linux/fs/ext4/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *      (jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/mount.h>
  24#include <linux/time.h>
  25#include <linux/highuid.h>
  26#include <linux/pagemap.h>
  27#include <linux/dax.h>
  28#include <linux/quotaops.h>
  29#include <linux/string.h>
  30#include <linux/buffer_head.h>
  31#include <linux/writeback.h>
  32#include <linux/pagevec.h>
  33#include <linux/mpage.h>
  34#include <linux/namei.h>
  35#include <linux/uio.h>
  36#include <linux/bio.h>
  37#include <linux/workqueue.h>
  38#include <linux/kernel.h>
  39#include <linux/printk.h>
  40#include <linux/slab.h>
  41#include <linux/bitops.h>
  42#include <linux/iomap.h>
  43#include <linux/iversion.h>
  44
  45#include "ext4_jbd2.h"
  46#include "xattr.h"
  47#include "acl.h"
  48#include "truncate.h"
  49
  50#include <trace/events/ext4.h>
  51
  52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  53                              struct ext4_inode_info *ei)
  54{
  55        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  56        __u32 csum;
  57        __u16 dummy_csum = 0;
  58        int offset = offsetof(struct ext4_inode, i_checksum_lo);
  59        unsigned int csum_size = sizeof(dummy_csum);
  60
  61        csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  62        csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  63        offset += csum_size;
  64        csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  65                           EXT4_GOOD_OLD_INODE_SIZE - offset);
  66
  67        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  68                offset = offsetof(struct ext4_inode, i_checksum_hi);
  69                csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  70                                   EXT4_GOOD_OLD_INODE_SIZE,
  71                                   offset - EXT4_GOOD_OLD_INODE_SIZE);
  72                if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  73                        csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  74                                           csum_size);
  75                        offset += csum_size;
  76                }
  77                csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  78                                   EXT4_INODE_SIZE(inode->i_sb) - offset);
  79        }
  80
  81        return csum;
  82}
  83
  84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  85                                  struct ext4_inode_info *ei)
  86{
  87        __u32 provided, calculated;
  88
  89        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  90            cpu_to_le32(EXT4_OS_LINUX) ||
  91            !ext4_has_metadata_csum(inode->i_sb))
  92                return 1;
  93
  94        provided = le16_to_cpu(raw->i_checksum_lo);
  95        calculated = ext4_inode_csum(inode, raw, ei);
  96        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  97            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  98                provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  99        else
 100                calculated &= 0xFFFF;
 101
 102        return provided == calculated;
 103}
 104
 105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 106                         struct ext4_inode_info *ei)
 107{
 108        __u32 csum;
 109
 110        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 111            cpu_to_le32(EXT4_OS_LINUX) ||
 112            !ext4_has_metadata_csum(inode->i_sb))
 113                return;
 114
 115        csum = ext4_inode_csum(inode, raw, ei);
 116        raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 117        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 118            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 119                raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 120}
 121
 122static inline int ext4_begin_ordered_truncate(struct inode *inode,
 123                                              loff_t new_size)
 124{
 125        trace_ext4_begin_ordered_truncate(inode, new_size);
 126        /*
 127         * If jinode is zero, then we never opened the file for
 128         * writing, so there's no need to call
 129         * jbd2_journal_begin_ordered_truncate() since there's no
 130         * outstanding writes we need to flush.
 131         */
 132        if (!EXT4_I(inode)->jinode)
 133                return 0;
 134        return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 135                                                   EXT4_I(inode)->jinode,
 136                                                   new_size);
 137}
 138
 139static void ext4_invalidatepage(struct page *page, unsigned int offset,
 140                                unsigned int length);
 141static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 143                                  int pextents);
 144
 145/*
 146 * Test whether an inode is a fast symlink.
 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 148 */
 149int ext4_inode_is_fast_symlink(struct inode *inode)
 150{
 151        if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 152                int ea_blocks = EXT4_I(inode)->i_file_acl ?
 153                                EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 154
 155                if (ext4_has_inline_data(inode))
 156                        return 0;
 157
 158                return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 159        }
 160        return S_ISLNK(inode->i_mode) && inode->i_size &&
 161               (inode->i_size < EXT4_N_BLOCKS * 4);
 162}
 163
 164/*
 165 * Called at the last iput() if i_nlink is zero.
 166 */
 167void ext4_evict_inode(struct inode *inode)
 168{
 169        handle_t *handle;
 170        int err;
 171        /*
 172         * Credits for final inode cleanup and freeing:
 173         * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
 174         * (xattr block freeing), bitmap, group descriptor (inode freeing)
 175         */
 176        int extra_credits = 6;
 177        struct ext4_xattr_inode_array *ea_inode_array = NULL;
 178        bool freeze_protected = false;
 179
 180        trace_ext4_evict_inode(inode);
 181
 182        if (inode->i_nlink) {
 183                /*
 184                 * When journalling data dirty buffers are tracked only in the
 185                 * journal. So although mm thinks everything is clean and
 186                 * ready for reaping the inode might still have some pages to
 187                 * write in the running transaction or waiting to be
 188                 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 189                 * (via truncate_inode_pages()) to discard these buffers can
 190                 * cause data loss. Also even if we did not discard these
 191                 * buffers, we would have no way to find them after the inode
 192                 * is reaped and thus user could see stale data if he tries to
 193                 * read them before the transaction is checkpointed. So be
 194                 * careful and force everything to disk here... We use
 195                 * ei->i_datasync_tid to store the newest transaction
 196                 * containing inode's data.
 197                 *
 198                 * Note that directories do not have this problem because they
 199                 * don't use page cache.
 200                 */
 201                if (inode->i_ino != EXT4_JOURNAL_INO &&
 202                    ext4_should_journal_data(inode) &&
 203                    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 204                    inode->i_data.nrpages) {
 205                        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 206                        tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 207
 208                        jbd2_complete_transaction(journal, commit_tid);
 209                        filemap_write_and_wait(&inode->i_data);
 210                }
 211                truncate_inode_pages_final(&inode->i_data);
 212
 213                goto no_delete;
 214        }
 215
 216        if (is_bad_inode(inode))
 217                goto no_delete;
 218        dquot_initialize(inode);
 219
 220        if (ext4_should_order_data(inode))
 221                ext4_begin_ordered_truncate(inode, 0);
 222        truncate_inode_pages_final(&inode->i_data);
 223
 224        /*
 225         * For inodes with journalled data, transaction commit could have
 226         * dirtied the inode. Flush worker is ignoring it because of I_FREEING
 227         * flag but we still need to remove the inode from the writeback lists.
 228         */
 229        if (!list_empty_careful(&inode->i_io_list)) {
 230                WARN_ON_ONCE(!ext4_should_journal_data(inode));
 231                inode_io_list_del(inode);
 232        }
 233
 234        /*
 235         * Protect us against freezing - iput() caller didn't have to have any
 236         * protection against it. When we are in a running transaction though,
 237         * we are already protected against freezing and we cannot grab further
 238         * protection due to lock ordering constraints.
 239         */
 240        if (!ext4_journal_current_handle()) {
 241                sb_start_intwrite(inode->i_sb);
 242                freeze_protected = true;
 243        }
 244
 245        if (!IS_NOQUOTA(inode))
 246                extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 247
 248        /*
 249         * Block bitmap, group descriptor, and inode are accounted in both
 250         * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
 251         */
 252        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 253                         ext4_blocks_for_truncate(inode) + extra_credits - 3);
 254        if (IS_ERR(handle)) {
 255                ext4_std_error(inode->i_sb, PTR_ERR(handle));
 256                /*
 257                 * If we're going to skip the normal cleanup, we still need to
 258                 * make sure that the in-core orphan linked list is properly
 259                 * cleaned up.
 260                 */
 261                ext4_orphan_del(NULL, inode);
 262                if (freeze_protected)
 263                        sb_end_intwrite(inode->i_sb);
 264                goto no_delete;
 265        }
 266
 267        if (IS_SYNC(inode))
 268                ext4_handle_sync(handle);
 269
 270        /*
 271         * Set inode->i_size to 0 before calling ext4_truncate(). We need
 272         * special handling of symlinks here because i_size is used to
 273         * determine whether ext4_inode_info->i_data contains symlink data or
 274         * block mappings. Setting i_size to 0 will remove its fast symlink
 275         * status. Erase i_data so that it becomes a valid empty block map.
 276         */
 277        if (ext4_inode_is_fast_symlink(inode))
 278                memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 279        inode->i_size = 0;
 280        err = ext4_mark_inode_dirty(handle, inode);
 281        if (err) {
 282                ext4_warning(inode->i_sb,
 283                             "couldn't mark inode dirty (err %d)", err);
 284                goto stop_handle;
 285        }
 286        if (inode->i_blocks) {
 287                err = ext4_truncate(inode);
 288                if (err) {
 289                        ext4_error_err(inode->i_sb, -err,
 290                                       "couldn't truncate inode %lu (err %d)",
 291                                       inode->i_ino, err);
 292                        goto stop_handle;
 293                }
 294        }
 295
 296        /* Remove xattr references. */
 297        err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 298                                      extra_credits);
 299        if (err) {
 300                ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 301stop_handle:
 302                ext4_journal_stop(handle);
 303                ext4_orphan_del(NULL, inode);
 304                if (freeze_protected)
 305                        sb_end_intwrite(inode->i_sb);
 306                ext4_xattr_inode_array_free(ea_inode_array);
 307                goto no_delete;
 308        }
 309
 310        /*
 311         * Kill off the orphan record which ext4_truncate created.
 312         * AKPM: I think this can be inside the above `if'.
 313         * Note that ext4_orphan_del() has to be able to cope with the
 314         * deletion of a non-existent orphan - this is because we don't
 315         * know if ext4_truncate() actually created an orphan record.
 316         * (Well, we could do this if we need to, but heck - it works)
 317         */
 318        ext4_orphan_del(handle, inode);
 319        EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
 320
 321        /*
 322         * One subtle ordering requirement: if anything has gone wrong
 323         * (transaction abort, IO errors, whatever), then we can still
 324         * do these next steps (the fs will already have been marked as
 325         * having errors), but we can't free the inode if the mark_dirty
 326         * fails.
 327         */
 328        if (ext4_mark_inode_dirty(handle, inode))
 329                /* If that failed, just do the required in-core inode clear. */
 330                ext4_clear_inode(inode);
 331        else
 332                ext4_free_inode(handle, inode);
 333        ext4_journal_stop(handle);
 334        if (freeze_protected)
 335                sb_end_intwrite(inode->i_sb);
 336        ext4_xattr_inode_array_free(ea_inode_array);
 337        return;
 338no_delete:
 339        if (!list_empty(&EXT4_I(inode)->i_fc_list))
 340                ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
 341        ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
 342}
 343
 344#ifdef CONFIG_QUOTA
 345qsize_t *ext4_get_reserved_space(struct inode *inode)
 346{
 347        return &EXT4_I(inode)->i_reserved_quota;
 348}
 349#endif
 350
 351/*
 352 * Called with i_data_sem down, which is important since we can call
 353 * ext4_discard_preallocations() from here.
 354 */
 355void ext4_da_update_reserve_space(struct inode *inode,
 356                                        int used, int quota_claim)
 357{
 358        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 359        struct ext4_inode_info *ei = EXT4_I(inode);
 360
 361        spin_lock(&ei->i_block_reservation_lock);
 362        trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 363        if (unlikely(used > ei->i_reserved_data_blocks)) {
 364                ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 365                         "with only %d reserved data blocks",
 366                         __func__, inode->i_ino, used,
 367                         ei->i_reserved_data_blocks);
 368                WARN_ON(1);
 369                used = ei->i_reserved_data_blocks;
 370        }
 371
 372        /* Update per-inode reservations */
 373        ei->i_reserved_data_blocks -= used;
 374        percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 375
 376        spin_unlock(&ei->i_block_reservation_lock);
 377
 378        /* Update quota subsystem for data blocks */
 379        if (quota_claim)
 380                dquot_claim_block(inode, EXT4_C2B(sbi, used));
 381        else {
 382                /*
 383                 * We did fallocate with an offset that is already delayed
 384                 * allocated. So on delayed allocated writeback we should
 385                 * not re-claim the quota for fallocated blocks.
 386                 */
 387                dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 388        }
 389
 390        /*
 391         * If we have done all the pending block allocations and if
 392         * there aren't any writers on the inode, we can discard the
 393         * inode's preallocations.
 394         */
 395        if ((ei->i_reserved_data_blocks == 0) &&
 396            !inode_is_open_for_write(inode))
 397                ext4_discard_preallocations(inode, 0);
 398}
 399
 400static int __check_block_validity(struct inode *inode, const char *func,
 401                                unsigned int line,
 402                                struct ext4_map_blocks *map)
 403{
 404        if (ext4_has_feature_journal(inode->i_sb) &&
 405            (inode->i_ino ==
 406             le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
 407                return 0;
 408        if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
 409                ext4_error_inode(inode, func, line, map->m_pblk,
 410                                 "lblock %lu mapped to illegal pblock %llu "
 411                                 "(length %d)", (unsigned long) map->m_lblk,
 412                                 map->m_pblk, map->m_len);
 413                return -EFSCORRUPTED;
 414        }
 415        return 0;
 416}
 417
 418int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 419                       ext4_lblk_t len)
 420{
 421        int ret;
 422
 423        if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
 424                return fscrypt_zeroout_range(inode, lblk, pblk, len);
 425
 426        ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 427        if (ret > 0)
 428                ret = 0;
 429
 430        return ret;
 431}
 432
 433#define check_block_validity(inode, map)        \
 434        __check_block_validity((inode), __func__, __LINE__, (map))
 435
 436#ifdef ES_AGGRESSIVE_TEST
 437static void ext4_map_blocks_es_recheck(handle_t *handle,
 438                                       struct inode *inode,
 439                                       struct ext4_map_blocks *es_map,
 440                                       struct ext4_map_blocks *map,
 441                                       int flags)
 442{
 443        int retval;
 444
 445        map->m_flags = 0;
 446        /*
 447         * There is a race window that the result is not the same.
 448         * e.g. xfstests #223 when dioread_nolock enables.  The reason
 449         * is that we lookup a block mapping in extent status tree with
 450         * out taking i_data_sem.  So at the time the unwritten extent
 451         * could be converted.
 452         */
 453        down_read(&EXT4_I(inode)->i_data_sem);
 454        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 455                retval = ext4_ext_map_blocks(handle, inode, map, 0);
 456        } else {
 457                retval = ext4_ind_map_blocks(handle, inode, map, 0);
 458        }
 459        up_read((&EXT4_I(inode)->i_data_sem));
 460
 461        /*
 462         * We don't check m_len because extent will be collpased in status
 463         * tree.  So the m_len might not equal.
 464         */
 465        if (es_map->m_lblk != map->m_lblk ||
 466            es_map->m_flags != map->m_flags ||
 467            es_map->m_pblk != map->m_pblk) {
 468                printk("ES cache assertion failed for inode: %lu "
 469                       "es_cached ex [%d/%d/%llu/%x] != "
 470                       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 471                       inode->i_ino, es_map->m_lblk, es_map->m_len,
 472                       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 473                       map->m_len, map->m_pblk, map->m_flags,
 474                       retval, flags);
 475        }
 476}
 477#endif /* ES_AGGRESSIVE_TEST */
 478
 479/*
 480 * The ext4_map_blocks() function tries to look up the requested blocks,
 481 * and returns if the blocks are already mapped.
 482 *
 483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 484 * and store the allocated blocks in the result buffer head and mark it
 485 * mapped.
 486 *
 487 * If file type is extents based, it will call ext4_ext_map_blocks(),
 488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 489 * based files
 490 *
 491 * On success, it returns the number of blocks being mapped or allocated.  if
 492 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 493 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 494 *
 495 * It returns 0 if plain look up failed (blocks have not been allocated), in
 496 * that case, @map is returned as unmapped but we still do fill map->m_len to
 497 * indicate the length of a hole starting at map->m_lblk.
 498 *
 499 * It returns the error in case of allocation failure.
 500 */
 501int ext4_map_blocks(handle_t *handle, struct inode *inode,
 502                    struct ext4_map_blocks *map, int flags)
 503{
 504        struct extent_status es;
 505        int retval;
 506        int ret = 0;
 507#ifdef ES_AGGRESSIVE_TEST
 508        struct ext4_map_blocks orig_map;
 509
 510        memcpy(&orig_map, map, sizeof(*map));
 511#endif
 512
 513        map->m_flags = 0;
 514        ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
 515                  flags, map->m_len, (unsigned long) map->m_lblk);
 516
 517        /*
 518         * ext4_map_blocks returns an int, and m_len is an unsigned int
 519         */
 520        if (unlikely(map->m_len > INT_MAX))
 521                map->m_len = INT_MAX;
 522
 523        /* We can handle the block number less than EXT_MAX_BLOCKS */
 524        if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 525                return -EFSCORRUPTED;
 526
 527        /* Lookup extent status tree firstly */
 528        if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
 529            ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 530                if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 531                        map->m_pblk = ext4_es_pblock(&es) +
 532                                        map->m_lblk - es.es_lblk;
 533                        map->m_flags |= ext4_es_is_written(&es) ?
 534                                        EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 535                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 536                        if (retval > map->m_len)
 537                                retval = map->m_len;
 538                        map->m_len = retval;
 539                } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 540                        map->m_pblk = 0;
 541                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 542                        if (retval > map->m_len)
 543                                retval = map->m_len;
 544                        map->m_len = retval;
 545                        retval = 0;
 546                } else {
 547                        BUG();
 548                }
 549#ifdef ES_AGGRESSIVE_TEST
 550                ext4_map_blocks_es_recheck(handle, inode, map,
 551                                           &orig_map, flags);
 552#endif
 553                goto found;
 554        }
 555
 556        /*
 557         * Try to see if we can get the block without requesting a new
 558         * file system block.
 559         */
 560        down_read(&EXT4_I(inode)->i_data_sem);
 561        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 562                retval = ext4_ext_map_blocks(handle, inode, map, 0);
 563        } else {
 564                retval = ext4_ind_map_blocks(handle, inode, map, 0);
 565        }
 566        if (retval > 0) {
 567                unsigned int status;
 568
 569                if (unlikely(retval != map->m_len)) {
 570                        ext4_warning(inode->i_sb,
 571                                     "ES len assertion failed for inode "
 572                                     "%lu: retval %d != map->m_len %d",
 573                                     inode->i_ino, retval, map->m_len);
 574                        WARN_ON(1);
 575                }
 576
 577                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 578                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 579                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 580                    !(status & EXTENT_STATUS_WRITTEN) &&
 581                    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 582                                       map->m_lblk + map->m_len - 1))
 583                        status |= EXTENT_STATUS_DELAYED;
 584                ret = ext4_es_insert_extent(inode, map->m_lblk,
 585                                            map->m_len, map->m_pblk, status);
 586                if (ret < 0)
 587                        retval = ret;
 588        }
 589        up_read((&EXT4_I(inode)->i_data_sem));
 590
 591found:
 592        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 593                ret = check_block_validity(inode, map);
 594                if (ret != 0)
 595                        return ret;
 596        }
 597
 598        /* If it is only a block(s) look up */
 599        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 600                return retval;
 601
 602        /*
 603         * Returns if the blocks have already allocated
 604         *
 605         * Note that if blocks have been preallocated
 606         * ext4_ext_get_block() returns the create = 0
 607         * with buffer head unmapped.
 608         */
 609        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 610                /*
 611                 * If we need to convert extent to unwritten
 612                 * we continue and do the actual work in
 613                 * ext4_ext_map_blocks()
 614                 */
 615                if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 616                        return retval;
 617
 618        /*
 619         * Here we clear m_flags because after allocating an new extent,
 620         * it will be set again.
 621         */
 622        map->m_flags &= ~EXT4_MAP_FLAGS;
 623
 624        /*
 625         * New blocks allocate and/or writing to unwritten extent
 626         * will possibly result in updating i_data, so we take
 627         * the write lock of i_data_sem, and call get_block()
 628         * with create == 1 flag.
 629         */
 630        down_write(&EXT4_I(inode)->i_data_sem);
 631
 632        /*
 633         * We need to check for EXT4 here because migrate
 634         * could have changed the inode type in between
 635         */
 636        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 637                retval = ext4_ext_map_blocks(handle, inode, map, flags);
 638        } else {
 639                retval = ext4_ind_map_blocks(handle, inode, map, flags);
 640
 641                if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 642                        /*
 643                         * We allocated new blocks which will result in
 644                         * i_data's format changing.  Force the migrate
 645                         * to fail by clearing migrate flags
 646                         */
 647                        ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 648                }
 649
 650                /*
 651                 * Update reserved blocks/metadata blocks after successful
 652                 * block allocation which had been deferred till now. We don't
 653                 * support fallocate for non extent files. So we can update
 654                 * reserve space here.
 655                 */
 656                if ((retval > 0) &&
 657                        (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 658                        ext4_da_update_reserve_space(inode, retval, 1);
 659        }
 660
 661        if (retval > 0) {
 662                unsigned int status;
 663
 664                if (unlikely(retval != map->m_len)) {
 665                        ext4_warning(inode->i_sb,
 666                                     "ES len assertion failed for inode "
 667                                     "%lu: retval %d != map->m_len %d",
 668                                     inode->i_ino, retval, map->m_len);
 669                        WARN_ON(1);
 670                }
 671
 672                /*
 673                 * We have to zeroout blocks before inserting them into extent
 674                 * status tree. Otherwise someone could look them up there and
 675                 * use them before they are really zeroed. We also have to
 676                 * unmap metadata before zeroing as otherwise writeback can
 677                 * overwrite zeros with stale data from block device.
