linux/fs/ext2/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext2/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  Goal-directed block allocation by Stephen Tweedie
  17 *      (sct@dcs.ed.ac.uk), 1993, 1998
  18 *  Big-endian to little-endian byte-swapping/bitmaps by
  19 *        David S. Miller (davem@caip.rutgers.edu), 1995
  20 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  21 *      (jj@sunsite.ms.mff.cuni.cz)
  22 *
  23 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
  24 */
  25
  26#include <linux/time.h>
  27#include <linux/highuid.h>
  28#include <linux/pagemap.h>
  29#include <linux/dax.h>
  30#include <linux/blkdev.h>
  31#include <linux/quotaops.h>
  32#include <linux/writeback.h>
  33#include <linux/buffer_head.h>
  34#include <linux/mpage.h>
  35#include <linux/fiemap.h>
  36#include <linux/iomap.h>
  37#include <linux/namei.h>
  38#include <linux/uio.h>
  39#include "ext2.h"
  40#include "acl.h"
  41#include "xattr.h"
  42
  43static int __ext2_write_inode(struct inode *inode, int do_sync);
  44
  45/*
  46 * Test whether an inode is a fast symlink.
  47 */
  48static inline int ext2_inode_is_fast_symlink(struct inode *inode)
  49{
  50        int ea_blocks = EXT2_I(inode)->i_file_acl ?
  51                (inode->i_sb->s_blocksize >> 9) : 0;
  52
  53        return (S_ISLNK(inode->i_mode) &&
  54                inode->i_blocks - ea_blocks == 0);
  55}
  56
  57static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
  58
  59static void ext2_write_failed(struct address_space *mapping, loff_t to)
  60{
  61        struct inode *inode = mapping->host;
  62
  63        if (to > inode->i_size) {
  64                truncate_pagecache(inode, inode->i_size);
  65                ext2_truncate_blocks(inode, inode->i_size);
  66        }
  67}
  68
  69/*
  70 * Called at the last iput() if i_nlink is zero.
  71 */
  72void ext2_evict_inode(struct inode * inode)
  73{
  74        struct ext2_block_alloc_info *rsv;
  75        int want_delete = 0;
  76
  77        if (!inode->i_nlink && !is_bad_inode(inode)) {
  78                want_delete = 1;
  79                dquot_initialize(inode);
  80        } else {
  81                dquot_drop(inode);
  82        }
  83
  84        truncate_inode_pages_final(&inode->i_data);
  85
  86        if (want_delete) {
  87                sb_start_intwrite(inode->i_sb);
  88                /* set dtime */
  89                EXT2_I(inode)->i_dtime  = ktime_get_real_seconds();
  90                mark_inode_dirty(inode);
  91                __ext2_write_inode(inode, inode_needs_sync(inode));
  92                /* truncate to 0 */
  93                inode->i_size = 0;
  94                if (inode->i_blocks)
  95                        ext2_truncate_blocks(inode, 0);
  96                ext2_xattr_delete_inode(inode);
  97        }
  98
  99        invalidate_inode_buffers(inode);
 100        clear_inode(inode);
 101
 102        ext2_discard_reservation(inode);
 103        rsv = EXT2_I(inode)->i_block_alloc_info;
 104        EXT2_I(inode)->i_block_alloc_info = NULL;
 105        if (unlikely(rsv))
 106                kfree(rsv);
 107
 108        if (want_delete) {
 109                ext2_free_inode(inode);
 110                sb_end_intwrite(inode->i_sb);
 111        }
 112}
 113
 114typedef struct {
 115        __le32  *p;
 116        __le32  key;
 117        struct buffer_head *bh;
 118} Indirect;
 119
 120static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 121{
 122        p->key = *(p->p = v);
 123        p->bh = bh;
 124}
 125
 126static inline int verify_chain(Indirect *from, Indirect *to)
 127{
 128        while (from <= to && from->key == *from->p)
 129                from++;
 130        return (from > to);
 131}
 132
 133/**
 134 *      ext2_block_to_path - parse the block number into array of offsets
 135 *      @inode: inode in question (we are only interested in its superblock)
 136 *      @i_block: block number to be parsed
 137 *      @offsets: array to store the offsets in
 138 *      @boundary: set this non-zero if the referred-to block is likely to be
 139 *             followed (on disk) by an indirect block.
 140 *      To store the locations of file's data ext2 uses a data structure common
 141 *      for UNIX filesystems - tree of pointers anchored in the inode, with
 142 *      data blocks at leaves and indirect blocks in intermediate nodes.
 143 *      This function translates the block number into path in that tree -
 144 *      return value is the path length and @offsets[n] is the offset of
 145 *      pointer to (n+1)th node in the nth one. If @block is out of range
 146 *      (negative or too large) warning is printed and zero returned.
 147 *
 148 *      Note: function doesn't find node addresses, so no IO is needed. All
 149 *      we need to know is the capacity of indirect blocks (taken from the
 150 *      inode->i_sb).
 151 */
 152
 153/*
 154 * Portability note: the last comparison (check that we fit into triple
 155 * indirect block) is spelled differently, because otherwise on an
 156 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 157 * if our filesystem had 8Kb blocks. We might use long long, but that would
 158 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 159 * i_block would have to be negative in the very beginning, so we would not
 160 * get there at all.
 161 */
 162
 163static int ext2_block_to_path(struct inode *inode,
 164                        long i_block, int offsets[4], int *boundary)
 165{
 166        int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
 167        int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
 168        const long direct_blocks = EXT2_NDIR_BLOCKS,
 169                indirect_blocks = ptrs,
 170                double_blocks = (1 << (ptrs_bits * 2));
 171        int n = 0;
 172        int final = 0;
 173
 174        if (i_block < 0) {
 175                ext2_msg(inode->i_sb, KERN_WARNING,
 176                        "warning: %s: block < 0", __func__);
 177        } else if (i_block < direct_blocks) {
 178                offsets[n++] = i_block;
 179                final = direct_blocks;
 180        } else if ( (i_block -= direct_blocks) < indirect_blocks) {
 181                offsets[n++] = EXT2_IND_BLOCK;
 182                offsets[n++] = i_block;
 183                final = ptrs;
 184        } else if ((i_block -= indirect_blocks) < double_blocks) {
 185                offsets[n++] = EXT2_DIND_BLOCK;
 186                offsets[n++] = i_block >> ptrs_bits;
 187                offsets[n++] = i_block & (ptrs - 1);
 188                final = ptrs;
 189        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 190                offsets[n++] = EXT2_TIND_BLOCK;
 191                offsets[n++] = i_block >> (ptrs_bits * 2);
 192                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 193                offsets[n++] = i_block & (ptrs - 1);
 194                final = ptrs;
 195        } else {
 196                ext2_msg(inode->i_sb, KERN_WARNING,
 197                        "warning: %s: block is too big", __func__);
 198        }
 199        if (boundary)
 200                *boundary = final - 1 - (i_block & (ptrs - 1));
 201
 202        return n;
 203}
 204
 205/**
 206 *      ext2_get_branch - read the chain of indirect blocks leading to data
 207 *      @inode: inode in question
 208 *      @depth: depth of the chain (1 - direct pointer, etc.)
