linux/fs/ecryptfs/crypto.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * eCryptfs: Linux filesystem encryption layer
   4 *
   5 * Copyright (C) 1997-2004 Erez Zadok
   6 * Copyright (C) 2001-2004 Stony Brook University
   7 * Copyright (C) 2004-2007 International Business Machines Corp.
   8 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
   9 *              Michael C. Thompson <mcthomps@us.ibm.com>
  10 */
  11
  12#include <crypto/hash.h>
  13#include <crypto/skcipher.h>
  14#include <linux/fs.h>
  15#include <linux/mount.h>
  16#include <linux/pagemap.h>
  17#include <linux/random.h>
  18#include <linux/compiler.h>
  19#include <linux/key.h>
  20#include <linux/namei.h>
  21#include <linux/file.h>
  22#include <linux/scatterlist.h>
  23#include <linux/slab.h>
  24#include <asm/unaligned.h>
  25#include <linux/kernel.h>
  26#include <linux/xattr.h>
  27#include "ecryptfs_kernel.h"
  28
  29#define DECRYPT         0
  30#define ENCRYPT         1
  31
  32/**
  33 * ecryptfs_from_hex
  34 * @dst: Buffer to take the bytes from src hex; must be at least of
  35 *       size (src_size / 2)
  36 * @src: Buffer to be converted from a hex string representation to raw value
  37 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
  38 */
  39void ecryptfs_from_hex(char *dst, char *src, int dst_size)
  40{
  41        int x;
  42        char tmp[3] = { 0, };
  43
  44        for (x = 0; x < dst_size; x++) {
  45                tmp[0] = src[x * 2];
  46                tmp[1] = src[x * 2 + 1];
  47                dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
  48        }
  49}
  50
  51/**
  52 * ecryptfs_calculate_md5 - calculates the md5 of @src
  53 * @dst: Pointer to 16 bytes of allocated memory
  54 * @crypt_stat: Pointer to crypt_stat struct for the current inode
  55 * @src: Data to be md5'd
  56 * @len: Length of @src
  57 *
  58 * Uses the allocated crypto context that crypt_stat references to
  59 * generate the MD5 sum of the contents of src.
  60 */
  61static int ecryptfs_calculate_md5(char *dst,
  62                                  struct ecryptfs_crypt_stat *crypt_stat,
  63                                  char *src, int len)
  64{
  65        int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst);
  66
  67        if (rc) {
  68                printk(KERN_ERR
  69                       "%s: Error computing crypto hash; rc = [%d]\n",
  70                       __func__, rc);
  71                goto out;
  72        }
  73out:
  74        return rc;
  75}
  76
  77static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
  78                                                  char *cipher_name,
  79                                                  char *chaining_modifier)
  80{
  81        int cipher_name_len = strlen(cipher_name);
  82        int chaining_modifier_len = strlen(chaining_modifier);
  83        int algified_name_len;
  84        int rc;
  85
  86        algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
  87        (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
  88        if (!(*algified_name)) {
  89                rc = -ENOMEM;
  90                goto out;
  91        }
  92        snprintf((*algified_name), algified_name_len, "%s(%s)",
  93                 chaining_modifier, cipher_name);
  94        rc = 0;
  95out:
  96        return rc;
  97}
  98
  99/**
 100 * ecryptfs_derive_iv
 101 * @iv: destination for the derived iv vale
 102 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 103 * @offset: Offset of the extent whose IV we are to derive
 104 *
 105 * Generate the initialization vector from the given root IV and page
 106 * offset.
 107 *
 108 * Returns zero on success; non-zero on error.
 109 */
 110int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
 111                       loff_t offset)
 112{
 113        int rc = 0;
 114        char dst[MD5_DIGEST_SIZE];
 115        char src[ECRYPTFS_MAX_IV_BYTES + 16];
 116
 117        if (unlikely(ecryptfs_verbosity > 0)) {
 118                ecryptfs_printk(KERN_DEBUG, "root iv:\n");
 119                ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
 120        }
 121        /* TODO: It is probably secure to just cast the least
 122         * significant bits of the root IV into an unsigned long and
 123         * add the offset to that rather than go through all this
 124         * hashing business. -Halcrow */
 125        memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
 126        memset((src + crypt_stat->iv_bytes), 0, 16);
 127        snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
 128        if (unlikely(ecryptfs_verbosity > 0)) {
 129                ecryptfs_printk(KERN_DEBUG, "source:\n");
 130                ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
 131        }
 132        rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
 133                                    (crypt_stat->iv_bytes + 16));
 134        if (rc) {
 135                ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 136                                "MD5 while generating IV for a page\n");
 137                goto out;
 138        }
 139        memcpy(iv, dst, crypt_stat->iv_bytes);
 140        if (unlikely(ecryptfs_verbosity > 0)) {
 141                ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
 142                ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
 143        }
 144out:
 145        return rc;
 146}
 147
 148/**
 149 * ecryptfs_init_crypt_stat
 150 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 151 *
 152 * Initialize the crypt_stat structure.
 153 */
 154int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 155{
 156        struct crypto_shash *tfm;
 157        int rc;
 158
 159        tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
 160        if (IS_ERR(tfm)) {
 161                rc = PTR_ERR(tfm);
 162                ecryptfs_printk(KERN_ERR, "Error attempting to "
 163                                "allocate crypto context; rc = [%d]\n",
 164                                rc);
 165                return rc;
 166        }
 167
 168        memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 169        INIT_LIST_HEAD(&crypt_stat->keysig_list);
 170        mutex_init(&crypt_stat->keysig_list_mutex);
 171        mutex_init(&crypt_stat->cs_mutex);
 172        mutex_init(&crypt_stat->cs_tfm_mutex);
 173        crypt_stat->hash_tfm = tfm;
 174        crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
 175
 176        return 0;
 177}
 178
 179/**
 180 * ecryptfs_destroy_crypt_stat
 181 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 182 *
 183 * Releases all memory associated with a crypt_stat struct.
 184 */
 185void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 186{
 187        struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
 188
 189        crypto_free_skcipher(crypt_stat->tfm);
 190        crypto_free_shash(crypt_stat->hash_tfm);
 191        list_for_each_entry_safe(key_sig, key_sig_tmp,
 192                                 &crypt_stat->keysig_list, crypt_stat_list) {
 193                list_del(&key_sig->crypt_stat_list);
 194                kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
 195        }
 196        memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 197}
 198
 199void ecryptfs_destroy_mount_crypt_stat(
 200        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 201{
 202        struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
 203
 204        if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
 205                return;
 206        mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 207        list_for_each_entry_safe(auth_tok, auth_tok_tmp,
 208                                 &mount_crypt_stat->global_auth_tok_list,
 209                                 mount_crypt_stat_list) {
 210                list_del(&auth_tok->mount_crypt_stat_list);
 211                if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
 212                        key_put(auth_tok->global_auth_tok_key);
 213                kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
 214        }
 215        mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 216        memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
 217}
 218
 219/**
 220 * virt_to_scatterlist
 221 * @addr: Virtual address
 222 * @size: Size of data; should be an even multiple of the block size
 223 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 224 *      the number of scatterlist structs required in array
 225 * @sg_size: Max array size
 226 *
 227 * Fills in a scatterlist array with page references for a passed
 228 * virtual address.
