linux/fs/crypto/keysetup.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Key setup facility for FS encryption support.
   4 *
   5 * Copyright (C) 2015, Google, Inc.
   6 *
   7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
   8 * Heavily modified since then.
   9 */
  10
  11#include <crypto/skcipher.h>
  12#include <linux/key.h>
  13#include <linux/random.h>
  14
  15#include "fscrypt_private.h"
  16
  17struct fscrypt_mode fscrypt_modes[] = {
  18        [FSCRYPT_MODE_AES_256_XTS] = {
  19                .friendly_name = "AES-256-XTS",
  20                .cipher_str = "xts(aes)",
  21                .keysize = 64,
  22                .ivsize = 16,
  23                .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS,
  24        },
  25        [FSCRYPT_MODE_AES_256_CTS] = {
  26                .friendly_name = "AES-256-CTS-CBC",
  27                .cipher_str = "cts(cbc(aes))",
  28                .keysize = 32,
  29                .ivsize = 16,
  30        },
  31        [FSCRYPT_MODE_AES_128_CBC] = {
  32                .friendly_name = "AES-128-CBC-ESSIV",
  33                .cipher_str = "essiv(cbc(aes),sha256)",
  34                .keysize = 16,
  35                .ivsize = 16,
  36                .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
  37        },
  38        [FSCRYPT_MODE_AES_128_CTS] = {
  39                .friendly_name = "AES-128-CTS-CBC",
  40                .cipher_str = "cts(cbc(aes))",
  41                .keysize = 16,
  42                .ivsize = 16,
  43        },
  44        [FSCRYPT_MODE_ADIANTUM] = {
  45                .friendly_name = "Adiantum",
  46                .cipher_str = "adiantum(xchacha12,aes)",
  47                .keysize = 32,
  48                .ivsize = 32,
  49                .blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM,
  50        },
  51};
  52
  53static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex);
  54
  55static struct fscrypt_mode *
  56select_encryption_mode(const union fscrypt_policy *policy,
  57                       const struct inode *inode)
  58{
  59        BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1);
  60
  61        if (S_ISREG(inode->i_mode))
  62                return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];
  63
  64        if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
  65                return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];
  66
  67        WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
  68                  inode->i_ino, (inode->i_mode & S_IFMT));
  69        return ERR_PTR(-EINVAL);
  70}
  71
  72/* Create a symmetric cipher object for the given encryption mode and key */
  73static struct crypto_skcipher *
  74fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
  75                          const struct inode *inode)
  76{
  77        struct crypto_skcipher *tfm;
  78        int err;
  79
  80        tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
  81        if (IS_ERR(tfm)) {
  82                if (PTR_ERR(tfm) == -ENOENT) {
  83                        fscrypt_warn(inode,
  84                                     "Missing crypto API support for %s (API name: \"%s\")",
  85                                     mode->friendly_name, mode->cipher_str);
  86                        return ERR_PTR(-ENOPKG);
  87                }
  88                fscrypt_err(inode, "Error allocating '%s' transform: %ld",
  89                            mode->cipher_str, PTR_ERR(tfm));
  90                return tfm;
  91        }
  92        if (!xchg(&mode->logged_impl_name, 1)) {
  93                /*
  94                 * fscrypt performance can vary greatly depending on which
  95                 * crypto algorithm implementation is used.  Help people debug
  96                 * performance problems by logging the ->cra_driver_name the
  97                 * first time a mode is used.
  98                 */
  99                pr_info("fscrypt: %s using implementation \"%s\"\n",
 100                        mode->friendly_name, crypto_skcipher_driver_name(tfm));
 101        }
 102        if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) {
 103                err = -EINVAL;
 104                goto err_free_tfm;
 105        }
 106        crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
 107        err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
 108        if (err)
 109                goto err_free_tfm;
 110
 111        return tfm;
 112
 113err_free_tfm:
 114        crypto_free_skcipher(tfm);
 115        return ERR_PTR(err);
 116}
 117
 118/*
 119 * Prepare the crypto transform object or blk-crypto key in @prep_key, given the
 120 * raw key, encryption mode, and flag indicating which encryption implementation
 121 * (fs-layer or blk-crypto) will be used.
