linux/fs/ext4/indirect.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/indirect.c
   4 *
   5 *  from
   6 *
   7 *  linux/fs/ext4/inode.c
   8 *
   9 * Copyright (C) 1992, 1993, 1994, 1995
  10 * Remy Card (card@masi.ibp.fr)
  11 * Laboratoire MASI - Institut Blaise Pascal
  12 * Universite Pierre et Marie Curie (Paris VI)
  13 *
  14 *  from
  15 *
  16 *  linux/fs/minix/inode.c
  17 *
  18 *  Copyright (C) 1991, 1992  Linus Torvalds
  19 *
  20 *  Goal-directed block allocation by Stephen Tweedie
  21 *      (sct@redhat.com), 1993, 1998
  22 */
  23
  24#include "ext4_jbd2.h"
  25#include "truncate.h"
  26#include <linux/dax.h>
  27#include <linux/uio.h>
  28
  29#include <trace/events/ext4.h>
  30
  31typedef struct {
  32        __le32  *p;
  33        __le32  key;
  34        struct buffer_head *bh;
  35} Indirect;
  36
  37static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  38{
  39        p->key = *(p->p = v);
  40        p->bh = bh;
  41}
  42
  43/**
  44 *      ext4_block_to_path - parse the block number into array of offsets
  45 *      @inode: inode in question (we are only interested in its superblock)
  46 *      @i_block: block number to be parsed
  47 *      @offsets: array to store the offsets in
  48 *      @boundary: set this non-zero if the referred-to block is likely to be
  49 *             followed (on disk) by an indirect block.
  50 *
  51 *      To store the locations of file's data ext4 uses a data structure common
  52 *      for UNIX filesystems - tree of pointers anchored in the inode, with
  53 *      data blocks at leaves and indirect blocks in intermediate nodes.
  54 *      This function translates the block number into path in that tree -
  55 *      return value is the path length and @offsets[n] is the offset of
  56 *      pointer to (n+1)th node in the nth one. If @block is out of range
  57 *      (negative or too large) warning is printed and zero returned.
  58 *
  59 *      Note: function doesn't find node addresses, so no IO is needed. All
  60 *      we need to know is the capacity of indirect blocks (taken from the
  61 *      inode->i_sb).
  62 */
  63
  64/*
  65 * Portability note: the last comparison (check that we fit into triple
  66 * indirect block) is spelled differently, because otherwise on an
  67 * architecture with 32-bit longs and 8Kb pages we might get into trouble
  68 * if our filesystem had 8Kb blocks. We might use long long, but that would
  69 * kill us on x86. Oh, well, at least the sign propagation does not matter -
  70 * i_block would have to be negative in the very beginning, so we would not
  71 * get there at all.
  72 */
  73
  74static int ext4_block_to_path(struct inode *inode,
  75                              ext4_lblk_t i_block,
  76                              ext4_lblk_t offsets[4], int *boundary)
  77{
  78        int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  79        int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  80        const long direct_blocks = EXT4_NDIR_BLOCKS,
  81                indirect_blocks = ptrs,
  82                double_blocks = (1 << (ptrs_bits * 2));
  83        int n = 0;
  84        int final = 0;
  85
  86        if (i_block < direct_blocks) {
  87                offsets[n++] = i_block;
  88                final = direct_blocks;
  89        } else if ((i_block -= direct_blocks) < indirect_blocks) {
  90                offsets[n++] = EXT4_IND_BLOCK;
  91                offsets[n++] = i_block;
  92                final = ptrs;
  93        } else if ((i_block -= indirect_blocks) < double_blocks) {
  94                offsets[n++] = EXT4_DIND_BLOCK;
  95                offsets[n++] = i_block >> ptrs_bits;
  96                offsets[n++] = i_block & (ptrs - 1);
  97                final = ptrs;
  98        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  99                offsets[n++] = EXT4_TIND_BLOCK;
 100                offsets[n++] = i_block >> (ptrs_bits * 2);
 101                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 102                offsets[n++] = i_block & (ptrs - 1);
 103                final = ptrs;
 104        } else {
 105                ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
 106                             i_block + direct_blocks +
 107                             indirect_blocks + double_blocks, inode->i_ino);
 108        }
 109        if (boundary)
 110                *boundary = final - 1 - (i_block & (ptrs - 1));
 111        return n;
 112}
 113
 114/**
 115 *      ext4_get_branch - read the chain of indirect blocks leading to data
 116 *      @inode: inode in question
 117 *      @depth: depth of the chain (1 - direct pointer, etc.)
 118 *      @offsets: offsets of pointers in inode/indirect blocks
 119 *      @chain: place to store the result
 120 *      @err: here we store the error value
 121 *
 122 *      Function fills the array of triples <key, p, bh> and returns %NULL
 123 *      if everything went OK or the pointer to the last filled triple
 124 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 125 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 126 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 127 *      number (it points into struct inode for i==0 and into the bh->b_data
 128 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 129 *      block for i>0 and NULL for i==0. In other words, it holds the block
 130 *      numbers of the chain, addresses they were taken from (and where we can
 131 *      verify that chain did not change) and buffer_heads hosting these
 132 *      numbers.
 133 *
 134 *      Function stops when it stumbles upon zero pointer (absent block)
 135 *              (pointer to last triple returned, *@err == 0)
 136 *      or when it gets an IO error reading an indirect block
 137 *              (ditto, *@err == -EIO)
 138 *      or when it reads all @depth-1 indirect blocks successfully and finds
 139 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 140 *
 141 *      Need to be called with
 142 *      down_read(&EXT4_I(inode)->i_data_sem)
 143 */
 144static Indirect *ext4_get_branch(struct inode *inode, int depth,
 145                                 ext4_lblk_t  *offsets,
 146                                 Indirect chain[4], int *err)
 147{
 148        struct super_block *sb = inode->i_sb;
 149        Indirect *p = chain;
 150        struct buffer_head *bh;
 151        int ret = -EIO;
 152
 153        *err = 0;
 154        /* i_data is not going away, no lock needed */
 155        add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
 156        if (!p->key)
 157                goto no_block;
 158        while (--depth) {
 159                bh = sb_getblk(sb, le32_to_cpu(p->key));
 160                if (unlikely(!bh)) {
 161                        ret = -ENOMEM;
 162                        goto failure;
 163                }
 164
 165                if (!bh_uptodate_or_lock(bh)) {
 166                        if (ext4_read_bh(bh, 0, NULL) < 0) {
 167                                put_bh(bh);
 168                                goto failure;
 169                        }
 170                        /* validate block references */
 171                        if (ext4_check_indirect_blockref(inode, bh)) {
 172                                put_bh(bh);
 173                                goto failure;
 174                        }
 175                }
 176
 177                add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
 178                /* Reader: end */
 179                if (!p->key)
 180                        goto no_block;
 181        }
 182        return NULL;
 183
 184failure:
 185        *err = ret;
 186no_block:
 187        return p;
 188}
 189
 190/**
 191 *      ext4_find_near - find a place for allocation with sufficient locality
 192 *      @inode: owner
 193 *      @ind: descriptor of indirect block.