 209 *      @offsets: offsets of pointers in inode/indirect blocks
 210 *      @chain: place to store the result
 211 *      @err: here we store the error value
 212 *
 213 *      Function fills the array of triples <key, p, bh> and returns %NULL
 214 *      if everything went OK or the pointer to the last filled triple
 215 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 216 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 217 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 218 *      number (it points into struct inode for i==0 and into the bh->b_data
 219 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 220 *      block for i>0 and NULL for i==0. In other words, it holds the block
 221 *      numbers of the chain, addresses they were taken from (and where we can
 222 *      verify that chain did not change) and buffer_heads hosting these
 223 *      numbers.
 224 *
 225 *      Function stops when it stumbles upon zero pointer (absent block)
 226 *              (pointer to last triple returned, *@err == 0)
 227 *      or when it gets an IO error reading an indirect block
 228 *              (ditto, *@err == -EIO)
 229 *      or when it notices that chain had been changed while it was reading
 230 *              (ditto, *@err == -EAGAIN)
 231 *      or when it reads all @depth-1 indirect blocks successfully and finds
 232 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 233 */
 234static Indirect *ext2_get_branch(struct inode *inode,
 235                                 int depth,
 236                                 int *offsets,
 237                                 Indirect chain[4],
 238                                 int *err)
 239{
 240        struct super_block *sb = inode->i_sb;
 241        Indirect *p = chain;
 242        struct buffer_head *bh;
 243
 244        *err = 0;
 245        /* i_data is not going away, no lock needed */
 246        add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
 247        if (!p->key)
 248                goto no_block;
 249        while (--depth) {
 250                bh = sb_bread(sb, le32_to_cpu(p->key));
 251                if (!bh)
 252                        goto failure;
 253                read_lock(&EXT2_I(inode)->i_meta_lock);
 254                if (!verify_chain(chain, p))
 255                        goto changed;
 256                add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 257                read_unlock(&EXT2_I(inode)->i_meta_lock);
 258                if (!p->key)
 259                        goto no_block;
 260        }
 261        return NULL;
 262
 263changed:
 264        read_unlock(&EXT2_I(inode)->i_meta_lock);
 265        brelse(bh);
 266        *err = -EAGAIN;
 267        goto no_block;
 268failure:
 269        *err = -EIO;
 270no_block:
 271        return p;
 272}
 273
 274/**
 275 *      ext2_find_near - find a place for allocation with sufficient locality
 276 *      @inode: owner
 277 *      @ind: descriptor of indirect block.
 278 *
 279 *      This function returns the preferred place for block allocation.
 280 *      It is used when heuristic for sequential allocation fails.
 281 *      Rules are:
 282 *        + if there is a block to the left of our position - allocate near it.
 283 *        + if pointer will live in indirect block - allocate near that block.
 284 *        + if pointer will live in inode - allocate in the same cylinder group.
 285 *
 286 * In the latter case we colour the starting block by the callers PID to
 287 * prevent it from clashing with concurrent allocations for a different inode
 288 * in the same block group.   The PID is used here so that functionally related
 289 * files will be close-by on-disk.
 290 *
 291 *      Caller must make sure that @ind is valid and will stay that way.
 292 */
 293
 294static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
 295{
 296        struct ext2_inode_info *ei = EXT2_I(inode);
 297        __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 298        __le32 *p;
 299        ext2_fsblk_t bg_start;
 300        ext2_fsblk_t colour;
 301
 302        /* Try to find previous block */
 303        for (p = ind->p - 1; p >= start; p--)
 304                if (*p)
 305                        return le32_to_cpu(*p);
 306
 307        /* No such thing, so let's try location of indirect block */
 308        if (ind->bh)
 309                return ind->bh->b_blocknr;
 310
 311        /*
 312         * It is going to be referred from inode itself? OK, just put it into
 313         * the same cylinder group then.
 314         */
 315        bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
 316        colour = (current->pid % 16) *
 317                        (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 318        return bg_start + colour;
 319}
 320
 321/**
 322 *      ext2_find_goal - find a preferred place for allocation.
 323 *      @inode: owner
 324 *      @block:  block we want
 325 *      @partial: pointer to the last triple within a chain
 326 *
 327 *      Returns preferred place for a block (the goal).
 328 */
 329
 330static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
 331                                          Indirect *partial)
 332{
 333        struct ext2_block_alloc_info *block_i;
 334
 335        block_i = EXT2_I(inode)->i_block_alloc_info;
 336
 337        /*
 338         * try the heuristic for sequential allocation,
 339         * failing that at least try to get decent locality.
 340         */
 341        if (block_i && (block == block_i->last_alloc_logical_block + 1)
 342                && (block_i->last_alloc_physical_block != 0)) {
 343                return block_i->last_alloc_physical_block + 1;
 344        }
 345
 346        return ext2_find_near(inode, partial);
 347}
 348
 349/**
 350 *      ext2_blks_to_allocate: Look up the block map and count the number
 351 *      of direct blocks need to be allocated for the given branch.
 352 *
 353 *      @branch: chain of indirect blocks
 354 *      @k: number of blocks need for indirect blocks
 355 *      @blks: number of data blocks to be mapped.
 356 *      @blocks_to_boundary:  the offset in the indirect block
 357 *
 358 *      return the number of direct blocks to allocate.
 359 */
 360static int
 361ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
 362                int blocks_to_boundary)
 363{
 364        unsigned long count = 0;
 365
 366        /*
 367         * Simple case, [t,d]Indirect block(s) has not allocated yet
 368         * then it's clear blocks on that path have not allocated
 369         */
 370        if (k > 0) {
 371                /* right now don't hanel cross boundary allocation */
 372                if (blks < blocks_to_boundary + 1)
 373                        count += blks;
 374                else
 375                        count += blocks_to_boundary + 1;
 376                return count;
 377        }
 378
 379        count++;
 380        while (count < blks && count <= blocks_to_boundary
 381                && le32_to_cpu(*(branch[0].p + count)) == 0) {
 382                count++;
 383        }
 384        return count;
 385}
 386
 387/**
 388 *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
 389 *      @indirect_blks: the number of blocks need to allocate for indirect
 390 *                      blocks
 391 *      @blks: the number of blocks need to allocate for direct blocks
 392 *      @new_blocks: on return it will store the new block numbers for
 393 *      the indirect blocks(if needed) and the first direct block,
 394 */
 395static int ext2_alloc_blocks(struct inode *inode,
 396                        ext2_fsblk_t goal, int indirect_blks, int blks,
 397                        ext2_fsblk_t new_blocks[4], int *err)
 398{
 399        int target, i;
 400        unsigned long count = 0;
 401        int index = 0;
 402        ext2_fsblk_t current_block = 0;
 403        int ret = 0;
 404
 405        /*
 406         * Here we try to allocate the requested multiple blocks at once,
 407         * on a best-effort basis.