 229 *
 230 * Returns the number of scatterlist structs in array used
 231 */
 232int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
 233                        int sg_size)
 234{
 235        int i = 0;
 236        struct page *pg;
 237        int offset;
 238        int remainder_of_page;
 239
 240        sg_init_table(sg, sg_size);
 241
 242        while (size > 0 && i < sg_size) {
 243                pg = virt_to_page(addr);
 244                offset = offset_in_page(addr);
 245                sg_set_page(&sg[i], pg, 0, offset);
 246                remainder_of_page = PAGE_SIZE - offset;
 247                if (size >= remainder_of_page) {
 248                        sg[i].length = remainder_of_page;
 249                        addr += remainder_of_page;
 250                        size -= remainder_of_page;
 251                } else {
 252                        sg[i].length = size;
 253                        addr += size;
 254                        size = 0;
 255                }
 256                i++;
 257        }
 258        if (size > 0)
 259                return -ENOMEM;
 260        return i;
 261}
 262
 263struct extent_crypt_result {
 264        struct completion completion;
 265        int rc;
 266};
 267
 268static void extent_crypt_complete(struct crypto_async_request *req, int rc)
 269{
 270        struct extent_crypt_result *ecr = req->data;
 271
 272        if (rc == -EINPROGRESS)
 273                return;
 274
 275        ecr->rc = rc;
 276        complete(&ecr->completion);
 277}
 278
 279/**
 280 * crypt_scatterlist
 281 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 282 * @dst_sg: Destination of the data after performing the crypto operation
 283 * @src_sg: Data to be encrypted or decrypted
 284 * @size: Length of data
 285 * @iv: IV to use
 286 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 287 *
 288 * Returns the number of bytes encrypted or decrypted; negative value on error
 289 */
 290static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 291                             struct scatterlist *dst_sg,
 292                             struct scatterlist *src_sg, int size,
 293                             unsigned char *iv, int op)
 294{
 295        struct skcipher_request *req = NULL;
 296        struct extent_crypt_result ecr;
 297        int rc = 0;
 298
 299        if (unlikely(ecryptfs_verbosity > 0)) {
 300                ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
 301                                crypt_stat->key_size);
 302                ecryptfs_dump_hex(crypt_stat->key,
 303                                  crypt_stat->key_size);
 304        }
 305
 306        init_completion(&ecr.completion);
 307
 308        mutex_lock(&crypt_stat->cs_tfm_mutex);
 309        req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
 310        if (!req) {
 311                mutex_unlock(&crypt_stat->cs_tfm_mutex);
 312                rc = -ENOMEM;
 313                goto out;
 314        }
 315
 316        skcipher_request_set_callback(req,
 317                        CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 318                        extent_crypt_complete, &ecr);
 319        /* Consider doing this once, when the file is opened */
 320        if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
 321                rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 322                                            crypt_stat->key_size);
 323                if (rc) {
 324                        ecryptfs_printk(KERN_ERR,
 325                                        "Error setting key; rc = [%d]\n",
 326                                        rc);
 327                        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 328                        rc = -EINVAL;
 329                        goto out;
 330                }
 331                crypt_stat->flags |= ECRYPTFS_KEY_SET;
 332        }
 333        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 334        skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
 335        rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
 336                             crypto_skcipher_decrypt(req);
 337        if (rc == -EINPROGRESS || rc == -EBUSY) {
 338                struct extent_crypt_result *ecr = req->base.data;
 339
 340                wait_for_completion(&ecr->completion);
 341                rc = ecr->rc;
 342                reinit_completion(&ecr->completion);
 343        }
 344out:
 345        skcipher_request_free(req);
 346        return rc;
 347}
 348
 349/*
 350 * lower_offset_for_page
 351 *
 352 * Convert an eCryptfs page index into a lower byte offset
 353 */
 354static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
 355                                    struct page *page)
 356{
 357        return ecryptfs_lower_header_size(crypt_stat) +
 358               ((loff_t)page->index << PAGE_SHIFT);
 359}
 360
 361/**
 362 * crypt_extent
 363 * @crypt_stat: crypt_stat containing cryptographic context for the
 364 *              encryption operation
 365 * @dst_page: The page to write the result into
 366 * @src_page: The page to read from
 367 * @extent_offset: Page extent offset for use in generating IV
 368 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 369 *
 370 * Encrypts or decrypts one extent of data.
 371 *
 372 * Return zero on success; non-zero otherwise
 373 */
 374static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
 375                        struct page *dst_page,
 376                        struct page *src_page,
 377                        unsigned long extent_offset, int op)
 378{
 379        pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
 380        loff_t extent_base;
 381        char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 382        struct scatterlist src_sg, dst_sg;
 383        size_t extent_size = crypt_stat->extent_size;
 384        int rc;
 385
 386        extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
 387        rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 388                                (extent_base + extent_offset));
 389        if (rc) {
 390                ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
 391                        "extent [0x%.16llx]; rc = [%d]\n",
 392                        (unsigned long long)(extent_base + extent_offset), rc);
 393                goto out;
 394        }
 395
 396        sg_init_table(&src_sg, 1);
 397        sg_init_table(&dst_sg, 1);
 398
 399        sg_set_page(&src_sg, src_page, extent_size,
 400                    extent_offset * extent_size);
 401        sg_set_page(&dst_sg, dst_page, extent_size,
 402                    extent_offset * extent_size);
 403
 404        rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
 405                               extent_iv, op);
 406        if (rc < 0) {
 407                printk(KERN_ERR "%s: Error attempting to crypt page with "
 408                       "page_index = [%ld], extent_offset = [%ld]; "
 409                       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
 410                goto out;
 411        }
 412        rc = 0;
 413out:
 414        return rc;
 415}
 416
 417/**
 418 * ecryptfs_encrypt_page
 419 * @page: Page mapped from the eCryptfs inode for the file; contains
 420 *        decrypted content that needs to be encrypted (to a temporary
 421 *        page; not in place) and written out to the lower file
 422 *
 423 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 424 * that eCryptfs pages may straddle the lower pages -- for instance,
 425 * if the file was created on a machine with an 8K page size
 426 * (resulting in an 8K header), and then the file is copied onto a
 427 * host with a 32K page size, then when reading page 0 of the eCryptfs
 428 * file, 24K of page 0 of the lower file will be read and decrypted,
 429 * and then 8K of page 1 of the lower file will be read and decrypted.
 430 *
 431 * Returns zero on success; negative on error
 432 */
 433int ecryptfs_encrypt_page(struct page *page)
 434{
 435        struct inode *ecryptfs_inode;
 436        struct ecryptfs_crypt_stat *crypt_stat;
 437        char *enc_extent_virt;
 438        struct page *enc_extent_page = NULL;
 439        loff_t extent_offset;
 440        loff_t lower_offset;
 441        int rc = 0;
 442
 443        ecryptfs_inode = page->mapping->host;
 444        crypt_stat =
 445                &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 446        BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 447        enc_extent_page = alloc_page(GFP_USER);
 448        if (!enc_extent_page) {
 449                rc = -ENOMEM;
 450                ecryptfs_printk(KERN_ERR, "Error allocating memory for "
 451                                "encrypted extent\n");
 452                goto out;
 453        }
 454
 455        for (extent_offset = 0;
 456             extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
 457             extent_offset++) {
 458                rc = crypt_extent(crypt_stat, enc_extent_page, page,
 459                                  extent_offset, ENCRYPT);
 460                if (rc) {
 461                        printk(KERN_ERR "%s: Error encrypting extent; "
 462                               "rc = [%d]\n", __func__, rc);
 463                        goto out;
 464                }
 465        }
 466
 467        lower_offset = lower_offset_for_page(crypt_stat, page);
 468        enc_extent_virt = kmap(enc_extent_page);
 469        rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
 470                                  PAGE_SIZE);
 471        kunmap(enc_extent_page);
 472        if (rc < 0) {
 473                ecryptfs_printk(KERN_ERR,
 474                        "Error attempting to write lower page; rc = [%d]\n",
 475                        rc);
 476                goto out;
 477        }
 478        rc = 0;
 479out:
 480        if (enc_extent_page) {
 481                __free_page(enc_extent_page);
 482        }
 483        return rc;
 484}
 485
 486/**
 487 * ecryptfs_decrypt_page
 488 * @page: Page mapped from the eCryptfs inode for the file; data read
 489 *        and decrypted from the lower file will be written into this
 490 *        page
 491 *
 492 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 493 * that eCryptfs pages may straddle the lower pages -- for instance,
 494 * if the file was created on a machine with an 8K page size
 495 * (resulting in an 8K header), and then the file is copied onto a
 496 * host with a 32K page size, then when reading page 0 of the eCryptfs
 497 * file, 24K of page 0 of the lower file will be read and decrypted,
 498 * and then 8K of page 1 of the lower file will be read and decrypted.