 678                 */
 679                if (flags & EXT4_GET_BLOCKS_ZERO &&
 680                    map->m_flags & EXT4_MAP_MAPPED &&
 681                    map->m_flags & EXT4_MAP_NEW) {
 682                        ret = ext4_issue_zeroout(inode, map->m_lblk,
 683                                                 map->m_pblk, map->m_len);
 684                        if (ret) {
 685                                retval = ret;
 686                                goto out_sem;
 687                        }
 688                }
 689
 690                /*
 691                 * If the extent has been zeroed out, we don't need to update
 692                 * extent status tree.
 693                 */
 694                if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 695                    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 696                        if (ext4_es_is_written(&es))
 697                                goto out_sem;
 698                }
 699                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 700                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 701                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 702                    !(status & EXTENT_STATUS_WRITTEN) &&
 703                    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 704                                       map->m_lblk + map->m_len - 1))
 705                        status |= EXTENT_STATUS_DELAYED;
 706                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 707                                            map->m_pblk, status);
 708                if (ret < 0) {
 709                        retval = ret;
 710                        goto out_sem;
 711                }
 712        }
 713
 714out_sem:
 715        up_write((&EXT4_I(inode)->i_data_sem));
 716        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 717                ret = check_block_validity(inode, map);
 718                if (ret != 0)
 719                        return ret;
 720
 721                /*
 722                 * Inodes with freshly allocated blocks where contents will be
 723                 * visible after transaction commit must be on transaction's
 724                 * ordered data list.
 725                 */
 726                if (map->m_flags & EXT4_MAP_NEW &&
 727                    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 728                    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 729                    !ext4_is_quota_file(inode) &&
 730                    ext4_should_order_data(inode)) {
 731                        loff_t start_byte =
 732                                (loff_t)map->m_lblk << inode->i_blkbits;
 733                        loff_t length = (loff_t)map->m_len << inode->i_blkbits;
 734
 735                        if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 736                                ret = ext4_jbd2_inode_add_wait(handle, inode,
 737                                                start_byte, length);
 738                        else
 739                                ret = ext4_jbd2_inode_add_write(handle, inode,
 740                                                start_byte, length);
 741                        if (ret)
 742                                return ret;
 743                }
 744                ext4_fc_track_range(handle, inode, map->m_lblk,
 745                            map->m_lblk + map->m_len - 1);
 746        }
 747
 748        if (retval < 0)
 749                ext_debug(inode, "failed with err %d\n", retval);
 750        return retval;
 751}
 752
 753/*
 754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 755 * we have to be careful as someone else may be manipulating b_state as well.
 756 */
 757static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 758{
 759        unsigned long old_state;
 760        unsigned long new_state;
 761
 762        flags &= EXT4_MAP_FLAGS;
 763
 764        /* Dummy buffer_head? Set non-atomically. */
 765        if (!bh->b_page) {
 766                bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 767                return;
 768        }
 769        /*
 770         * Someone else may be modifying b_state. Be careful! This is ugly but
 771         * once we get rid of using bh as a container for mapping information
 772         * to pass to / from get_block functions, this can go away.
 773         */
 774        do {
 775                old_state = READ_ONCE(bh->b_state);
 776                new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 777        } while (unlikely(
 778                 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 779}
 780
 781static int _ext4_get_block(struct inode *inode, sector_t iblock,
 782                           struct buffer_head *bh, int flags)
 783{
 784        struct ext4_map_blocks map;
 785        int ret = 0;
 786
 787        if (ext4_has_inline_data(inode))
 788                return -ERANGE;
 789
 790        map.m_lblk = iblock;
 791        map.m_len = bh->b_size >> inode->i_blkbits;
 792
 793        ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 794                              flags);
 795        if (ret > 0) {
 796                map_bh(bh, inode->i_sb, map.m_pblk);
 797                ext4_update_bh_state(bh, map.m_flags);
 798                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 799                ret = 0;
 800        } else if (ret == 0) {
 801                /* hole case, need to fill in bh->b_size */
 802                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 803        }
 804        return ret;
 805}
 806
 807int ext4_get_block(struct inode *inode, sector_t iblock,
 808                   struct buffer_head *bh, int create)
 809{
 810        return _ext4_get_block(inode, iblock, bh,
 811                               create ? EXT4_GET_BLOCKS_CREATE : 0);
 812}
 813
 814/*
 815 * Get block function used when preparing for buffered write if we require
 816 * creating an unwritten extent if blocks haven't been allocated.  The extent
 817 * will be converted to written after the IO is complete.
 818 */
 819int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 820                             struct buffer_head *bh_result, int create)
 821{
 822        ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 823                   inode->i_ino, create);
 824        return _ext4_get_block(inode, iblock, bh_result,
 825                               EXT4_GET_BLOCKS_IO_CREATE_EXT);
 826}
 827
 828/* Maximum number of blocks we map for direct IO at once. */
 829#define DIO_MAX_BLOCKS 4096
 830
 831/*
 832 * `handle' can be NULL if create is zero
 833 */
 834struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 835                                ext4_lblk_t block, int map_flags)
 836{
 837        struct ext4_map_blocks map;
 838        struct buffer_head *bh;
 839        int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 840        int err;
 841
 842        ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 843                    || handle != NULL || create == 0);
 844
 845        map.m_lblk = block;
 846        map.m_len = 1;
 847        err = ext4_map_blocks(handle, inode, &map, map_flags);
 848
 849        if (err == 0)
 850                return create ? ERR_PTR(-ENOSPC) : NULL;
 851        if (err < 0)
 852                return ERR_PTR(err);
 853
 854        bh = sb_getblk(inode->i_sb, map.m_pblk);
 855        if (unlikely(!bh))
 856                return ERR_PTR(-ENOMEM);
 857        if (map.m_flags & EXT4_MAP_NEW) {
 858                ASSERT(create != 0);
 859                ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 860                            || (handle != NULL));
 861
 862                /*
 863                 * Now that we do not always journal data, we should
 864                 * keep in mind whether this should always journal the
 865                 * new buffer as metadata.  For now, regular file
 866                 * writes use ext4_get_block instead, so it's not a
 867                 * problem.
 868                 */
 869                lock_buffer(bh);
 870                BUFFER_TRACE(bh, "call get_create_access");
 871                err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
 872                                                     EXT4_JTR_NONE);
 873                if (unlikely(err)) {
 874                        unlock_buffer(bh);
 875                        goto errout;
 876                }
 877                if (!buffer_uptodate(bh)) {
 878                        memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 879                        set_buffer_uptodate(bh);
 880                }
 881                unlock_buffer(bh);
 882                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 883                err = ext4_handle_dirty_metadata(handle, inode, bh);
 884                if (unlikely(err))
 885                        goto errout;
 886        } else
 887                BUFFER_TRACE(bh, "not a new buffer");
 888        return bh;
 889errout:
 890        brelse(bh);
 891        return ERR_PTR(err);
 892}
 893
 894struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 895                               ext4_lblk_t block, int map_flags)
 896{
 897        struct buffer_head *bh;
 898        int ret;
 899
 900        bh = ext4_getblk(handle, inode, block, map_flags);
 901        if (IS_ERR(bh))
 902                return bh;
 903        if (!bh || ext4_buffer_uptodate(bh))
 904                return bh;
 905
 906        ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
 907        if (ret) {
 908                put_bh(bh);
 909                return ERR_PTR(ret);
 910        }
 911        return bh;
 912}
 913
 914/* Read a contiguous batch of blocks. */
 915int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
 916                     bool wait, struct buffer_head **bhs)
 917{
 918        int i, err;
 919
 920        for (i = 0; i < bh_count; i++) {
 921                bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
 922                if (IS_ERR(bhs[i])) {
 923                        err = PTR_ERR(bhs[i]);
 924                        bh_count = i;
 925                        goto out_brelse;
 926                }
 927        }
 928
 929        for (i = 0; i < bh_count; i++)
 930                /* Note that NULL bhs[i] is valid because of holes. */
 931                if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
 932                        ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
 933
 934        if (!wait)
 935                return 0;
 936
 937        for (i = 0; i < bh_count; i++)
 938                if (bhs[i])
 939                        wait_on_buffer(bhs[i]);
 940
 941        for (i = 0; i < bh_count; i++) {
 942                if (bhs[i] && !buffer_uptodate(bhs[i])) {
 943                        err = -EIO;
 944                        goto out_brelse;
 945                }
 946        }
 947        return 0;
 948
 949out_brelse:
 950        for (i = 0; i < bh_count; i++) {
 951                brelse(bhs[i]);
 952                bhs[i] = NULL;
 953        }
 954        return err;
 955}
 956
 957int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
 958                           struct buffer_head *head,
 959                           unsigned from,
 960                           unsigned to,
 961                           int *partial,
 962                           int (*fn)(handle_t *handle, struct inode *inode,
 963                                     struct buffer_head *bh))
 964{
 965        struct buffer_head *bh;
 966        unsigned block_start, block_end;
 967        unsigned blocksize = head->b_size;
 968        int err, ret = 0;
 969        struct buffer_head *next;
 970
 971        for (bh = head, block_start = 0;
 972             ret == 0 && (bh != head || !block_start);
 973             block_start = block_end, bh = next) {
 974                next = bh->b_this_page;
 975                block_end = block_start + blocksize;
 976                if (block_end <= from || block_start >= to) {
 977                        if (partial && !buffer_uptodate(bh))
 978                                *partial = 1;
 979                        continue;
 980                }
 981                err = (*fn)(handle, inode, bh);
 982                if (!ret)
 983                        ret = err;
 984        }
 985        return ret;
 986}
 987
 988/*
 989 * To preserve ordering, it is essential that the hole instantiation and
 990 * the data write be encapsulated in a single transaction.  We cannot
 991 * close off a transaction and start a new one between the ext4_get_block()
 992 * and the commit_write().  So doing the jbd2_journal_start at the start of
 993 * prepare_write() is the right place.
 994 *
 995 * Also, this function can nest inside ext4_writepage().  In that case, we
 996 * *know* that ext4_writepage() has generated enough buffer credits to do the
 997 * whole page.  So we won't block on the journal in that case, which is good,
 998 * because the caller may be PF_MEMALLOC.
 999 *
1000 * By accident, ext4 can be reentered when a transaction is open via
1001 * quota file writes.  If we were to commit the transaction while thus
1002 * reentered, there can be a deadlock - we would be holding a quota
1003 * lock, and the commit would never complete if another thread had a
1004 * transaction open and was blocking on the quota lock - a ranking
1005 * violation.
1006 *
1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008 * will _not_ run commit under these circumstances because handle->h_ref
1009 * is elevated.  We'll still have enough credits for the tiny quotafile
1010 * write.
1011 */
1012int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013                                struct buffer_head *bh)
1014{
1015        int dirty = buffer_dirty(bh);
1016        int ret;
1017
1018        if (!buffer_mapped(bh) || buffer_freed(bh))
1019                return 0;
1020        /*
1021         * __block_write_begin() could have dirtied some buffers. Clean
1022         * the dirty bit as jbd2_journal_get_write_access() could complain
1023         * otherwise about fs integrity issues. Setting of the dirty bit
1024         * by __block_write_begin() isn't a real problem here as we clear
1025         * the bit before releasing a page lock and thus writeback cannot
1026         * ever write the buffer.
1027         */
1028        if (dirty)
1029                clear_buffer_dirty(bh);
1030        BUFFER_TRACE(bh, "get write access");
1031        ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1032                                            EXT4_JTR_NONE);
1033        if (!ret && dirty)
1034                ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1035        return ret;
1036}
1037
1038#ifdef CONFIG_FS_ENCRYPTION
1039static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1040                                  get_block_t *get_block)
1041{
1042        unsigned from = pos & (PAGE_SIZE - 1);
1043        unsigned to = from + len;
1044        struct inode *inode = page->mapping->host;
1045        unsigned block_start, block_end;
1046        sector_t block;
1047        int err = 0;
1048        unsigned blocksize = inode->i_sb->s_blocksize;
1049        unsigned bbits;
1050        struct buffer_head *bh, *head, *wait[2];
1051        int nr_wait = 0;
1052        int i;
1053
1054        BUG_ON(!PageLocked(page));
1055        BUG_ON(from > PAGE_SIZE);
1056        BUG_ON(to > PAGE_SIZE);
1057        BUG_ON(from > to);
1058
1059        if (!page_has_buffers(page))
1060                create_empty_buffers(page, blocksize, 0);
1061        head = page_buffers(page);
1062        bbits = ilog2(blocksize);
1063        block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1064
1065        for (bh = head, block_start = 0; bh != head || !block_start;
1066            block++, block_start = block_end, bh = bh->b_this_page) {
1067                block_end = block_start + blocksize;
1068                if (block_end <= from || block_start >= to) {
1069                        if (PageUptodate(page)) {
1070                                set_buffer_uptodate(bh);
1071                        }
1072                        continue;
1073                }
1074                if (buffer_new(bh))
1075                        clear_buffer_new(bh);
1076                if (!buffer_mapped(bh)) {
1077                        WARN_ON(bh->b_size != blocksize);
1078                        err = get_block(inode, block, bh, 1);
1079                        if (err)
1080                                break;
1081                        if (buffer_new(bh)) {
1082                                if (PageUptodate(page)) {
1083                                        clear_buffer_new(bh);
1084                                        set_buffer_uptodate(bh);
1085                                        mark_buffer_dirty(bh);
1086                                        continue;
1087                                }
1088                                if (block_end > to || block_start < from)
1089                                        zero_user_segments(page, to, block_end,
1090                                                           block_start, from);
1091                                continue;
1092                        }
1093                }
1094                if (PageUptodate(page)) {
1095                        set_buffer_uptodate(bh);
1096                        continue;
1097                }
1098                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099                    !buffer_unwritten(bh) &&
1100                    (block_start < from || block_end > to)) {
1101                        ext4_read_bh_lock(bh, 0, false);
1102                        wait[nr_wait++] = bh;
1103                }
1104        }
1105        /*
1106         * If we issued read requests, let them complete.
1107         */
1108        for (i = 0; i < nr_wait; i++) {
1109                wait_on_buffer(wait[i]);
1110                if (!buffer_uptodate(wait[i]))
1111                        err = -EIO;
1112        }
1113        if (unlikely(err)) {
1114                page_zero_new_buffers(page, from, to);
1115        } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116                for (i = 0; i < nr_wait; i++) {
1117                        int err2;
1118
1119                        err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120                                                                bh_offset(wait[i]));
1121                        if (err2) {
1122                                clear_buffer_uptodate(wait[i]);
1123                                err = err2;
1124                        }
1125                }
1126        }
1127
1128        return err;
1129}
1130#endif
1131
1132static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133                            loff_t pos, unsigned len, unsigned flags,
1134                            struct page **pagep, void **fsdata)
1135{
1136        struct inode *inode = mapping->host;
1137        int ret, needed_blocks;
1138        handle_t *handle;
1139        int retries = 0;
1140        struct page *page;
1141        pgoff_t index;
1142        unsigned from, to;
1143
1144        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1145                return -EIO;
1146
1147        trace_ext4_write_begin(inode, pos, len, flags);
1148        /*
1149         * Reserve one block more for addition to orphan list in case
1150         * we allocate blocks but write fails for some reason
1151         */
1152        needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153        index = pos >> PAGE_SHIFT;
1154        from = pos & (PAGE_SIZE - 1);
1155        to = from + len;
1156
1157        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158                ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1159                                                    flags, pagep);
1160                if (ret < 0)
1161                        return ret;
1162                if (ret == 1)
1163                        return 0;
1164        }
1165
1166        /*
1167         * grab_cache_page_write_begin() can take a long time if the
1168         * system is thrashing due to memory pressure, or if the page
1169         * is being written back.  So grab it first before we start
1170         * the transaction handle.  This also allows us to allocate
1171         * the page (if needed) without using GFP_NOFS.
1172         */
1173retry_grab:
1174        page = grab_cache_page_write_begin(mapping, index, flags);
1175        if (!page)
1176                return -ENOMEM;
1177        unlock_page(page);
1178
1179retry_journal:
1180        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181        if (IS_ERR(handle)) {
1182                put_page(page);
1183                return PTR_ERR(handle);
1184        }
1185
1186        lock_page(page);
1187        if (page->mapping != mapping) {
1188                /* The page got truncated from under us */
1189                unlock_page(page);
1190                put_page(page);
1191                ext4_journal_stop(handle);
1192                goto retry_grab;
1193        }
1194        /* In case writeback began while the page was unlocked */
1195        wait_for_stable_page(page);
1196
1197#ifdef CONFIG_FS_ENCRYPTION
1198        if (ext4_should_dioread_nolock(inode))
1199                ret = ext4_block_write_begin(page, pos, len,
1200                                             ext4_get_block_unwritten);
1201        else
1202                ret = ext4_block_write_begin(page, pos, len,
1203                                             ext4_get_block);
1204#else
1205        if (ext4_should_dioread_nolock(inode))
1206                ret = __block_write_begin(page, pos, len,
1207                                          ext4_get_block_unwritten);
1208        else
1209                ret = __block_write_begin(page, pos, len, ext4_get_block);
1210#endif
1211        if (!ret && ext4_should_journal_data(inode)) {
1212                ret = ext4_walk_page_buffers(handle, inode,
1213                                             page_buffers(page), from, to, NULL,
1214                                             do_journal_get_write_access);
1215        }
1216
1217        if (ret) {
1218                bool extended = (pos + len > inode->i_size) &&
1219                                !ext4_verity_in_progress(inode);
1220
1221                unlock_page(page);
1222                /*
1223                 * __block_write_begin may have instantiated a few blocks
1224                 * outside i_size.  Trim these off again. Don't need
1225                 * i_size_read because we hold i_mutex.
1226                 *
1227                 * Add inode to orphan list in case we crash before
1228                 * truncate finishes
1229                 */
1230                if (extended && ext4_can_truncate(inode))
1231                        ext4_orphan_add(handle, inode);
1232
1233                ext4_journal_stop(handle);
1234                if (extended) {
1235                        ext4_truncate_failed_write(inode);
1236                        /*
1237                         * If truncate failed early the inode might
1238                         * still be on the orphan list; we need to
1239                         * make sure the inode is removed from the
1240                         * orphan list in that case.
1241                         */
1242                        if (inode->i_nlink)
1243                                ext4_orphan_del(NULL, inode);
1244                }
1245
1246                if (ret == -ENOSPC &&
1247                    ext4_should_retry_alloc(inode->i_sb, &retries))
1248                        goto retry_journal;
1249                put_page(page);
1250                return ret;
1251        }
1252        *pagep = page;
1253        return ret;
1254}
1255
1256/* For write_end() in data=journal mode */
1257static int write_end_fn(handle_t *handle, struct inode *inode,
1258                        struct buffer_head *bh)
1259{
1260        int ret;
1261        if (!buffer_mapped(bh) || buffer_freed(bh))
1262                return 0;
1263        set_buffer_uptodate(bh);
1264        ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265        clear_buffer_meta(bh);
1266        clear_buffer_prio(bh);
1267        return ret;
1268}
1269
1270/*
1271 * We need to pick up the new inode size which generic_commit_write gave us
1272 * `file' can be NULL - eg, when called from page_symlink().
1273 *
1274 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1275 * buffers are managed internally.
1276 */
1277static int ext4_write_end(struct file *file,
1278                          struct address_space *mapping,
1279                          loff_t pos, unsigned len, unsigned copied,
1280                          struct page *page, void *fsdata)
1281{
1282        handle_t *handle = ext4_journal_current_handle();
1283        struct inode *inode = mapping->host;
1284        loff_t old_size = inode->i_size;
1285        int ret = 0, ret2;
1286        int i_size_changed = 0;
1287        bool verity = ext4_verity_in_progress(inode);
1288
1289        trace_ext4_write_end(inode, pos, len, copied);
1290
1291        if (ext4_has_inline_data(inode))
1292                return ext4_write_inline_data_end(inode, pos, len, copied, page);
1293
1294        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1295        /*
1296         * it's important to update i_size while still holding page lock:
1297         * page writeout could otherwise come in and zero beyond i_size.
1298         *
1299         * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1300         * blocks are being written past EOF, so skip the i_size update.
1301         */
1302        if (!verity)
1303                i_size_changed = ext4_update_inode_size(inode, pos + copied);
1304        unlock_page(page);
1305        put_page(page);
1306
1307        if (old_size < pos && !verity)
1308                pagecache_isize_extended(inode, old_size, pos);
1309        /*
1310         * Don't mark the inode dirty under page lock. First, it unnecessarily
1311         * makes the holding time of page lock longer. Second, it forces lock
1312         * ordering of page lock and transaction start for journaling
1313         * filesystems.
1314         */
1315        if (i_size_changed)
1316                ret = ext4_mark_inode_dirty(handle, inode);
1317
1318        if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1319                /* if we have allocated more blocks and copied
1320                 * less. We will have blocks allocated outside
1321                 * inode->i_size. So truncate them
1322                 */
1323                ext4_orphan_add(handle, inode);
1324
1325        ret2 = ext4_journal_stop(handle);
1326        if (!ret)
1327                ret = ret2;
1328
1329        if (pos + len > inode->i_size && !verity) {
1330                ext4_truncate_failed_write(inode);
1331                /*
1332                 * If truncate failed early the inode might still be
1333                 * on the orphan list; we need to make sure the inode
1334                 * is removed from the orphan list in that case.