 194 *
 195 *      This function returns the preferred place for block allocation.
 196 *      It is used when heuristic for sequential allocation fails.
 197 *      Rules are:
 198 *        + if there is a block to the left of our position - allocate near it.
 199 *        + if pointer will live in indirect block - allocate near that block.
 200 *        + if pointer will live in inode - allocate in the same
 201 *          cylinder group.
 202 *
 203 * In the latter case we colour the starting block by the callers PID to
 204 * prevent it from clashing with concurrent allocations for a different inode
 205 * in the same block group.   The PID is used here so that functionally related
 206 * files will be close-by on-disk.
 207 *
 208 *      Caller must make sure that @ind is valid and will stay that way.
 209 */
 210static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
 211{
 212        struct ext4_inode_info *ei = EXT4_I(inode);
 213        __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 214        __le32 *p;
 215
 216        /* Try to find previous block */
 217        for (p = ind->p - 1; p >= start; p--) {
 218                if (*p)
 219                        return le32_to_cpu(*p);
 220        }
 221
 222        /* No such thing, so let's try location of indirect block */
 223        if (ind->bh)
 224                return ind->bh->b_blocknr;
 225
 226        /*
 227         * It is going to be referred to from the inode itself? OK, just put it
 228         * into the same cylinder group then.
 229         */
 230        return ext4_inode_to_goal_block(inode);
 231}
 232
 233/**
 234 *      ext4_find_goal - find a preferred place for allocation.
 235 *      @inode: owner
 236 *      @block:  block we want
 237 *      @partial: pointer to the last triple within a chain
 238 *
 239 *      Normally this function find the preferred place for block allocation,
 240 *      returns it.
 241 *      Because this is only used for non-extent files, we limit the block nr
 242 *      to 32 bits.
 243 */
 244static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
 245                                   Indirect *partial)
 246{
 247        ext4_fsblk_t goal;
 248
 249        /*
 250         * XXX need to get goal block from mballoc's data structures
 251         */
 252
 253        goal = ext4_find_near(inode, partial);
 254        goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
 255        return goal;
 256}
 257
 258/**
 259 *      ext4_blks_to_allocate - Look up the block map and count the number
 260 *      of direct blocks need to be allocated for the given branch.
 261 *
 262 *      @branch: chain of indirect blocks
 263 *      @k: number of blocks need for indirect blocks
 264 *      @blks: number of data blocks to be mapped.
 265 *      @blocks_to_boundary:  the offset in the indirect block
 266 *
 267 *      return the total number of blocks to be allocate, including the
 268 *      direct and indirect blocks.
 269 */
 270static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
 271                                 int blocks_to_boundary)
 272{
 273        unsigned int count = 0;
 274
 275        /*
 276         * Simple case, [t,d]Indirect block(s) has not allocated yet
 277         * then it's clear blocks on that path have not allocated
 278         */
 279        if (k > 0) {
 280                /* right now we don't handle cross boundary allocation */
 281                if (blks < blocks_to_boundary + 1)
 282                        count += blks;
 283                else
 284                        count += blocks_to_boundary + 1;
 285                return count;
 286        }
 287
 288        count++;
 289        while (count < blks && count <= blocks_to_boundary &&
 290                le32_to_cpu(*(branch[0].p + count)) == 0) {
 291                count++;
 292        }
 293        return count;
 294}
 295
 296/**
 297 * ext4_alloc_branch() - allocate and set up a chain of blocks
 298 * @handle: handle for this transaction
 299 * @ar: structure describing the allocation request
 300 * @indirect_blks: number of allocated indirect blocks
 301 * @offsets: offsets (in the blocks) to store the pointers to next.
 302 * @branch: place to store the chain in.
 303 *
 304 *      This function allocates blocks, zeroes out all but the last one,
 305 *      links them into chain and (if we are synchronous) writes them to disk.
 306 *      In other words, it prepares a branch that can be spliced onto the
 307 *      inode. It stores the information about that chain in the branch[], in
 308 *      the same format as ext4_get_branch() would do. We are calling it after
 309 *      we had read the existing part of chain and partial points to the last
 310 *      triple of that (one with zero ->key). Upon the exit we have the same
 311 *      picture as after the successful ext4_get_block(), except that in one
 312 *      place chain is disconnected - *branch->p is still zero (we did not
 313 *      set the last link), but branch->key contains the number that should
 314 *      be placed into *branch->p to fill that gap.
 315 *
 316 *      If allocation fails we free all blocks we've allocated (and forget
 317 *      their buffer_heads) and return the error value the from failed
 318 *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 319 *      as described above and return 0.