 499 *
 500 * Returns zero on success; negative on error
 501 */
 502int ecryptfs_decrypt_page(struct page *page)
 503{
 504        struct inode *ecryptfs_inode;
 505        struct ecryptfs_crypt_stat *crypt_stat;
 506        char *page_virt;
 507        unsigned long extent_offset;
 508        loff_t lower_offset;
 509        int rc = 0;
 510
 511        ecryptfs_inode = page->mapping->host;
 512        crypt_stat =
 513                &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 514        BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 515
 516        lower_offset = lower_offset_for_page(crypt_stat, page);
 517        page_virt = kmap(page);
 518        rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
 519                                 ecryptfs_inode);
 520        kunmap(page);
 521        if (rc < 0) {
 522                ecryptfs_printk(KERN_ERR,
 523                        "Error attempting to read lower page; rc = [%d]\n",
 524                        rc);
 525                goto out;
 526        }
 527
 528        for (extent_offset = 0;
 529             extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
 530             extent_offset++) {
 531                rc = crypt_extent(crypt_stat, page, page,
 532                                  extent_offset, DECRYPT);
 533                if (rc) {
 534                        printk(KERN_ERR "%s: Error decrypting extent; "
 535                               "rc = [%d]\n", __func__, rc);
 536                        goto out;
 537                }
 538        }
 539out:
 540        return rc;
 541}
 542
 543#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
 544
 545/**
 546 * ecryptfs_init_crypt_ctx
 547 * @crypt_stat: Uninitialized crypt stats structure
 548 *
 549 * Initialize the crypto context.
 550 *
 551 * TODO: Performance: Keep a cache of initialized cipher contexts;
 552 * only init if needed
 553 */
 554int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
 555{
 556        char *full_alg_name;
 557        int rc = -EINVAL;
 558
 559        ecryptfs_printk(KERN_DEBUG,
 560                        "Initializing cipher [%s]; strlen = [%d]; "
 561                        "key_size_bits = [%zd]\n",
 562                        crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
 563                        crypt_stat->key_size << 3);
 564        mutex_lock(&crypt_stat->cs_tfm_mutex);
 565        if (crypt_stat->tfm) {
 566                rc = 0;
 567                goto out_unlock;
 568        }
 569        rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
 570                                                    crypt_stat->cipher, "cbc");
 571        if (rc)
 572                goto out_unlock;
 573        crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
 574        if (IS_ERR(crypt_stat->tfm)) {
 575                rc = PTR_ERR(crypt_stat->tfm);
 576                crypt_stat->tfm = NULL;
 577                ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
 578                                "Error initializing cipher [%s]\n",
 579                                full_alg_name);
 580                goto out_free;
 581        }
 582        crypto_skcipher_set_flags(crypt_stat->tfm,
 583                                  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
 584        rc = 0;
 585out_free:
 586        kfree(full_alg_name);
 587out_unlock:
 588        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 589        return rc;
 590}
 591
 592static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
 593{
 594        int extent_size_tmp;
 595
 596        crypt_stat->extent_mask = 0xFFFFFFFF;
 597        crypt_stat->extent_shift = 0;
 598        if (crypt_stat->extent_size == 0)
 599                return;
 600        extent_size_tmp = crypt_stat->extent_size;
 601        while ((extent_size_tmp & 0x01) == 0) {
 602                extent_size_tmp >>= 1;
 603                crypt_stat->extent_mask <<= 1;
 604                crypt_stat->extent_shift++;
 605        }
 606}
 607
 608void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
 609{
 610        /* Default values; may be overwritten as we are parsing the
 611         * packets. */
 612        crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
 613        set_extent_mask_and_shift(crypt_stat);
 614        crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
 615        if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
 616                crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 617        else {
 618                if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
 619                        crypt_stat->metadata_size =
 620                                ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 621                else
 622                        crypt_stat->metadata_size = PAGE_SIZE;
 623        }
 624}
 625
 626/*
 627 * ecryptfs_compute_root_iv
 628 *
 629 * On error, sets the root IV to all 0's.
 630 */
 631int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
 632{
 633        int rc = 0;
 634        char dst[MD5_DIGEST_SIZE];
 635
 636        BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
 637        BUG_ON(crypt_stat->iv_bytes <= 0);
 638        if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
 639                rc = -EINVAL;
 640                ecryptfs_printk(KERN_WARNING, "Session key not valid; "
 641                                "cannot generate root IV\n");
 642                goto out;
 643        }
 644        rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
 645                                    crypt_stat->key_size);
 646        if (rc) {
 647                ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 648                                "MD5 while generating root IV\n");
 649                goto out;
 650        }
 651        memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
 652out:
 653        if (rc) {
 654                memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
 655                crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
 656        }
 657        return rc;
 658}
 659
 660static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
 661{
 662        get_random_bytes(crypt_stat->key, crypt_stat->key_size);
 663        crypt_stat->flags |= ECRYPTFS_KEY_VALID;
 664        ecryptfs_compute_root_iv(crypt_stat);
 665        if (unlikely(ecryptfs_verbosity > 0)) {
 666                ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
 667                ecryptfs_dump_hex(crypt_stat->key,
 668                                  crypt_stat->key_size);
 669        }
 670}
 671
 672/**
 673 * ecryptfs_copy_mount_wide_flags_to_inode_flags
 674 * @crypt_stat: The inode's cryptographic context
 675 * @mount_crypt_stat: The mount point's cryptographic context
 676 *
 677 * This function propagates the mount-wide flags to individual inode
 678 * flags.
 679 */
 680static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
 681        struct ecryptfs_crypt_stat *crypt_stat,
 682        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 683{
 684        if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
 685                crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
 686        if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
 687                crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
 688        if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
 689                crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
 690                if (mount_crypt_stat->flags
 691                    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
 692                        crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
 693                else if (mount_crypt_stat->flags
 694                         & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
 695                        crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
 696        }
 697}
 698
 699static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
 700        struct ecryptfs_crypt_stat *crypt_stat,
 701        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 702{
 703        struct ecryptfs_global_auth_tok *global_auth_tok;
 704        int rc = 0;
 705
 706        mutex_lock(&crypt_stat->keysig_list_mutex);
 707        mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 708
 709        list_for_each_entry(global_auth_tok,
 710                            &mount_crypt_stat->global_auth_tok_list,
 711                            mount_crypt_stat_list) {
 712                if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
 713                        continue;
 714                rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
 715                if (rc) {
 716                        printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
 717                        goto out;
 718                }
 719        }
 720
 721out:
 722        mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 723        mutex_unlock(&crypt_stat->keysig_list_mutex);
 724        return rc;
 725}
 726
 727/**
 728 * ecryptfs_set_default_crypt_stat_vals
 729 * @crypt_stat: The inode's cryptographic context
 730 * @mount_crypt_stat: The mount point's cryptographic context
 731 *
 732 * Default values in the event that policy does not override them.
 733 */
 734static void ecryptfs_set_default_crypt_stat_vals(
 735        struct ecryptfs_crypt_stat *crypt_stat,
 736        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 737{
 738        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 739                                                      mount_crypt_stat);
 740        ecryptfs_set_default_sizes(crypt_stat);
 741        strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
 742        crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
 743        crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
 744        crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
 745        crypt_stat->mount_crypt_stat = mount_crypt_stat;
 746}
 747
 748/**
 749 * ecryptfs_new_file_context
 750 * @ecryptfs_inode: The eCryptfs inode
 751 *
 752 * If the crypto context for the file has not yet been established,
 753 * this is where we do that.  Establishing a new crypto context
 754 * involves the following decisions:
 755 *  - What cipher to use?
 756 *  - What set of authentication tokens to use?
 757 * Here we just worry about getting enough information into the
 758 * authentication tokens so that we know that they are available.
 759 * We associate the available authentication tokens with the new file
 760 * via the set of signatures in the crypt_stat struct.  Later, when
 761 * the headers are actually written out, we may again defer to
 762 * userspace to perform the encryption of the session key; for the
 763 * foreseeable future, this will be the case with public key packets.