1335                 */
1336                if (inode->i_nlink)
1337                        ext4_orphan_del(NULL, inode);
1338        }
1339
1340        return ret ? ret : copied;
1341}
1342
1343/*
1344 * This is a private version of page_zero_new_buffers() which doesn't
1345 * set the buffer to be dirty, since in data=journalled mode we need
1346 * to call ext4_handle_dirty_metadata() instead.
1347 */
1348static void ext4_journalled_zero_new_buffers(handle_t *handle,
1349                                            struct inode *inode,
1350                                            struct page *page,
1351                                            unsigned from, unsigned to)
1352{
1353        unsigned int block_start = 0, block_end;
1354        struct buffer_head *head, *bh;
1355
1356        bh = head = page_buffers(page);
1357        do {
1358                block_end = block_start + bh->b_size;
1359                if (buffer_new(bh)) {
1360                        if (block_end > from && block_start < to) {
1361                                if (!PageUptodate(page)) {
1362                                        unsigned start, size;
1363
1364                                        start = max(from, block_start);
1365                                        size = min(to, block_end) - start;
1366
1367                                        zero_user(page, start, size);
1368                                        write_end_fn(handle, inode, bh);
1369                                }
1370                                clear_buffer_new(bh);
1371                        }
1372                }
1373                block_start = block_end;
1374                bh = bh->b_this_page;
1375        } while (bh != head);
1376}
1377
1378static int ext4_journalled_write_end(struct file *file,
1379                                     struct address_space *mapping,
1380                                     loff_t pos, unsigned len, unsigned copied,
1381                                     struct page *page, void *fsdata)
1382{
1383        handle_t *handle = ext4_journal_current_handle();
1384        struct inode *inode = mapping->host;
1385        loff_t old_size = inode->i_size;
1386        int ret = 0, ret2;
1387        int partial = 0;
1388        unsigned from, to;
1389        int size_changed = 0;
1390        bool verity = ext4_verity_in_progress(inode);
1391
1392        trace_ext4_journalled_write_end(inode, pos, len, copied);
1393        from = pos & (PAGE_SIZE - 1);
1394        to = from + len;
1395
1396        BUG_ON(!ext4_handle_valid(handle));
1397
1398        if (ext4_has_inline_data(inode))
1399                return ext4_write_inline_data_end(inode, pos, len, copied, page);
1400
1401        if (unlikely(copied < len) && !PageUptodate(page)) {
1402                copied = 0;
1403                ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1404        } else {
1405                if (unlikely(copied < len))
1406                        ext4_journalled_zero_new_buffers(handle, inode, page,
1407                                                         from + copied, to);
1408                ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1409                                             from, from + copied, &partial,
1410                                             write_end_fn);
1411                if (!partial)
1412                        SetPageUptodate(page);
1413        }
1414        if (!verity)
1415                size_changed = ext4_update_inode_size(inode, pos + copied);
1416        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1417        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1418        unlock_page(page);
1419        put_page(page);
1420
1421        if (old_size < pos && !verity)
1422                pagecache_isize_extended(inode, old_size, pos);
1423
1424        if (size_changed) {
1425                ret2 = ext4_mark_inode_dirty(handle, inode);
1426                if (!ret)
1427                        ret = ret2;
1428        }
1429
1430        if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1431                /* if we have allocated more blocks and copied
1432                 * less. We will have blocks allocated outside
1433                 * inode->i_size. So truncate them
1434                 */
1435                ext4_orphan_add(handle, inode);
1436
1437        ret2 = ext4_journal_stop(handle);
1438        if (!ret)
1439                ret = ret2;
1440        if (pos + len > inode->i_size && !verity) {
1441                ext4_truncate_failed_write(inode);
1442                /*
1443                 * If truncate failed early the inode might still be
1444                 * on the orphan list; we need to make sure the inode
1445                 * is removed from the orphan list in that case.
1446                 */
1447                if (inode->i_nlink)
1448                        ext4_orphan_del(NULL, inode);
1449        }
1450
1451        return ret ? ret : copied;
1452}
1453
1454/*
1455 * Reserve space for a single cluster
1456 */
1457static int ext4_da_reserve_space(struct inode *inode)
1458{
1459        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1460        struct ext4_inode_info *ei = EXT4_I(inode);
1461        int ret;
1462
1463        /*
1464         * We will charge metadata quota at writeout time; this saves
1465         * us from metadata over-estimation, though we may go over by
1466         * a small amount in the end.  Here we just reserve for data.
1467         */
1468        ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1469        if (ret)
1470                return ret;
1471
1472        spin_lock(&ei->i_block_reservation_lock);
1473        if (ext4_claim_free_clusters(sbi, 1, 0)) {
1474                spin_unlock(&ei->i_block_reservation_lock);
1475                dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1476                return -ENOSPC;
1477        }
1478        ei->i_reserved_data_blocks++;
1479        trace_ext4_da_reserve_space(inode);
1480        spin_unlock(&ei->i_block_reservation_lock);
1481
1482        return 0;       /* success */
1483}
1484
1485void ext4_da_release_space(struct inode *inode, int to_free)
1486{
1487        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488        struct ext4_inode_info *ei = EXT4_I(inode);
1489
1490        if (!to_free)
1491                return;         /* Nothing to release, exit */
1492
1493        spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1494
1495        trace_ext4_da_release_space(inode, to_free);
1496        if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1497                /*
1498                 * if there aren't enough reserved blocks, then the
1499                 * counter is messed up somewhere.  Since this
1500                 * function is called from invalidate page, it's
1501                 * harmless to return without any action.
1502                 */
1503                ext4_warning(inode->i_sb, "ext4_da_release_space: "
1504                         "ino %lu, to_free %d with only %d reserved "
1505                         "data blocks", inode->i_ino, to_free,
1506                         ei->i_reserved_data_blocks);
1507                WARN_ON(1);
1508                to_free = ei->i_reserved_data_blocks;
1509        }
1510        ei->i_reserved_data_blocks -= to_free;
1511
1512        /* update fs dirty data blocks counter */
1513        percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1514
1515        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1516
1517        dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1518}
1519
1520/*
1521 * Delayed allocation stuff
1522 */
1523
1524struct mpage_da_data {
1525        struct inode *inode;
1526        struct writeback_control *wbc;
1527
1528        pgoff_t first_page;     /* The first page to write */
1529        pgoff_t next_page;      /* Current page to examine */
1530        pgoff_t last_page;      /* Last page to examine */
1531        /*
1532         * Extent to map - this can be after first_page because that can be
1533         * fully mapped. We somewhat abuse m_flags to store whether the extent
1534         * is delalloc or unwritten.
1535         */
1536        struct ext4_map_blocks map;
1537        struct ext4_io_submit io_submit;        /* IO submission data */
1538        unsigned int do_map:1;
1539        unsigned int scanned_until_end:1;
1540};
1541
1542static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1543                                       bool invalidate)
1544{
1545        int nr_pages, i;
1546        pgoff_t index, end;
1547        struct pagevec pvec;
1548        struct inode *inode = mpd->inode;
1549        struct address_space *mapping = inode->i_mapping;
1550
1551        /* This is necessary when next_page == 0. */
1552        if (mpd->first_page >= mpd->next_page)
1553                return;
1554
1555        mpd->scanned_until_end = 0;
1556        index = mpd->first_page;
1557        end   = mpd->next_page - 1;
1558        if (invalidate) {
1559                ext4_lblk_t start, last;
1560                start = index << (PAGE_SHIFT - inode->i_blkbits);
1561                last = end << (PAGE_SHIFT - inode->i_blkbits);
1562                ext4_es_remove_extent(inode, start, last - start + 1);
1563        }
1564
1565        pagevec_init(&pvec);
1566        while (index <= end) {
1567                nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1568                if (nr_pages == 0)
1569                        break;
1570                for (i = 0; i < nr_pages; i++) {
1571                        struct page *page = pvec.pages[i];
1572
1573                        BUG_ON(!PageLocked(page));
1574                        BUG_ON(PageWriteback(page));
1575                        if (invalidate) {
1576                                if (page_mapped(page))
1577                                        clear_page_dirty_for_io(page);
1578                                block_invalidatepage(page, 0, PAGE_SIZE);
1579                                ClearPageUptodate(page);
1580                        }
1581                        unlock_page(page);
1582                }
1583                pagevec_release(&pvec);
1584        }
1585}
1586
1587static void ext4_print_free_blocks(struct inode *inode)
1588{
1589        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1590        struct super_block *sb = inode->i_sb;
1591        struct ext4_inode_info *ei = EXT4_I(inode);
1592
1593        ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1594               EXT4_C2B(EXT4_SB(inode->i_sb),
1595                        ext4_count_free_clusters(sb)));
1596        ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1597        ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1598               (long long) EXT4_C2B(EXT4_SB(sb),
1599                percpu_counter_sum(&sbi->s_freeclusters_counter)));
1600        ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1601               (long long) EXT4_C2B(EXT4_SB(sb),
1602                percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1603        ext4_msg(sb, KERN_CRIT, "Block reservation details");
1604        ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1605                 ei->i_reserved_data_blocks);
1606        return;
1607}
1608
1609static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1610                                      struct buffer_head *bh)
1611{
1612        return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1613}
1614
1615/*
1616 * ext4_insert_delayed_block - adds a delayed block to the extents status
1617 *                             tree, incrementing the reserved cluster/block
1618 *                             count or making a pending reservation
1619 *                             where needed
1620 *
1621 * @inode - file containing the newly added block
1622 * @lblk - logical block to be added
1623 *
1624 * Returns 0 on success, negative error code on failure.
1625 */
1626static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1627{
1628        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1629        int ret;
1630        bool allocated = false;
1631        bool reserved = false;
1632
1633        /*
1634         * If the cluster containing lblk is shared with a delayed,
1635         * written, or unwritten extent in a bigalloc file system, it's
1636         * already been accounted for and does not need to be reserved.
1637         * A pending reservation must be made for the cluster if it's
1638         * shared with a written or unwritten extent and doesn't already
1639         * have one.  Written and unwritten extents can be purged from the
1640         * extents status tree if the system is under memory pressure, so
1641         * it's necessary to examine the extent tree if a search of the
1642         * extents status tree doesn't get a match.
1643         */
1644        if (sbi->s_cluster_ratio == 1) {
1645                ret = ext4_da_reserve_space(inode);
1646                if (ret != 0)   /* ENOSPC */
1647                        goto errout;
1648                reserved = true;
1649        } else {   /* bigalloc */
1650                if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1651                        if (!ext4_es_scan_clu(inode,
1652                                              &ext4_es_is_mapped, lblk)) {
1653                                ret = ext4_clu_mapped(inode,
1654                                                      EXT4_B2C(sbi, lblk));
1655                                if (ret < 0)
1656                                        goto errout;
1657                                if (ret == 0) {
1658                                        ret = ext4_da_reserve_space(inode);
1659                                        if (ret != 0)   /* ENOSPC */
1660                                                goto errout;
1661                                        reserved = true;
1662                                } else {
1663                                        allocated = true;
1664                                }
1665                        } else {
1666                                allocated = true;
1667                        }
1668                }
1669        }
1670
1671        ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1672        if (ret && reserved)
1673                ext4_da_release_space(inode, 1);
1674
1675errout:
1676        return ret;
1677}
1678
1679/*
1680 * This function is grabs code from the very beginning of
1681 * ext4_map_blocks, but assumes that the caller is from delayed write
1682 * time. This function looks up the requested blocks and sets the
1683 * buffer delay bit under the protection of i_data_sem.
1684 */
1685static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1686                              struct ext4_map_blocks *map,
1687                              struct buffer_head *bh)
1688{
1689        struct extent_status es;
1690        int retval;
1691        sector_t invalid_block = ~((sector_t) 0xffff);
1692#ifdef ES_AGGRESSIVE_TEST
1693        struct ext4_map_blocks orig_map;
1694
1695        memcpy(&orig_map, map, sizeof(*map));
1696#endif
1697
1698        if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1699                invalid_block = ~0;
1700
1701        map->m_flags = 0;
1702        ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1703                  (unsigned long) map->m_lblk);
1704
1705        /* Lookup extent status tree firstly */
1706        if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1707                if (ext4_es_is_hole(&es)) {
1708                        retval = 0;
1709                        down_read(&EXT4_I(inode)->i_data_sem);
1710                        goto add_delayed;
1711                }
1712
1713                /*
1714                 * the buffer head associated with a delayed and not unwritten
1715                 * block found in the extent status cache must contain an
1716                 * invalid block number and have its BH_New and BH_Delay bits
1717                 * set, reflecting the state assigned when the block was
1718                 * initially delayed allocated
1719                 */
1720                if (ext4_es_is_delonly(&es)) {
1721                        BUG_ON(bh->b_blocknr != invalid_block);
1722                        BUG_ON(!buffer_new(bh));
1723                        BUG_ON(!buffer_delay(bh));
1724                        return 0;
1725                }
1726
1727                map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1728                retval = es.es_len - (iblock - es.es_lblk);
1729                if (retval > map->m_len)
1730                        retval = map->m_len;
1731                map->m_len = retval;
1732                if (ext4_es_is_written(&es))
1733                        map->m_flags |= EXT4_MAP_MAPPED;
1734                else if (ext4_es_is_unwritten(&es))
1735                        map->m_flags |= EXT4_MAP_UNWRITTEN;
1736                else
1737                        BUG();
1738
1739#ifdef ES_AGGRESSIVE_TEST
1740                ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1741#endif
1742                return retval;
1743        }
1744
1745        /*
1746         * Try to see if we can get the block without requesting a new
1747         * file system block.
1748         */
1749        down_read(&EXT4_I(inode)->i_data_sem);
1750        if (ext4_has_inline_data(inode))
1751                retval = 0;
1752        else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1753                retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1754        else
1755                retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1756
1757add_delayed:
1758        if (retval == 0) {
1759                int ret;
1760
1761                /*
1762                 * XXX: __block_prepare_write() unmaps passed block,
1763                 * is it OK?
1764                 */
1765
1766                ret = ext4_insert_delayed_block(inode, map->m_lblk);
1767                if (ret != 0) {
1768                        retval = ret;
1769                        goto out_unlock;
1770                }
1771
1772                map_bh(bh, inode->i_sb, invalid_block);
1773                set_buffer_new(bh);
1774                set_buffer_delay(bh);
1775        } else if (retval > 0) {
1776                int ret;
1777                unsigned int status;
1778
1779                if (unlikely(retval != map->m_len)) {
1780                        ext4_warning(inode->i_sb,
1781                                     "ES len assertion failed for inode "
1782                                     "%lu: retval %d != map->m_len %d",
1783                                     inode->i_ino, retval, map->m_len);
1784                        WARN_ON(1);
1785                }
1786
1787                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1788                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1789                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1790                                            map->m_pblk, status);
1791                if (ret != 0)
1792                        retval = ret;
1793        }
1794
1795out_unlock:
1796        up_read((&EXT4_I(inode)->i_data_sem));
1797
1798        return retval;
1799}
1800
1801/*
1802 * This is a special get_block_t callback which is used by
1803 * ext4_da_write_begin().  It will either return mapped block or
1804 * reserve space for a single block.
1805 *
1806 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1807 * We also have b_blocknr = -1 and b_bdev initialized properly
1808 *
1809 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1810 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1811 * initialized properly.
1812 */
1813int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1814                           struct buffer_head *bh, int create)
1815{
1816        struct ext4_map_blocks map;
1817        int ret = 0;
1818
1819        BUG_ON(create == 0);
1820        BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1821
1822        map.m_lblk = iblock;
1823        map.m_len = 1;
1824
1825        /*
1826         * first, we need to know whether the block is allocated already
1827         * preallocated blocks are unmapped but should treated
1828         * the same as allocated blocks.
1829         */
1830        ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1831        if (ret <= 0)
1832                return ret;
1833
1834        map_bh(bh, inode->i_sb, map.m_pblk);
1835        ext4_update_bh_state(bh, map.m_flags);
1836
1837        if (buffer_unwritten(bh)) {
1838                /* A delayed write to unwritten bh should be marked
1839                 * new and mapped.  Mapped ensures that we don't do
1840                 * get_block multiple times when we write to the same
1841                 * offset and new ensures that we do proper zero out
1842                 * for partial write.
1843                 */
1844                set_buffer_new(bh);
1845                set_buffer_mapped(bh);
1846        }
1847        return 0;
1848}
1849
1850static int bget_one(handle_t *handle, struct inode *inode,
1851                    struct buffer_head *bh)
1852{
1853        get_bh(bh);
1854        return 0;
1855}
1856
1857static int bput_one(handle_t *handle, struct inode *inode,
1858                    struct buffer_head *bh)
1859{
1860        put_bh(bh);
1861        return 0;
1862}
1863
1864static int __ext4_journalled_writepage(struct page *page,
1865                                       unsigned int len)
1866{
1867        struct address_space *mapping = page->mapping;
1868        struct inode *inode = mapping->host;
1869        struct buffer_head *page_bufs = NULL;
1870        handle_t *handle = NULL;
1871        int ret = 0, err = 0;
1872        int inline_data = ext4_has_inline_data(inode);
1873        struct buffer_head *inode_bh = NULL;
1874
1875        ClearPageChecked(page);
1876
1877        if (inline_data) {
1878                BUG_ON(page->index != 0);
1879                BUG_ON(len > ext4_get_max_inline_size(inode));
1880                inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1881                if (inode_bh == NULL)
1882                        goto out;
1883        } else {
1884                page_bufs = page_buffers(page);
1885                if (!page_bufs) {
1886                        BUG();
1887                        goto out;
1888                }
1889                ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1890                                       NULL, bget_one);
1891        }
1892        /*
1893         * We need to release the page lock before we start the
1894         * journal, so grab a reference so the page won't disappear
1895         * out from under us.
1896         */
1897        get_page(page);
1898        unlock_page(page);
1899
1900        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1901                                    ext4_writepage_trans_blocks(inode));
1902        if (IS_ERR(handle)) {
1903                ret = PTR_ERR(handle);
1904                put_page(page);
1905                goto out_no_pagelock;
1906        }
1907        BUG_ON(!ext4_handle_valid(handle));
1908
1909        lock_page(page);
1910        put_page(page);
1911        if (page->mapping != mapping) {
1912                /* The page got truncated from under us */
1913                ext4_journal_stop(handle);
1914                ret = 0;
1915                goto out;
1916        }
1917
1918        if (inline_data) {
1919                ret = ext4_mark_inode_dirty(handle, inode);
1920        } else {
1921                ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1922                                             NULL, do_journal_get_write_access);
1923
1924                err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1925                                             NULL, write_end_fn);
1926        }
1927        if (ret == 0)
1928                ret = err;
1929        err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1930        if (ret == 0)
1931                ret = err;
1932        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1933        err = ext4_journal_stop(handle);
1934        if (!ret)
1935                ret = err;
1936
1937        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1938out:
1939        unlock_page(page);
1940out_no_pagelock:
1941        if (!inline_data && page_bufs)
1942                ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len,
1943                                       NULL, bput_one);
1944        brelse(inode_bh);
1945        return ret;
1946}
1947
1948/*
1949 * Note that we don't need to start a transaction unless we're journaling data
1950 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1951 * need to file the inode to the transaction's list in ordered mode because if
1952 * we are writing back data added by write(), the inode is already there and if
1953 * we are writing back data modified via mmap(), no one guarantees in which
1954 * transaction the data will hit the disk. In case we are journaling data, we
1955 * cannot start transaction directly because transaction start ranks above page
1956 * lock so we have to do some magic.
1957 *
1958 * This function can get called via...
1959 *   - ext4_writepages after taking page lock (have journal handle)
1960 *   - journal_submit_inode_data_buffers (no journal handle)
1961 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1962 *   - grab_page_cache when doing write_begin (have journal handle)
1963 *
1964 * We don't do any block allocation in this function. If we have page with
1965 * multiple blocks we need to write those buffer_heads that are mapped. This
1966 * is important for mmaped based write. So if we do with blocksize 1K
1967 * truncate(f, 1024);
1968 * a = mmap(f, 0, 4096);
1969 * a[0] = 'a';
1970 * truncate(f, 4096);
1971 * we have in the page first buffer_head mapped via page_mkwrite call back
1972 * but other buffer_heads would be unmapped but dirty (dirty done via the
1973 * do_wp_page). So writepage should write the first block. If we modify
1974 * the mmap area beyond 1024 we will again get a page_fault and the
1975 * page_mkwrite callback will do the block allocation and mark the
1976 * buffer_heads mapped.
1977 *
1978 * We redirty the page if we have any buffer_heads that is either delay or
1979 * unwritten in the page.
1980 *
1981 * We can get recursively called as show below.
1982 *
1983 *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1984 *              ext4_writepage()
1985 *
1986 * But since we don't do any block allocation we should not deadlock.
