += key.offset - ekey->offset;
5697                }
5698
5699                /*
5700                 * Check if we have the same extent.
5701                 */
5702                if (left_disknr != right_disknr ||
5703                    left_offset_fixed != right_offset ||
5704                    left_gen != right_gen) {
5705                        ret = 0;
5706                        goto out;
5707                }
5708
5709                /*
5710                 * Go to the next extent.
5711                 */
5712                ret = btrfs_next_item(sctx->parent_root, path);
5713                if (ret < 0)
5714                        goto out;
5715                if (!ret) {
5716                        eb = path->nodes[0];
5717                        slot = path->slots[0];
5718                        btrfs_item_key_to_cpu(eb, &found_key, slot);
5719                }
5720                if (ret || found_key.objectid != key.objectid ||
5721                    found_key.type != key.type) {
5722                        key.offset += right_len;
5723                        break;
5724                }
5725                if (found_key.offset != key.offset + right_len) {
5726                        ret = 0;
5727                        goto out;
5728                }
5729                key = found_key;
5730        }
5731
5732        /*
5733         * We're now behind the left extent (treat as unchanged) or at the end
5734         * of the right side (treat as changed).
5735         */
5736        if (key.offset >= ekey->offset + left_len)
5737                ret = 1;
5738        else
5739                ret = 0;
5740
5741
5742out:
5743        btrfs_free_path(path);
5744        return ret;
5745}
5746
5747static int get_last_extent(struct send_ctx *sctx, u64 offset)
5748{
5749        struct btrfs_path *path;
5750        struct btrfs_root *root = sctx->send_root;
5751        struct btrfs_key key;
5752        int ret;
5753
5754        path = alloc_path_for_send();
5755        if (!path)
5756                return -ENOMEM;
5757
5758        sctx->cur_inode_last_extent = 0;
5759
5760        key.objectid = sctx->cur_ino;
5761        key.type = BTRFS_EXTENT_DATA_KEY;
5762        key.offset = offset;
5763        ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5764        if (ret < 0)
5765                goto out;
5766        ret = 0;
5767        btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5768        if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5769                goto out;
5770
5771        sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5772out:
5773        btrfs_free_path(path);
5774        return ret;
5775}
5776
5777static int range_is_hole_in_parent(struct send_ctx *sctx,
5778                                   const u64 start,
5779                                   const u64 end)
5780{
5781        struct btrfs_path *path;
5782        struct btrfs_key key;
5783        struct btrfs_root *root = sctx->parent_root;
5784        u64 search_start = start;
5785        int ret;
5786
5787        path = alloc_path_for_send();
5788        if (!path)
5789                return -ENOMEM;
5790
5791        key.objectid = sctx->cur_ino;
5792        key.type = BTRFS_EXTENT_DATA_KEY;
5793        key.offset = search_start;
5794        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5795        if (ret < 0)
5796                goto out;
5797        if (ret > 0 && path->slots[0] > 0)
5798                path->slots[0]--;
5799
5800        while (search_start < end) {
5801                struct extent_buffer *leaf = path->nodes[0];
5802                int slot = path->slots[0];
5803                struct btrfs_file_extent_item *fi;
5804                u64 extent_end;
5805
5806                if (slot >= btrfs_header_nritems(leaf)) {
5807                        ret = btrfs_next_leaf(root, path);
5808                        if (ret < 0)
5809                                goto out;
5810                        else if (ret > 0)
5811                                break;
5812                        continue;
5813                }
5814
5815                btrfs_item_key_to_cpu(leaf, &key, slot);
5816                if (key.objectid < sctx->cur_ino ||
5817                    key.type < BTRFS_EXTENT_DATA_KEY)
5818                        goto next;
5819                if (key.objectid > sctx->cur_ino ||
5820                    key.type > BTRFS_EXTENT_DATA_KEY ||
5821                    key.offset >= end)
5822                        break;
5823
5824                fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5825                extent_end = btrfs_file_extent_end(path);
5826                if (extent_end <= start)
5827                        goto next;
5828                if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5829                        search_start = extent_end;
5830                        goto next;
5831                }
5832                ret = 0;
5833                goto out;
5834next:
5835                path->slots[0]++;
5836        }
5837        ret = 1;
5838out:
5839        btrfs_free_path(path);
5840        return ret;
5841}
5842
5843static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5844                           struct btrfs_key *key)
5845{
5846        int ret = 0;
5847
5848        if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5849                return 0;
5850
5851        if (sctx->cur_inode_last_extent == (u64)-1) {
5852                ret = get_last_extent(sctx, key->offset - 1);
5853                if (ret)
5854                        return ret;
5855        }
5856
5857        if (path->slots[0] == 0 &&
5858            sctx->cur_inode_last_extent < key->offset) {
5859                /*
5860                 * We might have skipped entire leafs that contained only
5861                 * file extent items for our current inode. These leafs have
5862                 * a generation number smaller (older) than the one in the
5863                 * current leaf and the leaf our last extent came from, and
5864                 * are located between these 2 leafs.
5865                 */
5866                ret = get_last_extent(sctx, key->offset - 1);
5867                if (ret)
5868                        return ret;
5869        }
5870
5871        if (sctx->cur_inode_last_extent < key->offset) {
5872                ret = range_is_hole_in_parent(sctx,
5873                                              sctx->cur_inode_last_extent,
5874                                              key->offset);
5875                if (ret < 0)
5876                        return ret;
5877                else if (ret == 0)
5878                        ret = send_hole(sctx, key->offset);
5879                else
5880                        ret = 0;
5881        }
5882        sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5883        return ret;
5884}
5885
5886static int process_extent(struct send_ctx *sctx,
5887                          struct btrfs_path *path,
5888                          struct btrfs_key *key)
5889{
5890        struct clone_root *found_clone = NULL;
5891        int ret = 0;
5892
5893        if (S_ISLNK(sctx->cur_inode_mode))
5894                return 0;
5895
5896        if (sctx->parent_root && !sctx->cur_inode_new) {
5897                ret = is_extent_unchanged(sctx, path, key);
5898                if (ret < 0)
5899                        goto out;
5900                if (ret) {
5901                        ret = 0;
5902                        goto out_hole;
5903                }
5904        } else {
5905                struct btrfs_file_extent_item *ei;
5906                u8 type;
5907
5908                ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5909                                    struct btrfs_file_extent_item);
5910                type = btrfs_file_extent_type(path->nodes[0], ei);
5911                if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5912                    type == BTRFS_FILE_EXTENT_REG) {
5913                        /*
5914                         * The send spec does not have a prealloc command yet,
5915                         * so just leave a hole for prealloc'ed extents until
5916                         * we have enough commands queued up to justify rev'ing
5917                         * the send spec.