 764 *
 765 * Returns zero on success; non-zero otherwise
 766 */
 767int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
 768{
 769        struct ecryptfs_crypt_stat *crypt_stat =
 770            &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
 771        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
 772            &ecryptfs_superblock_to_private(
 773                    ecryptfs_inode->i_sb)->mount_crypt_stat;
 774        int cipher_name_len;
 775        int rc = 0;
 776
 777        ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
 778        crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
 779        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 780                                                      mount_crypt_stat);
 781        rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
 782                                                         mount_crypt_stat);
 783        if (rc) {
 784                printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
 785                       "to the inode key sigs; rc = [%d]\n", rc);
 786                goto out;
 787        }
 788        cipher_name_len =
 789                strlen(mount_crypt_stat->global_default_cipher_name);
 790        memcpy(crypt_stat->cipher,
 791               mount_crypt_stat->global_default_cipher_name,
 792               cipher_name_len);
 793        crypt_stat->cipher[cipher_name_len] = '\0';
 794        crypt_stat->key_size =
 795                mount_crypt_stat->global_default_cipher_key_size;
 796        ecryptfs_generate_new_key(crypt_stat);
 797        rc = ecryptfs_init_crypt_ctx(crypt_stat);
 798        if (rc)
 799                ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
 800                                "context for cipher [%s]: rc = [%d]\n",
 801                                crypt_stat->cipher, rc);
 802out:
 803        return rc;
 804}
 805
 806/**
 807 * ecryptfs_validate_marker - check for the ecryptfs marker
 808 * @data: The data block in which to check
 809 *
 810 * Returns zero if marker found; -EINVAL if not found
 811 */
 812static int ecryptfs_validate_marker(char *data)
 813{
 814        u32 m_1, m_2;
 815
 816        m_1 = get_unaligned_be32(data);
 817        m_2 = get_unaligned_be32(data + 4);
 818        if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
 819                return 0;
 820        ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
 821                        "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
 822                        MAGIC_ECRYPTFS_MARKER);
 823        ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
 824                        "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
 825        return -EINVAL;
 826}
 827
 828struct ecryptfs_flag_map_elem {
 829        u32 file_flag;
 830        u32 local_flag;
 831};
 832
 833/* Add support for additional flags by adding elements here. */
 834static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
 835        {0x00000001, ECRYPTFS_ENABLE_HMAC},
 836        {0x00000002, ECRYPTFS_ENCRYPTED},
 837        {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
 838        {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
 839};
 840
 841/**
 842 * ecryptfs_process_flags
 843 * @crypt_stat: The cryptographic context
 844 * @page_virt: Source data to be parsed
 845 * @bytes_read: Updated with the number of bytes read
 846 */
 847static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
 848                                  char *page_virt, int *bytes_read)
 849{
 850        int i;
 851        u32 flags;
 852
 853        flags = get_unaligned_be32(page_virt);
 854        for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
 855                if (flags & ecryptfs_flag_map[i].file_flag) {
 856                        crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
 857                } else
 858                        crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
 859        /* Version is in top 8 bits of the 32-bit flag vector */
 860        crypt_stat->file_version = ((flags >> 24) & 0xFF);
 861        (*bytes_read) = 4;
 862}
 863
 864/**
 865 * write_ecryptfs_marker
 866 * @page_virt: The pointer to in a page to begin writing the marker
 867 * @written: Number of bytes written
 868 *
 869 * Marker = 0x3c81b7f5
 870 */
 871static void write_ecryptfs_marker(char *page_virt, size_t *written)
 872{
 873        u32 m_1, m_2;
 874
 875        get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
 876        m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
 877        put_unaligned_be32(m_1, page_virt);
 878        page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
 879        put_unaligned_be32(m_2, page_virt);
 880        (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
 881}
 882
 883void ecryptfs_write_crypt_stat_flags(char *page_virt,
 884                                     struct ecryptfs_crypt_stat *crypt_stat,
 885                                     size_t *written)
 886{
 887        u32 flags = 0;
 888        int i;
 889
 890        for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
 891                if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
 892                        flags |= ecryptfs_flag_map[i].file_flag;
 893        /* Version is in top 8 bits of the 32-bit flag vector */
 894        flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
 895        put_unaligned_be32(flags, page_virt);
 896        (*written) = 4;
 897}
 898
 899struct ecryptfs_cipher_code_str_map_elem {
 900        char cipher_str[16];
 901        u8 cipher_code;
 902};
 903
 904/* Add support for additional ciphers by adding elements here. The
 905 * cipher_code is whatever OpenPGP applications use to identify the
 906 * ciphers. List in order of probability. */
 907static struct ecryptfs_cipher_code_str_map_elem
 908ecryptfs_cipher_code_str_map[] = {
 909        {"aes",RFC2440_CIPHER_AES_128 },
 910        {"blowfish", RFC2440_CIPHER_BLOWFISH},
 911        {"des3_ede", RFC2440_CIPHER_DES3_EDE},
 912        {"cast5", RFC2440_CIPHER_CAST_5},
 913        {"twofish", RFC2440_CIPHER_TWOFISH},
 914        {"cast6", RFC2440_CIPHER_CAST_6},
 915        {"aes", RFC2440_CIPHER_AES_192},
 916        {"aes", RFC2440_CIPHER_AES_256}
 917};
 918
 919/**
 920 * ecryptfs_code_for_cipher_string
 921 * @cipher_name: The string alias for the cipher
 922 * @key_bytes: Length of key in bytes; used for AES code selection
 923 *
 924 * Returns zero on no match, or the cipher code on match
 925 */
 926u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
 927{
 928        int i;
 929        u8 code = 0;
 930        struct ecryptfs_cipher_code_str_map_elem *map =
 931                ecryptfs_cipher_code_str_map;
 932
 933        if (strcmp(cipher_name, "aes") == 0) {
 934                switch (key_bytes) {
 935                case 16:
 936                        code = RFC2440_CIPHER_AES_128;
 937                        break;
 938                case 24:
 939                        code = RFC2440_CIPHER_AES_192;
 940                        break;
 941                case 32:
 942                        code = RFC2440_CIPHER_AES_256;
 943                }
 944        } else {
 945                for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
 946                        if (strcmp(cipher_name, map[i].cipher_str) == 0) {
 947                                code = map[i].cipher_code;
 948                                break;
 949                        }
 950        }
 951        return code;
 952}
 953
 954/**
 955 * ecryptfs_cipher_code_to_string
 956 * @str: Destination to write out the cipher name
 957 * @cipher_code: The code to convert to cipher name string
 958 *
 959 * Returns zero on success
 960 */
 961int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
 962{
 963        int rc = 0;
 964        int i;
 965
 966        str[0] = '\0';
 967        for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
 968                if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
 969                        strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
 970        if (str[0] == '\0') {
 971                ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
 972                                "[%d]\n", cipher_code);
 973                rc = -EINVAL;
 974        }
 975        return rc;
 976}
 977
 978int ecryptfs_read_and_validate_header_region(struct inode *inode)
 979{
 980        u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
 981        u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
 982        int rc;
 983
 984        rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
 985                                 inode);
 986        if (rc < 0)
 987                return rc;
 988        else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
 989                return -EINVAL;
 990        rc = ecryptfs_validate_marker(marker);
 991        if (!rc)
 992                ecryptfs_i_size_init(file_size, inode);
 993        return rc;
 994}
 995
 996void
 997ecryptfs_write_header_metadata(char *virt,
 998                               struct ecryptfs_crypt_stat *crypt_stat,
 999                               size_t *written)
1000{
1001        u32 header_extent_size;
1002        u16 num_header_extents_at_front;
1003
1004        header_extent_size = (u32)crypt_stat->extent_size;
1005        num_header_extents_at_front =
1006                (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1007        put_unaligned_be32(header_extent_size, virt);
1008        virt += 4;
1009        put_unaligned_be16(num_header_extents_at_front, virt);
1010        (*written) = 6;
1011}
1012
1013struct kmem_cache *ecryptfs_header_cache;
1014
1015/**
1016 * ecryptfs_write_headers_virt
1017 * @page_virt: The virtual address to write the headers to
1018 * @max: The size of memory allocated at page_virt
1019 * @size: Set to the number of bytes written by this function
1020 * @crypt_stat: The cryptographic context
1021 * @ecryptfs_dentry: The eCryptfs dentry
1022 *
1023 * Format version: 1
1024 *
1025 *   Header Extent:
1026 *     Octets 0-7:        Unencrypted file size (big-endian)
1027 *     Octets 8-15:       eCryptfs special marker
1028 *     Octets 16-19:      Flags
1029 *      Octet 16:         File format version number (between 0 and 255)
1030 *      Octets 17-18:     Reserved
1031 *      Octet 19:         Bit 1 (lsb): Reserved
1032 *                        Bit 2: Encrypted?