 408         * To build a branch, we should allocate blocks for
 409         * the indirect blocks(if not allocated yet), and at least
 410         * the first direct block of this branch.  That's the
 411         * minimum number of blocks need to allocate(required)
 412         */
 413        target = blks + indirect_blks;
 414
 415        while (1) {
 416                count = target;
 417                /* allocating blocks for indirect blocks and direct blocks */
 418                current_block = ext2_new_blocks(inode,goal,&count,err);
 419                if (*err)
 420                        goto failed_out;
 421
 422                target -= count;
 423                /* allocate blocks for indirect blocks */
 424                while (index < indirect_blks && count) {
 425                        new_blocks[index++] = current_block++;
 426                        count--;
 427                }
 428
 429                if (count > 0)
 430                        break;
 431        }
 432
 433        /* save the new block number for the first direct block */
 434        new_blocks[index] = current_block;
 435
 436        /* total number of blocks allocated for direct blocks */
 437        ret = count;
 438        *err = 0;
 439        return ret;
 440failed_out:
 441        for (i = 0; i <index; i++)
 442                ext2_free_blocks(inode, new_blocks[i], 1);
 443        if (index)
 444                mark_inode_dirty(inode);
 445        return ret;
 446}
 447
 448/**
 449 *      ext2_alloc_branch - allocate and set up a chain of blocks.
 450 *      @inode: owner
 451 *      @indirect_blks: depth of the chain (number of blocks to allocate)
 452 *      @blks: number of allocated direct blocks
 453 *      @goal: preferred place for allocation
 454 *      @offsets: offsets (in the blocks) to store the pointers to next.
 455 *      @branch: place to store the chain in.
 456 *
 457 *      This function allocates @num blocks, zeroes out all but the last one,
 458 *      links them into chain and (if we are synchronous) writes them to disk.
 459 *      In other words, it prepares a branch that can be spliced onto the
 460 *      inode. It stores the information about that chain in the branch[], in
 461 *      the same format as ext2_get_branch() would do. We are calling it after
 462 *      we had read the existing part of chain and partial points to the last
 463 *      triple of that (one with zero ->key). Upon the exit we have the same
 464 *      picture as after the successful ext2_get_block(), except that in one
 465 *      place chain is disconnected - *branch->p is still zero (we did not
 466 *      set the last link), but branch->key contains the number that should
 467 *      be placed into *branch->p to fill that gap.
 468 *
 469 *      If allocation fails we free all blocks we've allocated (and forget
 470 *      their buffer_heads) and return the error value the from failed
 471 *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 472 *      as described above and return 0.
 473 */
 474
 475static int ext2_alloc_branch(struct inode *inode,
 476                        int indirect_blks, int *blks, ext2_fsblk_t goal,
 477                        int *offsets, Indirect *branch)
 478{
 479        int blocksize = inode->i_sb->s_blocksize;
 480        int i, n = 0;
 481        int err = 0;
 482        struct buffer_head *bh;
 483        int num;
 484        ext2_fsblk_t new_blocks[4];
 485        ext2_fsblk_t current_block;
 486
 487        num = ext2_alloc_blocks(inode, goal, indirect_blks,
 488                                *blks, new_blocks, &err);
 489        if (err)
 490                return err;
 491
 492        branch[0].key = cpu_to_le32(new_blocks[0]);
 493        /*
 494         * metadata blocks and data blocks are allocated.
 495         */
 496        for (n = 1; n <= indirect_blks;  n++) {
 497                /*
 498                 * Get buffer_head for parent block, zero it out
 499                 * and set the pointer to new one, then send
 500                 * parent to disk.
 501                 */
 502                bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 503                if (unlikely(!bh)) {
 504                        err = -ENOMEM;
 505                        goto failed;
 506                }
 507                branch[n].bh = bh;
 508                lock_buffer(bh);
 509                memset(bh->b_data, 0, blocksize);
 510                branch[n].p = (__le32 *) bh->b_data + offsets[n];
 511                branch[n].key = cpu_to_le32(new_blocks[n]);
 512                *branch[n].p = branch[n].key;
 513                if ( n == indirect_blks) {
 514                        current_block = new_blocks[n];
 515                        /*
 516                         * End of chain, update the last new metablock of
 517                         * the chain to point to the new allocated
 518                         * data blocks numbers
 519                         */
 520                        for (i=1; i < num; i++)
 521                                *(branch[n].p + i) = cpu_to_le32(++current_block);
 522                }
 523                set_buffer_uptodate(bh);
 524                unlock_buffer(bh);
 525                mark_buffer_dirty_inode(bh, inode);
 526                /* We used to sync bh here if IS_SYNC(inode).
 527                 * But we now rely upon generic_write_sync()
 528                 * and b_inode_buffers.  But not for directories.
 529                 */
 530                if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
 531                        sync_dirty_buffer(bh);
 532        }
 533        *blks = num;
 534        return err;
 535
 536failed:
 537        for (i = 1; i < n; i++)
 538                bforget(branch[i].bh);
 539        for (i = 0; i < indirect_blks; i++)
 540                ext2_free_blocks(inode, new_blocks[i], 1);
 541        ext2_free_blocks(inode, new_blocks[i], num);
 542        return err;
 543}
 544
 545/**
 546 * ext2_splice_branch - splice the allocated branch onto inode.
 547 * @inode: owner
 548 * @block: (logical) number of block we are adding
 549 * @where: location of missing link
 550 * @num:   number of indirect blocks we are adding
 551 * @blks:  number of direct blocks we are adding
 552 *
 553 * This function fills the missing link and does all housekeeping needed in
 554 * inode (->i_blocks, etc.). In case of success we end up with the full
 555 * chain to new block and return 0.
 556 */
 557static void ext2_splice_branch(struct inode *inode,
 558                        long block, Indirect *where, int num, int blks)
 559{
 560        int i;
 561        struct ext2_block_alloc_info *block_i;
 562        ext2_fsblk_t current_block;
 563
 564        block_i = EXT2_I(inode)->i_block_alloc_info;
 565
 566        /* XXX LOCKING probably should have i_meta_lock ?*/
 567        /* That's it */
 568
 569        *where->p = where->key;
 570
 571        /*
 572         * Update the host buffer_head or inode to point to more just allocated
 573         * direct blocks blocks
 574         */
 575        if (num == 0 && blks > 1) {
 576                current_block = le32_to_cpu(where->key) + 1;
 577                for (i = 1; i < blks; i++)
 578                        *(where->p + i ) = cpu_to_le32(current_block++);
 579        }
 580
 581        /*
 582         * update the most recently allocated logical & physical block
 583         * in i_block_alloc_info, to assist find the proper goal block for next
 584         * allocation
 585         */
 586        if (block_i) {
 587                block_i->last_alloc_logical_block = block + blks - 1;
 588                block_i->last_alloc_physical_block =
 589                                le32_to_cpu(where[num].key) + blks - 1;
 590        }
 591
 592        /* We are done with atomic stuff, now do the rest of housekeeping */
 593
 594        /* had we spliced it onto indirect block? */
 595        if (where->bh)
 596                mark_buffer_dirty_inode(where->bh, inode);
 597
 598        inode->i_ctime = current_time(inode);
 599        mark_inode_dirty(inode);
 600}
 601
 602/*
 603 * Allocation strategy is simple: if we have to allocate something, we will
 604 * have to go the whole way to leaf. So let's do it before attaching anything
 605 * to tree, set linkage between the newborn blocks, write them if sync is
 606 * required, recheck the path, free and repeat if check fails, otherwise
 607 * set the last missing link (that will protect us from any truncate-generated
 608 * removals - all blocks on the path are immune now) and possibly force the
 609 * write on the parent block.
 610 * That has a nice additional property: no special recovery from the failed
 611 * allocations is needed - we simply release blocks and do not touch anything
 612 * reachable from inode.
 613 *
 614 * `handle' can be NULL if create == 0.
 615 *
 616 * return > 0, # of blocks mapped or allocated.