5918                         */
5919                        if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5920                                ret = 0;
5921                                goto out;
5922                        }
5923
5924                        /* Have a hole, just skip it. */
5925                        if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5926                                ret = 0;
5927                                goto out;
5928                        }
5929                }
5930        }
5931
5932        ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5933                        sctx->cur_inode_size, &found_clone);
5934        if (ret != -ENOENT && ret < 0)
5935                goto out;
5936
5937        ret = send_write_or_clone(sctx, path, key, found_clone);
5938        if (ret)
5939                goto out;
5940out_hole:
5941        ret = maybe_send_hole(sctx, path, key);
5942out:
5943        return ret;
5944}
5945
5946static int process_all_extents(struct send_ctx *sctx)
5947{
5948        int ret;
5949        struct btrfs_root *root;
5950        struct btrfs_path *path;
5951        struct btrfs_key key;
5952        struct btrfs_key found_key;
5953        struct extent_buffer *eb;
5954        int slot;
5955
5956        root = sctx->send_root;
5957        path = alloc_path_for_send();
5958        if (!path)
5959                return -ENOMEM;
5960
5961        key.objectid = sctx->cmp_key->objectid;
5962        key.type = BTRFS_EXTENT_DATA_KEY;
5963        key.offset = 0;
5964        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5965        if (ret < 0)
5966                goto out;
5967
5968        while (1) {
5969                eb = path->nodes[0];
5970                slot = path->slots[0];
5971
5972                if (slot >= btrfs_header_nritems(eb)) {
5973                        ret = btrfs_next_leaf(root, path);
5974                        if (ret < 0) {
5975                                goto out;
5976                        } else if (ret > 0) {
5977                                ret = 0;
5978                                break;
5979                        }
5980                        continue;
5981                }
5982
5983                btrfs_item_key_to_cpu(eb, &found_key, slot);
5984
5985                if (found_key.objectid != key.objectid ||
5986                    found_key.type != key.type) {
5987                        ret = 0;
5988                        goto out;
5989                }
5990
5991                ret = process_extent(sctx, path, &found_key);
5992                if (ret < 0)
5993                        goto out;
5994
5995                path->slots[0]++;
5996        }
5997
5998out:
5999        btrfs_free_path(path);
6000        return ret;
6001}
6002
6003static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6004                                           int *pending_move,
6005                                           int *refs_processed)
6006{
6007        int ret = 0;
6008
6009        if (sctx->cur_ino == 0)
6010                goto out;
6011        if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6012            sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6013                goto out;
6014        if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6015                goto out;
6016
6017        ret = process_recorded_refs(sctx, pending_move);
6018        if (ret < 0)
6019                goto out;
6020
6021        *refs_processed = 1;
6022out:
6023        return ret;
6024}
6025
6026static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6027{
6028        int ret = 0;
6029        u64 left_mode;
6030        u64 left_uid;
6031        u64 left_gid;
6032        u64 right_mode;
6033        u64 right_uid;
6034        u64 right_gid;
6035        int need_chmod = 0;
6036        int need_chown = 0;
6037        int need_truncate = 1;
6038        int pending_move = 0;
6039        int refs_processed = 0;
6040
6041        if (sctx->ignore_cur_inode)
6042                return 0;
6043
6044        ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6045                                              &refs_processed);
6046        if (ret < 0)
6047                goto out;
6048
6049        /*
6050         * We have processed the refs and thus need to advance send_progress.
6051         * Now, calls to get_cur_xxx will take the updated refs of the current
6052         * inode into account.
6053         *
6054         * On the other hand, if our current inode is a directory and couldn't
6055         * be moved/renamed because its parent was renamed/moved too and it has
6056         * a higher inode number, we can only move/rename our current inode
6057         * after we moved/renamed its parent. Therefore in this case operate on
6058         * the old path (pre move/rename) of our current inode, and the
6059         * move/rename will be performed later.
6060         */
6061        if (refs_processed && !pending_move)
6062                sctx->send_progress = sctx->cur_ino + 1;
6063
6064        if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6065                goto out;
6066        if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6067                goto out;
6068
6069        ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
6070                        &left_mode, &left_uid, &left_gid, NULL);
6071        if (ret < 0)
6072                goto out;
6073
6074        if (!sctx->parent_root || sctx->cur_inode_new) {
6075                need_chown = 1;
6076                if (!S_ISLNK(sctx->cur_inode_mode))
6077                        need_chmod = 1;
6078                if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6079                        need_truncate = 0;
6080        } else {
6081                u64 old_size;
6082
6083                ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
6084                                &old_size, NULL, &right_mode, &right_uid,
6085                                &right_gid, NULL);
6086                if (ret < 0)
6087                        goto out;
6088
6089                if (left_uid != right_uid || left_gid != right_gid)
6090                        need_chown = 1;
6091                if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6092                        need_chmod = 1;
6093                if ((old_size == sctx->cur_inode_size) ||
6094                    (sctx->cur_inode_size > old_size &&
6095                     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6096                        need_truncate = 0;
6097        }
6098
6099        if (S_ISREG(sctx->cur_inode_mode)) {
6100                if (need_send_hole(sctx)) {
6101                        if (sctx->cur_inode_last_extent == (u64)-1 ||
6102                            sctx->cur_inode_last_extent <
6103                            sctx->cur_inode_size) {
6104                                ret = get_last_extent(sctx, (u64)-1);
6105                                if (ret)
6106                                        goto out;
6107                        }
6108                        if (sctx->cur_inode_last_extent <
6109                            sctx->cur_inode_size) {
6110                                ret = send_hole(sctx, sctx->cur_inode_size);
6111                                if (ret)
6112                                        goto out;
6113                        }
6114                }
6115                if (need_truncate) {
6116                        ret = send_truncate(sctx, sctx->cur_ino,
6117                                            sctx->cur_inode_gen,
6118                                            sctx->cur_inode_size);
6119                        if (ret < 0)
6120                                goto out;
6121                }
6122        }
6123
6124        if (need_chown) {
6125                ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6126                                left_uid, left_gid);
6127                if (ret < 0)
6128                        goto out;
6129        }
6130        if (need_chmod) {
6131                ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6132                                left_mode);
6133                if (ret < 0)
6134                        goto out;
6135        }
6136
6137        ret = send_capabilities(sctx);
6138        if (ret < 0)
6139                goto out;
6140
6141        /*
6142         * If other directory inodes depended on our current directory
6143         * inode's move/rename, now do their move/rename operations.
6144         */
6145        if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6146                ret = apply_children_dir_moves(sctx);
6147                if (ret)
6148                        goto out;
6149                /*
6150                 * Need to send that every time, no matter if it actually
6151                 * changed between the two trees as we have done changes to
6152                 * the inode before. If our inode is a directory and it's
6153                 * waiting to be moved/renamed, we will send its utimes when
6154                 * it's moved/renamed, therefore we don't need to do it here.
6155                 */
6156                sctx->send_progress = sctx->cur_ino + 1;
6157                ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6158                if (ret < 0)
6159                        goto out;
6160        }
6161
6162out:
6163        return ret;
6164}
6165
6166struct parent_paths_ctx {
6167        struct list_head *refs;
6168        struct send_ctx *sctx;
6169};
6170
6171static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6172                             void *ctx)
6173{
6174        struct parent_paths_ctx *ppctx = ctx;
6175
6176        return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6177                          ppctx->refs);
6178}
6179
6180/*
6181 * Issue unlink operations for all paths of the current inode found in the
6182 * parent snapshot.