 320 */
 321static int ext4_alloc_branch(handle_t *handle,
 322                             struct ext4_allocation_request *ar,
 323                             int indirect_blks, ext4_lblk_t *offsets,
 324                             Indirect *branch)
 325{
 326        struct buffer_head *            bh;
 327        ext4_fsblk_t                    b, new_blocks[4];
 328        __le32                          *p;
 329        int                             i, j, err, len = 1;
 330
 331        for (i = 0; i <= indirect_blks; i++) {
 332                if (i == indirect_blks) {
 333                        new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
 334                } else {
 335                        ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
 336                                        ar->inode, ar->goal,
 337                                        ar->flags & EXT4_MB_DELALLOC_RESERVED,
 338                                        NULL, &err);
 339                        /* Simplify error cleanup... */
 340                        branch[i+1].bh = NULL;
 341                }
 342                if (err) {
 343                        i--;
 344                        goto failed;
 345                }
 346                branch[i].key = cpu_to_le32(new_blocks[i]);
 347                if (i == 0)
 348                        continue;
 349
 350                bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
 351                if (unlikely(!bh)) {
 352                        err = -ENOMEM;
 353                        goto failed;
 354                }
 355                lock_buffer(bh);
 356                BUFFER_TRACE(bh, "call get_create_access");
 357                err = ext4_journal_get_create_access(handle, ar->inode->i_sb,
 358                                                     bh, EXT4_JTR_NONE);
 359                if (err) {
 360                        unlock_buffer(bh);
 361                        goto failed;
 362                }
 363
 364                memset(bh->b_data, 0, bh->b_size);
 365                p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
 366                b = new_blocks[i];
 367
 368                if (i == indirect_blks)
 369                        len = ar->len;
 370                for (j = 0; j < len; j++)
 371                        *p++ = cpu_to_le32(b++);
 372
 373                BUFFER_TRACE(bh, "marking uptodate");
 374                set_buffer_uptodate(bh);
 375                unlock_buffer(bh);
 376
 377                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 378                err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
 379                if (err)
 380                        goto failed;
 381        }
 382        return 0;
 383failed:
 384        if (i == indirect_blks) {
 385                /* Free data blocks */
 386                ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
 387                                 ar->len, 0);
 388                i--;
 389        }
 390        for (; i >= 0; i--) {
 391                /*
 392                 * We want to ext4_forget() only freshly allocated indirect
 393                 * blocks. Buffer for new_blocks[i] is at branch[i+1].bh
 394                 * (buffer at branch[0].bh is indirect block / inode already
 395                 * existing before ext4_alloc_branch() was called). Also
 396                 * because blocks are freshly allocated, we don't need to
 397                 * revoke them which is why we don't set
 398                 * EXT4_FREE_BLOCKS_METADATA.
 399                 */
 400                ext4_free_blocks(handle, ar->inode, branch[i+1].bh,
 401                                 new_blocks[i], 1,
 402                                 branch[i+1].bh ? EXT4_FREE_BLOCKS_FORGET : 0);
 403        }
 404        return err;
 405}
 406
 407/**
 408 * ext4_splice_branch() - splice the allocated branch onto inode.
 409 * @handle: handle for this transaction
 410 * @ar: structure describing the allocation request
 411 * @where: location of missing link
 412 * @num:   number of indirect blocks we are adding
 413 *
 414 * This function fills the missing link and does all housekeeping needed in
 415 * inode (->i_blocks, etc.). In case of success we end up with the full
 416 * chain to new block and return 0.
 417 */
 418static int ext4_splice_branch(handle_t *handle,
 419                              struct ext4_allocation_request *ar,
 420                              Indirect *where, int num)
 421{
 422        int i;
 423        int err = 0;
 424        ext4_fsblk_t current_block;
 425
 426        /*
 427         * If we're splicing into a [td]indirect block (as opposed to the
 428         * inode) then we need to get write access to the [td]indirect block
 429         * before the splice.
 430         */
 431        if (where->bh) {
 432                BUFFER_TRACE(where->bh, "get_write_access");
 433                err = ext4_journal_get_write_access(handle, ar->inode->i_sb,
 434                                                    where->bh, EXT4_JTR_NONE);
 435                if (err)
 436                        goto err_out;
 437        }
 438        /* That's it */
 439
 440        *where->p = where->key;
 441
 442        /*
 443         * Update the host buffer_head or inode to point to more just allocated
 444         * direct blocks blocks
 445         */
 446        if (num == 0 && ar->len > 1) {
 447                current_block = le32_to_cpu(where->key) + 1;
 448                for (i = 1; i < ar->len; i++)
 449                        *(where->p + i) = cpu_to_le32(current_block++);
 450        }
 451
 452        /* We are done with atomic stuff, now do the rest of housekeeping */
 453        /* had we spliced it onto indirect block? */
 454        if (where->bh) {
 455                /*
 456                 * If we spliced it onto an indirect block, we haven't
 457                 * altered the inode.  Note however that if it is being spliced
 458                 * onto an indirect block at the very end of the file (the
 459                 * file is growing) then we *will* alter the inode to reflect
 460                 * the new i_size.  But that is not done here - it is done in
 461                 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
 462                 */
 463                jbd_debug(5, "splicing indirect only\n");
 464                BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
 465                err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
 466                if (err)
 467                        goto err_out;
 468        } else {
 469                /*
 470                 * OK, we spliced it into the inode itself on a direct block.
 471                 */
 472                err = ext4_mark_inode_dirty(handle, ar->inode);
 473                if (unlikely(err))
 474                        goto err_out;
 475                jbd_debug(5, "splicing direct\n");
 476        }
 477        return err;
 478
 479err_out:
 480        for (i = 1; i <= num; i++) {
 481                /*
 482                 * branch[i].bh is newly allocated, so there is no
 483                 * need to revoke the block, which is why we don't
 484                 * need to set EXT4_FREE_BLOCKS_METADATA.
 485                 */
 486                ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
 487                                 EXT4_FREE_BLOCKS_FORGET);
 488        }
 489        ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
 490                         ar->len, 0);
 491
 492        return err;
 493}
 494
 495/*
 496 * The ext4_ind_map_blocks() function handles non-extents inodes
 497 * (i.e., using the traditional indirect/double-indirect i_blocks
 498 * scheme) for ext4_map_blocks().
 499 *
 500 * Allocation strategy is simple: if we have to allocate something, we will
 501 * have to go the whole way to leaf. So let's do it before attaching anything
 502 * to tree, set linkage between the newborn blocks, write them if sync is
 503 * required, recheck the path, free and repeat if check fails, otherwise
 504 * set the last missing link (that will protect us from any truncate-generated
 505 * removals - all blocks on the path are immune now) and possibly force the
 506 * write on the parent block.
 507 * That has a nice additional property: no special recovery from the failed
 508 * allocations is needed - we simply release blocks and do not touch anything
 509 * reachable from inode.
 510 *
 511 * `handle' can be NULL if create == 0.
 512 *
 513 * return > 0, # of blocks mapped or allocated.
 514 * return = 0, if plain lookup failed.
 515 * return < 0, error case.
 516 *
 517 * The ext4_ind_get_blocks() function should be called with
 518 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 519 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 520 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 521 * blocks.