1987 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1988 */
1989static int ext4_writepage(struct page *page,
1990                          struct writeback_control *wbc)
1991{
1992        int ret = 0;
1993        loff_t size;
1994        unsigned int len;
1995        struct buffer_head *page_bufs = NULL;
1996        struct inode *inode = page->mapping->host;
1997        struct ext4_io_submit io_submit;
1998        bool keep_towrite = false;
1999
2000        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2001                inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2002                unlock_page(page);
2003                return -EIO;
2004        }
2005
2006        trace_ext4_writepage(page);
2007        size = i_size_read(inode);
2008        if (page->index == size >> PAGE_SHIFT &&
2009            !ext4_verity_in_progress(inode))
2010                len = size & ~PAGE_MASK;
2011        else
2012                len = PAGE_SIZE;
2013
2014        page_bufs = page_buffers(page);
2015        /*
2016         * We cannot do block allocation or other extent handling in this
2017         * function. If there are buffers needing that, we have to redirty
2018         * the page. But we may reach here when we do a journal commit via
2019         * journal_submit_inode_data_buffers() and in that case we must write
2020         * allocated buffers to achieve data=ordered mode guarantees.
2021         *
2022         * Also, if there is only one buffer per page (the fs block
2023         * size == the page size), if one buffer needs block
2024         * allocation or needs to modify the extent tree to clear the
2025         * unwritten flag, we know that the page can't be written at
2026         * all, so we might as well refuse the write immediately.
2027         * Unfortunately if the block size != page size, we can't as
2028         * easily detect this case using ext4_walk_page_buffers(), but
2029         * for the extremely common case, this is an optimization that
2030         * skips a useless round trip through ext4_bio_write_page().
2031         */
2032        if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2033                                   ext4_bh_delay_or_unwritten)) {
2034                redirty_page_for_writepage(wbc, page);
2035                if ((current->flags & PF_MEMALLOC) ||
2036                    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2037                        /*
2038                         * For memory cleaning there's no point in writing only
2039                         * some buffers. So just bail out. Warn if we came here
2040                         * from direct reclaim.
2041                         */
2042                        WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2043                                                        == PF_MEMALLOC);
2044                        unlock_page(page);
2045                        return 0;
2046                }
2047                keep_towrite = true;
2048        }
2049
2050        if (PageChecked(page) && ext4_should_journal_data(inode))
2051                /*
2052                 * It's mmapped pagecache.  Add buffers and journal it.  There
2053                 * doesn't seem much point in redirtying the page here.
2054                 */
2055                return __ext4_journalled_writepage(page, len);
2056
2057        ext4_io_submit_init(&io_submit, wbc);
2058        io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2059        if (!io_submit.io_end) {
2060                redirty_page_for_writepage(wbc, page);
2061                unlock_page(page);
2062                return -ENOMEM;
2063        }
2064        ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2065        ext4_io_submit(&io_submit);
2066        /* Drop io_end reference we got from init */
2067        ext4_put_io_end_defer(io_submit.io_end);
2068        return ret;
2069}
2070
2071static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2072{
2073        int len;
2074        loff_t size;
2075        int err;
2076
2077        BUG_ON(page->index != mpd->first_page);
2078        clear_page_dirty_for_io(page);
2079        /*
2080         * We have to be very careful here!  Nothing protects writeback path
2081         * against i_size changes and the page can be writeably mapped into
2082         * page tables. So an application can be growing i_size and writing
2083         * data through mmap while writeback runs. clear_page_dirty_for_io()
2084         * write-protects our page in page tables and the page cannot get
2085         * written to again until we release page lock. So only after
2086         * clear_page_dirty_for_io() we are safe to sample i_size for
2087         * ext4_bio_write_page() to zero-out tail of the written page. We rely
2088         * on the barrier provided by TestClearPageDirty in
2089         * clear_page_dirty_for_io() to make sure i_size is really sampled only
2090         * after page tables are updated.
2091         */
2092        size = i_size_read(mpd->inode);
2093        if (page->index == size >> PAGE_SHIFT &&
2094            !ext4_verity_in_progress(mpd->inode))
2095                len = size & ~PAGE_MASK;
2096        else
2097                len = PAGE_SIZE;
2098        err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2099        if (!err)
2100                mpd->wbc->nr_to_write--;
2101        mpd->first_page++;
2102
2103        return err;
2104}
2105
2106#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2107
2108/*
2109 * mballoc gives us at most this number of blocks...
2110 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2111 * The rest of mballoc seems to handle chunks up to full group size.
2112 */
2113#define MAX_WRITEPAGES_EXTENT_LEN 2048
2114
2115/*
2116 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2117 *
2118 * @mpd - extent of blocks
2119 * @lblk - logical number of the block in the file
2120 * @bh - buffer head we want to add to the extent
2121 *
2122 * The function is used to collect contig. blocks in the same state. If the
2123 * buffer doesn't require mapping for writeback and we haven't started the
2124 * extent of buffers to map yet, the function returns 'true' immediately - the
2125 * caller can write the buffer right away. Otherwise the function returns true
2126 * if the block has been added to the extent, false if the block couldn't be
2127 * added.
2128 */
2129static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2130                                   struct buffer_head *bh)
2131{
2132        struct ext4_map_blocks *map = &mpd->map;
2133
2134        /* Buffer that doesn't need mapping for writeback? */
2135        if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2136            (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2137                /* So far no extent to map => we write the buffer right away */
2138                if (map->m_len == 0)
2139                        return true;
2140                return false;
2141        }
2142
2143        /* First block in the extent? */
2144        if (map->m_len == 0) {
2145                /* We cannot map unless handle is started... */
2146                if (!mpd->do_map)
2147                        return false;
2148                map->m_lblk = lblk;
2149                map->m_len = 1;
2150                map->m_flags = bh->b_state & BH_FLAGS;
2151                return true;
2152        }
2153
2154        /* Don't go larger than mballoc is willing to allocate */
2155        if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2156                return false;
2157
2158        /* Can we merge the block to our big extent? */
2159        if (lblk == map->m_lblk + map->m_len &&
2160            (bh->b_state & BH_FLAGS) == map->m_flags) {
2161                map->m_len++;
2162                return true;
2163        }
2164        return false;
2165}
2166
2167/*
2168 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2169 *
2170 * @mpd - extent of blocks for mapping
2171 * @head - the first buffer in the page
2172 * @bh - buffer we should start processing from
2173 * @lblk - logical number of the block in the file corresponding to @bh
2174 *
2175 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2176 * the page for IO if all buffers in this page were mapped and there's no
2177 * accumulated extent of buffers to map or add buffers in the page to the
2178 * extent of buffers to map. The function returns 1 if the caller can continue
2179 * by processing the next page, 0 if it should stop adding buffers to the
2180 * extent to map because we cannot extend it anymore. It can also return value
2181 * < 0 in case of error during IO submission.
2182 */
2183static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2184                                   struct buffer_head *head,
2185                                   struct buffer_head *bh,
2186                                   ext4_lblk_t lblk)
2187{
2188        struct inode *inode = mpd->inode;
2189        int err;
2190        ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2191                                                        >> inode->i_blkbits;
2192
2193        if (ext4_verity_in_progress(inode))
2194                blocks = EXT_MAX_BLOCKS;
2195
2196        do {
2197                BUG_ON(buffer_locked(bh));
2198
2199                if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2200                        /* Found extent to map? */
2201                        if (mpd->map.m_len)
2202                                return 0;
2203                        /* Buffer needs mapping and handle is not started? */
2204                        if (!mpd->do_map)
2205                                return 0;
2206                        /* Everything mapped so far and we hit EOF */
2207                        break;
2208                }
2209        } while (lblk++, (bh = bh->b_this_page) != head);
2210        /* So far everything mapped? Submit the page for IO. */
2211        if (mpd->map.m_len == 0) {
2212                err = mpage_submit_page(mpd, head->b_page);
2213                if (err < 0)
2214                        return err;
2215        }
2216        if (lblk >= blocks) {
2217                mpd->scanned_until_end = 1;
2218                return 0;
2219        }
2220        return 1;
2221}
2222
2223/*
2224 * mpage_process_page - update page buffers corresponding to changed extent and
2225 *                     may submit fully mapped page for IO
2226 *
2227 * @mpd         - description of extent to map, on return next extent to map
2228 * @m_lblk      - logical block mapping.
2229 * @m_pblk      - corresponding physical mapping.
2230 * @map_bh      - determines on return whether this page requires any further
2231 *                mapping or not.
2232 * Scan given page buffers corresponding to changed extent and update buffer
2233 * state according to new extent state.
2234 * We map delalloc buffers to their physical location, clear unwritten bits.
2235 * If the given page is not fully mapped, we update @map to the next extent in
2236 * the given page that needs mapping & return @map_bh as true.
2237 */
2238static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2239                              ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2240                              bool *map_bh)
2241{
2242        struct buffer_head *head, *bh;
2243        ext4_io_end_t *io_end = mpd->io_submit.io_end;
2244        ext4_lblk_t lblk = *m_lblk;
2245        ext4_fsblk_t pblock = *m_pblk;
2246        int err = 0;
2247        int blkbits = mpd->inode->i_blkbits;
2248        ssize_t io_end_size = 0;
2249        struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2250
2251        bh = head = page_buffers(page);
2252        do {
2253                if (lblk < mpd->map.m_lblk)
2254                        continue;
2255                if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2256                        /*
2257                         * Buffer after end of mapped extent.
2258                         * Find next buffer in the page to map.
2259                         */
2260                        mpd->map.m_len = 0;
2261                        mpd->map.m_flags = 0;
2262                        io_end_vec->size += io_end_size;
2263                        io_end_size = 0;
2264
2265                        err = mpage_process_page_bufs(mpd, head, bh, lblk);
2266                        if (err > 0)
2267                                err = 0;
2268                        if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2269                                io_end_vec = ext4_alloc_io_end_vec(io_end);
2270                                if (IS_ERR(io_end_vec)) {
2271                                        err = PTR_ERR(io_end_vec);
2272                                        goto out;
2273                                }
2274                                io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2275                        }
2276                        *map_bh = true;
2277                        goto out;
2278                }
2279                if (buffer_delay(bh)) {
2280                        clear_buffer_delay(bh);
2281                        bh->b_blocknr = pblock++;
2282                }
2283                clear_buffer_unwritten(bh);
2284                io_end_size += (1 << blkbits);
2285        } while (lblk++, (bh = bh->b_this_page) != head);
2286
2287        io_end_vec->size += io_end_size;
2288        io_end_size = 0;
2289        *map_bh = false;
2290out:
2291        *m_lblk = lblk;
2292        *m_pblk = pblock;
2293        return err;
2294}
2295
2296/*
2297 * mpage_map_buffers - update buffers corresponding to changed extent and
2298 *                     submit fully mapped pages for IO
2299 *
2300 * @mpd - description of extent to map, on return next extent to map
2301 *
2302 * Scan buffers corresponding to changed extent (we expect corresponding pages
2303 * to be already locked) and update buffer state according to new extent state.
2304 * We map delalloc buffers to their physical location, clear unwritten bits,
2305 * and mark buffers as uninit when we perform writes to unwritten extents
2306 * and do extent conversion after IO is finished. If the last page is not fully
2307 * mapped, we update @map to the next extent in the last page that needs
2308 * mapping. Otherwise we submit the page for IO.
2309 */
2310static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2311{
2312        struct pagevec pvec;
2313        int nr_pages, i;
2314        struct inode *inode = mpd->inode;
2315        int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2316        pgoff_t start, end;
2317        ext4_lblk_t lblk;
2318        ext4_fsblk_t pblock;
2319        int err;
2320        bool map_bh = false;
2321
2322        start = mpd->map.m_lblk >> bpp_bits;
2323        end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2324        lblk = start << bpp_bits;
2325        pblock = mpd->map.m_pblk;
2326
2327        pagevec_init(&pvec);
2328        while (start <= end) {
2329                nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2330                                                &start, end);
2331                if (nr_pages == 0)
2332                        break;
2333                for (i = 0; i < nr_pages; i++) {
2334                        struct page *page = pvec.pages[i];
2335
2336                        err = mpage_process_page(mpd, page, &lblk, &pblock,
2337                                                 &map_bh);
2338                        /*
2339                         * If map_bh is true, means page may require further bh
2340                         * mapping, or maybe the page was submitted for IO.
2341                         * So we return to call further extent mapping.
2342                         */
2343                        if (err < 0 || map_bh)
2344                                goto out;
2345                        /* Page fully mapped - let IO run! */
2346                        err = mpage_submit_page(mpd, page);
2347                        if (err < 0)
2348                                goto out;
2349                }
2350                pagevec_release(&pvec);
2351        }
2352        /* Extent fully mapped and matches with page boundary. We are done. */
2353        mpd->map.m_len = 0;
2354        mpd->map.m_flags = 0;
2355        return 0;
2356out:
2357        pagevec_release(&pvec);
2358        return err;
2359}
2360
2361static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2362{
2363        struct inode *inode = mpd->inode;
2364        struct ext4_map_blocks *map = &mpd->map;
2365        int get_blocks_flags;
2366        int err, dioread_nolock;
2367
2368        trace_ext4_da_write_pages_extent(inode, map);
2369        /*
2370         * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2371         * to convert an unwritten extent to be initialized (in the case
2372         * where we have written into one or more preallocated blocks).  It is
2373         * possible that we're going to need more metadata blocks than
2374         * previously reserved. However we must not fail because we're in
2375         * writeback and there is nothing we can do about it so it might result
2376         * in data loss.  So use reserved blocks to allocate metadata if
2377         * possible.
2378         *
2379         * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2380         * the blocks in question are delalloc blocks.  This indicates
2381         * that the blocks and quotas has already been checked when
2382         * the data was copied into the page cache.
2383         */
2384        get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2385                           EXT4_GET_BLOCKS_METADATA_NOFAIL |
2386                           EXT4_GET_BLOCKS_IO_SUBMIT;
2387        dioread_nolock = ext4_should_dioread_nolock(inode);
2388        if (dioread_nolock)
2389                get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2390        if (map->m_flags & BIT(BH_Delay))
2391                get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2392
2393        err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2394        if (err < 0)
2395                return err;
2396        if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2397                if (!mpd->io_submit.io_end->handle &&
2398                    ext4_handle_valid(handle)) {
2399                        mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2400                        handle->h_rsv_handle = NULL;
2401                }
2402                ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2403        }
2404
2405        BUG_ON(map->m_len == 0);
2406        return 0;
2407}
2408
2409/*
2410 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2411 *                               mpd->len and submit pages underlying it for IO
2412 *
2413 * @handle - handle for journal operations
2414 * @mpd - extent to map
2415 * @give_up_on_write - we set this to true iff there is a fatal error and there
2416 *                     is no hope of writing the data. The caller should discard
2417 *                     dirty pages to avoid infinite loops.
2418 *
2419 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2420 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2421 * them to initialized or split the described range from larger unwritten
2422 * extent. Note that we need not map all the described range since allocation
2423 * can return less blocks or the range is covered by more unwritten extents. We
2424 * cannot map more because we are limited by reserved transaction credits. On
2425 * the other hand we always make sure that the last touched page is fully
2426 * mapped so that it can be written out (and thus forward progress is
2427 * guaranteed). After mapping we submit all mapped pages for IO.
2428 */
2429static int mpage_map_and_submit_extent(handle_t *handle,
2430                                       struct mpage_da_data *mpd,
2431                                       bool *give_up_on_write)
2432{
2433        struct inode *inode = mpd->inode;
2434        struct ext4_map_blocks *map = &mpd->map;
2435        int err;
2436        loff_t disksize;
2437        int progress = 0;
2438        ext4_io_end_t *io_end = mpd->io_submit.io_end;
2439        struct ext4_io_end_vec *io_end_vec;
2440
2441        io_end_vec = ext4_alloc_io_end_vec(io_end);
2442        if (IS_ERR(io_end_vec))
2443                return PTR_ERR(io_end_vec);
2444        io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2445        do {
2446                err = mpage_map_one_extent(handle, mpd);
2447                if (err < 0) {
2448                        struct super_block *sb = inode->i_sb;
2449
2450                        if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2451                            ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2452                                goto invalidate_dirty_pages;
2453                        /*
2454                         * Let the uper layers retry transient errors.
2455                         * In the case of ENOSPC, if ext4_count_free_blocks()
2456                         * is non-zero, a commit should free up blocks.
2457                         */
2458                        if ((err == -ENOMEM) ||
2459                            (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2460                                if (progress)
2461                                        goto update_disksize;
2462                                return err;
2463                        }
2464                        ext4_msg(sb, KERN_CRIT,
2465                                 "Delayed block allocation failed for "
2466                                 "inode %lu at logical offset %llu with"
2467                                 " max blocks %u with error %d",
2468                                 inode->i_ino,
2469                                 (unsigned long long)map->m_lblk,
2470                                 (unsigned)map->m_len, -err);
2471                        ext4_msg(sb, KERN_CRIT,
2472                                 "This should not happen!! Data will "
2473                                 "be lost\n");
2474                        if (err == -ENOSPC)
2475                                ext4_print_free_blocks(inode);
2476                invalidate_dirty_pages:
2477                        *give_up_on_write = true;
2478                        return err;
2479                }
2480                progress = 1;
2481                /*
2482                 * Update buffer state, submit mapped pages, and get us new
2483                 * extent to map
2484                 */
2485                err = mpage_map_and_submit_buffers(mpd);
2486                if (err < 0)
2487                        goto update_disksize;
2488        } while (map->m_len);
2489
2490update_disksize:
2491        /*
2492         * Update on-disk size after IO is submitted.  Races with
2493         * truncate are avoided by checking i_size under i_data_sem.
2494         */
2495        disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2496        if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2497                int err2;
2498                loff_t i_size;
2499
2500                down_write(&EXT4_I(inode)->i_data_sem);
2501                i_size = i_size_read(inode);
2502                if (disksize > i_size)
2503                        disksize = i_size;
2504                if (disksize > EXT4_I(inode)->i_disksize)
2505                        EXT4_I(inode)->i_disksize = disksize;
2506                up_write(&EXT4_I(inode)->i_data_sem);
2507                err2 = ext4_mark_inode_dirty(handle, inode);
2508                if (err2) {
2509                        ext4_error_err(inode->i_sb, -err2,
2510                                       "Failed to mark inode %lu dirty",
2511                                       inode->i_ino);
2512                }
2513                if (!err)
2514                        err = err2;
2515        }
2516        return err;
2517}
2518
2519/*
2520 * Calculate the total number of credits to reserve for one writepages
2521 * iteration. This is called from ext4_writepages(). We map an extent of
2522 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2523 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2524 * bpp - 1 blocks in bpp different extents.
2525 */
2526static int ext4_da_writepages_trans_blocks(struct inode *inode)
2527{
2528        int bpp = ext4_journal_blocks_per_page(inode);
2529
2530        return ext4_meta_trans_blocks(inode,
2531                                MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2532}
2533
2534/*
2535 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2536 *                               and underlying extent to map
2537 *
2538 * @mpd - where to look for pages
2539 *
2540 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2541 * IO immediately. When we find a page which isn't mapped we start accumulating
2542 * extent of buffers underlying these pages that needs mapping (formed by
2543 * either delayed or unwritten buffers). We also lock the pages containing
2544 * these buffers. The extent found is returned in @mpd structure (starting at
2545 * mpd->lblk with length mpd->len blocks).
2546 *
2547 * Note that this function can attach bios to one io_end structure which are
2548 * neither logically nor physically contiguous. Although it may seem as an
2549 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2550 * case as we need to track IO to all buffers underlying a page in one io_end.
2551 */
2552static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2553{
2554        struct address_space *mapping = mpd->inode->i_mapping;
2555        struct pagevec pvec;
2556        unsigned int nr_pages;
2557        long left = mpd->wbc->nr_to_write;
2558        pgoff_t index = mpd->first_page;
2559        pgoff_t end = mpd->last_page;
2560        xa_mark_t tag;
2561        int i, err = 0;
2562        int blkbits = mpd->inode->i_blkbits;
2563        ext4_lblk_t lblk;
2564        struct buffer_head *head;
2565
2566        if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2567                tag = PAGECACHE_TAG_TOWRITE;
2568        else
2569                tag = PAGECACHE_TAG_DIRTY;
2570
2571        pagevec_init(&pvec);
2572        mpd->map.m_len = 0;
2573        mpd->next_page = index;
2574        while (index <= end) {
2575                nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2576                                tag);
2577                if (nr_pages == 0)
2578                        break;
2579
2580                for (i = 0; i < nr_pages; i++) {
2581                        struct page *page = pvec.pages[i];
2582
2583                        /*
2584                         * Accumulated enough dirty pages? This doesn't apply
2585                         * to WB_SYNC_ALL mode. For integrity sync we have to
2586                         * keep going because someone may be concurrently
2587                         * dirtying pages, and we might have synced a lot of
2588                         * newly appeared dirty pages, but have not synced all
2589                         * of the old dirty pages.