6183 */
6184static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6185{
6186        LIST_HEAD(deleted_refs);
6187        struct btrfs_path *path;
6188        struct btrfs_key key;
6189        struct parent_paths_ctx ctx;
6190        int ret;
6191
6192        path = alloc_path_for_send();
6193        if (!path)
6194                return -ENOMEM;
6195
6196        key.objectid = sctx->cur_ino;
6197        key.type = BTRFS_INODE_REF_KEY;
6198        key.offset = 0;
6199        ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6200        if (ret < 0)
6201                goto out;
6202
6203        ctx.refs = &deleted_refs;
6204        ctx.sctx = sctx;
6205
6206        while (true) {
6207                struct extent_buffer *eb = path->nodes[0];
6208                int slot = path->slots[0];
6209
6210                if (slot >= btrfs_header_nritems(eb)) {
6211                        ret = btrfs_next_leaf(sctx->parent_root, path);
6212                        if (ret < 0)
6213                                goto out;
6214                        else if (ret > 0)
6215                                break;
6216                        continue;
6217                }
6218
6219                btrfs_item_key_to_cpu(eb, &key, slot);
6220                if (key.objectid != sctx->cur_ino)
6221                        break;
6222                if (key.type != BTRFS_INODE_REF_KEY &&
6223                    key.type != BTRFS_INODE_EXTREF_KEY)
6224                        break;
6225
6226                ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6227                                        record_parent_ref, &ctx);
6228                if (ret < 0)
6229                        goto out;
6230
6231                path->slots[0]++;
6232        }
6233
6234        while (!list_empty(&deleted_refs)) {
6235                struct recorded_ref *ref;
6236
6237                ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6238                ret = send_unlink(sctx, ref->full_path);
6239                if (ret < 0)
6240                        goto out;
6241                fs_path_free(ref->full_path);
6242                list_del(&ref->list);
6243                kfree(ref);
6244        }
6245        ret = 0;
6246out:
6247        btrfs_free_path(path);
6248        if (ret)
6249                __free_recorded_refs(&deleted_refs);
6250        return ret;
6251}
6252
6253static int changed_inode(struct send_ctx *sctx,
6254                         enum btrfs_compare_tree_result result)
6255{
6256        int ret = 0;
6257        struct btrfs_key *key = sctx->cmp_key;
6258        struct btrfs_inode_item *left_ii = NULL;
6259        struct btrfs_inode_item *right_ii = NULL;
6260        u64 left_gen = 0;
6261        u64 right_gen = 0;
6262
6263        sctx->cur_ino = key->objectid;
6264        sctx->cur_inode_new_gen = 0;
6265        sctx->cur_inode_last_extent = (u64)-1;
6266        sctx->cur_inode_next_write_offset = 0;
6267        sctx->ignore_cur_inode = false;
6268
6269        /*
6270         * Set send_progress to current inode. This will tell all get_cur_xxx
6271         * functions that the current inode's refs are not updated yet. Later,
6272         * when process_recorded_refs is finished, it is set to cur_ino + 1.
6273         */
6274        sctx->send_progress = sctx->cur_ino;
6275
6276        if (result == BTRFS_COMPARE_TREE_NEW ||
6277            result == BTRFS_COMPARE_TREE_CHANGED) {
6278                left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6279                                sctx->left_path->slots[0],
6280                                struct btrfs_inode_item);
6281                left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6282                                left_ii);
6283        } else {
6284                right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6285                                sctx->right_path->slots[0],
6286                                struct btrfs_inode_item);
6287                right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6288                                right_ii);
6289        }
6290        if (result == BTRFS_COMPARE_TREE_CHANGED) {
6291                right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6292                                sctx->right_path->slots[0],
6293                                struct btrfs_inode_item);
6294
6295                right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6296                                right_ii);
6297
6298                /*
6299                 * The cur_ino = root dir case is special here. We can't treat
6300                 * the inode as deleted+reused because it would generate a
6301                 * stream that tries to delete/mkdir the root dir.
6302                 */
6303                if (left_gen != right_gen &&
6304                    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6305                        sctx->cur_inode_new_gen = 1;
6306        }
6307
6308        /*
6309         * Normally we do not find inodes with a link count of zero (orphans)
6310         * because the most common case is to create a snapshot and use it
6311         * for a send operation. However other less common use cases involve
6312         * using a subvolume and send it after turning it to RO mode just
6313         * after deleting all hard links of a file while holding an open
6314         * file descriptor against it or turning a RO snapshot into RW mode,
6315         * keep an open file descriptor against a file, delete it and then
6316         * turn the snapshot back to RO mode before using it for a send
6317         * operation. So if we find such cases, ignore the inode and all its
6318         * items completely if it's a new inode, or if it's a changed inode
6319         * make sure all its previous paths (from the parent snapshot) are all
6320         * unlinked and all other the inode items are ignored.
6321         */
6322        if (result == BTRFS_COMPARE_TREE_NEW ||
6323            result == BTRFS_COMPARE_TREE_CHANGED) {
6324                u32 nlinks;
6325
6326                nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6327                if (nlinks == 0) {
6328                        sctx->ignore_cur_inode = true;
6329                        if (result == BTRFS_COMPARE_TREE_CHANGED)
6330                                ret = btrfs_unlink_all_paths(sctx);
6331                        goto out;
6332                }
6333        }
6334
6335        if (result == BTRFS_COMPARE_TREE_NEW) {
6336                sctx->cur_inode_gen = left_gen;
6337                sctx->cur_inode_new = 1;
6338                sctx->cur_inode_deleted = 0;
6339                sctx->cur_inode_size = btrfs_inode_size(
6340                                sctx->left_path->nodes[0], left_ii);
6341                sctx->cur_inode_mode = btrfs_inode_mode(
6342                                sctx->left_path->nodes[0], left_ii);
6343                sctx->cur_inode_rdev = btrfs_inode_rdev(
6344                                sctx->left_path->nodes[0], left_ii);
6345                if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6346                        ret = send_create_inode_if_needed(sctx);
6347        } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6348                sctx->cur_inode_gen = right_gen;
6349                sctx->cur_inode_new = 0;
6350                sctx->cur_inode_deleted = 1;
6351                sctx->cur_inode_size = btrfs_inode_size(
6352                                sctx->right_path->nodes[0], right_ii);
6353                sctx->cur_inode_mode = btrfs_inode_mode(
6354                                sctx->right_path->nodes[0], right_ii);
6355        } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6356                /*
6357                 * We need to do some special handling in case the inode was
6358                 * reported as changed with a changed generation number. This
6359                 * means that the original inode was deleted and new inode
6360                 * reused the same inum. So we have to treat the old inode as
6361                 * deleted and the new one as new.
6362                 */
6363                if (sctx->cur_inode_new_gen) {
6364                        /*
6365                         * First, process the inode as if it was deleted.
6366                         */
6367                        sctx->cur_inode_gen = right_gen;
6368                        sctx->cur_inode_new = 0;
6369                        sctx->cur_inode_deleted = 1;
6370                        sctx->cur_inode_size = btrfs_inode_size(
6371                                        sctx->right_path->nodes[0], right_ii);
6372                        sctx->cur_inode_mode = btrfs_inode_mode(
6373                                        sctx->right_path->nodes[0], right_ii);
6374                        ret = process_all_refs(sctx,
6375                                        BTRFS_COMPARE_TREE_DELETED);
6376                        if (ret < 0)
6377                                goto out;
6378
6379                        /*
6380                         * Now process the inode as if it was new.
6381                         */
6382                        sctx->cur_inode_gen = left_gen;
6383                        sctx->cur_inode_new = 1;
6384                        sctx->cur_inode_deleted = 0;
6385                        sctx->cur_inode_size = btrfs_inode_size(
6386                                        sctx->left_path->nodes[0], left_ii);
6387                        sctx->cur_inode_mode = btrfs_inode_mode(
6388                                        sctx->left_path->nodes[0], left_ii);
6389                        sctx->cur_inode_rdev = btrfs_inode_rdev(
6390                                        sctx->left_path->nodes[0], left_ii);
6391                        ret = send_create_inode_if_needed(sctx);
6392                        if (ret < 0)
6393                                goto out;
6394
6395                        ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6396                        if (ret < 0)
6397                                goto out;
6398                        /*
6399                         * Advance send_progress now as we did not get into
6400                         * process_recorded_refs_if_needed in the new_gen case.