 522 */
 523int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
 524                        struct ext4_map_blocks *map,
 525                        int flags)
 526{
 527        struct ext4_allocation_request ar;
 528        int err = -EIO;
 529        ext4_lblk_t offsets[4];
 530        Indirect chain[4];
 531        Indirect *partial;
 532        int indirect_blks;
 533        int blocks_to_boundary = 0;
 534        int depth;
 535        int count = 0;
 536        ext4_fsblk_t first_block = 0;
 537
 538        trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
 539        ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
 540        ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
 541        depth = ext4_block_to_path(inode, map->m_lblk, offsets,
 542                                   &blocks_to_boundary);
 543
 544        if (depth == 0)
 545                goto out;
 546
 547        partial = ext4_get_branch(inode, depth, offsets, chain, &err);
 548
 549        /* Simplest case - block found, no allocation needed */
 550        if (!partial) {
 551                first_block = le32_to_cpu(chain[depth - 1].key);
 552                count++;
 553                /*map more blocks*/
 554                while (count < map->m_len && count <= blocks_to_boundary) {
 555                        ext4_fsblk_t blk;
 556
 557                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 558
 559                        if (blk == first_block + count)
 560                                count++;
 561                        else
 562                                break;
 563                }
 564                goto got_it;
 565        }
 566
 567        /* Next simple case - plain lookup failed */
 568        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
 569                unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
 570                int i;
 571
 572                /*
 573                 * Count number blocks in a subtree under 'partial'. At each
 574                 * level we count number of complete empty subtrees beyond
 575                 * current offset and then descend into the subtree only
 576                 * partially beyond current offset.
 577                 */
 578                count = 0;
 579                for (i = partial - chain + 1; i < depth; i++)
 580                        count = count * epb + (epb - offsets[i] - 1);
 581                count++;
 582                /* Fill in size of a hole we found */
 583                map->m_pblk = 0;
 584                map->m_len = min_t(unsigned int, map->m_len, count);
 585                goto cleanup;
 586        }
 587
 588        /* Failed read of indirect block */
 589        if (err == -EIO)
 590                goto cleanup;
 591
 592        /*
 593         * Okay, we need to do block allocation.
 594        */
 595        if (ext4_has_feature_bigalloc(inode->i_sb)) {
 596                EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
 597                                 "non-extent mapped inodes with bigalloc");
 598                err = -EFSCORRUPTED;
 599                goto out;
 600        }
 601
 602        /* Set up for the direct block allocation */
 603        memset(&ar, 0, sizeof(ar));
 604        ar.inode = inode;
 605        ar.logical = map->m_lblk;
 606        if (S_ISREG(inode->i_mode))
 607                ar.flags = EXT4_MB_HINT_DATA;
 608        if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 609                ar.flags |= EXT4_MB_DELALLOC_RESERVED;
 610        if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
 611                ar.flags |= EXT4_MB_USE_RESERVED;
 612
 613        ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
 614
 615        /* the number of blocks need to allocate for [d,t]indirect blocks */
 616        indirect_blks = (chain + depth) - partial - 1;
 617
 618        /*
 619         * Next look up the indirect map to count the totoal number of
 620         * direct blocks to allocate for this branch.
 621         */
 622        ar.len = ext4_blks_to_allocate(partial, indirect_blks,
 623                                       map->m_len, blocks_to_boundary);
 624
 625        /*
 626         * Block out ext4_truncate while we alter the tree
 627         */
 628        err = ext4_alloc_branch(handle, &ar, indirect_blks,
 629                                offsets + (partial - chain), partial);
 630
 631        /*
 632         * The ext4_splice_branch call will free and forget any buffers
 633         * on the new chain if there is a failure, but that risks using
 634         * up transaction credits, especially for bitmaps where the
 635         * credits cannot be returned.  Can we handle this somehow?  We
 636         * may need to return -EAGAIN upwards in the worst case.  --sct
 637         */
 638        if (!err)
 639                err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
 640        if (err)
 641                goto cleanup;
 642
 643        map->m_flags |= EXT4_MAP_NEW;
 644
 645        ext4_update_inode_fsync_trans(handle, inode, 1);
 646        count = ar.len;
 647got_it:
 648        map->m_flags |= EXT4_MAP_MAPPED;
 649        map->m_pblk = le32_to_cpu(chain[depth-1].key);
 650        map->m_len = count;
 651        if (count > blocks_to_boundary)
 652                map->m_flags |= EXT4_MAP_BOUNDARY;
 653        err = count;
 654        /* Clean up and exit */
 655        partial = chain + depth - 1;    /* the whole chain */
 656cleanup:
 657        while (partial > chain) {
 658                BUFFER_TRACE(partial->bh, "call brelse");
 659                brelse(partial->bh);
 660                partial--;
 661        }
 662out:
 663        trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
 664        return err;
 665}
 666
 667/*
 668 * Calculate number of indirect blocks touched by mapping @nrblocks logically
 669 * contiguous blocks
 670 */
 671int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
 672{
 673        /*
 674         * With N contiguous data blocks, we need at most
 675         * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
 676         * 2 dindirect blocks, and 1 tindirect block
 677         */
 678        return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
 679}
 680
 681static int ext4_ind_trunc_restart_fn(handle_t *handle, struct inode *inode,
 682                                     struct buffer_head *bh, int *dropped)
 683{
 684        int err;
 685
 686        if (bh) {
 687                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 688                err = ext4_handle_dirty_metadata(handle, inode, bh);
 689                if (unlikely(err))
 690                        return err;
 691        }
 692        err = ext4_mark_inode_dirty(handle, inode);
 693        if (unlikely(err))
 694                return err;
 695        /*
 696         * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 697         * moment, get_block can be called only for blocks inside i_size since
 698         * page cache has been already dropped and writes are blocked by
 699         * i_mutex. So we can safely drop the i_data_sem here.
 700         */
 701        BUG_ON(EXT4_JOURNAL(inode) == NULL);
 702        ext4_discard_preallocations(inode, 0);
 703        up_write(&EXT4_I(inode)->i_data_sem);
 704        *dropped = 1;
 705        return 0;
 706}
 707
 708/*
 709 * Truncate transactions can be complex and absolutely huge.  So we need to
 710 * be able to restart the transaction at a convenient checkpoint to make
 711 * sure we don't overflow the journal.
 712 *
 713 * Try to extend this transaction for the purposes of truncation.  If
 714 * extend fails, we restart transaction.