 122 */
 123int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
 124                        const u8 *raw_key, const struct fscrypt_info *ci)
 125{
 126        struct crypto_skcipher *tfm;
 127
 128        if (fscrypt_using_inline_encryption(ci))
 129                return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci);
 130
 131        tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
 132        if (IS_ERR(tfm))
 133                return PTR_ERR(tfm);
 134        /*
 135         * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
 136         * I.e., here we publish ->tfm with a RELEASE barrier so that
 137         * concurrent tasks can ACQUIRE it.  Note that this concurrency is only
 138         * possible for per-mode keys, not for per-file keys.
 139         */
 140        smp_store_release(&prep_key->tfm, tfm);
 141        return 0;
 142}
 143
 144/* Destroy a crypto transform object and/or blk-crypto key. */
 145void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key)
 146{
 147        crypto_free_skcipher(prep_key->tfm);
 148        fscrypt_destroy_inline_crypt_key(prep_key);
 149}
 150
 151/* Given a per-file encryption key, set up the file's crypto transform object */
 152int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key)
 153{
 154        ci->ci_owns_key = true;
 155        return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci);
 156}
 157
 158static int setup_per_mode_enc_key(struct fscrypt_info *ci,
 159                                  struct fscrypt_master_key *mk,
 160                                  struct fscrypt_prepared_key *keys,
 161                                  u8 hkdf_context, bool include_fs_uuid)
 162{
 163        const struct inode *inode = ci->ci_inode;
 164        const struct super_block *sb = inode->i_sb;
 165        struct fscrypt_mode *mode = ci->ci_mode;
 166        const u8 mode_num = mode - fscrypt_modes;
 167        struct fscrypt_prepared_key *prep_key;
 168        u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
 169        u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
 170        unsigned int hkdf_infolen = 0;
 171        int err;
 172
 173        if (WARN_ON(mode_num > FSCRYPT_MODE_MAX))
 174                return -EINVAL;
 175
 176        prep_key = &keys[mode_num];
 177        if (fscrypt_is_key_prepared(prep_key, ci)) {
 178                ci->ci_enc_key = *prep_key;
 179                return 0;
 180        }
 181
 182        mutex_lock(&fscrypt_mode_key_setup_mutex);
 183
 184        if (fscrypt_is_key_prepared(prep_key, ci))
 185                goto done_unlock;
 186
 187        BUILD_BUG_ON(sizeof(mode_num) != 1);
 188        BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
 189        BUILD_BUG_ON(sizeof(hkdf_info) != 17);
 190        hkdf_info[hkdf_infolen++] = mode_num;
 191        if (include_fs_uuid) {
 192                memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid,
 193                       sizeof(sb->s_uuid));
 194                hkdf_infolen += sizeof(sb->s_uuid);
 195        }
 196        err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
 197                                  hkdf_context, hkdf_info, hkdf_infolen,
 198                                  mode_key, mode->keysize);
 199        if (err)
 200                goto out_unlock;
 201        err = fscrypt_prepare_key(prep_key, mode_key, ci);
 202        memzero_explicit(mode_key, mode->keysize);
 203        if (err)
 204                goto out_unlock;
 205done_unlock:
 206        ci->ci_enc_key = *prep_key;
 207        err = 0;
 208out_unlock:
 209        mutex_unlock(&fscrypt_mode_key_setup_mutex);
 210        return err;
 211}
 212
 213/*
 214 * Derive a SipHash key from the given fscrypt master key and the given
 215 * application-specific information string.