6401                         */
6402                        sctx->send_progress = sctx->cur_ino + 1;
6403
6404                        /*
6405                         * Now process all extents and xattrs of the inode as if
6406                         * they were all new.
6407                         */
6408                        ret = process_all_extents(sctx);
6409                        if (ret < 0)
6410                                goto out;
6411                        ret = process_all_new_xattrs(sctx);
6412                        if (ret < 0)
6413                                goto out;
6414                } else {
6415                        sctx->cur_inode_gen = left_gen;
6416                        sctx->cur_inode_new = 0;
6417                        sctx->cur_inode_new_gen = 0;
6418                        sctx->cur_inode_deleted = 0;
6419                        sctx->cur_inode_size = btrfs_inode_size(
6420                                        sctx->left_path->nodes[0], left_ii);
6421                        sctx->cur_inode_mode = btrfs_inode_mode(
6422                                        sctx->left_path->nodes[0], left_ii);
6423                }
6424        }
6425
6426out:
6427        return ret;
6428}
6429
6430/*
6431 * We have to process new refs before deleted refs, but compare_trees gives us
6432 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6433 * first and later process them in process_recorded_refs.
6434 * For the cur_inode_new_gen case, we skip recording completely because
6435 * changed_inode did already initiate processing of refs. The reason for this is
6436 * that in this case, compare_tree actually compares the refs of 2 different
6437 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6438 * refs of the right tree as deleted and all refs of the left tree as new.
6439 */
6440static int changed_ref(struct send_ctx *sctx,
6441                       enum btrfs_compare_tree_result result)
6442{
6443        int ret = 0;
6444
6445        if (sctx->cur_ino != sctx->cmp_key->objectid) {
6446                inconsistent_snapshot_error(sctx, result, "reference");
6447                return -EIO;
6448        }
6449
6450        if (!sctx->cur_inode_new_gen &&
6451            sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6452                if (result == BTRFS_COMPARE_TREE_NEW)
6453                        ret = record_new_ref(sctx);
6454                else if (result == BTRFS_COMPARE_TREE_DELETED)
6455                        ret = record_deleted_ref(sctx);
6456                else if (result == BTRFS_COMPARE_TREE_CHANGED)
6457                        ret = record_changed_ref(sctx);
6458        }
6459
6460        return ret;
6461}
6462
6463/*
6464 * Process new/deleted/changed xattrs. We skip processing in the
6465 * cur_inode_new_gen case because changed_inode did already initiate processing
6466 * of xattrs. The reason is the same as in changed_ref
6467 */
6468static int changed_xattr(struct send_ctx *sctx,
6469                         enum btrfs_compare_tree_result result)
6470{
6471        int ret = 0;
6472
6473        if (sctx->cur_ino != sctx->cmp_key->objectid) {
6474                inconsistent_snapshot_error(sctx, result, "xattr");
6475                return -EIO;
6476        }
6477
6478        if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6479                if (result == BTRFS_COMPARE_TREE_NEW)
6480                        ret = process_new_xattr(sctx);
6481                else if (result == BTRFS_COMPARE_TREE_DELETED)
6482                        ret = process_deleted_xattr(sctx);
6483                else if (result == BTRFS_COMPARE_TREE_CHANGED)
6484                        ret = process_changed_xattr(sctx);
6485        }
6486
6487        return ret;
6488}
6489
6490/*
6491 * Process new/deleted/changed extents. We skip processing in the
6492 * cur_inode_new_gen case because changed_inode did already initiate processing
6493 * of extents. The reason is the same as in changed_ref
6494 */
6495static int changed_extent(struct send_ctx *sctx,
6496                          enum btrfs_compare_tree_result result)
6497{
6498        int ret = 0;
6499
6500        /*
6501         * We have found an extent item that changed without the inode item
6502         * having changed. This can happen either after relocation (where the
6503         * disk_bytenr of an extent item is replaced at
6504         * relocation.c:replace_file_extents()) or after deduplication into a
6505         * file in both the parent and send snapshots (where an extent item can
6506         * get modified or replaced with a new one). Note that deduplication
6507         * updates the inode item, but it only changes the iversion (sequence
6508         * field in the inode item) of the inode, so if a file is deduplicated
6509         * the same amount of times in both the parent and send snapshots, its
6510         * iversion becomes the same in both snapshots, whence the inode item is
6511         * the same on both snapshots.
6512         */
6513        if (sctx->cur_ino != sctx->cmp_key->objectid)
6514                return 0;
6515
6516        if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6517                if (result != BTRFS_COMPARE_TREE_DELETED)
6518                        ret = process_extent(sctx, sctx->left_path,
6519                                        sctx->cmp_key);
6520        }
6521
6522        return ret;
6523}
6524
6525static int dir_changed(struct send_ctx *sctx, u64 dir)
6526{
6527        u64 orig_gen, new_gen;
6528        int ret;
6529
6530        ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6531                             NULL, NULL);
6532        if (ret)
6533                return ret;
6534
6535        ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6536                             NULL, NULL, NULL);
6537        if (ret)
6538                return ret;
6539
6540        return (orig_gen != new_gen) ? 1 : 0;
6541}
6542
6543static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6544                        struct btrfs_key *key)
6545{
6546        struct btrfs_inode_extref *extref;
6547        struct extent_buffer *leaf;
6548        u64 dirid = 0, last_dirid = 0;
6549        unsigned long ptr;
6550        u32 item_size;
6551        u32 cur_offset = 0;
6552        int ref_name_len;
6553        int ret = 0;
6554
6555        /* Easy case, just check this one dirid */
6556        if (key->type == BTRFS_INODE_REF_KEY) {
6557                dirid = key->offset;
6558
6559                ret = dir_changed(sctx, dirid);
6560                goto out;
6561        }
6562
6563        leaf = path->nodes[0];
6564        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6565        ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6566        while (cur_offset < item_size) {
6567                extref = (struct btrfs_inode_extref *)(ptr +
6568                                                       cur_offset);
6569                dirid = btrfs_inode_extref_parent(leaf, extref);
6570                ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6571                cur_offset += ref_name_len + sizeof(*extref);
6572                if (dirid == last_dirid)
6573                        continue;
6574                ret = dir_changed(sctx, dirid);
6575                if (ret)
6576                        break;
6577                last_dirid = dirid;
6578        }
6579out:
6580        return ret;
6581}
6582
6583/*
6584 * Updates compare related fields in sctx and simply forwards to the actual
6585 * changed_xxx functions.