 715 */
 716static int ext4_ind_truncate_ensure_credits(handle_t *handle,
 717                                            struct inode *inode,
 718                                            struct buffer_head *bh,
 719                                            int revoke_creds)
 720{
 721        int ret;
 722        int dropped = 0;
 723
 724        ret = ext4_journal_ensure_credits_fn(handle, EXT4_RESERVE_TRANS_BLOCKS,
 725                        ext4_blocks_for_truncate(inode), revoke_creds,
 726                        ext4_ind_trunc_restart_fn(handle, inode, bh, &dropped));
 727        if (dropped)
 728                down_write(&EXT4_I(inode)->i_data_sem);
 729        if (ret <= 0)
 730                return ret;
 731        if (bh) {
 732                BUFFER_TRACE(bh, "retaking write access");
 733                ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
 734                                                    EXT4_JTR_NONE);
 735                if (unlikely(ret))
 736                        return ret;
 737        }
 738        return 0;
 739}
 740
 741/*
 742 * Probably it should be a library function... search for first non-zero word
 743 * or memcmp with zero_page, whatever is better for particular architecture.
 744 * Linus?
 745 */
 746static inline int all_zeroes(__le32 *p, __le32 *q)
 747{
 748        while (p < q)
 749                if (*p++)
 750                        return 0;
 751        return 1;
 752}
 753
 754/**
 755 *      ext4_find_shared - find the indirect blocks for partial truncation.
 756 *      @inode:   inode in question
 757 *      @depth:   depth of the affected branch
 758 *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
 759 *      @chain:   place to store the pointers to partial indirect blocks
 760 *      @top:     place to the (detached) top of branch
 761 *
 762 *      This is a helper function used by ext4_truncate().
 763 *
 764 *      When we do truncate() we may have to clean the ends of several
 765 *      indirect blocks but leave the blocks themselves alive. Block is
 766 *      partially truncated if some data below the new i_size is referred
 767 *      from it (and it is on the path to the first completely truncated
 768 *      data block, indeed).  We have to free the top of that path along
 769 *      with everything to the right of the path. Since no allocation
 770 *      past the truncation point is possible until ext4_truncate()
 771 *      finishes, we may safely do the latter, but top of branch may
 772 *      require special attention - pageout below the truncation point
 773 *      might try to populate it.
 774 *
 775 *      We atomically detach the top of branch from the tree, store the
 776 *      block number of its root in *@top, pointers to buffer_heads of
 777 *      partially truncated blocks - in @chain[].bh and pointers to
 778 *      their last elements that should not be removed - in
 779 *      @chain[].p. Return value is the pointer to last filled element
 780 *      of @chain.
 781 *
 782 *      The work left to caller to do the actual freeing of subtrees:
 783 *              a) free the subtree starting from *@top
 784 *              b) free the subtrees whose roots are stored in
 785 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
 786 *              c) free the subtrees growing from the inode past the @chain[0].
 787 *                      (no partially truncated stuff there).  */
 788
 789static Indirect *ext4_find_shared(struct inode *inode, int depth,
 790                                  ext4_lblk_t offsets[4], Indirect chain[4],
 791                                  __le32 *top)
 792{
 793        Indirect *partial, *p;
 794        int k, err;
 795
 796        *top = 0;
 797        /* Make k index the deepest non-null offset + 1 */
 798        for (k = depth; k > 1 && !offsets[k-1]; k--)
 799                ;
 800        partial = ext4_get_branch(inode, k, offsets, chain, &err);
 801        /* Writer: pointers */
 802        if (!partial)
 803                partial = chain + k-1;
 804        /*
 805         * If the branch acquired continuation since we've looked at it -
 806         * fine, it should all survive and (new) top doesn't belong to us.
 807         */
 808        if (!partial->key && *partial->p)
 809                /* Writer: end */
 810                goto no_top;
 811        for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
 812                ;
 813        /*
 814         * OK, we've found the last block that must survive. The rest of our
 815         * branch should be detached before unlocking. However, if that rest
 816         * of branch is all ours and does not grow immediately from the inode
 817         * it's easier to cheat and just decrement partial->p.
 818         */
 819        if (p == chain + k - 1 && p > chain) {
 820                p->p--;
 821        } else {
 822                *top = *p->p;
 823                /* Nope, don't do this in ext4.  Must leave the tree intact */
 824#if 0
 825                *p->p = 0;
 826#endif
 827        }
 828        /* Writer: end */
 829
 830        while (partial > p) {
 831                brelse(partial->bh);
 832                partial--;
 833        }
 834no_top:
 835        return partial;
 836}
 837
 838/*
 839 * Zero a number of block pointers in either an inode or an indirect block.
 840 * If we restart the transaction we must again get write access to the
 841 * indirect block for further modification.
 842 *
 843 * We release `count' blocks on disk, but (last - first) may be greater
 844 * than `count' because there can be holes in there.
 845 *
 846 * Return 0 on success, 1 on invalid block range
 847 * and < 0 on fatal error.
 848 */
 849static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
 850                             struct buffer_head *bh,
 851                             ext4_fsblk_t block_to_free,
 852                             unsigned long count, __le32 *first,
 853                             __le32 *last)
 854{
 855        __le32 *p;
 856        int     flags = EXT4_FREE_BLOCKS_VALIDATED;
 857        int     err;
 858
 859        if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
 860            ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
 861                flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
 862        else if (ext4_should_journal_data(inode))
 863                flags |= EXT4_FREE_BLOCKS_FORGET;
 864
 865        if (!ext4_inode_block_valid(inode, block_to_free, count)) {
 866                EXT4_ERROR_INODE(inode, "attempt to clear invalid "
 867                                 "blocks %llu len %lu",
 868                                 (unsigned long long) block_to_free, count);
 869                return 1;
 870        }
 871
 872        err = ext4_ind_truncate_ensure_credits(handle, inode, bh,
 873                                ext4_free_data_revoke_credits(inode, count));
 874        if (err < 0)
 875                goto out_err;
 876
 877        for (p = first; p < last; p++)
 878                *p = 0;
 879
 880        ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
 881        return 0;
 882out_err:
 883        ext4_std_error(inode->i_sb, err);
 884        return err;
 885}
 886
 887/**
 888 * ext4_free_data - free a list of data blocks
 889 * @handle:     handle for this transaction
 890 * @inode:      inode we are dealing with
 891 * @this_bh:    indirect buffer_head which contains *@first and *@last
 892 * @first:      array of block numbers
 893 * @last:       points immediately past the end of array
 894 *
 895 * We are freeing all blocks referred from that array (numbers are stored as
 896 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 897 *
 898 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 899 * blocks are contiguous then releasing them at one time will only affect one
 900 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 901 * actually use a lot of journal space.
 902 *
 903 * @this_bh will be %NULL if @first and @last point into the inode's direct
 904 * block pointers.