2590                         */
2591                        if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2592                                goto out;
2593
2594                        /* If we can't merge this page, we are done. */
2595                        if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2596                                goto out;
2597
2598                        lock_page(page);
2599                        /*
2600                         * If the page is no longer dirty, or its mapping no
2601                         * longer corresponds to inode we are writing (which
2602                         * means it has been truncated or invalidated), or the
2603                         * page is already under writeback and we are not doing
2604                         * a data integrity writeback, skip the page
2605                         */
2606                        if (!PageDirty(page) ||
2607                            (PageWriteback(page) &&
2608                             (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2609                            unlikely(page->mapping != mapping)) {
2610                                unlock_page(page);
2611                                continue;
2612                        }
2613
2614                        wait_on_page_writeback(page);
2615                        BUG_ON(PageWriteback(page));
2616
2617                        if (mpd->map.m_len == 0)
2618                                mpd->first_page = page->index;
2619                        mpd->next_page = page->index + 1;
2620                        /* Add all dirty buffers to mpd */
2621                        lblk = ((ext4_lblk_t)page->index) <<
2622                                (PAGE_SHIFT - blkbits);
2623                        head = page_buffers(page);
2624                        err = mpage_process_page_bufs(mpd, head, head, lblk);
2625                        if (err <= 0)
2626                                goto out;
2627                        err = 0;
2628                        left--;
2629                }
2630                pagevec_release(&pvec);
2631                cond_resched();
2632        }
2633        mpd->scanned_until_end = 1;
2634        return 0;
2635out:
2636        pagevec_release(&pvec);
2637        return err;
2638}
2639
2640static int ext4_writepages(struct address_space *mapping,
2641                           struct writeback_control *wbc)
2642{
2643        pgoff_t writeback_index = 0;
2644        long nr_to_write = wbc->nr_to_write;
2645        int range_whole = 0;
2646        int cycled = 1;
2647        handle_t *handle = NULL;
2648        struct mpage_da_data mpd;
2649        struct inode *inode = mapping->host;
2650        int needed_blocks, rsv_blocks = 0, ret = 0;
2651        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2652        struct blk_plug plug;
2653        bool give_up_on_write = false;
2654
2655        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2656                return -EIO;
2657
2658        percpu_down_read(&sbi->s_writepages_rwsem);
2659        trace_ext4_writepages(inode, wbc);
2660
2661        /*
2662         * No pages to write? This is mainly a kludge to avoid starting
2663         * a transaction for special inodes like journal inode on last iput()
2664         * because that could violate lock ordering on umount
2665         */
2666        if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2667                goto out_writepages;
2668
2669        if (ext4_should_journal_data(inode)) {
2670                ret = generic_writepages(mapping, wbc);
2671                goto out_writepages;
2672        }
2673
2674        /*
2675         * If the filesystem has aborted, it is read-only, so return
2676         * right away instead of dumping stack traces later on that
2677         * will obscure the real source of the problem.  We test
2678         * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2679         * the latter could be true if the filesystem is mounted
2680         * read-only, and in that case, ext4_writepages should
2681         * *never* be called, so if that ever happens, we would want
2682         * the stack trace.
2683         */
2684        if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2685                     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2686                ret = -EROFS;
2687                goto out_writepages;
2688        }
2689
2690        /*
2691         * If we have inline data and arrive here, it means that
2692         * we will soon create the block for the 1st page, so
2693         * we'd better clear the inline data here.
2694         */
2695        if (ext4_has_inline_data(inode)) {
2696                /* Just inode will be modified... */
2697                handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2698                if (IS_ERR(handle)) {
2699                        ret = PTR_ERR(handle);
2700                        goto out_writepages;
2701                }
2702                BUG_ON(ext4_test_inode_state(inode,
2703                                EXT4_STATE_MAY_INLINE_DATA));
2704                ext4_destroy_inline_data(handle, inode);
2705                ext4_journal_stop(handle);
2706        }
2707
2708        if (ext4_should_dioread_nolock(inode)) {
2709                /*
2710                 * We may need to convert up to one extent per block in
2711                 * the page and we may dirty the inode.
2712                 */
2713                rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2714                                                PAGE_SIZE >> inode->i_blkbits);
2715        }
2716
2717        if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2718                range_whole = 1;
2719
2720        if (wbc->range_cyclic) {
2721                writeback_index = mapping->writeback_index;
2722                if (writeback_index)
2723                        cycled = 0;
2724                mpd.first_page = writeback_index;
2725                mpd.last_page = -1;
2726        } else {
2727                mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2728                mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2729        }
2730
2731        mpd.inode = inode;
2732        mpd.wbc = wbc;
2733        ext4_io_submit_init(&mpd.io_submit, wbc);
2734retry:
2735        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2736                tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2737        blk_start_plug(&plug);
2738
2739        /*
2740         * First writeback pages that don't need mapping - we can avoid
2741         * starting a transaction unnecessarily and also avoid being blocked
2742         * in the block layer on device congestion while having transaction
2743         * started.
2744         */
2745        mpd.do_map = 0;
2746        mpd.scanned_until_end = 0;
2747        mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2748        if (!mpd.io_submit.io_end) {
2749                ret = -ENOMEM;
2750                goto unplug;
2751        }
2752        ret = mpage_prepare_extent_to_map(&mpd);
2753        /* Unlock pages we didn't use */
2754        mpage_release_unused_pages(&mpd, false);
2755        /* Submit prepared bio */
2756        ext4_io_submit(&mpd.io_submit);
2757        ext4_put_io_end_defer(mpd.io_submit.io_end);
2758        mpd.io_submit.io_end = NULL;
2759        if (ret < 0)
2760                goto unplug;
2761
2762        while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2763                /* For each extent of pages we use new io_end */
2764                mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2765                if (!mpd.io_submit.io_end) {
2766                        ret = -ENOMEM;
2767                        break;
2768                }
2769
2770                /*
2771                 * We have two constraints: We find one extent to map and we
2772                 * must always write out whole page (makes a difference when
2773                 * blocksize < pagesize) so that we don't block on IO when we
2774                 * try to write out the rest of the page. Journalled mode is
2775                 * not supported by delalloc.
2776                 */
2777                BUG_ON(ext4_should_journal_data(inode));
2778                needed_blocks = ext4_da_writepages_trans_blocks(inode);
2779
2780                /* start a new transaction */
2781                handle = ext4_journal_start_with_reserve(inode,
2782                                EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2783                if (IS_ERR(handle)) {
2784                        ret = PTR_ERR(handle);
2785                        ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2786                               "%ld pages, ino %lu; err %d", __func__,
2787                                wbc->nr_to_write, inode->i_ino, ret);
2788                        /* Release allocated io_end */
2789                        ext4_put_io_end(mpd.io_submit.io_end);
2790                        mpd.io_submit.io_end = NULL;
2791                        break;
2792                }
2793                mpd.do_map = 1;
2794
2795                trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2796                ret = mpage_prepare_extent_to_map(&mpd);
2797                if (!ret && mpd.map.m_len)
2798                        ret = mpage_map_and_submit_extent(handle, &mpd,
2799                                        &give_up_on_write);
2800                /*
2801                 * Caution: If the handle is synchronous,
2802                 * ext4_journal_stop() can wait for transaction commit
2803                 * to finish which may depend on writeback of pages to
2804                 * complete or on page lock to be released.  In that
2805                 * case, we have to wait until after we have
2806                 * submitted all the IO, released page locks we hold,
2807                 * and dropped io_end reference (for extent conversion
2808                 * to be able to complete) before stopping the handle.
2809                 */
2810                if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2811                        ext4_journal_stop(handle);
2812                        handle = NULL;
2813                        mpd.do_map = 0;
2814                }
2815                /* Unlock pages we didn't use */
2816                mpage_release_unused_pages(&mpd, give_up_on_write);
2817                /* Submit prepared bio */
2818                ext4_io_submit(&mpd.io_submit);
2819
2820                /*
2821                 * Drop our io_end reference we got from init. We have
2822                 * to be careful and use deferred io_end finishing if
2823                 * we are still holding the transaction as we can
2824                 * release the last reference to io_end which may end
2825                 * up doing unwritten extent conversion.
2826                 */
2827                if (handle) {
2828                        ext4_put_io_end_defer(mpd.io_submit.io_end);
2829                        ext4_journal_stop(handle);
2830                } else
2831                        ext4_put_io_end(mpd.io_submit.io_end);
2832                mpd.io_submit.io_end = NULL;
2833
2834                if (ret == -ENOSPC && sbi->s_journal) {
2835                        /*
2836                         * Commit the transaction which would
2837                         * free blocks released in the transaction
2838                         * and try again
2839                         */
2840                        jbd2_journal_force_commit_nested(sbi->s_journal);
2841                        ret = 0;
2842                        continue;
2843                }
2844                /* Fatal error - ENOMEM, EIO... */
2845                if (ret)
2846                        break;
2847        }
2848unplug:
2849        blk_finish_plug(&plug);
2850        if (!ret && !cycled && wbc->nr_to_write > 0) {
2851                cycled = 1;
2852                mpd.last_page = writeback_index - 1;
2853                mpd.first_page = 0;
2854                goto retry;
2855        }
2856
2857        /* Update index */
2858        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2859                /*
2860                 * Set the writeback_index so that range_cyclic
2861                 * mode will write it back later
2862                 */
2863                mapping->writeback_index = mpd.first_page;
2864
2865out_writepages:
2866        trace_ext4_writepages_result(inode, wbc, ret,
2867                                     nr_to_write - wbc->nr_to_write);
2868        percpu_up_read(&sbi->s_writepages_rwsem);
2869        return ret;
2870}
2871
2872static int ext4_dax_writepages(struct address_space *mapping,
2873                               struct writeback_control *wbc)
2874{
2875        int ret;
2876        long nr_to_write = wbc->nr_to_write;
2877        struct inode *inode = mapping->host;
2878        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2879
2880        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2881                return -EIO;
2882
2883        percpu_down_read(&sbi->s_writepages_rwsem);
2884        trace_ext4_writepages(inode, wbc);
2885
2886        ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2887        trace_ext4_writepages_result(inode, wbc, ret,
2888                                     nr_to_write - wbc->nr_to_write);
2889        percpu_up_read(&sbi->s_writepages_rwsem);
2890        return ret;
2891}
2892
2893static int ext4_nonda_switch(struct super_block *sb)
2894{
2895        s64 free_clusters, dirty_clusters;
2896        struct ext4_sb_info *sbi = EXT4_SB(sb);
2897
2898        /*
2899         * switch to non delalloc mode if we are running low
2900         * on free block. The free block accounting via percpu
2901         * counters can get slightly wrong with percpu_counter_batch getting
2902         * accumulated on each CPU without updating global counters
2903         * Delalloc need an accurate free block accounting. So switch
2904         * to non delalloc when we are near to error range.
2905         */
2906        free_clusters =
2907                percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2908        dirty_clusters =
2909                percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2910        /*
2911         * Start pushing delalloc when 1/2 of free blocks are dirty.
2912         */
2913        if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2914                try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2915
2916        if (2 * free_clusters < 3 * dirty_clusters ||
2917            free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2918                /*
2919                 * free block count is less than 150% of dirty blocks
2920                 * or free blocks is less than watermark
2921                 */
2922                return 1;
2923        }
2924        return 0;
2925}
2926
2927static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2928                               loff_t pos, unsigned len, unsigned flags,
2929                               struct page **pagep, void **fsdata)
2930{
2931        int ret, retries = 0;
2932        struct page *page;
2933        pgoff_t index;
2934        struct inode *inode = mapping->host;
2935
2936        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2937                return -EIO;
2938
2939        index = pos >> PAGE_SHIFT;
2940
2941        if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2942            ext4_verity_in_progress(inode)) {
2943                *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2944                return ext4_write_begin(file, mapping, pos,
2945                                        len, flags, pagep, fsdata);
2946        }
2947        *fsdata = (void *)0;
2948        trace_ext4_da_write_begin(inode, pos, len, flags);
2949
2950        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2951                ret = ext4_da_write_inline_data_begin(mapping, inode,
2952                                                      pos, len, flags,
2953                                                      pagep, fsdata);
2954                if (ret < 0)
2955                        return ret;
2956                if (ret == 1)
2957                        return 0;
2958        }
2959
2960retry:
2961        page = grab_cache_page_write_begin(mapping, index, flags);
2962        if (!page)
2963                return -ENOMEM;
2964
2965        /* In case writeback began while the page was unlocked */
2966        wait_for_stable_page(page);
2967
2968#ifdef CONFIG_FS_ENCRYPTION
2969        ret = ext4_block_write_begin(page, pos, len,
2970                                     ext4_da_get_block_prep);
2971#else
2972        ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2973#endif
2974        if (ret < 0) {
2975                unlock_page(page);
2976                put_page(page);
2977                /*
2978                 * block_write_begin may have instantiated a few blocks
2979                 * outside i_size.  Trim these off again. Don't need
2980                 * i_size_read because we hold inode lock.
2981                 */
2982                if (pos + len > inode->i_size)
2983                        ext4_truncate_failed_write(inode);
2984
2985                if (ret == -ENOSPC &&
2986                    ext4_should_retry_alloc(inode->i_sb, &retries))
2987                        goto retry;
2988                return ret;
2989        }
2990
2991        *pagep = page;
2992        return ret;
2993}
2994
2995/*
2996 * Check if we should update i_disksize
2997 * when write to the end of file but not require block allocation
2998 */
2999static int ext4_da_should_update_i_disksize(struct page *page,
3000                                            unsigned long offset)
3001{
3002        struct buffer_head *bh;
3003        struct inode *inode = page->mapping->host;
3004        unsigned int idx;
3005        int i;
3006
3007        bh = page_buffers(page);
3008        idx = offset >> inode->i_blkbits;
3009
3010        for (i = 0; i < idx; i++)
3011                bh = bh->b_this_page;
3012
3013        if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3014                return 0;
3015        return 1;
3016}
3017
3018static int ext4_da_write_end(struct file *file,
3019                             struct address_space *mapping,
3020                             loff_t pos, unsigned len, unsigned copied,
3021                             struct page *page, void *fsdata)
3022{
3023        struct inode *inode = mapping->host;
3024        loff_t new_i_size;
3025        unsigned long start, end;
3026        int write_mode = (int)(unsigned long)fsdata;
3027
3028        if (write_mode == FALL_BACK_TO_NONDELALLOC)
3029                return ext4_write_end(file, mapping, pos,
3030                                      len, copied, page, fsdata);
3031
3032        trace_ext4_da_write_end(inode, pos, len, copied);
3033
3034        if (write_mode != CONVERT_INLINE_DATA &&
3035            ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3036            ext4_has_inline_data(inode))
3037                return ext4_write_inline_data_end(inode, pos, len, copied, page);
3038
3039        start = pos & (PAGE_SIZE - 1);
3040        end = start + copied - 1;
3041
3042        /*
3043         * Since we are holding inode lock, we are sure i_disksize <=
3044         * i_size. We also know that if i_disksize < i_size, there are
3045         * delalloc writes pending in the range upto i_size. If the end of
3046         * the current write is <= i_size, there's no need to touch
3047         * i_disksize since writeback will push i_disksize upto i_size
3048         * eventually. If the end of the current write is > i_size and
3049         * inside an allocated block (ext4_da_should_update_i_disksize()
3050         * check), we need to update i_disksize here as neither
3051         * ext4_writepage() nor certain ext4_writepages() paths not
3052         * allocating blocks update i_disksize.
3053         *
3054         * Note that we defer inode dirtying to generic_write_end() /
3055         * ext4_da_write_inline_data_end().
3056         */
3057        new_i_size = pos + copied;
3058        if (copied && new_i_size > inode->i_size &&
3059            ext4_da_should_update_i_disksize(page, end))
3060                ext4_update_i_disksize(inode, new_i_size);
3061
3062        return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3063}
3064
3065/*
3066 * Force all delayed allocation blocks to be allocated for a given inode.
3067 */
3068int ext4_alloc_da_blocks(struct inode *inode)
3069{
3070        trace_ext4_alloc_da_blocks(inode);
3071
3072        if (!EXT4_I(inode)->i_reserved_data_blocks)
3073                return 0;
3074
3075        /*
3076         * We do something simple for now.  The filemap_flush() will
3077         * also start triggering a write of the data blocks, which is
3078         * not strictly speaking necessary (and for users of
3079         * laptop_mode, not even desirable).  However, to do otherwise
3080         * would require replicating code paths in:
3081         *
3082         * ext4_writepages() ->
3083         *    write_cache_pages() ---> (via passed in callback function)
3084         *        __mpage_da_writepage() -->
3085         *           mpage_add_bh_to_extent()
3086         *           mpage_da_map_blocks()
3087         *
3088         * The problem is that write_cache_pages(), located in
3089         * mm/page-writeback.c, marks pages clean in preparation for
3090         * doing I/O, which is not desirable if we're not planning on
3091         * doing I/O at all.
3092         *
3093         * We could call write_cache_pages(), and then redirty all of
3094         * the pages by calling redirty_page_for_writepage() but that
3095         * would be ugly in the extreme.  So instead we would need to
3096         * replicate parts of the code in the above functions,
3097         * simplifying them because we wouldn't actually intend to
3098         * write out the pages, but rather only collect contiguous
3099         * logical block extents, call the multi-block allocator, and
3100         * then update the buffer heads with the block allocations.
3101         *
3102         * For now, though, we'll cheat by calling filemap_flush(),
3103         * which will map the blocks, and start the I/O, but not
3104         * actually wait for the I/O to complete.
3105         */
3106        return filemap_flush(inode->i_mapping);
3107}
3108
3109/*
3110 * bmap() is special.  It gets used by applications such as lilo and by
3111 * the swapper to find the on-disk block of a specific piece of data.
3112 *
3113 * Naturally, this is dangerous if the block concerned is still in the
3114 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3115 * filesystem and enables swap, then they may get a nasty shock when the
3116 * data getting swapped to that swapfile suddenly gets overwritten by
3117 * the original zero's written out previously to the journal and
3118 * awaiting writeback in the kernel's buffer cache.
3119 *
3120 * So, if we see any bmap calls here on a modified, data-journaled file,
3121 * take extra steps to flush any blocks which might be in the cache.
3122 */
3123static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3124{
3125        struct inode *inode = mapping->host;
3126        journal_t *journal;
3127        int err;
3128
3129        /*
3130         * We can get here for an inline file via the FIBMAP ioctl
3131         */
3132        if (ext4_has_inline_data(inode))
3133                return 0;
3134
3135        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3136                        test_opt(inode->i_sb, DELALLOC)) {
3137                /*
3138                 * With delalloc we want to sync the file
3139                 * so that we can make sure we allocate
3140                 * blocks for file
3141                 */
3142                filemap_write_and_wait(mapping);
3143        }
3144
3145        if (EXT4_JOURNAL(inode) &&
3146            ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3147                /*
3148                 * This is a REALLY heavyweight approach, but the use of
3149                 * bmap on dirty files is expected to be extremely rare:
3150                 * only if we run lilo or swapon on a freshly made file
3151                 * do we expect this to happen.
3152                 *
3153                 * (bmap requires CAP_SYS_RAWIO so this does not
3154                 * represent an unprivileged user DOS attack --- we'd be
3155                 * in trouble if mortal users could trigger this path at
3156                 * will.)
3157                 *
3158                 * NB. EXT4_STATE_JDATA is not set on files other than
3159                 * regular files.  If somebody wants to bmap a directory
3160                 * or symlink and gets confused because the buffer
3161                 * hasn't yet been flushed to disk, they deserve
3162                 * everything they get.
3163                 */
3164
3165                ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3166                journal = EXT4_JOURNAL(inode);
3167                jbd2_journal_lock_updates(journal);
3168                err = jbd2_journal_flush(journal, 0);
3169                jbd2_journal_unlock_updates(journal);
3170
3171                if (err)
3172                        return 0;
3173        }
3174
3175        return iomap_bmap(mapping, block, &ext4_iomap_ops);
3176}
3177
3178static int ext4_readpage(struct file *file, struct page *page)
3179{
3180        int ret = -EAGAIN;
3181        struct inode *inode = page->mapping->host;
3182
3183        trace_ext4_readpage(page);
3184
3185        if (ext4_has_inline_data(inode))
3186                ret = ext4_readpage_inline(inode, page);
3187
3188        if (ret == -EAGAIN)
3189                return ext4_mpage_readpages(inode, NULL, page);
3190
3191        return ret;
3192}
3193
3194static void ext4_readahead(struct readahead_control *rac)
3195{
3196        struct inode *inode = rac->mapping->host;
3197
3198        /* If the file has inline data, no need to do readahead. */
3199        if (ext4_has_inline_data(inode))
3200                return;
3201
3202        ext4_mpage_readpages(inode, rac, NULL);
3203}
3204
3205static void ext4_invalidatepage(struct page *page, unsigned int offset,
3206                                unsigned int length)
3207{
3208        trace_ext4_invalidatepage(page, offset, length);
3209
3210        /* No journalling happens on data buffers when this function is used */
3211        WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3212
3213        block_invalidatepage(page, offset, length);
3214}
3215
3216static int __ext4_journalled_invalidatepage(struct page *page,
3217                                            unsigned int offset,
3218                                            unsigned int length)
3219{
3220        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3221
3222        trace_ext4_journalled_invalidatepage(page, offset, length);
3223
3224        /*
3225         * If it's a full truncate we just forget about the pending dirtying
3226         */
3227        if (offset == 0 && length == PAGE_SIZE)
3228                ClearPageChecked(page);
3229
3230        return jbd2_journal_invalidatepage(journal, page, offset, length);
3231}
3232
3233/* Wrapper for aops... */
3234static void ext4_journalled_invalidatepage(struct page *page,
3235                                           unsigned int offset,
3236                                           unsigned int length)
3237{
3238        WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3239}
3240
3241static int ext4_releasepage(struct page *page, gfp_t wait)
3242{
3243        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3244
3245        trace_ext4_releasepage(page);
3246
3247        /* Page has dirty journalled data -> cannot release */
3248        if (PageChecked(page))
3249                return 0;
3250        if (journal)
3251                return jbd2_journal_try_to_free_buffers(journal, page);
3252        else
3253                return try_to_free_buffers(page);
3254}
3255
3256static bool ext4_inode_datasync_dirty(struct inode *inode)
3257{
3258        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3259
3260        if (journal) {
3261                if (jbd2_transaction_committed(journal,
3262                        EXT4_I(inode)->i_datasync_tid))
3263                        return false;
3264                if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3265                        return !list_empty(&EXT4_I(inode)->i_fc_list);
3266                return true;
3267        }
3268
3269        /* Any metadata buffers to write? */
3270        if (!list_empty(&inode->i_mapping->private_list))
3271                return true;
3272        return inode->i_state & I_DIRTY_DATASYNC;
3273}
3274
3275static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3276                           struct ext4_map_blocks *map, loff_t offset,
3277                           loff_t length)
3278{
3279        u8 blkbits = inode->i_blkbits;
3280
3281        /*
3282         * Writes that span EOF might trigger an I/O size update on completion,
3283         * so consider them to be dirty for the purpose of O_DSYNC, even if
3284         * there is no other metadata changes being made or are pending.