1033 *                        Bits 3-8: Reserved
1034 *     Octets 20-23:      Header extent size (big-endian)
1035 *     Octets 24-25:      Number of header extents at front of file
1036 *                        (big-endian)
1037 *     Octet  26:         Begin RFC 2440 authentication token packet set
1038 *   Data Extent 0:
1039 *     Lower data (CBC encrypted)
1040 *   Data Extent 1:
1041 *     Lower data (CBC encrypted)
1042 *   ...
1043 *
1044 * Returns zero on success
1045 */
1046static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1047                                       size_t *size,
1048                                       struct ecryptfs_crypt_stat *crypt_stat,
1049                                       struct dentry *ecryptfs_dentry)
1050{
1051        int rc;
1052        size_t written;
1053        size_t offset;
1054
1055        offset = ECRYPTFS_FILE_SIZE_BYTES;
1056        write_ecryptfs_marker((page_virt + offset), &written);
1057        offset += written;
1058        ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1059                                        &written);
1060        offset += written;
1061        ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1062                                       &written);
1063        offset += written;
1064        rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1065                                              ecryptfs_dentry, &written,
1066                                              max - offset);
1067        if (rc)
1068                ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1069                                "set; rc = [%d]\n", rc);
1070        if (size) {
1071                offset += written;
1072                *size = offset;
1073        }
1074        return rc;
1075}
1076
1077static int
1078ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1079                                    char *virt, size_t virt_len)
1080{
1081        int rc;
1082
1083        rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1084                                  0, virt_len);
1085        if (rc < 0)
1086                printk(KERN_ERR "%s: Error attempting to write header "
1087                       "information to lower file; rc = [%d]\n", __func__, rc);
1088        else
1089                rc = 0;
1090        return rc;
1091}
1092
1093static int
1094ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1095                                 struct inode *ecryptfs_inode,
1096                                 char *page_virt, size_t size)
1097{
1098        int rc;
1099        struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1100        struct inode *lower_inode = d_inode(lower_dentry);
1101
1102        if (!(lower_inode->i_opflags & IOP_XATTR)) {
1103                rc = -EOPNOTSUPP;
1104                goto out;
1105        }
1106
1107        inode_lock(lower_inode);
1108        rc = __vfs_setxattr(&init_user_ns, lower_dentry, lower_inode,
1109                            ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1110        if (!rc && ecryptfs_inode)
1111                fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1112        inode_unlock(lower_inode);
1113out:
1114        return rc;
1115}
1116
1117static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1118                                               unsigned int order)
1119{
1120        struct page *page;
1121
1122        page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1123        if (page)
1124                return (unsigned long) page_address(page);
1125        return 0;
1126}
1127
1128/**
1129 * ecryptfs_write_metadata
1130 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1131 * @ecryptfs_inode: The newly created eCryptfs inode
1132 *
1133 * Write the file headers out.  This will likely involve a userspace
1134 * callout, in which the session key is encrypted with one or more
1135 * public keys and/or the passphrase necessary to do the encryption is
1136 * retrieved via a prompt.  Exactly what happens at this point should
1137 * be policy-dependent.
1138 *
1139 * Returns zero on success; non-zero on error
1140 */
1141int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1142                            struct inode *ecryptfs_inode)
1143{
1144        struct ecryptfs_crypt_stat *crypt_stat =
1145                &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1146        unsigned int order;
1147        char *virt;
1148        size_t virt_len;
1149        size_t size = 0;
1150        int rc = 0;
1151
1152        if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1153                if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1154                        printk(KERN_ERR "Key is invalid; bailing out\n");
1155                        rc = -EINVAL;
1156                        goto out;
1157                }
1158        } else {
1159                printk(KERN_WARNING "%s: Encrypted flag not set\n",
1160                       __func__);
1161                rc = -EINVAL;
1162                goto out;
1163        }
1164        virt_len = crypt_stat->metadata_size;
1165        order = get_order(virt_len);
1166        /* Released in this function */
1167        virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1168        if (!virt) {
1169                printk(KERN_ERR "%s: Out of memory\n", __func__);
1170                rc = -ENOMEM;
1171                goto out;
1172        }
1173        /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1174        rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1175                                         ecryptfs_dentry);
1176        if (unlikely(rc)) {
1177                printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1178                       __func__, rc);
1179                goto out_free;
1180        }
1181        if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1182                rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1183                                                      virt, size);
1184        else
1185                rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1186                                                         virt_len);
1187        if (rc) {
1188                printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1189                       "rc = [%d]\n", __func__, rc);
1190                goto out_free;
1191        }
1192out_free:
1193        free_pages((unsigned long)virt, order);
1194out:
1195        return rc;
1196}
1197
1198#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1199#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1200static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1201                                 char *virt, int *bytes_read,
1202                                 int validate_header_size)
1203{
1204        int rc = 0;
1205        u32 header_extent_size;
1206        u16 num_header_extents_at_front;
1207
1208        header_extent_size = get_unaligned_be32(virt);
1209        virt += sizeof(__be32);
1210        num_header_extents_at_front = get_unaligned_be16(virt);
1211        crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1212                                     * (size_t)header_extent_size));
1213        (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1214        if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1215            && (crypt_stat->metadata_size
1216                < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1217                rc = -EINVAL;
1218                printk(KERN_WARNING "Invalid header size: [%zd]\n",
1219                       crypt_stat->metadata_size);
1220        }
1221        return rc;
1222}
1223
1224/**
1225 * set_default_header_data
1226 * @crypt_stat: The cryptographic context
1227 *
1228 * For version 0 file format; this function is only for backwards
1229 * compatibility for files created with the prior versions of
1230 * eCryptfs.
1231 */
1232static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1233{
1234        crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1235}
1236
1237void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1238{
1239        struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1240        struct ecryptfs_crypt_stat *crypt_stat;
1241        u64 file_size;
1242
1243        crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1244        mount_crypt_stat =
1245                &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1246        if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1247                file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1248                if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1249                        file_size += crypt_stat->metadata_size;
1250        } else
1251                file_size = get_unaligned_be64(page_virt);
1252        i_size_write(inode, (loff_t)file_size);
1253        crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1254}
1255
1256/**
1257 * ecryptfs_read_headers_virt
1258 * @page_virt: The virtual address into which to read the headers
1259 * @crypt_stat: The cryptographic context
1260 * @ecryptfs_dentry: The eCryptfs dentry
1261 * @validate_header_size: Whether to validate the header size while reading
1262 *
1263 * Read/parse the header data. The header format is detailed in the
1264 * comment block for the ecryptfs_write_headers_virt() function.
1265 *
1266 * Returns zero on success
1267 */
1268static int ecryptfs_read_headers_virt(char *page_virt,
1269                                      struct ecryptfs_crypt_stat *crypt_stat,
1270                                      struct dentry *ecryptfs_dentry,
1271                                      int validate_header_size)
1272{
1273        int rc = 0;
1274        int offset;
1275        int bytes_read;
1276
1277        ecryptfs_set_default_sizes(crypt_stat);
1278        crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1279                ecryptfs_dentry->d_sb)->mount_crypt_stat;
1280        offset = ECRYPTFS_FILE_SIZE_BYTES;
1281        rc = ecryptfs_validate_marker(page_virt + offset);
1282        if (rc)
1283                goto out;
1284        if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1285                ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1286        offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1287        ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1288        if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1289                ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1290                                "file version [%d] is supported by this "
1291                                "version of eCryptfs\n",
1292                                crypt_stat->file_version,
1293                                ECRYPTFS_SUPPORTED_FILE_VERSION);
1294                rc = -EINVAL;
1295                goto out;
1296        }
1297        offset += bytes_read;
1298        if (crypt_stat->file_version >= 1) {
1299                rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1300                                           &bytes_read, validate_header_size);
1301                if (rc) {
1302                        ecryptfs_printk(KERN_WARNING, "Error reading header "
1303                                        "metadata; rc = [%d]\n", rc);
1304                }
1305                offset += bytes_read;
1306        } else
1307                set_default_header_data(crypt_stat);
1308        rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1309                                       ecryptfs_dentry);
1310out:
1311        return rc;
1312}
1313
1314/**
1315 * ecryptfs_read_xattr_region
1316 * @page_virt: The vitual address into which to read the xattr data
1317 * @ecryptfs_inode: The eCryptfs inode
1318 *
1319 * Attempts to read the crypto metadata from the extended attribute
1320 * region of the lower file.