 905 */
 906static void ext4_free_data(handle_t *handle, struct inode *inode,
 907                           struct buffer_head *this_bh,
 908                           __le32 *first, __le32 *last)
 909{
 910        ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
 911        unsigned long count = 0;            /* Number of blocks in the run */
 912        __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
 913                                               corresponding to
 914                                               block_to_free */
 915        ext4_fsblk_t nr;                    /* Current block # */
 916        __le32 *p;                          /* Pointer into inode/ind
 917                                               for current block */
 918        int err = 0;
 919
 920        if (this_bh) {                          /* For indirect block */
 921                BUFFER_TRACE(this_bh, "get_write_access");
 922                err = ext4_journal_get_write_access(handle, inode->i_sb,
 923                                                    this_bh, EXT4_JTR_NONE);
 924                /* Important: if we can't update the indirect pointers
 925                 * to the blocks, we can't free them. */
 926                if (err)
 927                        return;
 928        }
 929
 930        for (p = first; p < last; p++) {
 931                nr = le32_to_cpu(*p);
 932                if (nr) {
 933                        /* accumulate blocks to free if they're contiguous */
 934                        if (count == 0) {
 935                                block_to_free = nr;
 936                                block_to_free_p = p;
 937                                count = 1;
 938                        } else if (nr == block_to_free + count) {
 939                                count++;
 940                        } else {
 941                                err = ext4_clear_blocks(handle, inode, this_bh,
 942                                                        block_to_free, count,
 943                                                        block_to_free_p, p);
 944                                if (err)
 945                                        break;
 946                                block_to_free = nr;
 947                                block_to_free_p = p;
 948                                count = 1;
 949                        }
 950                }
 951        }
 952
 953        if (!err && count > 0)
 954                err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
 955                                        count, block_to_free_p, p);
 956        if (err < 0)
 957                /* fatal error */
 958                return;
 959
 960        if (this_bh) {
 961                BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
 962
 963                /*
 964                 * The buffer head should have an attached journal head at this
 965                 * point. However, if the data is corrupted and an indirect
 966                 * block pointed to itself, it would have been detached when
 967                 * the block was cleared. Check for this instead of OOPSing.
 968                 */
 969                if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
 970                        ext4_handle_dirty_metadata(handle, inode, this_bh);
 971                else
 972                        EXT4_ERROR_INODE(inode,
 973                                         "circular indirect block detected at "
 974                                         "block %llu",
 975                                (unsigned long long) this_bh->b_blocknr);
 976        }
 977}
 978
 979/**
 980 *      ext4_free_branches - free an array of branches
 981 *      @handle: JBD handle for this transaction
 982 *      @inode: inode we are dealing with
 983 *      @parent_bh: the buffer_head which contains *@first and *@last
 984 *      @first: array of block numbers
 985 *      @last:  pointer immediately past the end of array
 986 *      @depth: depth of the branches to free
 987 *
 988 *      We are freeing all blocks referred from these branches (numbers are
 989 *      stored as little-endian 32-bit) and updating @inode->i_blocks
 990 *      appropriately.
 991 */
 992static void ext4_free_branches(handle_t *handle, struct inode *inode,
 993                               struct buffer_head *parent_bh,
 994                               __le32 *first, __le32 *last, int depth)
 995{
 996        ext4_fsblk_t nr;
 997        __le32 *p;
 998
 999        if (ext4_handle_is_aborted(handle))
1000                return;
1001
1002        if (depth--) {
1003                struct buffer_head *bh;
1004                int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1005                p = last;
1006                while (--p >= first) {
1007                        nr = le32_to_cpu(*p);
1008                        if (!nr)
1009                                continue;               /* A hole */
1010
1011                        if (!ext4_inode_block_valid(inode, nr, 1)) {
1012                                EXT4_ERROR_INODE(inode,
1013                                                 "invalid indirect mapped "
1014                                                 "block %lu (level %d)",
1015                                                 (unsigned long) nr, depth);
1016                                break;
1017                        }
1018
1019                        /* Go read the buffer for the next level down */
1020                        bh = ext4_sb_bread(inode->i_sb, nr, 0);
1021
1022                        /*
1023                         * A read failure? Report error and clear slot
1024                         * (should be rare).
1025                         */
1026                        if (IS_ERR(bh)) {
1027                                ext4_error_inode_block(inode, nr, -PTR_ERR(bh),
1028                                                       "Read failure");
1029                                continue;
1030                        }
1031
1032                        /* This zaps the entire block.  Bottom up. */
1033                        BUFFER_TRACE(bh, "free child branches");
1034                        ext4_free_branches(handle, inode, bh,
1035                                        (__le32 *) bh->b_data,
1036                                        (__le32 *) bh->b_data + addr_per_block,
1037                                        depth);
1038                        brelse(bh);
1039
1040                        /*
1041                         * Everything below this pointer has been
1042                         * released.  Now let this top-of-subtree go.
1043                         *
1044                         * We want the freeing of this indirect block to be
1045                         * atomic in the journal with the updating of the
1046                         * bitmap block which owns it.  So make some room in
1047                         * the journal.
1048                         *
1049                         * We zero the parent pointer *after* freeing its
1050                         * pointee in the bitmaps, so if extend_transaction()
1051                         * for some reason fails to put the bitmap changes and
1052                         * the release into the same transaction, recovery
1053                         * will merely complain about releasing a free block,
1054                         * rather than leaking blocks.
1055                         */
1056                        if (ext4_handle_is_aborted(handle))
1057                                return;
1058                        if (ext4_ind_truncate_ensure_credits(handle, inode,
1059                                        NULL,
1060                                        ext4_free_metadata_revoke_credits(
1061                                                        inode->i_sb, 1)) < 0)
1062                                return;
1063
1064                        /*
1065                         * The forget flag here is critical because if
1066                         * we are journaling (and not doing data
1067                         * journaling), we have to make sure a revoke
1068                         * record is written to prevent the journal
1069                         * replay from overwriting the (former)
1070                         * indirect block if it gets reallocated as a
1071                         * data block.  This must happen in the same
1072                         * transaction where the data blocks are
1073                         * actually freed.