6586 */
6587static int changed_cb(struct btrfs_path *left_path,
6588                      struct btrfs_path *right_path,
6589                      struct btrfs_key *key,
6590                      enum btrfs_compare_tree_result result,
6591                      struct send_ctx *sctx)
6592{
6593        int ret = 0;
6594
6595        if (result == BTRFS_COMPARE_TREE_SAME) {
6596                if (key->type == BTRFS_INODE_REF_KEY ||
6597                    key->type == BTRFS_INODE_EXTREF_KEY) {
6598                        ret = compare_refs(sctx, left_path, key);
6599                        if (!ret)
6600                                return 0;
6601                        if (ret < 0)
6602                                return ret;
6603                } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6604                        return maybe_send_hole(sctx, left_path, key);
6605                } else {
6606                        return 0;
6607                }
6608                result = BTRFS_COMPARE_TREE_CHANGED;
6609                ret = 0;
6610        }
6611
6612        sctx->left_path = left_path;
6613        sctx->right_path = right_path;
6614        sctx->cmp_key = key;
6615
6616        ret = finish_inode_if_needed(sctx, 0);
6617        if (ret < 0)
6618                goto out;
6619
6620        /* Ignore non-FS objects */
6621        if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6622            key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6623                goto out;
6624
6625        if (key->type == BTRFS_INODE_ITEM_KEY) {
6626                ret = changed_inode(sctx, result);
6627        } else if (!sctx->ignore_cur_inode) {
6628                if (key->type == BTRFS_INODE_REF_KEY ||
6629                    key->type == BTRFS_INODE_EXTREF_KEY)
6630                        ret = changed_ref(sctx, result);
6631                else if (key->type == BTRFS_XATTR_ITEM_KEY)
6632                        ret = changed_xattr(sctx, result);
6633                else if (key->type == BTRFS_EXTENT_DATA_KEY)
6634                        ret = changed_extent(sctx, result);
6635        }
6636
6637out:
6638        return ret;
6639}
6640
6641static int full_send_tree(struct send_ctx *sctx)
6642{
6643        int ret;
6644        struct btrfs_root *send_root = sctx->send_root;
6645        struct btrfs_key key;
6646        struct btrfs_path *path;
6647        struct extent_buffer *eb;
6648        int slot;
6649
6650        path = alloc_path_for_send();
6651        if (!path)
6652                return -ENOMEM;
6653        path->reada = READA_FORWARD_ALWAYS;
6654
6655        key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6656        key.type = BTRFS_INODE_ITEM_KEY;
6657        key.offset = 0;
6658
6659        ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6660        if (ret < 0)
6661                goto out;
6662        if (ret)
6663                goto out_finish;
6664
6665        while (1) {
6666                eb = path->nodes[0];
6667                slot = path->slots[0];
6668                btrfs_item_key_to_cpu(eb, &key, slot);
6669
6670                ret = changed_cb(path, NULL, &key,
6671                                 BTRFS_COMPARE_TREE_NEW, sctx);
6672                if (ret < 0)
6673                        goto out;
6674
6675                ret = btrfs_next_item(send_root, path);
6676                if (ret < 0)
6677                        goto out;
6678                if (ret) {
6679                        ret  = 0;
6680                        break;
6681                }
6682        }
6683
6684out_finish:
6685        ret = finish_inode_if_needed(sctx, 1);
6686
6687out:
6688        btrfs_free_path(path);
6689        return ret;
6690}
6691
6692static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
6693{
6694        struct extent_buffer *eb;
6695        struct extent_buffer *parent = path->nodes[*level];
6696        int slot = path->slots[*level];
6697        const int nritems = btrfs_header_nritems(parent);
6698        u64 reada_max;
6699        u64 reada_done = 0;
6700
6701        BUG_ON(*level == 0);
6702        eb = btrfs_read_node_slot(parent, slot);
6703        if (IS_ERR(eb))
6704                return PTR_ERR(eb);
6705
6706        /*
6707         * Trigger readahead for the next leaves we will process, so that it is
6708         * very likely that when we need them they are already in memory and we
6709         * will not block on disk IO. For nodes we only do readahead for one,
6710         * since the time window between processing nodes is typically larger.
6711         */
6712        reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
6713
6714        for (slot++; slot < nritems && reada_done < reada_max; slot++) {
6715                if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
6716                        btrfs_readahead_node_child(parent, slot);
6717                        reada_done += eb->fs_info->nodesize;
6718                }
6719        }
6720
6721        path->nodes[*level - 1] = eb;
6722        path->slots[*level - 1] = 0;
6723        (*level)--;
6724        return 0;
6725}
6726
6727static int tree_move_next_or_upnext(struct btrfs_path *path,
6728                                    int *level, int root_level)
6729{
6730        int ret = 0;
6731        int nritems;
6732        nritems = btrfs_header_nritems(path->nodes[*level]);
6733
6734        path->slots[*level]++;
6735
6736        while (path->slots[*level] >= nritems) {
6737                if (*level == root_level)
6738                        return -1;
6739
6740                /* move upnext */
6741                path->slots[*level] = 0;
6742                free_extent_buffer(path->nodes[*level]);
6743                path->nodes[*level] = NULL;
6744                (*level)++;
6745                path->slots[*level]++;
6746
6747                nritems = btrfs_header_nritems(path->nodes[*level]);
6748                ret = 1;
6749        }
6750        return ret;
6751}
6752
6753/*
6754 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6755 * or down.
6756 */
6757static int tree_advance(struct btrfs_path *path,
6758                        int *level, int root_level,
6759                        int allow_down,
6760                        struct btrfs_key *key,
6761                        u64 reada_min_gen)
6762{
6763        int ret;
6764
6765        if (*level == 0 || !allow_down) {
6766                ret = tree_move_next_or_upnext(path, level, root_level);
6767        } else {
6768                ret = tree_move_down(path, level, reada_min_gen);
6769        }
6770        if (ret >= 0) {
6771                if (*level == 0)
6772                        btrfs_item_key_to_cpu(path->nodes[*level], key,
6773                                        path->slots[*level]);
6774                else
6775                        btrfs_node_key_to_cpu(path->nodes[*level], key,
6776                                        path->slots[*level]);
6777        }
6778        return ret;
6779}
6780
6781static int tree_compare_item(struct btrfs_path *left_path,
6782                             struct btrfs_path *right_path,
6783                             char *tmp_buf)
6784{
6785        int cmp;
6786        int len1, len2;
6787        unsigned long off1, off2;
6788
6789        len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6790        len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6791        if (len1 != len2)
6792                return 1;
6793
6794        off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6795        off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6796                                right_path->slots[0]);
6797
6798        read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6799
6800        cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6801        if (cmp)
6802                return 1;
6803        return 0;
6804}
6805
6806/*
6807 * This function compares two trees and calls the provided callback for
6808 * every changed/new/deleted item it finds.
6809 * If shared tree blocks are encountered, whole subtrees are skipped, making
6810 * the compare pretty fast on snapshotted subvolumes.
6811 *
6812 * This currently works on commit roots only. As commit roots are read only,
6813 * we don't do any locking. The commit roots are protected with transactions.
6814 * Transactions are ended and rejoined when a commit is tried in between.
6815 *
6816 * This function checks for modifications done to the trees while comparing.
6817 * If it detects a change, it aborts immediately.
6818 */
6819static int btrfs_compare_trees(struct btrfs_root *left_root,
6820                        struct btrfs_root *right_root, struct send_ctx *sctx)
6821{
6822        struct btrfs_fs_info *fs_info = left_root->fs_info;
6823        int ret;
6824        int cmp;
6825        struct btrfs_path *left_path = NULL;
6826        struct btrfs_path *right_path = NULL;
6827        struct btrfs_key left_key;
6828        struct btrfs_key right_key;
6829        char *tmp_buf = NULL;
6830        int left_root_level;
6831        int right_root_level;
6832        int left_level;
6833        int right_level;
6834        int left_end_reached;
6835        int right_end_reached;
6836        int advance_left;
6837        int advance_right;
6838        u64 left_blockptr;
6839        u64 right_blockptr;
6840        u64 left_gen;
6841        u64 right_gen;
6842        u64 reada_min_gen;
6843
6844        left_path = btrfs_alloc_path();
6845        if (!left_path) {
6846                ret = -ENOMEM;
6847                goto out;
6848        }
6849        right_path = btrfs_alloc_path();
6850        if (!right_path) {
6851                ret = -ENOMEM;
6852                goto out;
6853        }
6854
6855        tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6856        if (!tmp_buf) {
6857                ret = -ENOMEM;
6858                goto out;
6859        }
6860
6861        left_path->search_commit_root = 1;
6862        left_path->skip_locking = 1;
6863        right_path->search_commit_root = 1;
6864        right_path->skip_locking = 1;
6865
6866        /*
6867         * Strategy: Go to the first items of both trees. Then do
6868         *
6869         * If both trees are at level 0
6870         *   Compare keys of current items
6871         *     If left < right treat left item as new, advance left tree
6872         *       and repeat
6873         *     If left > right treat right item as deleted, advance right tree
6874         *       and repeat
6875         *     If left == right do deep compare of items, treat as changed if
6876         *       needed, advance both trees and repeat
6877         * If both trees are at the same level but not at level 0
6878         *   Compare keys of current nodes/leafs
6879         *     If left < right advance left tree and repeat
6880         *     If left > right advance right tree and repeat
6881         *     If left == right compare blockptrs of the next nodes/leafs
6882         *       If they match advance both trees but stay at the same level
6883         *         and repeat
6884         *       If they don't match advance both trees while allowing to go
6885         *         deeper and repeat
6886         * If tree levels are different
6887         *   Advance the tree that needs it and repeat
6888         *
6889         * Advancing a tree means:
6890         *   If we are at level 0, try to go to the next slot. If that's not
6891         *   possible, go one level up and repeat. Stop when we found a level
6892         *   where we could go to the next slot. We may at this point be on a
6893         *   node or a leaf.