 617 * return = 0, if plain lookup failed.
 618 * return < 0, error case.
 619 */
 620static int ext2_get_blocks(struct inode *inode,
 621                           sector_t iblock, unsigned long maxblocks,
 622                           u32 *bno, bool *new, bool *boundary,
 623                           int create)
 624{
 625        int err;
 626        int offsets[4];
 627        Indirect chain[4];
 628        Indirect *partial;
 629        ext2_fsblk_t goal;
 630        int indirect_blks;
 631        int blocks_to_boundary = 0;
 632        int depth;
 633        struct ext2_inode_info *ei = EXT2_I(inode);
 634        int count = 0;
 635        ext2_fsblk_t first_block = 0;
 636
 637        BUG_ON(maxblocks == 0);
 638
 639        depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 640
 641        if (depth == 0)
 642                return -EIO;
 643
 644        partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 645        /* Simplest case - block found, no allocation needed */
 646        if (!partial) {
 647                first_block = le32_to_cpu(chain[depth - 1].key);
 648                count++;
 649                /*map more blocks*/
 650                while (count < maxblocks && count <= blocks_to_boundary) {
 651                        ext2_fsblk_t blk;
 652
 653                        if (!verify_chain(chain, chain + depth - 1)) {
 654                                /*
 655                                 * Indirect block might be removed by
 656                                 * truncate while we were reading it.
 657                                 * Handling of that case: forget what we've
 658                                 * got now, go to reread.
 659                                 */
 660                                err = -EAGAIN;
 661                                count = 0;
 662                                partial = chain + depth - 1;
 663                                break;
 664                        }
 665                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 666                        if (blk == first_block + count)
 667                                count++;
 668                        else
 669                                break;
 670                }
 671                if (err != -EAGAIN)
 672                        goto got_it;
 673        }
 674
 675        /* Next simple case - plain lookup or failed read of indirect block */
 676        if (!create || err == -EIO)
 677                goto cleanup;
 678
 679        mutex_lock(&ei->truncate_mutex);
 680        /*
 681         * If the indirect block is missing while we are reading
 682         * the chain(ext2_get_branch() returns -EAGAIN err), or
 683         * if the chain has been changed after we grab the semaphore,
 684         * (either because another process truncated this branch, or
 685         * another get_block allocated this branch) re-grab the chain to see if
 686         * the request block has been allocated or not.
 687         *
 688         * Since we already block the truncate/other get_block
 689         * at this point, we will have the current copy of the chain when we
 690         * splice the branch into the tree.
 691         */
 692        if (err == -EAGAIN || !verify_chain(chain, partial)) {
 693                while (partial > chain) {
 694                        brelse(partial->bh);
 695                        partial--;
 696                }
 697                partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 698                if (!partial) {
 699                        count++;
 700                        mutex_unlock(&ei->truncate_mutex);
 701                        goto got_it;
 702                }
 703
 704                if (err) {
 705                        mutex_unlock(&ei->truncate_mutex);
 706                        goto cleanup;
 707                }
 708        }
 709
 710        /*
 711         * Okay, we need to do block allocation.  Lazily initialize the block
 712         * allocation info here if necessary
 713        */
 714        if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 715                ext2_init_block_alloc_info(inode);
 716
 717        goal = ext2_find_goal(inode, iblock, partial);
 718
 719        /* the number of blocks need to allocate for [d,t]indirect blocks */
 720        indirect_blks = (chain + depth) - partial - 1;
 721        /*
 722         * Next look up the indirect map to count the total number of
 723         * direct blocks to allocate for this branch.
 724         */
 725        count = ext2_blks_to_allocate(partial, indirect_blks,
 726                                        maxblocks, blocks_to_boundary);
 727        /*
 728         * XXX ???? Block out ext2_truncate while we alter the tree
 729         */
 730        err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
 731                                offsets + (partial - chain), partial);
 732
 733        if (err) {
 734                mutex_unlock(&ei->truncate_mutex);
 735                goto cleanup;
 736        }
 737
 738        if (IS_DAX(inode)) {
 739                /*
 740                 * We must unmap blocks before zeroing so that writeback cannot
 741                 * overwrite zeros with stale data from block device page cache.
 742                 */
 743                clean_bdev_aliases(inode->i_sb->s_bdev,
 744                                   le32_to_cpu(chain[depth-1].key),
 745                                   count);
 746                /*
 747                 * block must be initialised before we put it in the tree
 748                 * so that it's not found by another thread before it's
 749                 * initialised
 750                 */
 751                err = sb_issue_zeroout(inode->i_sb,
 752                                le32_to_cpu(chain[depth-1].key), count,
 753                                GFP_NOFS);
 754                if (err) {
 755                        mutex_unlock(&ei->truncate_mutex);
 756                        goto cleanup;
 757                }
 758        }
 759        *new = true;
 760
 761        ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
 762        mutex_unlock(&ei->truncate_mutex);
 763got_it:
 764        if (count > blocks_to_boundary)
 765                *boundary = true;
 766        err = count;
 767        /* Clean up and exit */
 768        partial = chain + depth - 1;    /* the whole chain */
 769cleanup:
 770        while (partial > chain) {
 771                brelse(partial->bh);
 772                partial--;
 773        }
 774        if (err > 0)
 775                *bno = le32_to_cpu(chain[depth-1].key);
 776        return err;
 777}
 778
 779int ext2_get_block(struct inode *inode, sector_t iblock,
 780                struct buffer_head *bh_result, int create)
 781{
 782        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
 783        bool new = false, boundary = false;
 784        u32 bno;
 785        int ret;
 786
 787        ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
 788                        create);
 789        if (ret <= 0)
 790                return ret;
 791
 792        map_bh(bh_result, inode->i_sb, bno);
 793        bh_result->b_size = (ret << inode->i_blkbits);
 794        if (new)
 795                set_buffer_new(bh_result);
 796        if (boundary)
 797                set_buffer_boundary(bh_result);
 798        return 0;
 799
 800}
 801
 802static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
 803                unsigned flags, struct iomap *iomap, struct iomap *srcmap)
 804{
 805        unsigned int blkbits = inode->i_blkbits;
 806        unsigned long first_block = offset >> blkbits;
 807        unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
 808        struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
 809        bool new = false, boundary = false;
 810        u32 bno;
 811        int ret;
 812
 813        ret = ext2_get_blocks(inode, first_block, max_blocks,
 814                        &bno, &new, &boundary, flags & IOMAP_WRITE);
 815        if (ret < 0)
 816                return ret;
 817
 818        iomap->flags = 0;
 819        iomap->bdev = inode->i_sb->s_bdev;
 820        iomap->offset = (u64)first_block << blkbits;
 821        iomap->dax_dev = sbi->s_daxdev;
 822
 823        if (ret == 0) {
 824                iomap->type = IOMAP_HOLE;
 825                iomap->addr = IOMAP_NULL_ADDR;
 826                iomap->length = 1 << blkbits;