1074                         */
1075                        ext4_free_blocks(handle, inode, NULL, nr, 1,
1076                                         EXT4_FREE_BLOCKS_METADATA|
1077                                         EXT4_FREE_BLOCKS_FORGET);
1078
1079                        if (parent_bh) {
1080                                /*
1081                                 * The block which we have just freed is
1082                                 * pointed to by an indirect block: journal it
1083                                 */
1084                                BUFFER_TRACE(parent_bh, "get_write_access");
1085                                if (!ext4_journal_get_write_access(handle,
1086                                                inode->i_sb, parent_bh,
1087                                                EXT4_JTR_NONE)) {
1088                                        *p = 0;
1089                                        BUFFER_TRACE(parent_bh,
1090                                        "call ext4_handle_dirty_metadata");
1091                                        ext4_handle_dirty_metadata(handle,
1092                                                                   inode,
1093                                                                   parent_bh);
1094                                }
1095                        }
1096                }
1097        } else {
1098                /* We have reached the bottom of the tree. */
1099                BUFFER_TRACE(parent_bh, "free data blocks");
1100                ext4_free_data(handle, inode, parent_bh, first, last);
1101        }
1102}
1103
1104void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1105{
1106        struct ext4_inode_info *ei = EXT4_I(inode);
1107        __le32 *i_data = ei->i_data;
1108        int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1109        ext4_lblk_t offsets[4];
1110        Indirect chain[4];
1111        Indirect *partial;
1112        __le32 nr = 0;
1113        int n = 0;
1114        ext4_lblk_t last_block, max_block;
1115        unsigned blocksize = inode->i_sb->s_blocksize;
1116
1117        last_block = (inode->i_size + blocksize-1)
1118                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1119        max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1120                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1121
1122        if (last_block != max_block) {
1123                n = ext4_block_to_path(inode, last_block, offsets, NULL);
1124                if (n == 0)
1125                        return;
1126        }
1127
1128        ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1129
1130        /*
1131         * The orphan list entry will now protect us from any crash which
1132         * occurs before the truncate completes, so it is now safe to propagate
1133         * the new, shorter inode size (held for now in i_size) into the
1134         * on-disk inode. We do this via i_disksize, which is the value which
1135         * ext4 *really* writes onto the disk inode.
1136         */
1137        ei->i_disksize = inode->i_size;
1138
1139        if (last_block == max_block) {
1140                /*
1141                 * It is unnecessary to free any data blocks if last_block is
1142                 * equal to the indirect block limit.
1143                 */
1144                return;
1145        } else if (n == 1) {            /* direct blocks */
1146                ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1147                               i_data + EXT4_NDIR_BLOCKS);
1148                goto do_indirects;
1149        }
1150
1151        partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1152        /* Kill the top of shared branch (not detached) */
1153        if (nr) {
1154                if (partial == chain) {
1155                        /* Shared branch grows from the inode */
1156                        ext4_free_branches(handle, inode, NULL,
1157                                           &nr, &nr+1, (chain+n-1) - partial);
1158                        *partial->p = 0;
1159                        /*
1160                         * We mark the inode dirty prior to restart,
1161                         * and prior to stop.  No need for it here.
1162                         */
1163                } else {
1164                        /* Shared branch grows from an indirect block */
1165                        BUFFER_TRACE(partial->bh, "get_write_access");
1166                        ext4_free_branches(handle, inode, partial->bh,
1167                                        partial->p,
1168                                        partial->p+1, (chain+n-1) - partial);
1169                }
1170        }
1171        /* Clear the ends of indirect blocks on the shared branch */
1172        while (partial > chain) {
1173                ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1174                                   (__le32*)partial->bh->b_data+addr_per_block,
1175                                   (chain+n-1) - partial);
1176                BUFFER_TRACE(partial->bh, "call brelse");
1177                brelse(partial->bh);
1178                partial--;
1179        }
1180do_indirects:
1181        /* Kill the remaining (whole) subtrees */
1182        switch (offsets[0]) {
1183        default:
1184                nr = i_data[EXT4_IND_BLOCK];
1185                if (nr) {
1186                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1187                        i_data[EXT4_IND_BLOCK] = 0;
1188                }
1189                fallthrough;
1190        case EXT4_IND_BLOCK:
1191                nr = i_data[EXT4_DIND_BLOCK];
1192                if (nr) {
1193                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1194                        i_data[EXT4_DIND_BLOCK] = 0;
1195                }
1196                fallthrough;
1197        case EXT4_DIND_BLOCK:
1198                nr = i_data[EXT4_TIND_BLOCK];
1199                if (nr) {
1200                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1201                        i_data[EXT4_TIND_BLOCK] = 0;
1202                }
1203                fallthrough;
1204        case EXT4_TIND_BLOCK:
1205                ;
1206        }
1207}
1208
1209/**
1210 *      ext4_ind_remove_space - remove space from the range
1211 *      @handle: JBD handle for this transaction
1212 *      @inode: inode we are dealing with
1213 *      @start: First block to remove
1214 *      @end:   One block after the last block to remove (exclusive)
1215 *
1216 *      Free the blocks in the defined range (end is exclusive endpoint of
1217 *      range). This is used by ext4_punch_hole().
1218 */
1219int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1220                          ext4_lblk_t start, ext4_lblk_t end)
1221{
1222        struct ext4_inode_info *ei = EXT4_I(inode);
1223        __le32 *i_data = ei->i_data;
1224        int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1225        ext4_lblk_t offsets[4], offsets2[4];
1226        Indirect chain[4], chain2[4];
1227        Indirect *partial, *partial2;
1228        Indirect *p = NULL, *p2 = NULL;
1229        ext4_lblk_t max_block;
1230        __le32 nr = 0, nr2 = 0;
1231        int n = 0, n2 = 0;
1232        unsigned blocksize = inode->i_sb->s_blocksize;
1233
1234        max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1235                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1236        if (end >= max_block)
1237                end = max_block;
1238        if ((start >= end) || (start > max_block))
1239                return 0;
1240
1241        n = ext4_block_to_path(inode, start, offsets, NULL);
1242        n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1243
1244        BUG_ON(n > n2);
1245
1246        if ((n == 1) && (n == n2)) {
1247                /* We're punching only within direct block range */
1248                ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1249                               i_data + offsets2[0]);
1250                return 0;
1251        } else if (n2 > n) {
1252                /*
1253                 * Start and end are on a different levels so we're going to
1254                 * free partial block at start, and partial block at end of
1255                 * the range. If there are some levels in between then
1256                 * do_indirects label will take care of that.
1257                 */
1258
1259                if (n == 1) {
1260                        /*
1261                         * Start is at the direct block level, free
1262                         * everything to the end of the level.