 216 *
 217 * Note that the KDF produces a byte array, but the SipHash APIs expect the key
 218 * as a pair of 64-bit words.  Therefore, on big endian CPUs we have to do an
 219 * endianness swap in order to get the same results as on little endian CPUs.
 220 */
 221static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk,
 222                                      u8 context, const u8 *info,
 223                                      unsigned int infolen, siphash_key_t *key)
 224{
 225        int err;
 226
 227        err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen,
 228                                  (u8 *)key, sizeof(*key));
 229        if (err)
 230                return err;
 231
 232        BUILD_BUG_ON(sizeof(*key) != 16);
 233        BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2);
 234        le64_to_cpus(&key->key[0]);
 235        le64_to_cpus(&key->key[1]);
 236        return 0;
 237}
 238
 239int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
 240                               const struct fscrypt_master_key *mk)
 241{
 242        int err;
 243
 244        err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY,
 245                                         ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
 246                                         &ci->ci_dirhash_key);
 247        if (err)
 248                return err;
 249        ci->ci_dirhash_key_initialized = true;
 250        return 0;
 251}
 252
 253void fscrypt_hash_inode_number(struct fscrypt_info *ci,
 254                               const struct fscrypt_master_key *mk)
 255{
 256        WARN_ON(ci->ci_inode->i_ino == 0);
 257        WARN_ON(!mk->mk_ino_hash_key_initialized);
 258
 259        ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
 260                                              &mk->mk_ino_hash_key);
 261}
 262
 263static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci,
 264                                            struct fscrypt_master_key *mk)
 265{
 266        int err;
 267
 268        err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys,
 269                                     HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true);
 270        if (err)
 271                return err;
 272
 273        /* pairs with smp_store_release() below */
 274        if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) {
 275
 276                mutex_lock(&fscrypt_mode_key_setup_mutex);
 277
 278                if (mk->mk_ino_hash_key_initialized)
 279                        goto unlock;
 280
 281                err = fscrypt_derive_siphash_key(mk,
 282                                                 HKDF_CONTEXT_INODE_HASH_KEY,
 283                                                 NULL, 0, &mk->mk_ino_hash_key);
 284                if (err)
 285                        goto unlock;
 286                /* pairs with smp_load_acquire() above */
 287                smp_store_release(&mk->mk_ino_hash_key_initialized, true);
 288unlock:
 289                mutex_unlock(&fscrypt_mode_key_setup_mutex);
 290                if (err)
 291                        return err;
 292        }
 293
 294        /*
 295         * New inodes may not have an inode number assigned yet.
 296         * Hashing their inode number is delayed until later.
 297         */
 298        if (ci->ci_inode->i_ino)
 299                fscrypt_hash_inode_number(ci, mk);
 300        return 0;
 301}
 302
 303static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
 304                                     struct fscrypt_master_key *mk,
 305                                     bool need_dirhash_key)
 306{
 307        int err;
 308
 309        if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
 310                /*
 311                 * DIRECT_KEY: instead of deriving per-file encryption keys, the
 312                 * per-file nonce will be included in all the IVs.  But unlike
 313                 * v1 policies, for v2 policies in this case we don't encrypt
 314                 * with the master key directly but rather derive a per-mode
 315                 * encryption key.  This ensures that the master key is
 316                 * consistently used only for HKDF, avoiding key reuse issues.
 317                 */
 318                err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys,
 319                                             HKDF_CONTEXT_DIRECT_KEY, false);
 320        } else if (ci->ci_policy.v2.flags &
 321                   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
 322                /*
 323                 * IV_INO_LBLK_64: encryption keys are derived from (master_key,
 324                 * mode_num, filesystem_uuid), and inode number is included in
 325                 * the IVs.  This format is optimized for use with inline
 326                 * encryption hardware compliant with the UFS standard.