1321 *
1322 * Returns zero on success; non-zero on error
1323 */
1324int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1325{
1326        struct dentry *lower_dentry =
1327                ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1328        ssize_t size;
1329        int rc = 0;
1330
1331        size = ecryptfs_getxattr_lower(lower_dentry,
1332                                       ecryptfs_inode_to_lower(ecryptfs_inode),
1333                                       ECRYPTFS_XATTR_NAME,
1334                                       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1335        if (size < 0) {
1336                if (unlikely(ecryptfs_verbosity > 0))
1337                        printk(KERN_INFO "Error attempting to read the [%s] "
1338                               "xattr from the lower file; return value = "
1339                               "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1340                rc = -EINVAL;
1341                goto out;
1342        }
1343out:
1344        return rc;
1345}
1346
1347int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1348                                            struct inode *inode)
1349{
1350        u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1351        u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1352        int rc;
1353
1354        rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1355                                     ecryptfs_inode_to_lower(inode),
1356                                     ECRYPTFS_XATTR_NAME, file_size,
1357                                     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1358        if (rc < 0)
1359                return rc;
1360        else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1361                return -EINVAL;
1362        rc = ecryptfs_validate_marker(marker);
1363        if (!rc)
1364                ecryptfs_i_size_init(file_size, inode);
1365        return rc;
1366}
1367
1368/*
1369 * ecryptfs_read_metadata
1370 *
1371 * Common entry point for reading file metadata. From here, we could
1372 * retrieve the header information from the header region of the file,
1373 * the xattr region of the file, or some other repository that is
1374 * stored separately from the file itself. The current implementation
1375 * supports retrieving the metadata information from the file contents
1376 * and from the xattr region.
1377 *
1378 * Returns zero if valid headers found and parsed; non-zero otherwise
1379 */
1380int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1381{
1382        int rc;
1383        char *page_virt;
1384        struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1385        struct ecryptfs_crypt_stat *crypt_stat =
1386            &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1387        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1388                &ecryptfs_superblock_to_private(
1389                        ecryptfs_dentry->d_sb)->mount_crypt_stat;
1390
1391        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1392                                                      mount_crypt_stat);
1393        /* Read the first page from the underlying file */
1394        page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1395        if (!page_virt) {
1396                rc = -ENOMEM;
1397                goto out;
1398        }
1399        rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1400                                 ecryptfs_inode);
1401        if (rc >= 0)
1402                rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1403                                                ecryptfs_dentry,
1404                                                ECRYPTFS_VALIDATE_HEADER_SIZE);
1405        if (rc) {
1406                /* metadata is not in the file header, so try xattrs */
1407                memset(page_virt, 0, PAGE_SIZE);
1408                rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1409                if (rc) {
1410                        printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1411                               "file header region or xattr region, inode %lu\n",
1412                                ecryptfs_inode->i_ino);
1413                        rc = -EINVAL;
1414                        goto out;
1415                }
1416                rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1417                                                ecryptfs_dentry,
1418                                                ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1419                if (rc) {
1420                        printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1421                               "file xattr region either, inode %lu\n",
1422                                ecryptfs_inode->i_ino);
1423                        rc = -EINVAL;
1424                }
1425                if (crypt_stat->mount_crypt_stat->flags
1426                    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1427                        crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1428                } else {
1429                        printk(KERN_WARNING "Attempt to access file with "
1430                               "crypto metadata only in the extended attribute "
1431                               "region, but eCryptfs was mounted without "
1432                               "xattr support enabled. eCryptfs will not treat "
1433                               "this like an encrypted file, inode %lu\n",
1434                                ecryptfs_inode->i_ino);
1435                        rc = -EINVAL;
1436                }
1437        }
1438out:
1439        if (page_virt) {
1440                memset(page_virt, 0, PAGE_SIZE);
1441                kmem_cache_free(ecryptfs_header_cache, page_virt);
1442        }
1443        return rc;
1444}
1445
1446/*
1447 * ecryptfs_encrypt_filename - encrypt filename
1448 *
1449 * CBC-encrypts the filename. We do not want to encrypt the same
1450 * filename with the same key and IV, which may happen with hard
1451 * links, so we prepend random bits to each filename.
1452 *
1453 * Returns zero on success; non-zero otherwise
1454 */
1455static int
1456ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1457                          struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1458{
1459        int rc = 0;
1460
1461        filename->encrypted_filename = NULL;
1462        filename->encrypted_filename_size = 0;
1463        if (mount_crypt_stat && (mount_crypt_stat->flags
1464                                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1465                size_t packet_size;
1466                size_t remaining_bytes;
1467
1468                rc = ecryptfs_write_tag_70_packet(
1469                        NULL, NULL,
1470                        &filename->encrypted_filename_size,
1471                        mount_crypt_stat, NULL,
1472                        filename->filename_size);
1473                if (rc) {
1474                        printk(KERN_ERR "%s: Error attempting to get packet "
1475                               "size for tag 72; rc = [%d]\n", __func__,
1476                               rc);
1477                        filename->encrypted_filename_size = 0;
1478                        goto out;
1479                }
1480                filename->encrypted_filename =
1481                        kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1482                if (!filename->encrypted_filename) {
1483                        rc = -ENOMEM;
1484                        goto out;
1485                }
1486                remaining_bytes = filename->encrypted_filename_size;
1487                rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1488                                                  &remaining_bytes,
1489                                                  &packet_size,
1490                                                  mount_crypt_stat,
1491                                                  filename->filename,
1492                                                  filename->filename_size);
1493                if (rc) {
1494                        printk(KERN_ERR "%s: Error attempting to generate "
1495                               "tag 70 packet; rc = [%d]\n", __func__,
1496                               rc);
1497                        kfree(filename->encrypted_filename);
1498                        filename->encrypted_filename = NULL;
1499                        filename->encrypted_filename_size = 0;
1500                        goto out;
1501                }
1502                filename->encrypted_filename_size = packet_size;
1503        } else {
1504                printk(KERN_ERR "%s: No support for requested filename "
1505                       "encryption method in this release\n", __func__);
1506                rc = -EOPNOTSUPP;
1507                goto out;
1508        }
1509out:
1510        return rc;
1511}
1512
1513static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1514                                  const char *name, size_t name_size)
1515{
1516        int rc = 0;
1517
1518        (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1519        if (!(*copied_name)) {
1520                rc = -ENOMEM;
1521                goto out;
1522        }
1523        memcpy((void *)(*copied_name), (void *)name, name_size);
1524        (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1525                                                 * in printing out the
1526                                                 * string in debug
1527                                                 * messages */
1528        (*copied_name_size) = name_size;
1529out:
1530        return rc;
1531}
1532
1533/**
1534 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1535 * @key_tfm: Crypto context for key material, set by this function
1536 * @cipher_name: Name of the cipher
1537 * @key_size: Size of the key in bytes
1538 *
1539 * Returns zero on success. Any crypto_tfm structs allocated here
1540 * should be released by other functions, such as on a superblock put
1541 * event, regardless of whether this function succeeds for fails.