3285         */
3286        iomap->flags = 0;
3287        if (ext4_inode_datasync_dirty(inode) ||
3288            offset + length > i_size_read(inode))
3289                iomap->flags |= IOMAP_F_DIRTY;
3290
3291        if (map->m_flags & EXT4_MAP_NEW)
3292                iomap->flags |= IOMAP_F_NEW;
3293
3294        iomap->bdev = inode->i_sb->s_bdev;
3295        iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3296        iomap->offset = (u64) map->m_lblk << blkbits;
3297        iomap->length = (u64) map->m_len << blkbits;
3298
3299        if ((map->m_flags & EXT4_MAP_MAPPED) &&
3300            !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3301                iomap->flags |= IOMAP_F_MERGED;
3302
3303        /*
3304         * Flags passed to ext4_map_blocks() for direct I/O writes can result
3305         * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3306         * set. In order for any allocated unwritten extents to be converted
3307         * into written extents correctly within the ->end_io() handler, we
3308         * need to ensure that the iomap->type is set appropriately. Hence, the
3309         * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3310         * been set first.
3311         */
3312        if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3313                iomap->type = IOMAP_UNWRITTEN;
3314                iomap->addr = (u64) map->m_pblk << blkbits;
3315        } else if (map->m_flags & EXT4_MAP_MAPPED) {
3316                iomap->type = IOMAP_MAPPED;
3317                iomap->addr = (u64) map->m_pblk << blkbits;
3318        } else {
3319                iomap->type = IOMAP_HOLE;
3320                iomap->addr = IOMAP_NULL_ADDR;
3321        }
3322}
3323
3324static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3325                            unsigned int flags)
3326{
3327        handle_t *handle;
3328        u8 blkbits = inode->i_blkbits;
3329        int ret, dio_credits, m_flags = 0, retries = 0;
3330
3331        /*
3332         * Trim the mapping request to the maximum value that we can map at
3333         * once for direct I/O.
3334         */
3335        if (map->m_len > DIO_MAX_BLOCKS)
3336                map->m_len = DIO_MAX_BLOCKS;
3337        dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3338
3339retry:
3340        /*
3341         * Either we allocate blocks and then don't get an unwritten extent, so
3342         * in that case we have reserved enough credits. Or, the blocks are
3343         * already allocated and unwritten. In that case, the extent conversion
3344         * fits into the credits as well.
3345         */
3346        handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3347        if (IS_ERR(handle))
3348                return PTR_ERR(handle);
3349
3350        /*
3351         * DAX and direct I/O are the only two operations that are currently
3352         * supported with IOMAP_WRITE.
3353         */
3354        WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3355        if (IS_DAX(inode))
3356                m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3357        /*
3358         * We use i_size instead of i_disksize here because delalloc writeback
3359         * can complete at any point during the I/O and subsequently push the
3360         * i_disksize out to i_size. This could be beyond where direct I/O is
3361         * happening and thus expose allocated blocks to direct I/O reads.
3362         */
3363        else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3364                m_flags = EXT4_GET_BLOCKS_CREATE;
3365        else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3366                m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3367
3368        ret = ext4_map_blocks(handle, inode, map, m_flags);
3369
3370        /*
3371         * We cannot fill holes in indirect tree based inodes as that could
3372         * expose stale data in the case of a crash. Use the magic error code
3373         * to fallback to buffered I/O.
3374         */
3375        if (!m_flags && !ret)
3376                ret = -ENOTBLK;
3377
3378        ext4_journal_stop(handle);
3379        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3380                goto retry;
3381
3382        return ret;
3383}
3384
3385
3386static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3387                unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3388{
3389        int ret;
3390        struct ext4_map_blocks map;
3391        u8 blkbits = inode->i_blkbits;
3392
3393        if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3394                return -EINVAL;
3395
3396        if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3397                return -ERANGE;
3398
3399        /*
3400         * Calculate the first and last logical blocks respectively.
3401         */
3402        map.m_lblk = offset >> blkbits;
3403        map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3404                          EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3405
3406        if (flags & IOMAP_WRITE) {
3407                /*
3408                 * We check here if the blocks are already allocated, then we
3409                 * don't need to start a journal txn and we can directly return
3410                 * the mapping information. This could boost performance
3411                 * especially in multi-threaded overwrite requests.
3412                 */
3413                if (offset + length <= i_size_read(inode)) {
3414                        ret = ext4_map_blocks(NULL, inode, &map, 0);
3415                        if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3416                                goto out;
3417                }
3418                ret = ext4_iomap_alloc(inode, &map, flags);
3419        } else {
3420                ret = ext4_map_blocks(NULL, inode, &map, 0);
3421        }
3422
3423        if (ret < 0)
3424                return ret;
3425out:
3426        ext4_set_iomap(inode, iomap, &map, offset, length);
3427
3428        return 0;
3429}
3430
3431static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3432                loff_t length, unsigned flags, struct iomap *iomap,
3433                struct iomap *srcmap)
3434{
3435        int ret;
3436
3437        /*
3438         * Even for writes we don't need to allocate blocks, so just pretend
3439         * we are reading to save overhead of starting a transaction.
3440         */
3441        flags &= ~IOMAP_WRITE;
3442        ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3443        WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3444        return ret;
3445}
3446
3447static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3448                          ssize_t written, unsigned flags, struct iomap *iomap)
3449{
3450        /*
3451         * Check to see whether an error occurred while writing out the data to
3452         * the allocated blocks. If so, return the magic error code so that we
3453         * fallback to buffered I/O and attempt to complete the remainder of
3454         * the I/O. Any blocks that may have been allocated in preparation for
3455         * the direct I/O will be reused during buffered I/O.
3456         */
3457        if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3458                return -ENOTBLK;
3459
3460        return 0;
3461}
3462
3463const struct iomap_ops ext4_iomap_ops = {
3464        .iomap_begin            = ext4_iomap_begin,
3465        .iomap_end              = ext4_iomap_end,
3466};
3467
3468const struct iomap_ops ext4_iomap_overwrite_ops = {
3469        .iomap_begin            = ext4_iomap_overwrite_begin,
3470        .iomap_end              = ext4_iomap_end,
3471};
3472
3473static bool ext4_iomap_is_delalloc(struct inode *inode,
3474                                   struct ext4_map_blocks *map)
3475{
3476        struct extent_status es;
3477        ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3478
3479        ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3480                                  map->m_lblk, end, &es);
3481
3482        if (!es.es_len || es.es_lblk > end)
3483                return false;
3484
3485        if (es.es_lblk > map->m_lblk) {
3486                map->m_len = es.es_lblk - map->m_lblk;
3487                return false;
3488        }
3489
3490        offset = map->m_lblk - es.es_lblk;
3491        map->m_len = es.es_len - offset;
3492
3493        return true;
3494}
3495
3496static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3497                                   loff_t length, unsigned int flags,
3498                                   struct iomap *iomap, struct iomap *srcmap)
3499{
3500        int ret;
3501        bool delalloc = false;
3502        struct ext4_map_blocks map;
3503        u8 blkbits = inode->i_blkbits;
3504
3505        if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3506                return -EINVAL;
3507
3508        if (ext4_has_inline_data(inode)) {
3509                ret = ext4_inline_data_iomap(inode, iomap);
3510                if (ret != -EAGAIN) {
3511                        if (ret == 0 && offset >= iomap->length)
3512                                ret = -ENOENT;
3513                        return ret;
3514                }
3515        }
3516
3517        /*
3518         * Calculate the first and last logical block respectively.
3519         */
3520        map.m_lblk = offset >> blkbits;
3521        map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3522                          EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3523
3524        /*
3525         * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3526         * So handle it here itself instead of querying ext4_map_blocks().
3527         * Since ext4_map_blocks() will warn about it and will return
3528         * -EIO error.
3529         */
3530        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3531                struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3532
3533                if (offset >= sbi->s_bitmap_maxbytes) {
3534                        map.m_flags = 0;
3535                        goto set_iomap;
3536                }
3537        }
3538
3539        ret = ext4_map_blocks(NULL, inode, &map, 0);
3540        if (ret < 0)
3541                return ret;
3542        if (ret == 0)
3543                delalloc = ext4_iomap_is_delalloc(inode, &map);
3544
3545set_iomap:
3546        ext4_set_iomap(inode, iomap, &map, offset, length);
3547        if (delalloc && iomap->type == IOMAP_HOLE)
3548                iomap->type = IOMAP_DELALLOC;
3549
3550        return 0;
3551}
3552
3553const struct iomap_ops ext4_iomap_report_ops = {
3554        .iomap_begin = ext4_iomap_begin_report,
3555};
3556
3557/*
3558 * Pages can be marked dirty completely asynchronously from ext4's journalling
3559 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3560 * much here because ->set_page_dirty is called under VFS locks.  The page is
3561 * not necessarily locked.
3562 *
3563 * We cannot just dirty the page and leave attached buffers clean, because the
3564 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3565 * or jbddirty because all the journalling code will explode.
3566 *
3567 * So what we do is to mark the page "pending dirty" and next time writepage
3568 * is called, propagate that into the buffers appropriately.
3569 */
3570static int ext4_journalled_set_page_dirty(struct page *page)
3571{
3572        SetPageChecked(page);
3573        return __set_page_dirty_nobuffers(page);
3574}
3575
3576static int ext4_set_page_dirty(struct page *page)
3577{
3578        WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3579        WARN_ON_ONCE(!page_has_buffers(page));
3580        return __set_page_dirty_buffers(page);
3581}
3582
3583static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3584                                    struct file *file, sector_t *span)
3585{
3586        return iomap_swapfile_activate(sis, file, span,
3587                                       &ext4_iomap_report_ops);
3588}
3589
3590static const struct address_space_operations ext4_aops = {
3591        .readpage               = ext4_readpage,
3592        .readahead              = ext4_readahead,
3593        .writepage              = ext4_writepage,
3594        .writepages             = ext4_writepages,
3595        .write_begin            = ext4_write_begin,
3596        .write_end              = ext4_write_end,
3597        .set_page_dirty         = ext4_set_page_dirty,
3598        .bmap                   = ext4_bmap,
3599        .invalidatepage         = ext4_invalidatepage,
3600        .releasepage            = ext4_releasepage,
3601        .direct_IO              = noop_direct_IO,
3602        .migratepage            = buffer_migrate_page,
3603        .is_partially_uptodate  = block_is_partially_uptodate,
3604        .error_remove_page      = generic_error_remove_page,
3605        .swap_activate          = ext4_iomap_swap_activate,
3606};
3607
3608static const struct address_space_operations ext4_journalled_aops = {
3609        .readpage               = ext4_readpage,
3610        .readahead              = ext4_readahead,
3611        .writepage              = ext4_writepage,
3612        .writepages             = ext4_writepages,
3613        .write_begin            = ext4_write_begin,
3614        .write_end              = ext4_journalled_write_end,
3615        .set_page_dirty         = ext4_journalled_set_page_dirty,
3616        .bmap                   = ext4_bmap,
3617        .invalidatepage         = ext4_journalled_invalidatepage,
3618        .releasepage            = ext4_releasepage,
3619        .direct_IO              = noop_direct_IO,
3620        .is_partially_uptodate  = block_is_partially_uptodate,
3621        .error_remove_page      = generic_error_remove_page,
3622        .swap_activate          = ext4_iomap_swap_activate,
3623};
3624
3625static const struct address_space_operations ext4_da_aops = {
3626        .readpage               = ext4_readpage,
3627        .readahead              = ext4_readahead,
3628        .writepage              = ext4_writepage,
3629        .writepages             = ext4_writepages,
3630        .write_begin            = ext4_da_write_begin,
3631        .write_end              = ext4_da_write_end,
3632        .set_page_dirty         = ext4_set_page_dirty,
3633        .bmap                   = ext4_bmap,
3634        .invalidatepage         = ext4_invalidatepage,
3635        .releasepage            = ext4_releasepage,
3636        .direct_IO              = noop_direct_IO,
3637        .migratepage            = buffer_migrate_page,
3638        .is_partially_uptodate  = block_is_partially_uptodate,
3639        .error_remove_page      = generic_error_remove_page,
3640        .swap_activate          = ext4_iomap_swap_activate,
3641};
3642
3643static const struct address_space_operations ext4_dax_aops = {
3644        .writepages             = ext4_dax_writepages,
3645        .direct_IO              = noop_direct_IO,
3646        .set_page_dirty         = __set_page_dirty_no_writeback,
3647        .bmap                   = ext4_bmap,
3648        .invalidatepage         = noop_invalidatepage,
3649        .swap_activate          = ext4_iomap_swap_activate,
3650};
3651
3652void ext4_set_aops(struct inode *inode)
3653{
3654        switch (ext4_inode_journal_mode(inode)) {
3655        case EXT4_INODE_ORDERED_DATA_MODE:
3656        case EXT4_INODE_WRITEBACK_DATA_MODE:
3657                break;
3658        case EXT4_INODE_JOURNAL_DATA_MODE:
3659                inode->i_mapping->a_ops = &ext4_journalled_aops;
3660                return;
3661        default:
3662                BUG();
3663        }
3664        if (IS_DAX(inode))
3665                inode->i_mapping->a_ops = &ext4_dax_aops;
3666        else if (test_opt(inode->i_sb, DELALLOC))
3667                inode->i_mapping->a_ops = &ext4_da_aops;
3668        else
3669                inode->i_mapping->a_ops = &ext4_aops;
3670}
3671
3672static int __ext4_block_zero_page_range(handle_t *handle,
3673                struct address_space *mapping, loff_t from, loff_t length)
3674{
3675        ext4_fsblk_t index = from >> PAGE_SHIFT;
3676        unsigned offset = from & (PAGE_SIZE-1);
3677        unsigned blocksize, pos;
3678        ext4_lblk_t iblock;
3679        struct inode *inode = mapping->host;
3680        struct buffer_head *bh;
3681        struct page *page;
3682        int err = 0;
3683
3684        page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3685                                   mapping_gfp_constraint(mapping, ~__GFP_FS));
3686        if (!page)
3687                return -ENOMEM;
3688
3689        blocksize = inode->i_sb->s_blocksize;
3690
3691        iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3692
3693        if (!page_has_buffers(page))
3694                create_empty_buffers(page, blocksize, 0);
3695
3696        /* Find the buffer that contains "offset" */
3697        bh = page_buffers(page);
3698        pos = blocksize;
3699        while (offset >= pos) {
3700                bh = bh->b_this_page;
3701                iblock++;
3702                pos += blocksize;
3703        }
3704        if (buffer_freed(bh)) {
3705                BUFFER_TRACE(bh, "freed: skip");
3706                goto unlock;
3707        }
3708        if (!buffer_mapped(bh)) {
3709                BUFFER_TRACE(bh, "unmapped");
3710                ext4_get_block(inode, iblock, bh, 0);
3711                /* unmapped? It's a hole - nothing to do */
3712                if (!buffer_mapped(bh)) {
3713                        BUFFER_TRACE(bh, "still unmapped");
3714                        goto unlock;
3715                }
3716        }
3717
3718        /* Ok, it's mapped. Make sure it's up-to-date */
3719        if (PageUptodate(page))
3720                set_buffer_uptodate(bh);
3721
3722        if (!buffer_uptodate(bh)) {
3723                err = ext4_read_bh_lock(bh, 0, true);
3724                if (err)
3725                        goto unlock;
3726                if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3727                        /* We expect the key to be set. */
3728                        BUG_ON(!fscrypt_has_encryption_key(inode));
3729                        err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3730                                                               bh_offset(bh));
3731                        if (err) {
3732                                clear_buffer_uptodate(bh);
3733                                goto unlock;
3734                        }
3735                }
3736        }
3737        if (ext4_should_journal_data(inode)) {
3738                BUFFER_TRACE(bh, "get write access");
3739                err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3740                                                    EXT4_JTR_NONE);
3741                if (err)
3742                        goto unlock;
3743        }
3744        zero_user(page, offset, length);
3745        BUFFER_TRACE(bh, "zeroed end of block");
3746
3747        if (ext4_should_journal_data(inode)) {
3748                err = ext4_handle_dirty_metadata(handle, inode, bh);
3749        } else {
3750                err = 0;
3751                mark_buffer_dirty(bh);
3752                if (ext4_should_order_data(inode))
3753                        err = ext4_jbd2_inode_add_write(handle, inode, from,
3754                                        length);
3755        }
3756
3757unlock:
3758        unlock_page(page);
3759        put_page(page);
3760        return err;
3761}
3762
3763/*
3764 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3765 * starting from file offset 'from'.  The range to be zero'd must
3766 * be contained with in one block.  If the specified range exceeds
3767 * the end of the block it will be shortened to end of the block
3768 * that corresponds to 'from'
3769 */
3770static int ext4_block_zero_page_range(handle_t *handle,
3771                struct address_space *mapping, loff_t from, loff_t length)
3772{
3773        struct inode *inode = mapping->host;
3774        unsigned offset = from & (PAGE_SIZE-1);
3775        unsigned blocksize = inode->i_sb->s_blocksize;
3776        unsigned max = blocksize - (offset & (blocksize - 1));
3777
3778        /*
3779         * correct length if it does not fall between
3780         * 'from' and the end of the block
3781         */
3782        if (length > max || length < 0)
3783                length = max;
3784
3785        if (IS_DAX(inode)) {
3786                return iomap_zero_range(inode, from, length, NULL,
3787                                        &ext4_iomap_ops);
3788        }
3789        return __ext4_block_zero_page_range(handle, mapping, from, length);
3790}
3791
3792/*
3793 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3794 * up to the end of the block which corresponds to `from'.
3795 * This required during truncate. We need to physically zero the tail end
3796 * of that block so it doesn't yield old data if the file is later grown.
3797 */
3798static int ext4_block_truncate_page(handle_t *handle,
3799                struct address_space *mapping, loff_t from)
3800{
3801        unsigned offset = from & (PAGE_SIZE-1);
3802        unsigned length;
3803        unsigned blocksize;
3804        struct inode *inode = mapping->host;
3805
3806        /* If we are processing an encrypted inode during orphan list handling */
3807        if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3808                return 0;
3809
3810        blocksize = inode->i_sb->s_blocksize;
3811        length = blocksize - (offset & (blocksize - 1));
3812
3813        return ext4_block_zero_page_range(handle, mapping, from, length);
3814}
3815
3816int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3817                             loff_t lstart, loff_t length)
3818{
3819        struct super_block *sb = inode->i_sb;
3820        struct address_space *mapping = inode->i_mapping;
3821        unsigned partial_start, partial_end;
3822        ext4_fsblk_t start, end;
3823        loff_t byte_end = (lstart + length - 1);
3824        int err = 0;
3825
3826        partial_start = lstart & (sb->s_blocksize - 1);
3827        partial_end = byte_end & (sb->s_blocksize - 1);
3828
3829        start = lstart >> sb->s_blocksize_bits;
3830        end = byte_end >> sb->s_blocksize_bits;
3831
3832        /* Handle partial zero within the single block */
3833        if (start == end &&
3834            (partial_start || (partial_end != sb->s_blocksize - 1))) {
3835                err = ext4_block_zero_page_range(handle, mapping,
3836                                                 lstart, length);
3837                return err;
3838        }
3839        /* Handle partial zero out on the start of the range */
3840        if (partial_start) {
3841                err = ext4_block_zero_page_range(handle, mapping,
3842                                                 lstart, sb->s_blocksize);
3843                if (err)
3844                        return err;
3845        }
3846        /* Handle partial zero out on the end of the range */
3847        if (partial_end != sb->s_blocksize - 1)
3848                err = ext4_block_zero_page_range(handle, mapping,
3849                                                 byte_end - partial_end,
3850                                                 partial_end + 1);
3851        return err;
3852}
3853
3854int ext4_can_truncate(struct inode *inode)
3855{
3856        if (S_ISREG(inode->i_mode))
3857                return 1;
3858        if (S_ISDIR(inode->i_mode))
3859                return 1;
3860        if (S_ISLNK(inode->i_mode))
3861                return !ext4_inode_is_fast_symlink(inode);
3862        return 0;
3863}
3864
3865/*
3866 * We have to make sure i_disksize gets properly updated before we truncate
3867 * page cache due to hole punching or zero range. Otherwise i_disksize update
3868 * can get lost as it may have been postponed to submission of writeback but
3869 * that will never happen after we truncate page cache.