 327                 */
 328                err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys,
 329                                             HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
 330                                             true);
 331        } else if (ci->ci_policy.v2.flags &
 332                   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
 333                err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
 334        } else {
 335                u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
 336
 337                err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
 338                                          HKDF_CONTEXT_PER_FILE_ENC_KEY,
 339                                          ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
 340                                          derived_key, ci->ci_mode->keysize);
 341                if (err)
 342                        return err;
 343
 344                err = fscrypt_set_per_file_enc_key(ci, derived_key);
 345                memzero_explicit(derived_key, ci->ci_mode->keysize);
 346        }
 347        if (err)
 348                return err;
 349
 350        /* Derive a secret dirhash key for directories that need it. */
 351        if (need_dirhash_key) {
 352                err = fscrypt_derive_dirhash_key(ci, mk);
 353                if (err)
 354                        return err;
 355        }
 356
 357        return 0;
 358}
 359
 360/*
 361 * Find the master key, then set up the inode's actual encryption key.
 362 *
 363 * If the master key is found in the filesystem-level keyring, then the
 364 * corresponding 'struct key' is returned in *master_key_ret with its semaphore
 365 * read-locked.  This is needed to ensure that only one task links the
 366 * fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race to create
 367 * an fscrypt_info for the same inode), and to synchronize the master key being
 368 * removed with a new inode starting to use it.
 369 */
 370static int setup_file_encryption_key(struct fscrypt_info *ci,
 371                                     bool need_dirhash_key,
 372                                     struct key **master_key_ret)
 373{
 374        struct key *key;
 375        struct fscrypt_master_key *mk = NULL;
 376        struct fscrypt_key_specifier mk_spec;
 377        int err;
 378
 379        err = fscrypt_select_encryption_impl(ci);
 380        if (err)
 381                return err;
 382
 383        switch (ci->ci_policy.version) {
 384        case FSCRYPT_POLICY_V1:
 385                mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
 386                memcpy(mk_spec.u.descriptor,
 387                       ci->ci_policy.v1.master_key_descriptor,
 388                       FSCRYPT_KEY_DESCRIPTOR_SIZE);
 389                break;
 390        case FSCRYPT_POLICY_V2:
 391                mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
 392                memcpy(mk_spec.u.identifier,
 393                       ci->ci_policy.v2.master_key_identifier,
 394                       FSCRYPT_KEY_IDENTIFIER_SIZE);
 395                break;
 396        default:
 397                WARN_ON(1);
 398                return -EINVAL;
 399        }
 400
 401        key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
 402        if (IS_ERR(key)) {
 403                if (key != ERR_PTR(-ENOKEY) ||
 404                    ci->ci_policy.version != FSCRYPT_POLICY_V1)
 405                        return PTR_ERR(key);
 406
 407                /*
 408                 * As a legacy fallback for v1 policies, search for the key in
 409                 * the current task's subscribed keyrings too.  Don't move this
 410                 * to before the search of ->s_master_keys, since users
 411                 * shouldn't be able to override filesystem-level keys.
 412                 */
 413                return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
 414        }
 415
 416        mk = key->payload.data[0];
 417        down_read(&key->sem);
 418
 419        /* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
 420        if (!is_master_key_secret_present(&mk->mk_secret)) {
 421                err = -ENOKEY;
 422                goto out_release_key;
 423        }
 424
 425        /*
 426         * Require that the master key be at least as long as the derived key.
 427         * Otherwise, the derived key cannot possibly contain as much entropy as
 428         * that required by the encryption mode it will be used for.  For v1
 429         * policies it's also required for the KDF to work at all.