6894         *
6895         *   If we are not at level 0 and not on shared tree blocks, go one
6896         *   level deeper.
6897         *
6898         *   If we are not at level 0 and on shared tree blocks, go one slot to
6899         *   the right if possible or go up and right.
6900         */
6901
6902        down_read(&fs_info->commit_root_sem);
6903        left_level = btrfs_header_level(left_root->commit_root);
6904        left_root_level = left_level;
6905        left_path->nodes[left_level] =
6906                        btrfs_clone_extent_buffer(left_root->commit_root);
6907        if (!left_path->nodes[left_level]) {
6908                up_read(&fs_info->commit_root_sem);
6909                ret = -ENOMEM;
6910                goto out;
6911        }
6912
6913        right_level = btrfs_header_level(right_root->commit_root);
6914        right_root_level = right_level;
6915        right_path->nodes[right_level] =
6916                        btrfs_clone_extent_buffer(right_root->commit_root);
6917        if (!right_path->nodes[right_level]) {
6918                up_read(&fs_info->commit_root_sem);
6919                ret = -ENOMEM;
6920                goto out;
6921        }
6922        /*
6923         * Our right root is the parent root, while the left root is the "send"
6924         * root. We know that all new nodes/leaves in the left root must have
6925         * a generation greater than the right root's generation, so we trigger
6926         * readahead for those nodes and leaves of the left root, as we know we
6927         * will need to read them at some point.
6928         */
6929        reada_min_gen = btrfs_header_generation(right_root->commit_root);
6930        up_read(&fs_info->commit_root_sem);
6931
6932        if (left_level == 0)
6933                btrfs_item_key_to_cpu(left_path->nodes[left_level],
6934                                &left_key, left_path->slots[left_level]);
6935        else
6936                btrfs_node_key_to_cpu(left_path->nodes[left_level],
6937                                &left_key, left_path->slots[left_level]);
6938        if (right_level == 0)
6939                btrfs_item_key_to_cpu(right_path->nodes[right_level],
6940                                &right_key, right_path->slots[right_level]);
6941        else
6942                btrfs_node_key_to_cpu(right_path->nodes[right_level],
6943                                &right_key, right_path->slots[right_level]);
6944
6945        left_end_reached = right_end_reached = 0;
6946        advance_left = advance_right = 0;
6947
6948        while (1) {
6949                cond_resched();
6950                if (advance_left && !left_end_reached) {
6951                        ret = tree_advance(left_path, &left_level,
6952                                        left_root_level,
6953                                        advance_left != ADVANCE_ONLY_NEXT,
6954                                        &left_key, reada_min_gen);
6955                        if (ret == -1)
6956                                left_end_reached = ADVANCE;
6957                        else if (ret < 0)
6958                                goto out;
6959                        advance_left = 0;
6960                }
6961                if (advance_right && !right_end_reached) {
6962                        ret = tree_advance(right_path, &right_level,
6963                                        right_root_level,
6964                                        advance_right != ADVANCE_ONLY_NEXT,
6965                                        &right_key, reada_min_gen);
6966                        if (ret == -1)
6967                                right_end_reached = ADVANCE;
6968                        else if (ret < 0)
6969                                goto out;
6970                        advance_right = 0;
6971                }
6972
6973                if (left_end_reached && right_end_reached) {
6974                        ret = 0;
6975                        goto out;
6976                } else if (left_end_reached) {
6977                        if (right_level == 0) {
6978                                ret = changed_cb(left_path, right_path,
6979                                                &right_key,
6980                                                BTRFS_COMPARE_TREE_DELETED,
6981                                                sctx);
6982                                if (ret < 0)
6983                                        goto out;
6984                        }
6985                        advance_right = ADVANCE;
6986                        continue;
6987                } else if (right_end_reached) {
6988                        if (left_level == 0) {
6989                                ret = changed_cb(left_path, right_path,
6990                                                &left_key,
6991                                                BTRFS_COMPARE_TREE_NEW,
6992                                                sctx);
6993                                if (ret < 0)
6994                                        goto out;
6995                        }
6996                        advance_left = ADVANCE;
6997                        continue;
6998                }
6999
7000                if (left_level == 0 && right_level == 0) {
7001                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7002                        if (cmp < 0) {
7003                                ret = changed_cb(left_path, right_path,
7004                                                &left_key,
7005                                                BTRFS_COMPARE_TREE_NEW,
7006                                                sctx);
7007                                if (ret < 0)
7008                                        goto out;
7009                                advance_left = ADVANCE;
7010                        } else if (cmp > 0) {
7011                                ret = changed_cb(left_path, right_path,
7012                                                &right_key,
7013                                                BTRFS_COMPARE_TREE_DELETED,
7014                                                sctx);
7015                                if (ret < 0)
7016                                        goto out;
7017                                advance_right = ADVANCE;
7018                        } else {
7019                                enum btrfs_compare_tree_result result;
7020
7021                                WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7022                                ret = tree_compare_item(left_path, right_path,
7023                                                        tmp_buf);
7024                                if (ret)
7025                                        result = BTRFS_COMPARE_TREE_CHANGED;
7026                                else
7027                                        result = BTRFS_COMPARE_TREE_SAME;
7028                                ret = changed_cb(left_path, right_path,
7029                                                 &left_key, result, sctx);
7030                                if (ret < 0)
7031                                        goto out;
7032                                advance_left = ADVANCE;
7033                                advance_right = ADVANCE;
7034                        }
7035                } else if (left_level == right_level) {
7036                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7037                        if (cmp < 0) {
7038                                advance_left = ADVANCE;
7039                        } else if (cmp > 0) {
7040                                advance_right = ADVANCE;
7041                        } else {
7042                                left_blockptr = btrfs_node_blockptr(
7043                                                left_path->nodes[left_level],
7044                                                left_path->slots[left_level]);
7045                                right_blockptr = btrfs_node_blockptr(
7046                                                right_path->nodes[right_level],
7047                                                right_path->slots[right_level]);
7048                                left_gen = btrfs_node_ptr_generation(
7049                                                left_path->nodes[left_level],
7050                                                left_path->slots[left_level]);
7051                                right_gen = btrfs_node_ptr_generation(
7052                                                right_path->nodes[right_level],
7053                                                right_path->slots[right_level]);
7054                                if (left_blockptr == right_blockptr &&
7055                                    left_gen == right_gen) {
7056                                        /*
7057                                         * As we're on a shared block, don't
7058                                         * allow to go deeper.