3870 */
3871int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3872                                      loff_t len)
3873{
3874        handle_t *handle;
3875        int ret;
3876
3877        loff_t size = i_size_read(inode);
3878
3879        WARN_ON(!inode_is_locked(inode));
3880        if (offset > size || offset + len < size)
3881                return 0;
3882
3883        if (EXT4_I(inode)->i_disksize >= size)
3884                return 0;
3885
3886        handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3887        if (IS_ERR(handle))
3888                return PTR_ERR(handle);
3889        ext4_update_i_disksize(inode, size);
3890        ret = ext4_mark_inode_dirty(handle, inode);
3891        ext4_journal_stop(handle);
3892
3893        return ret;
3894}
3895
3896static void ext4_wait_dax_page(struct inode *inode)
3897{
3898        filemap_invalidate_unlock(inode->i_mapping);
3899        schedule();
3900        filemap_invalidate_lock(inode->i_mapping);
3901}
3902
3903int ext4_break_layouts(struct inode *inode)
3904{
3905        struct page *page;
3906        int error;
3907
3908        if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3909                return -EINVAL;
3910
3911        do {
3912                page = dax_layout_busy_page(inode->i_mapping);
3913                if (!page)
3914                        return 0;
3915
3916                error = ___wait_var_event(&page->_refcount,
3917                                atomic_read(&page->_refcount) == 1,
3918                                TASK_INTERRUPTIBLE, 0, 0,
3919                                ext4_wait_dax_page(inode));
3920        } while (error == 0);
3921
3922        return error;
3923}
3924
3925/*
3926 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3927 * associated with the given offset and length
3928 *
3929 * @inode:  File inode
3930 * @offset: The offset where the hole will begin
3931 * @len:    The length of the hole
3932 *
3933 * Returns: 0 on success or negative on failure
3934 */
3935
3936int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3937{
3938        struct super_block *sb = inode->i_sb;
3939        ext4_lblk_t first_block, stop_block;
3940        struct address_space *mapping = inode->i_mapping;
3941        loff_t first_block_offset, last_block_offset;
3942        handle_t *handle;
3943        unsigned int credits;
3944        int ret = 0, ret2 = 0;
3945
3946        trace_ext4_punch_hole(inode, offset, length, 0);
3947
3948        ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3949        if (ext4_has_inline_data(inode)) {
3950                filemap_invalidate_lock(mapping);
3951                ret = ext4_convert_inline_data(inode);
3952                filemap_invalidate_unlock(mapping);
3953                if (ret)
3954                        return ret;
3955        }
3956
3957        /*
3958         * Write out all dirty pages to avoid race conditions
3959         * Then release them.
3960         */
3961        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3962                ret = filemap_write_and_wait_range(mapping, offset,
3963                                                   offset + length - 1);
3964                if (ret)
3965                        return ret;
3966        }
3967
3968        inode_lock(inode);
3969
3970        /* No need to punch hole beyond i_size */
3971        if (offset >= inode->i_size)
3972                goto out_mutex;
3973
3974        /*
3975         * If the hole extends beyond i_size, set the hole
3976         * to end after the page that contains i_size
3977         */
3978        if (offset + length > inode->i_size) {
3979                length = inode->i_size +
3980                   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3981                   offset;
3982        }
3983
3984        if (offset & (sb->s_blocksize - 1) ||
3985            (offset + length) & (sb->s_blocksize - 1)) {
3986                /*
3987                 * Attach jinode to inode for jbd2 if we do any zeroing of
3988                 * partial block
3989                 */
3990                ret = ext4_inode_attach_jinode(inode);
3991                if (ret < 0)
3992                        goto out_mutex;
3993
3994        }
3995
3996        /* Wait all existing dio workers, newcomers will block on i_mutex */
3997        inode_dio_wait(inode);
3998
3999        /*
4000         * Prevent page faults from reinstantiating pages we have released from
4001         * page cache.
4002         */
4003        filemap_invalidate_lock(mapping);
4004
4005        ret = ext4_break_layouts(inode);
4006        if (ret)
4007                goto out_dio;
4008
4009        first_block_offset = round_up(offset, sb->s_blocksize);
4010        last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4011
4012        /* Now release the pages and zero block aligned part of pages*/
4013        if (last_block_offset > first_block_offset) {
4014                ret = ext4_update_disksize_before_punch(inode, offset, length);
4015                if (ret)
4016                        goto out_dio;
4017                truncate_pagecache_range(inode, first_block_offset,
4018                                         last_block_offset);
4019        }
4020
4021        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4022                credits = ext4_writepage_trans_blocks(inode);
4023        else
4024                credits = ext4_blocks_for_truncate(inode);
4025        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4026        if (IS_ERR(handle)) {
4027                ret = PTR_ERR(handle);
4028                ext4_std_error(sb, ret);
4029                goto out_dio;
4030        }
4031
4032        ret = ext4_zero_partial_blocks(handle, inode, offset,
4033                                       length);
4034        if (ret)
4035                goto out_stop;
4036
4037        first_block = (offset + sb->s_blocksize - 1) >>
4038                EXT4_BLOCK_SIZE_BITS(sb);
4039        stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4040
4041        /* If there are blocks to remove, do it */
4042        if (stop_block > first_block) {
4043
4044                down_write(&EXT4_I(inode)->i_data_sem);
4045                ext4_discard_preallocations(inode, 0);
4046
4047                ret = ext4_es_remove_extent(inode, first_block,
4048                                            stop_block - first_block);
4049                if (ret) {
4050                        up_write(&EXT4_I(inode)->i_data_sem);
4051                        goto out_stop;
4052                }
4053
4054                if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4055                        ret = ext4_ext_remove_space(inode, first_block,
4056                                                    stop_block - 1);
4057                else
4058                        ret = ext4_ind_remove_space(handle, inode, first_block,
4059                                                    stop_block);
4060
4061                up_write(&EXT4_I(inode)->i_data_sem);
4062        }
4063        ext4_fc_track_range(handle, inode, first_block, stop_block);
4064        if (IS_SYNC(inode))
4065                ext4_handle_sync(handle);
4066
4067        inode->i_mtime = inode->i_ctime = current_time(inode);
4068        ret2 = ext4_mark_inode_dirty(handle, inode);
4069        if (unlikely(ret2))
4070                ret = ret2;
4071        if (ret >= 0)
4072                ext4_update_inode_fsync_trans(handle, inode, 1);
4073out_stop:
4074        ext4_journal_stop(handle);
4075out_dio:
4076        filemap_invalidate_unlock(mapping);
4077out_mutex:
4078        inode_unlock(inode);
4079        return ret;
4080}
4081
4082int ext4_inode_attach_jinode(struct inode *inode)
4083{
4084        struct ext4_inode_info *ei = EXT4_I(inode);
4085        struct jbd2_inode *jinode;
4086
4087        if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4088                return 0;
4089
4090        jinode = jbd2_alloc_inode(GFP_KERNEL);
4091        spin_lock(&inode->i_lock);
4092        if (!ei->jinode) {
4093                if (!jinode) {
4094                        spin_unlock(&inode->i_lock);
4095                        return -ENOMEM;
4096                }
4097                ei->jinode = jinode;
4098                jbd2_journal_init_jbd_inode(ei->jinode, inode);
4099                jinode = NULL;
4100        }
4101        spin_unlock(&inode->i_lock);
4102        if (unlikely(jinode != NULL))
4103                jbd2_free_inode(jinode);
4104        return 0;
4105}
4106
4107/*
4108 * ext4_truncate()
4109 *
4110 * We block out ext4_get_block() block instantiations across the entire
4111 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4112 * simultaneously on behalf of the same inode.
4113 *
4114 * As we work through the truncate and commit bits of it to the journal there
4115 * is one core, guiding principle: the file's tree must always be consistent on
4116 * disk.  We must be able to restart the truncate after a crash.
4117 *
4118 * The file's tree may be transiently inconsistent in memory (although it
4119 * probably isn't), but whenever we close off and commit a journal transaction,
4120 * the contents of (the filesystem + the journal) must be consistent and
4121 * restartable.  It's pretty simple, really: bottom up, right to left (although
4122 * left-to-right works OK too).
4123 *
4124 * Note that at recovery time, journal replay occurs *before* the restart of
4125 * truncate against the orphan inode list.
4126 *
4127 * The committed inode has the new, desired i_size (which is the same as
4128 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4129 * that this inode's truncate did not complete and it will again call
4130 * ext4_truncate() to have another go.  So there will be instantiated blocks
4131 * to the right of the truncation point in a crashed ext4 filesystem.  But
4132 * that's fine - as long as they are linked from the inode, the post-crash
4133 * ext4_truncate() run will find them and release them.
4134 */
4135int ext4_truncate(struct inode *inode)
4136{
4137        struct ext4_inode_info *ei = EXT4_I(inode);
4138        unsigned int credits;
4139        int err = 0, err2;
4140        handle_t *handle;
4141        struct address_space *mapping = inode->i_mapping;
4142
4143        /*
4144         * There is a possibility that we're either freeing the inode
4145         * or it's a completely new inode. In those cases we might not
4146         * have i_mutex locked because it's not necessary.
4147         */
4148        if (!(inode->i_state & (I_NEW|I_FREEING)))
4149                WARN_ON(!inode_is_locked(inode));
4150        trace_ext4_truncate_enter(inode);
4151
4152        if (!ext4_can_truncate(inode))
4153                goto out_trace;
4154
4155        if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4156                ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4157
4158        if (ext4_has_inline_data(inode)) {
4159                int has_inline = 1;
4160
4161                err = ext4_inline_data_truncate(inode, &has_inline);
4162                if (err || has_inline)
4163                        goto out_trace;
4164        }
4165
4166        /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4167        if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4168                if (ext4_inode_attach_jinode(inode) < 0)
4169                        goto out_trace;
4170        }
4171
4172        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4173                credits = ext4_writepage_trans_blocks(inode);
4174        else
4175                credits = ext4_blocks_for_truncate(inode);
4176
4177        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4178        if (IS_ERR(handle)) {
4179                err = PTR_ERR(handle);
4180                goto out_trace;
4181        }
4182
4183        if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4184                ext4_block_truncate_page(handle, mapping, inode->i_size);
4185
4186        /*
4187         * We add the inode to the orphan list, so that if this
4188         * truncate spans multiple transactions, and we crash, we will
4189         * resume the truncate when the filesystem recovers.  It also
4190         * marks the inode dirty, to catch the new size.
4191         *
4192         * Implication: the file must always be in a sane, consistent
4193         * truncatable state while each transaction commits.
4194         */
4195        err = ext4_orphan_add(handle, inode);
4196        if (err)
4197                goto out_stop;
4198
4199        down_write(&EXT4_I(inode)->i_data_sem);
4200
4201        ext4_discard_preallocations(inode, 0);
4202
4203        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4204                err = ext4_ext_truncate(handle, inode);
4205        else
4206                ext4_ind_truncate(handle, inode);
4207
4208        up_write(&ei->i_data_sem);
4209        if (err)
4210                goto out_stop;
4211
4212        if (IS_SYNC(inode))
4213                ext4_handle_sync(handle);
4214
4215out_stop:
4216        /*
4217         * If this was a simple ftruncate() and the file will remain alive,
4218         * then we need to clear up the orphan record which we created above.
4219         * However, if this was a real unlink then we were called by
4220         * ext4_evict_inode(), and we allow that function to clean up the
4221         * orphan info for us.
4222         */
4223        if (inode->i_nlink)
4224                ext4_orphan_del(handle, inode);
4225
4226        inode->i_mtime = inode->i_ctime = current_time(inode);
4227        err2 = ext4_mark_inode_dirty(handle, inode);
4228        if (unlikely(err2 && !err))
4229                err = err2;
4230        ext4_journal_stop(handle);
4231
4232out_trace:
4233        trace_ext4_truncate_exit(inode);
4234        return err;
4235}
4236
4237/*
4238 * ext4_get_inode_loc returns with an extra refcount against the inode's
4239 * underlying buffer_head on success. If 'in_mem' is true, we have all
4240 * data in memory that is needed to recreate the on-disk version of this
4241 * inode.
4242 */
4243static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4244                                struct ext4_iloc *iloc, int in_mem,
4245                                ext4_fsblk_t *ret_block)
4246{
4247        struct ext4_group_desc  *gdp;
4248        struct buffer_head      *bh;
4249        ext4_fsblk_t            block;
4250        struct blk_plug         plug;
4251        int                     inodes_per_block, inode_offset;
4252
4253        iloc->bh = NULL;
4254        if (ino < EXT4_ROOT_INO ||
4255            ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4256                return -EFSCORRUPTED;
4257
4258        iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4259        gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4260        if (!gdp)
4261                return -EIO;
4262
4263        /*
4264         * Figure out the offset within the block group inode table
4265         */
4266        inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4267        inode_offset = ((ino - 1) %
4268                        EXT4_INODES_PER_GROUP(sb));
4269        block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4270        iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4271
4272        bh = sb_getblk(sb, block);
4273        if (unlikely(!bh))
4274                return -ENOMEM;
4275        if (ext4_buffer_uptodate(bh))
4276                goto has_buffer;
4277
4278        lock_buffer(bh);
4279        if (ext4_buffer_uptodate(bh)) {
4280                /* Someone brought it uptodate while we waited */
4281                unlock_buffer(bh);
4282                goto has_buffer;
4283        }
4284
4285        /*
4286         * If we have all information of the inode in memory and this
4287         * is the only valid inode in the block, we need not read the
4288         * block.
4289         */
4290        if (in_mem) {
4291                struct buffer_head *bitmap_bh;
4292                int i, start;
4293
4294                start = inode_offset & ~(inodes_per_block - 1);
4295
4296                /* Is the inode bitmap in cache? */
4297                bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4298                if (unlikely(!bitmap_bh))
4299                        goto make_io;
4300
4301                /*
4302                 * If the inode bitmap isn't in cache then the
4303                 * optimisation may end up performing two reads instead
4304                 * of one, so skip it.
4305                 */
4306                if (!buffer_uptodate(bitmap_bh)) {
4307                        brelse(bitmap_bh);
4308                        goto make_io;
4309                }
4310                for (i = start; i < start + inodes_per_block; i++) {
4311                        if (i == inode_offset)
4312                                continue;
4313                        if (ext4_test_bit(i, bitmap_bh->b_data))
4314                                break;
4315                }
4316                brelse(bitmap_bh);
4317                if (i == start + inodes_per_block) {
4318                        /* all other inodes are free, so skip I/O */
4319                        memset(bh->b_data, 0, bh->b_size);
4320                        set_buffer_uptodate(bh);
4321                        unlock_buffer(bh);
4322                        goto has_buffer;
4323                }
4324        }
4325
4326make_io:
4327        /*
4328         * If we need to do any I/O, try to pre-readahead extra
4329         * blocks from the inode table.
4330         */
4331        blk_start_plug(&plug);
4332        if (EXT4_SB(sb)->s_inode_readahead_blks) {
4333                ext4_fsblk_t b, end, table;
4334                unsigned num;
4335                __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4336
4337                table = ext4_inode_table(sb, gdp);
4338                /* s_inode_readahead_blks is always a power of 2 */
4339                b = block & ~((ext4_fsblk_t) ra_blks - 1);
4340                if (table > b)
4341                        b = table;
4342                end = b + ra_blks;
4343                num = EXT4_INODES_PER_GROUP(sb);
4344                if (ext4_has_group_desc_csum(sb))
4345                        num -= ext4_itable_unused_count(sb, gdp);
4346                table += num / inodes_per_block;
4347                if (end > table)
4348                        end = table;
4349                while (b <= end)
4350                        ext4_sb_breadahead_unmovable(sb, b++);
4351        }
4352
4353        /*
4354         * There are other valid inodes in the buffer, this inode
4355         * has in-inode xattrs, or we don't have this inode in memory.
4356         * Read the block from disk.
4357         */
4358        trace_ext4_load_inode(sb, ino);
4359        ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4360        blk_finish_plug(&plug);
4361        wait_on_buffer(bh);
4362        ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4363        if (!buffer_uptodate(bh)) {
4364                if (ret_block)
4365                        *ret_block = block;
4366                brelse(bh);
4367                return -EIO;
4368        }
4369has_buffer:
4370        iloc->bh = bh;
4371        return 0;
4372}
4373
4374static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4375                                        struct ext4_iloc *iloc)
4376{
4377        ext4_fsblk_t err_blk;
4378        int ret;
4379
4380        ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4381                                        &err_blk);
4382
4383        if (ret == -EIO)
4384                ext4_error_inode_block(inode, err_blk, EIO,
4385                                        "unable to read itable block");
4386
4387        return ret;
4388}
4389
4390int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4391{
4392        ext4_fsblk_t err_blk;
4393        int ret;
4394
4395        /* We have all inode data except xattrs in memory here. */
4396        ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4397                !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4398
4399        if (ret == -EIO)
4400                ext4_error_inode_block(inode, err_blk, EIO,
4401                                        "unable to read itable block");
4402
4403        return ret;
4404}
4405
4406
4407int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4408                          struct ext4_iloc *iloc)
4409{
4410        return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4411}
4412
4413static bool ext4_should_enable_dax(struct inode *inode)
4414{
4415        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4416
4417        if (test_opt2(inode->i_sb, DAX_NEVER))
4418                return false;
4419        if (!S_ISREG(inode->i_mode))
4420                return false;
4421        if (ext4_should_journal_data(inode))
4422                return false;
4423        if (ext4_has_inline_data(inode))
4424                return false;
4425        if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4426                return false;
4427        if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4428                return false;
4429        if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4430                return false;
4431        if (test_opt(inode->i_sb, DAX_ALWAYS))
4432                return true;
4433
4434        return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4435}
4436
4437void ext4_set_inode_flags(struct inode *inode, bool init)
4438{
4439        unsigned int flags = EXT4_I(inode)->i_flags;
4440        unsigned int new_fl = 0;
4441
4442        WARN_ON_ONCE(IS_DAX(inode) && init);
4443
4444        if (flags & EXT4_SYNC_FL)
4445                new_fl |= S_SYNC;
4446        if (flags & EXT4_APPEND_FL)
4447                new_fl |= S_APPEND;
4448        if (flags & EXT4_IMMUTABLE_FL)
4449                new_fl |= S_IMMUTABLE;
4450        if (flags & EXT4_NOATIME_FL)
4451                new_fl |= S_NOATIME;
4452        if (flags & EXT4_DIRSYNC_FL)
4453                new_fl |= S_DIRSYNC;
4454
4455        /* Because of the way inode_set_flags() works we must preserve S_DAX
4456         * here if already set. */
4457        new_fl |= (inode->i_flags & S_DAX);
4458        if (init && ext4_should_enable_dax(inode))
4459                new_fl |= S_DAX;
4460
4461        if (flags & EXT4_ENCRYPT_FL)
4462                new_fl |= S_ENCRYPTED;
4463        if (flags & EXT4_CASEFOLD_FL)
4464                new_fl |= S_CASEFOLD;
4465        if (flags & EXT4_VERITY_FL)
4466                new_fl |= S_VERITY;
4467        inode_set_flags(inode, new_fl,
4468                        S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4469                        S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4470}
4471
4472static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4473                                  struct ext4_inode_info *ei)
4474{
4475        blkcnt_t i_blocks ;
4476        struct inode *inode = &(ei->vfs_inode);
4477        struct super_block *sb = inode->i_sb;
4478
4479        if (ext4_has_feature_huge_file(sb)) {
4480                /* we are using combined 48 bit field */
4481                i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4482                                        le32_to_cpu(raw_inode->i_blocks_lo);
4483                if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4484                        /* i_blocks represent file system block size */
4485                        return i_blocks  << (inode->i_blkbits - 9);
4486                } else {
4487                        return i_blocks;
4488                }
4489        } else {
4490                return le32_to_cpu(raw_inode->i_blocks_lo);
4491        }
4492}
4493
4494static inline int ext4_iget_extra_inode(struct inode *inode,
4495                                         struct ext4_inode *raw_inode,
4496                                         struct ext4_inode_info *ei)
4497{
4498        __le32 *magic = (void *)raw_inode +
4499                        EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4500
4501        if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4502            EXT4_INODE_SIZE(inode->i_sb) &&
4503            *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4504                ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4505                return ext4_find_inline_data_nolock(inode);
4506        } else
4507                EXT4_I(inode)->i_inline_off = 0;
4508        return 0;
4509}
4510
4511int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4512{
4513        if (!ext4_has_feature_project(inode->i_sb))
4514                return -EOPNOTSUPP;
4515        *projid = EXT4_I(inode)->i_projid;
4516        return 0;
4517}
4518
4519/*
4520 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4521 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4522 * set.