 430         */
 431        if (mk->mk_secret.size < ci->ci_mode->keysize) {
 432                fscrypt_warn(NULL,
 433                             "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
 434                             master_key_spec_type(&mk_spec),
 435                             master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u,
 436                             mk->mk_secret.size, ci->ci_mode->keysize);
 437                err = -ENOKEY;
 438                goto out_release_key;
 439        }
 440
 441        switch (ci->ci_policy.version) {
 442        case FSCRYPT_POLICY_V1:
 443                err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
 444                break;
 445        case FSCRYPT_POLICY_V2:
 446                err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key);
 447                break;
 448        default:
 449                WARN_ON(1);
 450                err = -EINVAL;
 451                break;
 452        }
 453        if (err)
 454                goto out_release_key;
 455
 456        *master_key_ret = key;
 457        return 0;
 458
 459out_release_key:
 460        up_read(&key->sem);
 461        key_put(key);
 462        return err;
 463}
 464
 465static void put_crypt_info(struct fscrypt_info *ci)
 466{
 467        struct key *key;
 468
 469        if (!ci)
 470                return;
 471
 472        if (ci->ci_direct_key)
 473                fscrypt_put_direct_key(ci->ci_direct_key);
 474        else if (ci->ci_owns_key)
 475                fscrypt_destroy_prepared_key(&ci->ci_enc_key);
 476
 477        key = ci->ci_master_key;
 478        if (key) {
 479                struct fscrypt_master_key *mk = key->payload.data[0];
 480
 481                /*
 482                 * Remove this inode from the list of inodes that were unlocked
 483                 * with the master key.
 484                 *
 485                 * In addition, if we're removing the last inode from a key that
 486                 * already had its secret removed, invalidate the key so that it
 487                 * gets removed from ->s_master_keys.
 488                 */
 489                spin_lock(&mk->mk_decrypted_inodes_lock);
 490                list_del(&ci->ci_master_key_link);
 491                spin_unlock(&mk->mk_decrypted_inodes_lock);
 492                if (refcount_dec_and_test(&mk->mk_refcount))
 493                        key_invalidate(key);
 494                key_put(key);
 495        }
 496        memzero_explicit(ci, sizeof(*ci));
 497        kmem_cache_free(fscrypt_info_cachep, ci);
 498}
 499
 500static int
 501fscrypt_setup_encryption_info(struct inode *inode,
 502                              const union fscrypt_policy *policy,
 503                              const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],
 504                              bool need_dirhash_key)
 505{
 506        struct fscrypt_info *crypt_info;
 507        struct fscrypt_mode *mode;
 508        struct key *master_key = NULL;
 509        int res;
 510
 511        res = fscrypt_initialize(inode->i_sb->s_cop->flags);
 512        if (res)
 513                return res;
 514
 515        crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL);
 516        if (!crypt_info)
 517                return -ENOMEM;
 518
 519        crypt_info->ci_inode = inode;
 520        crypt_info->ci_policy = *policy;
 521        memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE);
 522
 523        mode = select_encryption_mode(&crypt_info->ci_policy, inode);
 524        if (IS_ERR(mode)) {
 525                res = PTR_ERR(mode);
 526                goto out;
 527        }
 528        WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
 529        crypt_info->ci_mode = mode;
 530
 531        res = setup_file_encryption_key(crypt_info, need_dirhash_key,
 532                                        &master_key);
 533        if (res)
 534                goto out;
 535
 536        /*
 537         * For existing inodes, multiple tasks may race to set ->i_crypt_info.
 538         * So use cmpxchg_release().  This pairs with the smp_load_acquire() in
 539         * fscrypt_get_info().  I.e., here we publish ->i_crypt_info with a
 540         * RELEASE barrier so that other tasks can ACQUIRE it.
 541         */
 542        if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
 543                /*
 544                 * We won the race and set ->i_crypt_info to our crypt_info.
 545                 * Now link it into the master key's inode list.