7059                                         */
7060                                        advance_left = ADVANCE_ONLY_NEXT;
7061                                        advance_right = ADVANCE_ONLY_NEXT;
7062                                } else {
7063                                        advance_left = ADVANCE;
7064                                        advance_right = ADVANCE;
7065                                }
7066                        }
7067                } else if (left_level < right_level) {
7068                        advance_right = ADVANCE;
7069                } else {
7070                        advance_left = ADVANCE;
7071                }
7072        }
7073
7074out:
7075        btrfs_free_path(left_path);
7076        btrfs_free_path(right_path);
7077        kvfree(tmp_buf);
7078        return ret;
7079}
7080
7081static int send_subvol(struct send_ctx *sctx)
7082{
7083        int ret;
7084
7085        if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7086                ret = send_header(sctx);
7087                if (ret < 0)
7088                        goto out;
7089        }
7090
7091        ret = send_subvol_begin(sctx);
7092        if (ret < 0)
7093                goto out;
7094
7095        if (sctx->parent_root) {
7096                ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7097                if (ret < 0)
7098                        goto out;
7099                ret = finish_inode_if_needed(sctx, 1);
7100                if (ret < 0)
7101                        goto out;
7102        } else {
7103                ret = full_send_tree(sctx);
7104                if (ret < 0)
7105                        goto out;
7106        }
7107
7108out:
7109        free_recorded_refs(sctx);
7110        return ret;
7111}
7112
7113/*
7114 * If orphan cleanup did remove any orphans from a root, it means the tree
7115 * was modified and therefore the commit root is not the same as the current
7116 * root anymore. This is a problem, because send uses the commit root and
7117 * therefore can see inode items that don't exist in the current root anymore,
7118 * and for example make calls to btrfs_iget, which will do tree lookups based
7119 * on the current root and not on the commit root. Those lookups will fail,
7120 * returning a -ESTALE error, and making send fail with that error. So make
7121 * sure a send does not see any orphans we have just removed, and that it will
7122 * see the same inodes regardless of whether a transaction commit happened
7123 * before it started (meaning that the commit root will be the same as the
7124 * current root) or not.
7125 */
7126static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7127{
7128        int i;
7129        struct btrfs_trans_handle *trans = NULL;
7130
7131again:
7132        if (sctx->parent_root &&
7133            sctx->parent_root->node != sctx->parent_root->commit_root)
7134                goto commit_trans;
7135
7136        for (i = 0; i < sctx->clone_roots_cnt; i++)
7137                if (sctx->clone_roots[i].root->node !=
7138                    sctx->clone_roots[i].root->commit_root)
7139                        goto commit_trans;
7140
7141        if (trans)
7142                return btrfs_end_transaction(trans);
7143
7144        return 0;
7145
7146commit_trans:
7147        /* Use any root, all fs roots will get their commit roots updated. */
7148        if (!trans) {
7149                trans = btrfs_join_transaction(sctx->send_root);
7150                if (IS_ERR(trans))
7151                        return PTR_ERR(trans);
7152                goto again;
7153        }
7154
7155        return btrfs_commit_transaction(trans);
7156}
7157
7158/*
7159 * Make sure any existing dellaloc is flushed for any root used by a send
7160 * operation so that we do not miss any data and we do not race with writeback
7161 * finishing and changing a tree while send is using the tree. This could
7162 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7163 * a send operation then uses the subvolume.
7164 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7165 */
7166static int flush_delalloc_roots(struct send_ctx *sctx)
7167{
7168        struct btrfs_root *root = sctx->parent_root;
7169        int ret;
7170        int i;
7171
7172        if (root) {
7173                ret = btrfs_start_delalloc_snapshot(root, false);
7174                if (ret)
7175                        return ret;
7176                btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7177        }
7178
7179        for (i = 0; i < sctx->clone_roots_cnt; i++) {
7180                root = sctx->clone_roots[i].root;
7181                ret = btrfs_start_delalloc_snapshot(root, false);
7182                if (ret)
7183                        return ret;
7184                btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7185        }
7186
7187        return 0;
7188}
7189
7190static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7191{
7192        spin_lock(&root->root_item_lock);
7193        root->send_in_progress--;
7194        /*
7195         * Not much left to do, we don't know why it's unbalanced and
7196         * can't blindly reset it to 0.
7197         */
7198        if (root->send_in_progress < 0)
7199                btrfs_err(root->fs_info,
7200                          "send_in_progress unbalanced %d root %llu",
7201                          root->send_in_progress, root->root_key.objectid);
7202        spin_unlock(&root->root_item_lock);
7203}
7204
7205static void dedupe_in_progress_warn(const struct btrfs_root *root)
7206{
7207        btrfs_warn_rl(root->fs_info,
7208"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7209                      root->root_key.objectid, root->dedupe_in_progress);
7210}
7211
7212long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7213{
7214        int ret = 0;
7215        struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7216        struct btrfs_fs_info *fs_info = send_root->fs_info;
7217        struct btrfs_root *clone_root;
7218        struct send_ctx *sctx = NULL;
7219        u32 i;
7220        u64 *clone_sources_tmp = NULL;
7221        int clone_sources_to_rollback = 0;
7222        size_t alloc_size;
7223        int sort_clone_roots = 0;
7224
7225        if (!capable(CAP_SYS_ADMIN))
7226                return -EPERM;
7227
7228        /*
7229         * The subvolume must remain read-only during send, protect against
7230         * making it RW. This also protects against deletion.
7231         */
7232        spin_lock(&send_root->root_item_lock);
7233        if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7234                dedupe_in_progress_warn(send_root);
7235                spin_unlock(&send_root->root_item_lock);
7236                return -EAGAIN;
7237        }
7238        send_root->send_in_progress++;
7239        spin_unlock(&send_root->root_item_lock);
7240
7241        /*
7242         * Userspace tools do the checks and warn the user if it's
7243         * not RO.
7244         */
7245        if (!btrfs_root_readonly(send_root)) {
7246                ret = -EPERM;
7247                goto out;
7248        }
7249
7250        /*
7251         * Check that we don't overflow at later allocations, we request
7252         * clone_sources_count + 1 items, and compare to unsigned long inside
7253         * access_ok.