1542 */
1543static int
1544ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1545                            char *cipher_name, size_t *key_size)
1546{
1547        char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1548        char *full_alg_name = NULL;
1549        int rc;
1550
1551        *key_tfm = NULL;
1552        if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1553                rc = -EINVAL;
1554                printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1555                      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1556                goto out;
1557        }
1558        rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1559                                                    "ecb");
1560        if (rc)
1561                goto out;
1562        *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1563        if (IS_ERR(*key_tfm)) {
1564                rc = PTR_ERR(*key_tfm);
1565                printk(KERN_ERR "Unable to allocate crypto cipher with name "
1566                       "[%s]; rc = [%d]\n", full_alg_name, rc);
1567                goto out;
1568        }
1569        crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1570        if (*key_size == 0)
1571                *key_size = crypto_skcipher_max_keysize(*key_tfm);
1572        get_random_bytes(dummy_key, *key_size);
1573        rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1574        if (rc) {
1575                printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1576                       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1577                       rc);
1578                rc = -EINVAL;
1579                goto out;
1580        }
1581out:
1582        kfree(full_alg_name);
1583        return rc;
1584}
1585
1586struct kmem_cache *ecryptfs_key_tfm_cache;
1587static struct list_head key_tfm_list;
1588DEFINE_MUTEX(key_tfm_list_mutex);
1589
1590int __init ecryptfs_init_crypto(void)
1591{
1592        INIT_LIST_HEAD(&key_tfm_list);
1593        return 0;
1594}
1595
1596/**
1597 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1598 *
1599 * Called only at module unload time
1600 */
1601int ecryptfs_destroy_crypto(void)
1602{
1603        struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1604
1605        mutex_lock(&key_tfm_list_mutex);
1606        list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1607                                 key_tfm_list) {
1608                list_del(&key_tfm->key_tfm_list);
1609                crypto_free_skcipher(key_tfm->key_tfm);
1610                kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1611        }
1612        mutex_unlock(&key_tfm_list_mutex);
1613        return 0;
1614}
1615
1616int
1617ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1618                         size_t key_size)
1619{
1620        struct ecryptfs_key_tfm *tmp_tfm;
1621        int rc = 0;
1622
1623        BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1624
1625        tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1626        if (key_tfm)
1627                (*key_tfm) = tmp_tfm;
1628        if (!tmp_tfm) {
1629                rc = -ENOMEM;
1630                goto out;
1631        }
1632        mutex_init(&tmp_tfm->key_tfm_mutex);
1633        strncpy(tmp_tfm->cipher_name, cipher_name,
1634                ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1635        tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1636        tmp_tfm->key_size = key_size;
1637        rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1638                                         tmp_tfm->cipher_name,
1639                                         &tmp_tfm->key_size);
1640        if (rc) {
1641                printk(KERN_ERR "Error attempting to initialize key TFM "
1642                       "cipher with name = [%s]; rc = [%d]\n",
1643                       tmp_tfm->cipher_name, rc);
1644                kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1645                if (key_tfm)
1646                        (*key_tfm) = NULL;
1647                goto out;
1648        }
1649        list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1650out:
1651        return rc;
1652}
1653
1654/**
1655 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1656 * @cipher_name: the name of the cipher to search for
1657 * @key_tfm: set to corresponding tfm if found
1658 *
1659 * Searches for cached key_tfm matching @cipher_name
1660 * Must be called with &key_tfm_list_mutex held
1661 * Returns 1 if found, with @key_tfm set
1662 * Returns 0 if not found, with @key_tfm set to NULL
1663 */
1664int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1665{
1666        struct ecryptfs_key_tfm *tmp_key_tfm;
1667
1668        BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1669
1670        list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1671                if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1672                        if (key_tfm)
1673                                (*key_tfm) = tmp_key_tfm;
1674                        return 1;
1675                }
1676        }
1677        if (key_tfm)
1678                (*key_tfm) = NULL;
1679        return 0;
1680}
1681
1682/**
1683 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1684 *
1685 * @tfm: set to cached tfm found, or new tfm created
1686 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1687 * @cipher_name: the name of the cipher to search for and/or add
1688 *
1689 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1690 * Searches for cached item first, and creates new if not found.
1691 * Returns 0 on success, non-zero if adding new cipher failed
1692 */
1693int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1694                                               struct mutex **tfm_mutex,
1695                                               char *cipher_name)
1696{
1697        struct ecryptfs_key_tfm *key_tfm;
1698        int rc = 0;
1699
1700        (*tfm) = NULL;
1701        (*tfm_mutex) = NULL;
1702
1703        mutex_lock(&key_tfm_list_mutex);
1704        if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1705                rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1706                if (rc) {
1707                        printk(KERN_ERR "Error adding new key_tfm to list; "
1708                                        "rc = [%d]\n", rc);
1709                        goto out;
1710                }
1711        }
1712        (*tfm) = key_tfm->key_tfm;
1713        (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1714out:
1715        mutex_unlock(&key_tfm_list_mutex);
1716        return rc;
1717}
1718
1719/* 64 characters forming a 6-bit target field */
1720static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1721                                                 "EFGHIJKLMNOPQRST"
1722                                                 "UVWXYZabcdefghij"
1723                                                 "klmnopqrstuvwxyz");
1724
1725/* We could either offset on every reverse map or just pad some 0x00's
1726 * at the front here */
1727static const unsigned char filename_rev_map[256] = {
1728        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1729        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1730        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1731        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1732        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1733        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1734        0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1735        0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1736        0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1737        0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1738        0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1739        0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1740        0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1741        0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1742        0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1743        0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1744};
1745
1746/**
1747 * ecryptfs_encode_for_filename
1748 * @dst: Destination location for encoded filename
1749 * @dst_size: Size of the encoded filename in bytes
1750 * @src: Source location for the filename to encode
1751 * @src_size: Size of the source in bytes
1752 */
1753static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1754                                  unsigned char *src, size_t src_size)
1755{
1756        size_t num_blocks;
1757        size_t block_num = 0;
1758        size_t dst_offset = 0;
1759        unsigned char last_block[3];
1760
1761        if (src_size == 0) {
1762                (*dst_size) = 0;
1763                goto out;
1764        }
1765        num_blocks = (src_size / 3);
1766        if ((src_size % 3) == 0) {
1767                memcpy(last_block, (&src[src_size - 3]), 3);
1768        } else {
1769                num_blocks++;
1770                last_block[2] = 0x00;
1771                switch (src_size % 3) {
1772                case 1:
1773                        last_block[0] = src[src_size - 1];
1774                        last_block[1] = 0x00;
1775                        break;
1776                case 2:
1777                        last_block[0] = src[src_size - 2];
1778                        last_block[1] = src[src_size - 1];
1779                }
1780        }
1781        (*dst_size) = (num_blocks * 4);
1782        if (!dst)
1783                goto out;
1784        while (block_num < num_blocks) {
1785                unsigned char *src_block;
1786                unsigned char dst_block[4];
1787
1788                if (block_num == (num_blocks - 1))
1789                        src_block = last_block;
1790                else
1791                        src_block = &src[block_num * 3];
1792                dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1793                dst_block[1] = (((src_block[0] << 4) & 0x30)
1794                                | ((src_block[1] >> 4) & 0x0F));
1795                dst_block[2] = (((src_block[1] << 2) & 0x3C)
1796                                | ((src_block[2] >> 6) & 0x03));
1797                dst_block[3] = (src_block[2] & 0x3F);
1798                dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1799                dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1800                dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1801                dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1802                block_num++;
1803        }
1804out:
1805        return;
1806}
1807
1808static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1809{
1810        /* Not exact; conservatively long. Every block of 4
1811         * encoded characters decodes into a block of 3
1812         * decoded characters. This segment of code provides
1813         * the caller with the maximum amount of allocated
1814         * space that @dst will need to point to in a
1815         * subsequent call. */
1816        return ((encoded_size + 1) * 3) / 4;
1817}
1818
1819/**
1820 * ecryptfs_decode_from_filename
1821 * @dst: If NULL, this function only sets @dst_size and returns. If
1822 *       non-NULL, this function decodes the encoded octets in @src
1823 *       into the memory that @dst points to.
1824 * @dst_size: Set to the size of the decoded string.
1825 * @src: The encoded set of octets to decode.
1826 * @src_size: The size of the encoded set of octets to decode.