 546                 */
 547                if (master_key) {
 548                        struct fscrypt_master_key *mk =
 549                                master_key->payload.data[0];
 550
 551                        refcount_inc(&mk->mk_refcount);
 552                        crypt_info->ci_master_key = key_get(master_key);
 553                        spin_lock(&mk->mk_decrypted_inodes_lock);
 554                        list_add(&crypt_info->ci_master_key_link,
 555                                 &mk->mk_decrypted_inodes);
 556                        spin_unlock(&mk->mk_decrypted_inodes_lock);
 557                }
 558                crypt_info = NULL;
 559        }
 560        res = 0;
 561out:
 562        if (master_key) {
 563                up_read(&master_key->sem);
 564                key_put(master_key);
 565        }
 566        put_crypt_info(crypt_info);
 567        return res;
 568}
 569
 570/**
 571 * fscrypt_get_encryption_info() - set up an inode's encryption key
 572 * @inode: the inode to set up the key for.  Must be encrypted.
 573 * @allow_unsupported: if %true, treat an unsupported encryption policy (or
 574 *                     unrecognized encryption context) the same way as the key
 575 *                     being unavailable, instead of returning an error.  Use
 576 *                     %false unless the operation being performed is needed in
 577 *                     order for files (or directories) to be deleted.
 578 *
 579 * Set up ->i_crypt_info, if it hasn't already been done.
 580 *
 581 * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe.  So
 582 * generally this shouldn't be called from within a filesystem transaction.
 583 *
 584 * Return: 0 if ->i_crypt_info was set or was already set, *or* if the
 585 *         encryption key is unavailable.  (Use fscrypt_has_encryption_key() to
 586 *         distinguish these cases.)  Also can return another -errno code.
 587 */
 588int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported)
 589{
 590        int res;
 591        union fscrypt_context ctx;
 592        union fscrypt_policy policy;
 593
 594        if (fscrypt_has_encryption_key(inode))
 595                return 0;
 596
 597        res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
 598        if (res < 0) {
 599                if (res == -ERANGE && allow_unsupported)
 600                        return 0;
 601                fscrypt_warn(inode, "Error %d getting encryption context", res);
 602                return res;
 603        }
 604
 605        res = fscrypt_policy_from_context(&policy, &ctx, res);
 606        if (res) {
 607                if (allow_unsupported)
 608                        return 0;
 609                fscrypt_warn(inode,
 610                             "Unrecognized or corrupt encryption context");
 611                return res;
 612        }
 613
 614        if (!fscrypt_supported_policy(&policy, inode)) {
 615                if (allow_unsupported)
 616                        return 0;
 617                return -EINVAL;
 618        }
 619
 620        res = fscrypt_setup_encryption_info(inode, &policy,
 621                                            fscrypt_context_nonce(&ctx),
 622                                            IS_CASEFOLDED(inode) &&
 623                                            S_ISDIR(inode->i_mode));
 624
 625        if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */
 626                res = 0;
 627        if (res == -ENOKEY)
 628                res = 0;
 629        return res;
 630}
 631
 632/**
 633 * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory
 634 * @dir: a possibly-encrypted directory
 635 * @inode: the new inode.  ->i_mode must be set already.
 636 *         ->i_ino doesn't need to be set yet.
 637 * @encrypt_ret: (output) set to %true if the new inode will be encrypted
 638 *
 639 * If the directory is encrypted, set up its ->i_crypt_info in preparation for
 640 * encrypting the name of the new file.  Also, if the new inode will be
 641 * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true.
 642 *
 643 * This isn't %GFP_NOFS-safe, and therefore it should be called before starting
 644 * any filesystem transaction to create the inode.  For this reason, ->i_ino
 645 * isn't required to be set yet, as the filesystem may not have set it yet.
 646 *
 647 * This doesn't persist the new inode's encryption context.  That still needs to
 648 * be done later by calling fscrypt_set_context().
 649 *
 650 * Return: 0 on success, -ENOKEY if the encryption key is missing, or another
 651 *         -errno code
 652 */
 653int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
 654                              bool *encrypt_ret)
 655{
 656        const union fscrypt_policy *policy;
 657        u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
 658
 659        policy = fscrypt_policy_to_inherit(dir);
 660        if (policy == NULL)
 661                return 0;
 662        if (IS_ERR(policy))
 663                return PTR_ERR(policy);
 664
 665        if (WARN_ON_ONCE(inode->i_mode == 0))
 666                return -EINVAL;
 667
 668        /*
 669         * Only regular files, directories, and symlinks are encrypted.