 827        } else {
 828                iomap->type = IOMAP_MAPPED;
 829                iomap->addr = (u64)bno << blkbits;
 830                iomap->length = (u64)ret << blkbits;
 831                iomap->flags |= IOMAP_F_MERGED;
 832        }
 833
 834        if (new)
 835                iomap->flags |= IOMAP_F_NEW;
 836        return 0;
 837}
 838
 839static int
 840ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
 841                ssize_t written, unsigned flags, struct iomap *iomap)
 842{
 843        if (iomap->type == IOMAP_MAPPED &&
 844            written < length &&
 845            (flags & IOMAP_WRITE))
 846                ext2_write_failed(inode->i_mapping, offset + length);
 847        return 0;
 848}
 849
 850const struct iomap_ops ext2_iomap_ops = {
 851        .iomap_begin            = ext2_iomap_begin,
 852        .iomap_end              = ext2_iomap_end,
 853};
 854
 855int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 856                u64 start, u64 len)
 857{
 858        int ret;
 859
 860        inode_lock(inode);
 861        len = min_t(u64, len, i_size_read(inode));
 862        ret = iomap_fiemap(inode, fieinfo, start, len, &ext2_iomap_ops);
 863        inode_unlock(inode);
 864
 865        return ret;
 866}
 867
 868static int ext2_writepage(struct page *page, struct writeback_control *wbc)
 869{
 870        return block_write_full_page(page, ext2_get_block, wbc);
 871}
 872
 873static int ext2_readpage(struct file *file, struct page *page)
 874{
 875        return mpage_readpage(page, ext2_get_block);
 876}
 877
 878static void ext2_readahead(struct readahead_control *rac)
 879{
 880        mpage_readahead(rac, ext2_get_block);
 881}
 882
 883static int
 884ext2_write_begin(struct file *file, struct address_space *mapping,
 885                loff_t pos, unsigned len, unsigned flags,
 886                struct page **pagep, void **fsdata)
 887{
 888        int ret;
 889
 890        ret = block_write_begin(mapping, pos, len, flags, pagep,
 891                                ext2_get_block);
 892        if (ret < 0)
 893                ext2_write_failed(mapping, pos + len);
 894        return ret;
 895}
 896
 897static int ext2_write_end(struct file *file, struct address_space *mapping,
 898                        loff_t pos, unsigned len, unsigned copied,
 899                        struct page *page, void *fsdata)
 900{
 901        int ret;
 902
 903        ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 904        if (ret < len)
 905                ext2_write_failed(mapping, pos + len);
 906        return ret;
 907}
 908
 909static int
 910ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
 911                loff_t pos, unsigned len, unsigned flags,
 912                struct page **pagep, void **fsdata)
 913{
 914        int ret;
 915
 916        ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
 917                               ext2_get_block);
 918        if (ret < 0)
 919                ext2_write_failed(mapping, pos + len);
 920        return ret;
 921}
 922
 923static int ext2_nobh_writepage(struct page *page,
 924                        struct writeback_control *wbc)
 925{
 926        return nobh_writepage(page, ext2_get_block, wbc);
 927}
 928
 929static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
 930{
 931        return generic_block_bmap(mapping,block,ext2_get_block);
 932}
 933
 934static ssize_t
 935ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 936{
 937        struct file *file = iocb->ki_filp;
 938        struct address_space *mapping = file->f_mapping;
 939        struct inode *inode = mapping->host;
 940        size_t count = iov_iter_count(iter);
 941        loff_t offset = iocb->ki_pos;
 942        ssize_t ret;
 943
 944        ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
 945        if (ret < 0 && iov_iter_rw(iter) == WRITE)
 946                ext2_write_failed(mapping, offset + count);
 947        return ret;
 948}
 949
 950static int
 951ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
 952{
 953        return mpage_writepages(mapping, wbc, ext2_get_block);
 954}
 955
 956static int
 957ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
 958{
 959        struct ext2_sb_info *sbi = EXT2_SB(mapping->host->i_sb);
 960
 961        return dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
 962}
 963
 964const struct address_space_operations ext2_aops = {
 965        .set_page_dirty         = __set_page_dirty_buffers,
 966        .readpage               = ext2_readpage,
 967        .readahead              = ext2_readahead,
 968        .writepage              = ext2_writepage,
 969        .write_begin            = ext2_write_begin,
 970        .write_end              = ext2_write_end,
 971        .bmap                   = ext2_bmap,
 972        .direct_IO              = ext2_direct_IO,
 973        .writepages             = ext2_writepages,
 974        .migratepage            = buffer_migrate_page,
 975        .is_partially_uptodate  = block_is_partially_uptodate,
 976        .error_remove_page      = generic_error_remove_page,
 977};
 978
 979const struct address_space_operations ext2_nobh_aops = {
 980        .set_page_dirty         = __set_page_dirty_buffers,
 981        .readpage               = ext2_readpage,
 982        .readahead              = ext2_readahead,
 983        .writepage              = ext2_nobh_writepage,
 984        .write_begin            = ext2_nobh_write_begin,
 985        .write_end              = nobh_write_end,
 986        .bmap                   = ext2_bmap,
 987        .direct_IO              = ext2_direct_IO,
 988        .writepages             = ext2_writepages,
 989        .migratepage            = buffer_migrate_page,
 990        .error_remove_page      = generic_error_remove_page,
 991};
 992
 993static const struct address_space_operations ext2_dax_aops = {
 994        .writepages             = ext2_dax_writepages,
 995        .direct_IO              = noop_direct_IO,
 996        .set_page_dirty         = __set_page_dirty_no_writeback,
 997        .invalidatepage         = noop_invalidatepage,
 998};
 999
1000/*
1001 * Probably it should be a library function... search for first non-zero word
1002 * or memcmp with zero_page, whatever is better for particular architecture.
1003 * Linus?
1004 */
1005static inline int all_zeroes(__le32 *p, __le32 *q)
1006{
1007        while (p < q)
1008                if (*p++)
1009                        return 0;
1010        return 1;
1011}
1012
1013/**
1014 *      ext2_find_shared - find the indirect blocks for partial truncation.
1015 *      @inode:   inode in question
1016 *      @depth:   depth of the affected branch
1017 *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
1018 *      @chain:   place to store the pointers to partial indirect blocks
1019 *      @top:     place to the (detached) top of branch
1020 *
1021 *      This is a helper function used by ext2_truncate().
1022 *
1023 *      When we do truncate() we may have to clean the ends of several indirect
1024 *      blocks but leave the blocks themselves alive. Block is partially
1025 *      truncated if some data below the new i_size is referred from it (and
1026 *      it is on the path to the first completely truncated data block, indeed).
1027 *      We have to free the top of that path along with everything to the right
1028 *      of the path. Since no allocation past the truncation point is possible
1029 *      until ext2_truncate() finishes, we may safely do the latter, but top
1030 *      of branch may require special attention - pageout below the truncation
1031 *      point might try to populate it.
1032 *
1033 *      We atomically detach the top of branch from the tree, store the block
1034 *      number of its root in *@top, pointers to buffer_heads of partially
1035 *      truncated blocks - in @chain[].bh and pointers to their last elements
1036 *      that should not be removed - in @chain[].p. Return value is the pointer
1037 *      to last filled element of @chain.
1038 *
1039 *      The work left to caller to do the actual freeing of subtrees:
1040 *              a) free the subtree starting from *@top
1041 *              b) free the subtrees whose roots are stored in
1042 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1043 *              c) free the subtrees growing from the inode past the @chain[0].p
1044 *                      (no partially truncated stuff there).