7254         */
7255        if (arg->clone_sources_count >
7256            ULONG_MAX / sizeof(struct clone_root) - 1) {
7257                ret = -EINVAL;
7258                goto out;
7259        }
7260
7261        if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7262                ret = -EINVAL;
7263                goto out;
7264        }
7265
7266        sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7267        if (!sctx) {
7268                ret = -ENOMEM;
7269                goto out;
7270        }
7271
7272        INIT_LIST_HEAD(&sctx->new_refs);
7273        INIT_LIST_HEAD(&sctx->deleted_refs);
7274        INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7275        INIT_LIST_HEAD(&sctx->name_cache_list);
7276
7277        sctx->flags = arg->flags;
7278
7279        sctx->send_filp = fget(arg->send_fd);
7280        if (!sctx->send_filp) {
7281                ret = -EBADF;
7282                goto out;
7283        }
7284
7285        sctx->send_root = send_root;
7286        /*
7287         * Unlikely but possible, if the subvolume is marked for deletion but
7288         * is slow to remove the directory entry, send can still be started
7289         */
7290        if (btrfs_root_dead(sctx->send_root)) {
7291                ret = -EPERM;
7292                goto out;
7293        }
7294
7295        sctx->clone_roots_cnt = arg->clone_sources_count;
7296
7297        sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7298        sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7299        if (!sctx->send_buf) {
7300                ret = -ENOMEM;
7301                goto out;
7302        }
7303
7304        sctx->pending_dir_moves = RB_ROOT;
7305        sctx->waiting_dir_moves = RB_ROOT;
7306        sctx->orphan_dirs = RB_ROOT;
7307
7308        sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
7309                                     arg->clone_sources_count + 1,
7310                                     GFP_KERNEL);
7311        if (!sctx->clone_roots) {
7312                ret = -ENOMEM;
7313                goto out;
7314        }
7315
7316        alloc_size = array_size(sizeof(*arg->clone_sources),
7317                                arg->clone_sources_count);
7318
7319        if (arg->clone_sources_count) {
7320                clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7321                if (!clone_sources_tmp) {
7322                        ret = -ENOMEM;
7323                        goto out;
7324                }
7325
7326                ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7327                                alloc_size);
7328                if (ret) {
7329                        ret = -EFAULT;
7330                        goto out;
7331                }
7332
7333                for (i = 0; i < arg->clone_sources_count; i++) {
7334                        clone_root = btrfs_get_fs_root(fs_info,
7335                                                clone_sources_tmp[i], true);
7336                        if (IS_ERR(clone_root)) {
7337                                ret = PTR_ERR(clone_root);
7338                                goto out;
7339                        }
7340                        spin_lock(&clone_root->root_item_lock);
7341                        if (!btrfs_root_readonly(clone_root) ||
7342                            btrfs_root_dead(clone_root)) {
7343                                spin_unlock(&clone_root->root_item_lock);
7344                                btrfs_put_root(clone_root);
7345                                ret = -EPERM;
7346                                goto out;
7347                        }
7348                        if (clone_root->dedupe_in_progress) {
7349                                dedupe_in_progress_warn(clone_root);
7350                                spin_unlock(&clone_root->root_item_lock);
7351                                btrfs_put_root(clone_root);
7352                                ret = -EAGAIN;
7353                                goto out;
7354                        }
7355                        clone_root->send_in_progress++;
7356                        spin_unlock(&clone_root->root_item_lock);
7357
7358                        sctx->clone_roots[i].root = clone_root;
7359                        clone_sources_to_rollback = i + 1;
7360                }
7361                kvfree(clone_sources_tmp);
7362                clone_sources_tmp = NULL;
7363        }
7364
7365        if (arg->parent_root) {
7366                sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7367                                                      true);
7368                if (IS_ERR(sctx->parent_root)) {
7369                        ret = PTR_ERR(sctx->parent_root);
7370                        goto out;
7371                }
7372
7373                spin_lock(&sctx->parent_root->root_item_lock);
7374                sctx->parent_root->send_in_progress++;
7375                if (!btrfs_root_readonly(sctx->parent_root) ||
7376                                btrfs_root_dead(sctx->parent_root)) {
7377                        spin_unlock(&sctx->parent_root->root_item_lock);
7378                        ret = -EPERM;
7379                        goto out;
7380                }
7381                if (sctx->parent_root->dedupe_in_progress) {
7382                        dedupe_in_progress_warn(sctx->parent_root);
7383                        spin_unlock(&sctx->parent_root->root_item_lock);
7384                        ret = -EAGAIN;
7385                        goto out;
7386                }
7387                spin_unlock(&sctx->parent_root->root_item_lock);
7388        }
7389
7390        /*
7391         * Clones from send_root are allowed, but only if the clone source
7392         * is behind the current send position. This is checked while searching
7393         * for possible clone sources.
7394         */
7395        sctx->clone_roots[sctx->clone_roots_cnt++].root =
7396                btrfs_grab_root(sctx->send_root);
7397
7398        /* We do a bsearch later */
7399        sort(sctx->clone_roots, sctx->clone_roots_cnt,
7400                        sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7401                        NULL);
7402        sort_clone_roots = 1;
7403
7404        ret = flush_delalloc_roots(sctx);
7405        if (ret)
7406                goto out;
7407
7408        ret = ensure_commit_roots_uptodate(sctx);
7409        if (ret)
7410                goto out;
7411
7412        spin_lock(&fs_info->send_reloc_lock);
7413        if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
7414                spin_unlock(&fs_info->send_reloc_lock);
7415                btrfs_warn_rl(fs_info,
7416                "cannot run send because a relocation operation is in progress");
7417                ret = -EAGAIN;
7418                goto out;
7419        }
7420        fs_info->send_in_progress++;
7421        spin_unlock(&fs_info->send_reloc_lock);
7422
7423        ret = send_subvol(sctx);
7424        spin_lock(&fs_info->send_reloc_lock);
7425        fs_info->send_in_progress--;
7426        spin_unlock(&fs_info->send_reloc_lock);
7427        if (ret < 0)
7428                goto out;
7429
7430        if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7431                ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7432                if (ret < 0)
7433                        goto out;
7434                ret = send_cmd(sctx);
7435                if (ret < 0)
7436                        goto out;
7437        }
7438
7439out:
7440        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7441        while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7442                struct rb_node *n;
7443                struct pending_dir_move *pm;
7444
7445                n = rb_first(&sctx->pending_dir_moves);
7446                pm = rb_entry(n, struct pending_dir_move, node);
7447                while (!list_empty(&pm->list)) {
7448                        struct pending_dir_move *pm2;
7449
7450                        pm2 = list_first_entry(&pm->list,
7451                                               struct pending_dir_move, list);
7452                        free_pending_move(sctx, pm2);
7453                }
7454                free_pending_move(sctx, pm);
7455        }
7456
7457        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7458        while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7459                struct rb_node *n;
7460                struct waiting_dir_move *dm;
7461
7462                n = rb_first(&sctx->waiting_dir_moves);
7463                dm = rb_entry(n, struct waiting_dir_move, node);
7464                rb_erase(&dm->node, &sctx->waiting_dir_moves);
7465                kfree(dm);
7466        }
7467
7468        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7469        while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7470                struct rb_node *n;
7471                struct orphan_dir_info *odi;
7472
7473                n = rb_first(&sctx->orphan_dirs);
7474                odi = rb_entry(n, struct orphan_dir_info, node);
7475                free_orphan_dir_info(sctx, odi);
7476        }
7477
7478        if (sort_clone_roots) {
7479                for (i = 0; i < sctx->clone_roots_cnt; i++) {
7480                        btrfs_root_dec_send_in_progress(
7481                                        sctx->clone_roots[i].root);
7482                        btrfs_put_root(sctx->clone_roots[i].root);
7483                }
7484        } else {
7485                for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
7486                        btrfs_root_dec_send_in_progress(
7487                                        sctx->clone_roots[i].root);
7488                        btrfs_put_root(sctx->clone_roots[i].root);
7489                }
7490
7491                btrfs_root_dec_send_in_progress(send_root);
7492        }
7493        if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
7494                btrfs_root_dec_send_in_progress(sctx->parent_root);
7495                btrfs_put_root(sctx->parent_root);
7496        }
7497
7498        kvfree(clone_sources_tmp);
7499
7500        if (sctx) {
7501                if (sctx->send_filp)
7502                        fput(sctx->send_filp);
7503
7504                kvfree(sctx->clone_roots);
7505                kvfree(sctx->send_buf);
7506
7507                name_cache_free(sctx);
7508
7509                kfree(sctx);
7510        }
7511
7512        return ret;
7513}
7514