 670         * Special files like device nodes and named pipes aren't.
 671         */
 672        if (!S_ISREG(inode->i_mode) &&
 673            !S_ISDIR(inode->i_mode) &&
 674            !S_ISLNK(inode->i_mode))
 675                return 0;
 676
 677        *encrypt_ret = true;
 678
 679        get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE);
 680        return fscrypt_setup_encryption_info(inode, policy, nonce,
 681                                             IS_CASEFOLDED(dir) &&
 682                                             S_ISDIR(inode->i_mode));
 683}
 684EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode);
 685
 686/**
 687 * fscrypt_put_encryption_info() - free most of an inode's fscrypt data
 688 * @inode: an inode being evicted
 689 *
 690 * Free the inode's fscrypt_info.  Filesystems must call this when the inode is
 691 * being evicted.  An RCU grace period need not have elapsed yet.
 692 */
 693void fscrypt_put_encryption_info(struct inode *inode)
 694{
 695        put_crypt_info(inode->i_crypt_info);
 696        inode->i_crypt_info = NULL;
 697}
 698EXPORT_SYMBOL(fscrypt_put_encryption_info);
 699
 700/**
 701 * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
 702 * @inode: an inode being freed
 703 *
 704 * Free the inode's cached decrypted symlink target, if any.  Filesystems must
 705 * call this after an RCU grace period, just before they free the inode.
 706 */
 707void fscrypt_free_inode(struct inode *inode)
 708{
 709        if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
 710                kfree(inode->i_link);
 711                inode->i_link = NULL;
 712        }
 713}
 714EXPORT_SYMBOL(fscrypt_free_inode);
 715
 716/**
 717 * fscrypt_drop_inode() - check whether the inode's master key has been removed
 718 * @inode: an inode being considered for eviction
 719 *
 720 * Filesystems supporting fscrypt must call this from their ->drop_inode()
 721 * method so that encrypted inodes are evicted as soon as they're no longer in
 722 * use and their master key has been removed.
 723 *
 724 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
 725 */
 726int fscrypt_drop_inode(struct inode *inode)
 727{
 728        const struct fscrypt_info *ci = fscrypt_get_info(inode);
 729        const struct fscrypt_master_key *mk;
 730
 731        /*
 732         * If ci is NULL, then the inode doesn't have an encryption key set up
 733         * so it's irrelevant.  If ci_master_key is NULL, then the master key
 734         * was provided via the legacy mechanism of the process-subscribed
 735         * keyrings, so we don't know whether it's been removed or not.
 736         */
 737        if (!ci || !ci->ci_master_key)
 738                return 0;
 739        mk = ci->ci_master_key->payload.data[0];
 740
 741        /*
 742         * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
 743         * protected by the key were cleaned by sync_filesystem().  But if
 744         * userspace is still using the files, inodes can be dirtied between
 745         * then and now.  We mustn't lose any writes, so skip dirty inodes here.
 746         */
 747        if (inode->i_state & I_DIRTY_ALL)
 748                return 0;
 749
 750        /*
 751         * Note: since we aren't holding the key semaphore, the result here can
 752         * immediately become outdated.  But there's no correctness problem with
 753         * unnecessarily evicting.  Nor is there a correctness problem with not
 754         * evicting while iput() is racing with the key being removed, since
 755         * then the thread removing the key will either evict the inode itself
 756         * or will correctly detect that it wasn't evicted due to the race.
 757         */
 758        return !is_master_key_secret_present(&mk->mk_secret);
 759}
 760EXPORT_SYMBOL_GPL(fscrypt_drop_inode);
 761