1045 */
1046
1047static Indirect *ext2_find_shared(struct inode *inode,
1048                                int depth,
1049                                int offsets[4],
1050                                Indirect chain[4],
1051                                __le32 *top)
1052{
1053        Indirect *partial, *p;
1054        int k, err;
1055
1056        *top = 0;
1057        for (k = depth; k > 1 && !offsets[k-1]; k--)
1058                ;
1059        partial = ext2_get_branch(inode, k, offsets, chain, &err);
1060        if (!partial)
1061                partial = chain + k-1;
1062        /*
1063         * If the branch acquired continuation since we've looked at it -
1064         * fine, it should all survive and (new) top doesn't belong to us.
1065         */
1066        write_lock(&EXT2_I(inode)->i_meta_lock);
1067        if (!partial->key && *partial->p) {
1068                write_unlock(&EXT2_I(inode)->i_meta_lock);
1069                goto no_top;
1070        }
1071        for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1072                ;
1073        /*
1074         * OK, we've found the last block that must survive. The rest of our
1075         * branch should be detached before unlocking. However, if that rest
1076         * of branch is all ours and does not grow immediately from the inode
1077         * it's easier to cheat and just decrement partial->p.
1078         */
1079        if (p == chain + k - 1 && p > chain) {
1080                p->p--;
1081        } else {
1082                *top = *p->p;
1083                *p->p = 0;
1084        }
1085        write_unlock(&EXT2_I(inode)->i_meta_lock);
1086
1087        while(partial > p)
1088        {
1089                brelse(partial->bh);
1090                partial--;
1091        }
1092no_top:
1093        return partial;
1094}
1095
1096/**
1097 *      ext2_free_data - free a list of data blocks
1098 *      @inode: inode we are dealing with
1099 *      @p:     array of block numbers
1100 *      @q:     points immediately past the end of array
1101 *
1102 *      We are freeing all blocks referred from that array (numbers are
1103 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1104 *      appropriately.
1105 */
1106static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1107{
1108        unsigned long block_to_free = 0, count = 0;
1109        unsigned long nr;
1110
1111        for ( ; p < q ; p++) {
1112                nr = le32_to_cpu(*p);
1113                if (nr) {
1114                        *p = 0;
1115                        /* accumulate blocks to free if they're contiguous */
1116                        if (count == 0)
1117                                goto free_this;
1118                        else if (block_to_free == nr - count)
1119                                count++;
1120                        else {
1121                                ext2_free_blocks (inode, block_to_free, count);
1122                                mark_inode_dirty(inode);
1123                        free_this:
1124                                block_to_free = nr;
1125                                count = 1;
1126                        }
1127                }
1128        }
1129        if (count > 0) {
1130                ext2_free_blocks (inode, block_to_free, count);
1131                mark_inode_dirty(inode);
1132        }
1133}
1134
1135/**
1136 *      ext2_free_branches - free an array of branches
1137 *      @inode: inode we are dealing with
1138 *      @p:     array of block numbers
1139 *      @q:     pointer immediately past the end of array
1140 *      @depth: depth of the branches to free
1141 *
1142 *      We are freeing all blocks referred from these branches (numbers are
1143 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1144 *      appropriately.
1145 */
1146static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1147{
1148        struct buffer_head * bh;
1149        unsigned long nr;
1150
1151        if (depth--) {
1152                int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1153                for ( ; p < q ; p++) {
1154                        nr = le32_to_cpu(*p);
1155                        if (!nr)
1156                                continue;
1157                        *p = 0;
1158                        bh = sb_bread(inode->i_sb, nr);
1159                        /*
1160                         * A read failure? Report error and clear slot
1161                         * (should be rare).
1162                         */ 
1163                        if (!bh) {
1164                                ext2_error(inode->i_sb, "ext2_free_branches",
1165                                        "Read failure, inode=%ld, block=%ld",
1166                                        inode->i_ino, nr);
1167                                continue;
1168                        }
1169                        ext2_free_branches(inode,
1170                                           (__le32*)bh->b_data,
1171                                           (__le32*)bh->b_data + addr_per_block,
1172                                           depth);
1173                        bforget(bh);
1174                        ext2_free_blocks(inode, nr, 1);
1175                        mark_inode_dirty(inode);
1176                }
1177        } else
1178                ext2_free_data(inode, p, q);
1179}
1180
1181/* mapping->invalidate_lock must be held when calling this function */
1182static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1183{
1184        __le32 *i_data = EXT2_I(inode)->i_data;
1185        struct ext2_inode_info *ei = EXT2_I(inode);
1186        int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1187        int offsets[4];
1188        Indirect chain[4];
1189        Indirect *partial;
1190        __le32 nr = 0;
1191        int n;
1192        long iblock;
1193        unsigned blocksize;
1194        blocksize = inode->i_sb->s_blocksize;
1195        iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1196
1197#ifdef CONFIG_FS_DAX
1198        WARN_ON(!rwsem_is_locked(&inode->i_mapping->invalidate_lock));
1199#endif
1200
1201        n = ext2_block_to_path(inode, iblock, offsets, NULL);
1202        if (n == 0)
1203                return;
1204
1205        /*
1206         * From here we block out all ext2_get_block() callers who want to
1207         * modify the block allocation tree.
1208         */
1209        mutex_lock(&ei->truncate_mutex);
1210
1211        if (n == 1) {
1212                ext2_free_data(inode, i_data+offsets[0],
1213                                        i_data + EXT2_NDIR_BLOCKS);
1214                goto do_indirects;
1215        }
1216
1217        partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1218        /* Kill the top of shared branch (already detached) */
1219        if (nr) {
1220                if (partial == chain)
1221                        mark_inode_dirty(inode);
1222                else
1223                        mark_buffer_dirty_inode(partial->bh, inode);
1224                ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1225        }
1226        /* Clear the ends of indirect blocks on the shared branch */
1227        while (partial > chain) {
1228                ext2_free_branches(inode,
1229                                   partial->p + 1,
1230                                   (__le32*)partial->bh->b_data+addr_per_block,
1231                                   (chain+n-1) - partial);
1232                mark_buffer_dirty_inode(partial->bh, inode);
1233                brelse (partial->bh);
1234                partial--;
1235        }
1236do_indirects:
1237        /* Kill the remaining (whole) subtrees */
1238        switch (offsets[0]) {
1239                default:
1240                        nr = i_data[EXT2_IND_BLOCK];
1241                        if (nr) {
1242                                i_data[EXT2_IND_BLOCK] = 0;
1243                                mark_inode_dirty(inode);
1244                                ext2_free_branches(inode, &nr, &nr+1, 1);
1245                        }
1246                        fallthrough;
1247                case EXT2_IND_BLOCK:
1248                        nr = i_data[EXT2_DIND_BLOCK];
1249                        if (nr) {
1250                                i_data[EXT2_DIND_BLOCK] = 0;
1251                                mark_inode_dirty(inode);
1252                                ext2_free_branches(inode, &nr, &nr+1, 2);
1253                        }
1254                        fallthrough;
1255                case EXT2_DIND_BLOCK:
1256                        nr = i_data[EXT2_TIND_BLOCK];
1257                        if (nr) {
1258                                i_data[EXT2_TIND_BLOCK] = 0;
1259                                mark_inode_dirty(inode);
1260                                ext2_free_branches(inode, &nr, &nr+1, 3);
1261                        }
1262                        break;