1263                         */
1264                        ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1265                                       i_data + EXT4_NDIR_BLOCKS);
1266                        goto end_range;
1267                }
1268
1269
1270                partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1271                if (nr) {
1272                        if (partial == chain) {
1273                                /* Shared branch grows from the inode */
1274                                ext4_free_branches(handle, inode, NULL,
1275                                           &nr, &nr+1, (chain+n-1) - partial);
1276                                *partial->p = 0;
1277                        } else {
1278                                /* Shared branch grows from an indirect block */
1279                                BUFFER_TRACE(partial->bh, "get_write_access");
1280                                ext4_free_branches(handle, inode, partial->bh,
1281                                        partial->p,
1282                                        partial->p+1, (chain+n-1) - partial);
1283                        }
1284                }
1285
1286                /*
1287                 * Clear the ends of indirect blocks on the shared branch
1288                 * at the start of the range
1289                 */
1290                while (partial > chain) {
1291                        ext4_free_branches(handle, inode, partial->bh,
1292                                partial->p + 1,
1293                                (__le32 *)partial->bh->b_data+addr_per_block,
1294                                (chain+n-1) - partial);
1295                        partial--;
1296                }
1297
1298end_range:
1299                partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1300                if (nr2) {
1301                        if (partial2 == chain2) {
1302                                /*
1303                                 * Remember, end is exclusive so here we're at
1304                                 * the start of the next level we're not going
1305                                 * to free. Everything was covered by the start
1306                                 * of the range.
1307                                 */
1308                                goto do_indirects;
1309                        }
1310                } else {
1311                        /*
1312                         * ext4_find_shared returns Indirect structure which
1313                         * points to the last element which should not be
1314                         * removed by truncate. But this is end of the range
1315                         * in punch_hole so we need to point to the next element
1316                         */
1317                        partial2->p++;
1318                }
1319
1320                /*
1321                 * Clear the ends of indirect blocks on the shared branch
1322                 * at the end of the range
1323                 */
1324                while (partial2 > chain2) {
1325                        ext4_free_branches(handle, inode, partial2->bh,
1326                                           (__le32 *)partial2->bh->b_data,
1327                                           partial2->p,
1328                                           (chain2+n2-1) - partial2);
1329                        partial2--;
1330                }
1331                goto do_indirects;
1332        }
1333
1334        /* Punch happened within the same level (n == n2) */
1335        partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1336        partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1337
1338        /* Free top, but only if partial2 isn't its subtree. */
1339        if (nr) {
1340                int level = min(partial - chain, partial2 - chain2);
1341                int i;
1342                int subtree = 1;
1343
1344                for (i = 0; i <= level; i++) {
1345                        if (offsets[i] != offsets2[i]) {
1346                                subtree = 0;
1347                                break;
1348                        }
1349                }
1350
1351                if (!subtree) {
1352                        if (partial == chain) {
1353                                /* Shared branch grows from the inode */
1354                                ext4_free_branches(handle, inode, NULL,
1355                                                   &nr, &nr+1,
1356                                                   (chain+n-1) - partial);
1357                                *partial->p = 0;
1358                        } else {
1359                                /* Shared branch grows from an indirect block */
1360                                BUFFER_TRACE(partial->bh, "get_write_access");
1361                                ext4_free_branches(handle, inode, partial->bh,
1362                                                   partial->p,
1363                                                   partial->p+1,
1364                                                   (chain+n-1) - partial);
1365                        }
1366                }
1367        }
1368
1369        if (!nr2) {
1370                /*
1371                 * ext4_find_shared returns Indirect structure which
1372                 * points to the last element which should not be
1373                 * removed by truncate. But this is end of the range
1374                 * in punch_hole so we need to point to the next element
1375                 */
1376                partial2->p++;
1377        }
1378
1379        while (partial > chain || partial2 > chain2) {
1380                int depth = (chain+n-1) - partial;
1381                int depth2 = (chain2+n2-1) - partial2;
1382
1383                if (partial > chain && partial2 > chain2 &&
1384                    partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1385                        /*
1386                         * We've converged on the same block. Clear the range,
1387                         * then we're done.
1388                         */
1389                        ext4_free_branches(handle, inode, partial->bh,
1390                                           partial->p + 1,
1391                                           partial2->p,
1392                                           (chain+n-1) - partial);
1393                        goto cleanup;
1394                }
1395
1396                /*
1397                 * The start and end partial branches may not be at the same
1398                 * level even though the punch happened within one level. So, we
1399                 * give them a chance to arrive at the same level, then walk
1400                 * them in step with each other until we converge on the same
1401                 * block.
1402                 */
1403                if (partial > chain && depth <= depth2) {
1404                        ext4_free_branches(handle, inode, partial->bh,
1405                                           partial->p + 1,
1406                                           (__le32 *)partial->bh->b_data+addr_per_block,
1407                                           (chain+n-1) - partial);
1408                        partial--;
1409                }
1410                if (partial2 > chain2 && depth2 <= depth) {
1411                        ext4_free_branches(handle, inode, partial2->bh,
1412                                           (__le32 *)partial2->bh->b_data,
1413                                           partial2->p,
1414                                           (chain2+n2-1) - partial2);
1415                        partial2--;
1416                }
1417        }
1418
1419cleanup:
1420        while (p && p > chain) {
1421                BUFFER_TRACE(p->bh, "call brelse");
1422                brelse(p->bh);
1423                p--;
1424        }
1425        while (p2 && p2 > chain2) {
1426                BUFFER_TRACE(p2->bh, "call brelse");
1427                brelse(p2->bh);
1428                p2--;
1429        }
1430        return 0;
1431
1432do_indirects:
1433        /* Kill the remaining (whole) subtrees */
1434        switch (offsets[0]) {
1435        default:
1436                if (++n >= n2)
1437                        break;
1438                nr = i_data[EXT4_IND_BLOCK];
1439                if (nr) {
1440                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1441                        i_data[EXT4_IND_BLOCK] = 0;
1442                }
1443                fallthrough;
1444        case EXT4_IND_BLOCK:
1445                if (++n >= n2)
1446                        break;
1447                nr = i_data[EXT4_DIND_BLOCK];
1448                if (nr) {
1449                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1450                        i_data[EXT4_DIND_BLOCK] = 0;
1451                }
1452                fallthrough;
1453        case EXT4_DIND_BLOCK:
1454                if (++n >= n2)
1455                        break;
1456                nr = i_data[EXT4_TIND_BLOCK];
1457                if (nr) {
1458                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1459                        i_data[EXT4_TIND_BLOCK] = 0;
1460                }
1461                fallthrough;
1462        case EXT4_TIND_BLOCK:
1463                ;
1464        }
1465        goto cleanup;
1466}
1467