1827 */
1828static void
1829ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1830                              const unsigned char *src, size_t src_size)
1831{
1832        u8 current_bit_offset = 0;
1833        size_t src_byte_offset = 0;
1834        size_t dst_byte_offset = 0;
1835
1836        if (!dst) {
1837                (*dst_size) = ecryptfs_max_decoded_size(src_size);
1838                goto out;
1839        }
1840        while (src_byte_offset < src_size) {
1841                unsigned char src_byte =
1842                                filename_rev_map[(int)src[src_byte_offset]];
1843
1844                switch (current_bit_offset) {
1845                case 0:
1846                        dst[dst_byte_offset] = (src_byte << 2);
1847                        current_bit_offset = 6;
1848                        break;
1849                case 6:
1850                        dst[dst_byte_offset++] |= (src_byte >> 4);
1851                        dst[dst_byte_offset] = ((src_byte & 0xF)
1852                                                 << 4);
1853                        current_bit_offset = 4;
1854                        break;
1855                case 4:
1856                        dst[dst_byte_offset++] |= (src_byte >> 2);
1857                        dst[dst_byte_offset] = (src_byte << 6);
1858                        current_bit_offset = 2;
1859                        break;
1860                case 2:
1861                        dst[dst_byte_offset++] |= (src_byte);
1862                        current_bit_offset = 0;
1863                        break;
1864                }
1865                src_byte_offset++;
1866        }
1867        (*dst_size) = dst_byte_offset;
1868out:
1869        return;
1870}
1871
1872/**
1873 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1874 * @encoded_name: The encrypted name
1875 * @encoded_name_size: Length of the encrypted name
1876 * @mount_crypt_stat: The crypt_stat struct associated with the file name to encode
1877 * @name: The plaintext name
1878 * @name_size: The length of the plaintext name
1879 *
1880 * Encrypts and encodes a filename into something that constitutes a
1881 * valid filename for a filesystem, with printable characters.
1882 *
1883 * We assume that we have a properly initialized crypto context,
1884 * pointed to by crypt_stat->tfm.
1885 *
1886 * Returns zero on success; non-zero on otherwise
1887 */
1888int ecryptfs_encrypt_and_encode_filename(
1889        char **encoded_name,
1890        size_t *encoded_name_size,
1891        struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1892        const char *name, size_t name_size)
1893{
1894        size_t encoded_name_no_prefix_size;
1895        int rc = 0;
1896
1897        (*encoded_name) = NULL;
1898        (*encoded_name_size) = 0;
1899        if (mount_crypt_stat && (mount_crypt_stat->flags
1900                                     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1901                struct ecryptfs_filename *filename;
1902
1903                filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1904                if (!filename) {
1905                        rc = -ENOMEM;
1906                        goto out;
1907                }
1908                filename->filename = (char *)name;
1909                filename->filename_size = name_size;
1910                rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1911                if (rc) {
1912                        printk(KERN_ERR "%s: Error attempting to encrypt "
1913                               "filename; rc = [%d]\n", __func__, rc);
1914                        kfree(filename);
1915                        goto out;
1916                }
1917                ecryptfs_encode_for_filename(
1918                        NULL, &encoded_name_no_prefix_size,
1919                        filename->encrypted_filename,
1920                        filename->encrypted_filename_size);
1921                if (mount_crypt_stat
1922                        && (mount_crypt_stat->flags
1923                            & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1924                        (*encoded_name_size) =
1925                                (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1926                                 + encoded_name_no_prefix_size);
1927                else
1928                        (*encoded_name_size) =
1929                                (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1930                                 + encoded_name_no_prefix_size);
1931                (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1932                if (!(*encoded_name)) {
1933                        rc = -ENOMEM;
1934                        kfree(filename->encrypted_filename);
1935                        kfree(filename);
1936                        goto out;
1937                }
1938                if (mount_crypt_stat
1939                        && (mount_crypt_stat->flags
1940                            & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1941                        memcpy((*encoded_name),
1942                               ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1943                               ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1944                        ecryptfs_encode_for_filename(
1945                            ((*encoded_name)
1946                             + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1947                            &encoded_name_no_prefix_size,
1948                            filename->encrypted_filename,
1949                            filename->encrypted_filename_size);
1950                        (*encoded_name_size) =
1951                                (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1952                                 + encoded_name_no_prefix_size);
1953                        (*encoded_name)[(*encoded_name_size)] = '\0';
1954                } else {
1955                        rc = -EOPNOTSUPP;
1956                }
1957                if (rc) {
1958                        printk(KERN_ERR "%s: Error attempting to encode "
1959                               "encrypted filename; rc = [%d]\n", __func__,
1960                               rc);
1961                        kfree((*encoded_name));
1962                        (*encoded_name) = NULL;
1963                        (*encoded_name_size) = 0;
1964                }
1965                kfree(filename->encrypted_filename);
1966                kfree(filename);
1967        } else {
1968                rc = ecryptfs_copy_filename(encoded_name,
1969                                            encoded_name_size,
1970                                            name, name_size);
1971        }
1972out:
1973        return rc;
1974}
1975
1976static bool is_dot_dotdot(const char *name, size_t name_size)
1977{
1978        if (name_size == 1 && name[0] == '.')
1979                return true;
1980        else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1981                return true;
1982
1983        return false;
1984}
1985
1986/**
1987 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1988 * @plaintext_name: The plaintext name
1989 * @plaintext_name_size: The plaintext name size
1990 * @sb: Ecryptfs's super_block
1991 * @name: The filename in cipher text
1992 * @name_size: The cipher text name size
1993 *
1994 * Decrypts and decodes the filename.
1995 *
1996 * Returns zero on error; non-zero otherwise
1997 */
1998int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
1999                                         size_t *plaintext_name_size,
2000                                         struct super_block *sb,
2001                                         const char *name, size_t name_size)
2002{
2003        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2004                &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2005        char *decoded_name;
2006        size_t decoded_name_size;
2007        size_t packet_size;
2008        int rc = 0;
2009
2010        if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2011            !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2012                if (is_dot_dotdot(name, name_size)) {
2013                        rc = ecryptfs_copy_filename(plaintext_name,
2014                                                    plaintext_name_size,
2015                                                    name, name_size);
2016                        goto out;
2017                }
2018
2019                if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2020                    strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2021                            ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2022                        rc = -EINVAL;
2023                        goto out;
2024                }
2025
2026                name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2027                name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2028                ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2029                                              name, name_size);
2030                decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2031                if (!decoded_name) {
2032                        rc = -ENOMEM;
2033                        goto out;
2034                }
2035                ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2036                                              name, name_size);
2037                rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2038                                                  plaintext_name_size,
2039                                                  &packet_size,
2040                                                  mount_crypt_stat,
2041                                                  decoded_name,
2042                                                  decoded_name_size);
2043                if (rc) {
2044                        ecryptfs_printk(KERN_DEBUG,
2045                                        "%s: Could not parse tag 70 packet from filename\n",
2046                                        __func__);
2047                        goto out_free;
2048                }
2049        } else {
2050                rc = ecryptfs_copy_filename(plaintext_name,
2051                                            plaintext_name_size,
2052                                            name, name_size);
2053                goto out;
2054        }
2055out_free:
2056        kfree(decoded_name);
2057out:
2058        return rc;
2059}
2060
2061#define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2062
2063int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2064                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2065{
2066        struct crypto_skcipher *tfm;
2067        struct mutex *tfm_mutex;
2068        size_t cipher_blocksize;
2069        int rc;
2070
2071        if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2072                (*namelen) = lower_namelen;
2073                return 0;
2074        }
2075
2076        rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2077                        mount_crypt_stat->global_default_fn_cipher_name);
2078        if (unlikely(rc)) {
2079                (*namelen) = 0;
2080                return rc;
2081        }
2082
2083        mutex_lock(tfm_mutex);
2084        cipher_blocksize = crypto_skcipher_blocksize(tfm);
2085        mutex_unlock(tfm_mutex);
2086
2087        /* Return an exact amount for the common cases */
2088        if (lower_namelen == NAME_MAX
2089            && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2090                (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2091                return 0;
2092        }
2093
2094        /* Return a safe estimate for the uncommon cases */
2095        (*namelen) = lower_namelen;
2096        (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2097        /* Since this is the max decoded size, subtract 1 "decoded block" len */
2098        (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2099        (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2100        (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2101        /* Worst case is that the filename is padded nearly a full block size */
2102        (*namelen) -= cipher_blocksize - 1;
2103
2104        if ((*namelen) < 0)
2105                (*namelen) = 0;
2106
2107        return 0;
2108}
2109