1263                case EXT2_TIND_BLOCK:
1264                        ;
1265        }
1266
1267        ext2_discard_reservation(inode);
1268
1269        mutex_unlock(&ei->truncate_mutex);
1270}
1271
1272static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1273{
1274        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1275            S_ISLNK(inode->i_mode)))
1276                return;
1277        if (ext2_inode_is_fast_symlink(inode))
1278                return;
1279
1280        filemap_invalidate_lock(inode->i_mapping);
1281        __ext2_truncate_blocks(inode, offset);
1282        filemap_invalidate_unlock(inode->i_mapping);
1283}
1284
1285static int ext2_setsize(struct inode *inode, loff_t newsize)
1286{
1287        int error;
1288
1289        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1290            S_ISLNK(inode->i_mode)))
1291                return -EINVAL;
1292        if (ext2_inode_is_fast_symlink(inode))
1293                return -EINVAL;
1294        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1295                return -EPERM;
1296
1297        inode_dio_wait(inode);
1298
1299        if (IS_DAX(inode)) {
1300                error = iomap_zero_range(inode, newsize,
1301                                         PAGE_ALIGN(newsize) - newsize, NULL,
1302                                         &ext2_iomap_ops);
1303        } else if (test_opt(inode->i_sb, NOBH))
1304                error = nobh_truncate_page(inode->i_mapping,
1305                                newsize, ext2_get_block);
1306        else
1307                error = block_truncate_page(inode->i_mapping,
1308                                newsize, ext2_get_block);
1309        if (error)
1310                return error;
1311
1312        filemap_invalidate_lock(inode->i_mapping);
1313        truncate_setsize(inode, newsize);
1314        __ext2_truncate_blocks(inode, newsize);
1315        filemap_invalidate_unlock(inode->i_mapping);
1316
1317        inode->i_mtime = inode->i_ctime = current_time(inode);
1318        if (inode_needs_sync(inode)) {
1319                sync_mapping_buffers(inode->i_mapping);
1320                sync_inode_metadata(inode, 1);
1321        } else {
1322                mark_inode_dirty(inode);
1323        }
1324
1325        return 0;
1326}
1327
1328static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1329                                        struct buffer_head **p)
1330{
1331        struct buffer_head * bh;
1332        unsigned long block_group;
1333        unsigned long block;
1334        unsigned long offset;
1335        struct ext2_group_desc * gdp;
1336
1337        *p = NULL;
1338        if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1339            ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1340                goto Einval;
1341
1342        block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1343        gdp = ext2_get_group_desc(sb, block_group, NULL);
1344        if (!gdp)
1345                goto Egdp;
1346        /*
1347         * Figure out the offset within the block group inode table
1348         */
1349        offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1350        block = le32_to_cpu(gdp->bg_inode_table) +
1351                (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1352        if (!(bh = sb_bread(sb, block)))
1353                goto Eio;
1354
1355        *p = bh;
1356        offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1357        return (struct ext2_inode *) (bh->b_data + offset);
1358
1359Einval:
1360        ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1361                   (unsigned long) ino);
1362        return ERR_PTR(-EINVAL);
1363Eio:
1364        ext2_error(sb, "ext2_get_inode",
1365                   "unable to read inode block - inode=%lu, block=%lu",
1366                   (unsigned long) ino, block);
1367Egdp:
1368        return ERR_PTR(-EIO);
1369}
1370
1371void ext2_set_inode_flags(struct inode *inode)
1372{
1373        unsigned int flags = EXT2_I(inode)->i_flags;
1374
1375        inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1376                                S_DIRSYNC | S_DAX);
1377        if (flags & EXT2_SYNC_FL)
1378                inode->i_flags |= S_SYNC;
1379        if (flags & EXT2_APPEND_FL)
1380                inode->i_flags |= S_APPEND;
1381        if (flags & EXT2_IMMUTABLE_FL)
1382                inode->i_flags |= S_IMMUTABLE;
1383        if (flags & EXT2_NOATIME_FL)
1384                inode->i_flags |= S_NOATIME;
1385        if (flags & EXT2_DIRSYNC_FL)
1386                inode->i_flags |= S_DIRSYNC;
1387        if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1388                inode->i_flags |= S_DAX;
1389}
1390
1391void ext2_set_file_ops(struct inode *inode)
1392{
1393        inode->i_op = &ext2_file_inode_operations;
1394        inode->i_fop = &ext2_file_operations;
1395        if (IS_DAX(inode))
1396                inode->i_mapping->a_ops = &ext2_dax_aops;
1397        else if (test_opt(inode->i_sb, NOBH))
1398                inode->i_mapping->a_ops = &ext2_nobh_aops;
1399        else
1400                inode->i_mapping->a_ops = &ext2_aops;
1401}
1402
1403struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1404{
1405        struct ext2_inode_info *ei;
1406        struct buffer_head * bh = NULL;
1407        struct ext2_inode *raw_inode;
1408        struct inode *inode;
1409        long ret = -EIO;
1410        int n;
1411        uid_t i_uid;
1412        gid_t i_gid;
1413
1414        inode = iget_locked(sb, ino);
1415        if (!inode)
1416                return ERR_PTR(-ENOMEM);
1417        if (!(inode->i_state & I_NEW))
1418                return inode;
1419
1420        ei = EXT2_I(inode);
1421        ei->i_block_alloc_info = NULL;
1422
1423        raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1424        if (IS_ERR(raw_inode)) {
1425                ret = PTR_ERR(raw_inode);
1426                goto bad_inode;
1427        }
1428
1429        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1430        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1431        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1432        if (!(test_opt (inode->i_sb, NO_UID32))) {
1433                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1434                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1435        }
1436        i_uid_write(inode, i_uid);
1437        i_gid_write(inode, i_gid);
1438        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1439        inode->i_size = le32_to_cpu(raw_inode->i_size);
1440        inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1441        inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1442        inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1443        inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1444        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1445        /* We now have enough fields to check if the inode was active or not.
1446         * This is needed because nfsd might try to access dead inodes
1447         * the test is that same one that e2fsck uses
1448         * NeilBrown 1999oct15
1449         */
1450        if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1451                /* this inode is deleted */
1452                ret = -ESTALE;
1453                goto bad_inode;
1454        }
1455        inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1456        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1457        ext2_set_inode_flags(inode);
1458        ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1459        ei->i_frag_no = raw_inode->i_frag;
1460        ei->i_frag_size = raw_inode->i_fsize;
1461        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1462        ei->i_dir_acl = 0;
1463
1464        if (ei->i_file_acl &&
1465            !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1466                ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1467                           ei->i_file_acl);
1468                ret = -EFSCORRUPTED;
1469                goto bad_inode;
1470        }
1471
1472        if (S_ISREG(inode->i_mode))
1473                inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1474        else
1475                ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1476        if (i_size_read(inode) < 0) {
1477                ret = -EFSCORRUPTED;
1478                goto bad_inode;
1479        }
1480        ei->i_dtime = 0;
1481        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1482        ei->i_state = 0;
1483        ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1484        ei->i_dir_start_lookup = 0;
1485
1486        /*
1487         * NOTE! The in-memory inode i_data array is in little-endian order
1488         * even on big-endian machines: we do NOT byteswap the block numbers!
1489         */
1490        for (n = 0; n < EXT2_N_BLOCKS; n++)
1491                ei->i_data[n] = raw_inode->i_block[n];
1492
1493        if (S_ISREG(inode->i_mode)) {
1494                ext2_set_file_ops(inode);
1495        } else if (S_ISDIR(inode->i_mode)) {
1496                inode->i_op = &ext2_dir_inode_operations;
1497                inode->i_fop = &ext2_dir_operations;
1498                if (test_opt(inode->i_sb, NOBH))
1499                        inode->i_mapping->a_ops = &ext2_nobh_aops;
1500                else
1501                        inode->i_mapping->a_ops = &ext2_aops;
1502        } else if (S_ISLNK(inode->i_mode)) {
1503                if (ext2_inode_is_fast_symlink(inode)) {
1504                        inode->i_link = (char *)ei->i_data;
1505                        inode->i_op = &ext2_fast_symlink_inode_operations;
1506                        nd_terminate_link(ei->i_data, inode->i_size,
1507                                sizeof(ei->i_data) - 1);
1508                } else {
1509                        inode->i_op = &ext2_symlink_inode_operations;
1510                        inode_nohighmem(inode);
1511                        if (test_opt(inode->i_sb, NOBH))
1512                                inode->i_mapping->a_ops = &ext2_nobh_aops;
1513                        else
1514                                inode->i_mapping->a_ops = &ext2_aops;
1515                }
1516        } else {
1517                inode->i_op = &ext2_special_inode_operations;
1518                if (raw_inode->i_block[0])
1519                        init_special_inode(inode, inode->i_mode,
1520                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1521                else 
1522                        init_special_inode(inode, inode->i_mode,
1523                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1524        }
1525        brelse (bh);
1526        unlock_new_inode(inode);
1527        return inode;
1528        
1529bad_inode:
1530        brelse(bh);
1531        iget_failed(inode);
1532        return ERR_PTR(ret);
1533}
1534
1535static int __ext2_write_inode(struct inode *inode, int do_sync)
1536{
1537        struct ext2_inode_info *ei = EXT2_I(inode);
1538        struct super_block *sb = inode->i_sb;
1539        ino_t ino = inode->i_ino;
1540        uid_t uid = i_uid_read(inode);
1541        gid_t gid = i_gid_read(inode);
1542        struct buffer_head * bh;
1543        struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1544        int n;
1545        int err = 0;
1546
1547        if (IS_ERR(raw_inode))
1548                return -EIO;
1549
1550        /* For fields not not tracking in the in-memory inode,
1551         * initialise them to zero for new inodes. */
1552        if (ei->i_state & EXT2_STATE_NEW)
1553                memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1554
1555        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1556        if (!(test_opt(sb, NO_UID32))) {
1557                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1558                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1559/*
1560 * Fix up interoperability with old kernels. Otherwise, old inodes get
1561 * re-used with the upper 16 bits of the uid/gid intact
1562 */
1563                if (!ei->i_dtime) {
1564                        raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1565                        raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1566                } else {
1567                        raw_inode->i_uid_high = 0;
1568                        raw_inode->i_gid_high = 0;
1569                }
1570        } else {
1571                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1572                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1573                raw_inode->i_uid_high = 0;
1574                raw_inode->i_gid_high = 0;
1575        }
1576        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1577        raw_inode->i_size = cpu_to_le32(inode->i_size);
1578        raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1579        raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1580        raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1581
1582        raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1583        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1584        raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1585        raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1586        raw_inode->i_frag = ei->i_frag_no;
1587        raw_inode->i_fsize = ei->i_frag_size;
1588        raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1589        if (!S_ISREG(inode->i_mode))
1590                raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1591        else {
1592                raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1593                if (inode->i_size > 0x7fffffffULL) {
1594                        if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1595                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1596                            EXT2_SB(sb)->s_es->s_rev_level ==
1597                                        cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1598                               /* If this is the first large file
1599                                * created, add a flag to the superblock.
1600                                */
1601                                spin_lock(&EXT2_SB(sb)->s_lock);
1602                                ext2_update_dynamic_rev(sb);
1603                                EXT2_SET_RO_COMPAT_FEATURE(sb,
1604                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1605                                spin_unlock(&EXT2_SB(sb)->s_lock);
1606                                ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1607                        }
1608                }
1609        }
1610        
1611        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1612        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1613                if (old_valid_dev(inode->i_rdev)) {
1614                        raw_inode->i_block[0] =
1615                                cpu_to_le32(old_encode_dev(inode->i_rdev));
1616                        raw_inode->i_block[1] = 0;
1617                } else {
1618                        raw_inode->i_block[0] = 0;
1619                        raw_inode->i_block[1] =
1620                                cpu_to_le32(new_encode_dev(inode->i_rdev));
1621                        raw_inode->i_block[2] = 0;
1622                }
1623        } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1624                raw_inode->i_block[n] = ei->i_data[n];
1625        mark_buffer_dirty(bh);
1626        if (do_sync) {
1627                sync_dirty_buffer(bh);
1628                if (buffer_req(bh) && !buffer_uptodate(bh)) {
1629                        printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1630                                sb->s_id, (unsigned long) ino);
1631                        err = -EIO;
1632                }
1633        }
1634        ei->i_state &= ~EXT2_STATE_NEW;
1635        brelse (bh);
1636        return err;
1637}
1638
1639int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1640{
1641        return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1642}
1643
1644int ext2_getattr(struct user_namespace *mnt_userns, const struct path *path,
1645                 struct kstat *stat, u32 request_mask, unsigned int query_flags)
1646{
1647        struct inode *inode = d_inode(path->dentry);
1648        struct ext2_inode_info *ei = EXT2_I(inode);
1649        unsigned int flags;
1650
1651        flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
1652        if (flags & EXT2_APPEND_FL)
1653                stat->attributes |= STATX_ATTR_APPEND;
1654        if (flags & EXT2_COMPR_FL)
1655                stat->attributes |= STATX_ATTR_COMPRESSED;
1656        if (flags & EXT2_IMMUTABLE_FL)
1657                stat->attributes |= STATX_ATTR_IMMUTABLE;
1658        if (flags & EXT2_NODUMP_FL)
1659                stat->attributes |= STATX_ATTR_NODUMP;
1660        stat->attributes_mask |= (STATX_ATTR_APPEND |
1661                        STATX_ATTR_COMPRESSED |
1662                        STATX_ATTR_ENCRYPTED |
1663                        STATX_ATTR_IMMUTABLE |
1664                        STATX_ATTR_NODUMP);
1665
1666        generic_fillattr(&init_user_ns, inode, stat);
1667        return 0;
1668}
1669
1670int ext2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1671                 struct iattr *iattr)
1672{
1673        struct inode *inode = d_inode(dentry);
1674        int error;
1675
1676        error = setattr_prepare(&init_user_ns, dentry, iattr);
1677        if (error)
1678                return error;
1679
1680        if (is_quota_modification(inode, iattr)) {
1681                error = dquot_initialize(inode);
1682                if (error)
1683                        return error;
1684        }
1685        if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1686            (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1687                error = dquot_transfer(inode, iattr);
1688                if (error)
1689                        return error;
1690        }
1691        if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1692                error = ext2_setsize(inode, iattr->ia_size);
1693                if (error)
1694                        return error;
1695        }
1696        setattr_copy(&init_user_ns, inode, iattr);
1697        if (iattr->ia_valid & ATTR_MODE)
1698                error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1699        mark_inode_dirty(inode);
1700
1701        return error;
1702}
1703