4523 */
4524static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4525{
4526        if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4527                inode_set_iversion_raw(inode, val);
4528        else
4529                inode_set_iversion_queried(inode, val);
4530}
4531static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4532{
4533        if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4534                return inode_peek_iversion_raw(inode);
4535        else
4536                return inode_peek_iversion(inode);
4537}
4538
4539struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4540                          ext4_iget_flags flags, const char *function,
4541                          unsigned int line)
4542{
4543        struct ext4_iloc iloc;
4544        struct ext4_inode *raw_inode;
4545        struct ext4_inode_info *ei;
4546        struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4547        struct inode *inode;
4548        journal_t *journal = EXT4_SB(sb)->s_journal;
4549        long ret;
4550        loff_t size;
4551        int block;
4552        uid_t i_uid;
4553        gid_t i_gid;
4554        projid_t i_projid;
4555
4556        if ((!(flags & EXT4_IGET_SPECIAL) &&
4557             ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4558              ino == le32_to_cpu(es->s_usr_quota_inum) ||
4559              ino == le32_to_cpu(es->s_grp_quota_inum) ||
4560              ino == le32_to_cpu(es->s_prj_quota_inum) ||
4561              ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4562            (ino < EXT4_ROOT_INO) ||
4563            (ino > le32_to_cpu(es->s_inodes_count))) {
4564                if (flags & EXT4_IGET_HANDLE)
4565                        return ERR_PTR(-ESTALE);
4566                __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4567                             "inode #%lu: comm %s: iget: illegal inode #",
4568                             ino, current->comm);
4569                return ERR_PTR(-EFSCORRUPTED);
4570        }
4571
4572        inode = iget_locked(sb, ino);
4573        if (!inode)
4574                return ERR_PTR(-ENOMEM);
4575        if (!(inode->i_state & I_NEW))
4576                return inode;
4577
4578        ei = EXT4_I(inode);
4579        iloc.bh = NULL;
4580
4581        ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4582        if (ret < 0)
4583                goto bad_inode;
4584        raw_inode = ext4_raw_inode(&iloc);
4585
4586        if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4587                ext4_error_inode(inode, function, line, 0,
4588                                 "iget: root inode unallocated");
4589                ret = -EFSCORRUPTED;
4590                goto bad_inode;
4591        }
4592
4593        if ((flags & EXT4_IGET_HANDLE) &&
4594            (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4595                ret = -ESTALE;
4596                goto bad_inode;
4597        }
4598
4599        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4600                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4601                if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4602                        EXT4_INODE_SIZE(inode->i_sb) ||
4603                    (ei->i_extra_isize & 3)) {
4604                        ext4_error_inode(inode, function, line, 0,
4605                                         "iget: bad extra_isize %u "
4606                                         "(inode size %u)",
4607                                         ei->i_extra_isize,
4608                                         EXT4_INODE_SIZE(inode->i_sb));
4609                        ret = -EFSCORRUPTED;
4610                        goto bad_inode;
4611                }
4612        } else
4613                ei->i_extra_isize = 0;
4614
4615        /* Precompute checksum seed for inode metadata */
4616        if (ext4_has_metadata_csum(sb)) {
4617                struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4618                __u32 csum;
4619                __le32 inum = cpu_to_le32(inode->i_ino);
4620                __le32 gen = raw_inode->i_generation;
4621                csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4622                                   sizeof(inum));
4623                ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4624                                              sizeof(gen));
4625        }
4626
4627        if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4628            ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4629             (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4630                ext4_error_inode_err(inode, function, line, 0,
4631                                EFSBADCRC, "iget: checksum invalid");
4632                ret = -EFSBADCRC;
4633                goto bad_inode;
4634        }
4635
4636        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4637        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4638        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4639        if (ext4_has_feature_project(sb) &&
4640            EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4641            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4642                i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4643        else
4644                i_projid = EXT4_DEF_PROJID;
4645
4646        if (!(test_opt(inode->i_sb, NO_UID32))) {
4647                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4648                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4649        }
4650        i_uid_write(inode, i_uid);
4651        i_gid_write(inode, i_gid);
4652        ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4653        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4654
4655        ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4656        ei->i_inline_off = 0;
4657        ei->i_dir_start_lookup = 0;
4658        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4659        /* We now have enough fields to check if the inode was active or not.
4660         * This is needed because nfsd might try to access dead inodes
4661         * the test is that same one that e2fsck uses
4662         * NeilBrown 1999oct15
4663         */
4664        if (inode->i_nlink == 0) {
4665                if ((inode->i_mode == 0 ||
4666                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4667                    ino != EXT4_BOOT_LOADER_INO) {
4668                        /* this inode is deleted */
4669                        ret = -ESTALE;
4670                        goto bad_inode;
4671                }
4672                /* The only unlinked inodes we let through here have
4673                 * valid i_mode and are being read by the orphan
4674                 * recovery code: that's fine, we're about to complete
4675                 * the process of deleting those.
4676                 * OR it is the EXT4_BOOT_LOADER_INO which is
4677                 * not initialized on a new filesystem. */
4678        }
4679        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4680        ext4_set_inode_flags(inode, true);
4681        inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4682        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4683        if (ext4_has_feature_64bit(sb))
4684                ei->i_file_acl |=
4685                        ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4686        inode->i_size = ext4_isize(sb, raw_inode);
4687        if ((size = i_size_read(inode)) < 0) {
4688                ext4_error_inode(inode, function, line, 0,
4689                                 "iget: bad i_size value: %lld", size);
4690                ret = -EFSCORRUPTED;
4691                goto bad_inode;
4692        }
4693        /*
4694         * If dir_index is not enabled but there's dir with INDEX flag set,
4695         * we'd normally treat htree data as empty space. But with metadata
4696         * checksumming that corrupts checksums so forbid that.
4697         */
4698        if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4699            ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4700                ext4_error_inode(inode, function, line, 0,
4701                         "iget: Dir with htree data on filesystem without dir_index feature.");
4702                ret = -EFSCORRUPTED;
4703                goto bad_inode;
4704        }
4705        ei->i_disksize = inode->i_size;
4706#ifdef CONFIG_QUOTA
4707        ei->i_reserved_quota = 0;
4708#endif
4709        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4710        ei->i_block_group = iloc.block_group;
4711        ei->i_last_alloc_group = ~0;
4712        /*
4713         * NOTE! The in-memory inode i_data array is in little-endian order
4714         * even on big-endian machines: we do NOT byteswap the block numbers!
4715         */
4716        for (block = 0; block < EXT4_N_BLOCKS; block++)
4717                ei->i_data[block] = raw_inode->i_block[block];
4718        INIT_LIST_HEAD(&ei->i_orphan);
4719        ext4_fc_init_inode(&ei->vfs_inode);
4720
4721        /*
4722         * Set transaction id's of transactions that have to be committed
4723         * to finish f[data]sync. We set them to currently running transaction
4724         * as we cannot be sure that the inode or some of its metadata isn't
4725         * part of the transaction - the inode could have been reclaimed and
4726         * now it is reread from disk.
4727         */
4728        if (journal) {
4729                transaction_t *transaction;
4730                tid_t tid;
4731
4732                read_lock(&journal->j_state_lock);
4733                if (journal->j_running_transaction)
4734                        transaction = journal->j_running_transaction;
4735                else
4736                        transaction = journal->j_committing_transaction;
4737                if (transaction)
4738                        tid = transaction->t_tid;
4739                else
4740                        tid = journal->j_commit_sequence;
4741                read_unlock(&journal->j_state_lock);
4742                ei->i_sync_tid = tid;
4743                ei->i_datasync_tid = tid;
4744        }
4745
4746        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4747                if (ei->i_extra_isize == 0) {
4748                        /* The extra space is currently unused. Use it. */
4749                        BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4750                        ei->i_extra_isize = sizeof(struct ext4_inode) -
4751                                            EXT4_GOOD_OLD_INODE_SIZE;
4752                } else {
4753                        ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4754                        if (ret)
4755                                goto bad_inode;
4756                }
4757        }
4758
4759        EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4760        EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4761        EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4762        EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4763
4764        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4765                u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4766
4767                if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4768                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4769                                ivers |=
4770                    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4771                }
4772                ext4_inode_set_iversion_queried(inode, ivers);
4773        }
4774
4775        ret = 0;
4776        if (ei->i_file_acl &&
4777            !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4778                ext4_error_inode(inode, function, line, 0,
4779                                 "iget: bad extended attribute block %llu",
4780                                 ei->i_file_acl);
4781                ret = -EFSCORRUPTED;
4782                goto bad_inode;
4783        } else if (!ext4_has_inline_data(inode)) {
4784                /* validate the block references in the inode */
4785                if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4786                        (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4787                        (S_ISLNK(inode->i_mode) &&
4788                        !ext4_inode_is_fast_symlink(inode)))) {
4789                        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4790                                ret = ext4_ext_check_inode(inode);
4791                        else
4792                                ret = ext4_ind_check_inode(inode);
4793                }
4794        }
4795        if (ret)
4796                goto bad_inode;
4797
4798        if (S_ISREG(inode->i_mode)) {
4799                inode->i_op = &ext4_file_inode_operations;
4800                inode->i_fop = &ext4_file_operations;
4801                ext4_set_aops(inode);
4802        } else if (S_ISDIR(inode->i_mode)) {
4803                inode->i_op = &ext4_dir_inode_operations;
4804                inode->i_fop = &ext4_dir_operations;
4805        } else if (S_ISLNK(inode->i_mode)) {
4806                /* VFS does not allow setting these so must be corruption */
4807                if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4808                        ext4_error_inode(inode, function, line, 0,
4809                                         "iget: immutable or append flags "
4810                                         "not allowed on symlinks");
4811                        ret = -EFSCORRUPTED;
4812                        goto bad_inode;
4813                }
4814                if (IS_ENCRYPTED(inode)) {
4815                        inode->i_op = &ext4_encrypted_symlink_inode_operations;
4816                        ext4_set_aops(inode);
4817                } else if (ext4_inode_is_fast_symlink(inode)) {
4818                        inode->i_link = (char *)ei->i_data;
4819                        inode->i_op = &ext4_fast_symlink_inode_operations;
4820                        nd_terminate_link(ei->i_data, inode->i_size,
4821                                sizeof(ei->i_data) - 1);
4822                } else {
4823                        inode->i_op = &ext4_symlink_inode_operations;
4824                        ext4_set_aops(inode);
4825                }
4826                inode_nohighmem(inode);
4827        } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4828              S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4829                inode->i_op = &ext4_special_inode_operations;
4830                if (raw_inode->i_block[0])
4831                        init_special_inode(inode, inode->i_mode,
4832                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4833                else
4834                        init_special_inode(inode, inode->i_mode,
4835                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4836        } else if (ino == EXT4_BOOT_LOADER_INO) {
4837                make_bad_inode(inode);
4838        } else {
4839                ret = -EFSCORRUPTED;
4840                ext4_error_inode(inode, function, line, 0,
4841                                 "iget: bogus i_mode (%o)", inode->i_mode);
4842                goto bad_inode;
4843        }
4844        if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4845                ext4_error_inode(inode, function, line, 0,
4846                                 "casefold flag without casefold feature");
4847        brelse(iloc.bh);
4848
4849        unlock_new_inode(inode);
4850        return inode;
4851
4852bad_inode:
4853        brelse(iloc.bh);
4854        iget_failed(inode);
4855        return ERR_PTR(ret);
4856}
4857
4858static int ext4_inode_blocks_set(handle_t *handle,
4859                                struct ext4_inode *raw_inode,
4860                                struct ext4_inode_info *ei)
4861{
4862        struct inode *inode = &(ei->vfs_inode);
4863        u64 i_blocks = READ_ONCE(inode->i_blocks);
4864        struct super_block *sb = inode->i_sb;
4865
4866        if (i_blocks <= ~0U) {
4867                /*
4868                 * i_blocks can be represented in a 32 bit variable
4869                 * as multiple of 512 bytes
4870                 */
4871                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4872                raw_inode->i_blocks_high = 0;
4873                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4874                return 0;
4875        }
4876
4877        /*
4878         * This should never happen since sb->s_maxbytes should not have
4879         * allowed this, sb->s_maxbytes was set according to the huge_file
4880         * feature in ext4_fill_super().
4881         */
4882        if (!ext4_has_feature_huge_file(sb))
4883                return -EFSCORRUPTED;
4884
4885        if (i_blocks <= 0xffffffffffffULL) {
4886                /*
4887                 * i_blocks can be represented in a 48 bit variable
4888                 * as multiple of 512 bytes
4889                 */
4890                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4891                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4892                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4893        } else {
4894                ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4895                /* i_block is stored in file system block size */
4896                i_blocks = i_blocks >> (inode->i_blkbits - 9);
4897                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4898                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4899        }
4900        return 0;
4901}
4902
4903static void __ext4_update_other_inode_time(struct super_block *sb,
4904                                           unsigned long orig_ino,
4905                                           unsigned long ino,
4906                                           struct ext4_inode *raw_inode)
4907{
4908        struct inode *inode;
4909
4910        inode = find_inode_by_ino_rcu(sb, ino);
4911        if (!inode)
4912                return;
4913
4914        if (!inode_is_dirtytime_only(inode))
4915                return;
4916
4917        spin_lock(&inode->i_lock);
4918        if (inode_is_dirtytime_only(inode)) {
4919                struct ext4_inode_info  *ei = EXT4_I(inode);
4920
4921                inode->i_state &= ~I_DIRTY_TIME;
4922                spin_unlock(&inode->i_lock);
4923
4924                spin_lock(&ei->i_raw_lock);
4925                EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4926                EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4927                EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4928                ext4_inode_csum_set(inode, raw_inode, ei);
4929                spin_unlock(&ei->i_raw_lock);
4930                trace_ext4_other_inode_update_time(inode, orig_ino);
4931                return;
4932        }
4933        spin_unlock(&inode->i_lock);
4934}
4935
4936/*
4937 * Opportunistically update the other time fields for other inodes in
4938 * the same inode table block.
4939 */
4940static void ext4_update_other_inodes_time(struct super_block *sb,
4941                                          unsigned long orig_ino, char *buf)
4942{
4943        unsigned long ino;
4944        int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4945        int inode_size = EXT4_INODE_SIZE(sb);
4946
4947        /*
4948         * Calculate the first inode in the inode table block.  Inode
4949         * numbers are one-based.  That is, the first inode in a block
4950         * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4951         */
4952        ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4953        rcu_read_lock();
4954        for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4955                if (ino == orig_ino)
4956                        continue;
4957                __ext4_update_other_inode_time(sb, orig_ino, ino,
4958                                               (struct ext4_inode *)buf);
4959        }
4960        rcu_read_unlock();
4961}
4962
4963/*
4964 * Post the struct inode info into an on-disk inode location in the
4965 * buffer-cache.  This gobbles the caller's reference to the
4966 * buffer_head in the inode location struct.
4967 *
4968 * The caller must have write access to iloc->bh.
4969 */
4970static int ext4_do_update_inode(handle_t *handle,
4971                                struct inode *inode,
4972                                struct ext4_iloc *iloc)
4973{
4974        struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4975        struct ext4_inode_info *ei = EXT4_I(inode);
4976        struct buffer_head *bh = iloc->bh;
4977        struct super_block *sb = inode->i_sb;
4978        int err = 0, block;
4979        int need_datasync = 0, set_large_file = 0;
4980        uid_t i_uid;
4981        gid_t i_gid;
4982        projid_t i_projid;
4983
4984        spin_lock(&ei->i_raw_lock);
4985
4986        /*
4987         * For fields not tracked in the in-memory inode, initialise them
4988         * to zero for new inodes.
4989         */
4990        if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4991                memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4992
4993        err = ext4_inode_blocks_set(handle, raw_inode, ei);
4994
4995        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4996        i_uid = i_uid_read(inode);
4997        i_gid = i_gid_read(inode);
4998        i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4999        if (!(test_opt(inode->i_sb, NO_UID32))) {
5000                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5001                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5002                /*
5003                 * Fix up interoperability with old kernels. Otherwise,
5004                 * old inodes get re-used with the upper 16 bits of the
5005                 * uid/gid intact.
5006                 */
5007                if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5008                        raw_inode->i_uid_high = 0;
5009                        raw_inode->i_gid_high = 0;
5010                } else {
5011                        raw_inode->i_uid_high =
5012                                cpu_to_le16(high_16_bits(i_uid));
5013                        raw_inode->i_gid_high =
5014                                cpu_to_le16(high_16_bits(i_gid));
5015                }
5016        } else {
5017                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5018                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5019                raw_inode->i_uid_high = 0;
5020                raw_inode->i_gid_high = 0;
5021        }
5022        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5023
5024        EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5025        EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5026        EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5027        EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5028
5029        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5030        raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5031        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5032                raw_inode->i_file_acl_high =
5033                        cpu_to_le16(ei->i_file_acl >> 32);
5034        raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5035        if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5036                ext4_isize_set(raw_inode, ei->i_disksize);
5037                need_datasync = 1;
5038        }
5039        if (ei->i_disksize > 0x7fffffffULL) {
5040                if (!ext4_has_feature_large_file(sb) ||
5041                                EXT4_SB(sb)->s_es->s_rev_level ==
5042                    cpu_to_le32(EXT4_GOOD_OLD_REV))
5043                        set_large_file = 1;
5044        }
5045        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5046        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5047                if (old_valid_dev(inode->i_rdev)) {
5048                        raw_inode->i_block[0] =
5049                                cpu_to_le32(old_encode_dev(inode->i_rdev));
5050                        raw_inode->i_block[1] = 0;
5051                } else {
5052                        raw_inode->i_block[0] = 0;
5053                        raw_inode->i_block[1] =
5054                                cpu_to_le32(new_encode_dev(inode->i_rdev));
5055                        raw_inode->i_block[2] = 0;
5056                }
5057        } else if (!ext4_has_inline_data(inode)) {
5058                for (block = 0; block < EXT4_N_BLOCKS; block++)
5059                        raw_inode->i_block[block] = ei->i_data[block];
5060        }
5061
5062        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5063                u64 ivers = ext4_inode_peek_iversion(inode);
5064
5065                raw_inode->i_disk_version = cpu_to_le32(ivers);
5066                if (ei->i_extra_isize) {
5067                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5068                                raw_inode->i_version_hi =
5069                                        cpu_to_le32(ivers >> 32);
5070                        raw_inode->i_extra_isize =
5071                                cpu_to_le16(ei->i_extra_isize);
5072                }
5073        }
5074
5075        if (i_projid != EXT4_DEF_PROJID &&
5076            !ext4_has_feature_project(inode->i_sb))
5077                err = err ?: -EFSCORRUPTED;
5078
5079        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5080            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5081                raw_inode->i_projid = cpu_to_le32(i_projid);
5082
5083        ext4_inode_csum_set(inode, raw_inode, ei);
5084        spin_unlock(&ei->i_raw_lock);
5085        if (err) {
5086                EXT4_ERROR_INODE(inode, "corrupted inode contents");
5087                goto out_brelse;
5088        }
5089
5090        if (inode->i_sb->s_flags & SB_LAZYTIME)
5091                ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5092                                              bh->b_data);
5093
5094        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5095        err = ext4_handle_dirty_metadata(handle, NULL, bh);
5096        if (err)
5097                goto out_error;
5098        ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5099        if (set_large_file) {
5100                BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5101                err = ext4_journal_get_write_access(handle, sb,
5102                                                    EXT4_SB(sb)->s_sbh,
5103                                                    EXT4_JTR_NONE);
5104                if (err)
5105                        goto out_error;
5106                lock_buffer(EXT4_SB(sb)->s_sbh);
5107                ext4_set_feature_large_file(sb);
5108                ext4_superblock_csum_set(sb);
5109                unlock_buffer(EXT4_SB(sb)->s_sbh);
5110                ext4_handle_sync(handle);
5111                err = ext4_handle_dirty_metadata(handle, NULL,
5112                                                 EXT4_SB(sb)->s_sbh);
5113        }
5114        ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5115out_error:
5116        ext4_std_error(inode->i_sb, err);
5117out_brelse:
5118        brelse(bh);
5119        return err;
5120}
5121
5122/*
5123 * ext4_write_inode()
5124 *
5125 * We are called from a few places:
5126 *
5127 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5128 *   Here, there will be no transaction running. We wait for any running
5129 *   transaction to commit.
5130 *
5131 * - Within flush work (sys_sync(), kupdate and such).
5132 *   We wait on commit, if told to.
5133 *
5134 * - Within iput_final() -> write_inode_now()
5135 *   We wait on commit, if told to.
5136 *
5137 * In all cases it is actually safe for us to return without doing anything,
5138 * because the inode has been copied into a raw inode buffer in
5139 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5140 * writeback.
5141 *
5142 * Note that we are absolutely dependent upon all inode dirtiers doing the
5143 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5144 * which we are interested.
5145 *
5146 * It would be a bug for them to not do this.  The code:
5147 *
5148 *      mark_inode_dirty(inode)
5149 *      stuff();
5150 *      inode->i_size = expr;
5151 *
5152 * is in error because write_inode() could occur while `stuff()' is running,
5153 * and the new i_size will be lost.  Plus the inode will no longer be on the
5154 * superblock's dirty inode list.
5155 */
5156int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5157{
5158        int err;
5159
5160        if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5161            sb_rdonly(inode->i_sb))
5162                return 0;
5163
5164        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5165                return -EIO;
5166
5167        if (EXT4_SB(inode->i_sb)->s_journal) {
5168                if (ext4_journal_current_handle()) {
5169                        jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5170                        dump_stack();
5171                        return -EIO;
5172                }
5173
5174                /*
5175                 * No need to force transaction in WB_SYNC_NONE mode. Also
5176                 * ext4_sync_fs() will force the commit after everything is
5177                 * written.
5178                 */
5179                if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5180                        return 0;
5181
5182                err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5183                                                EXT4_I(inode)->i_sync_tid);
5184        } else {
5185                struct ext4_iloc iloc;
5186
5187                err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5188                if (err)
5189                        return err;
5190                /*
5191                 * sync(2) will flush the whole buffer cache. No need to do
5192                 * it here separately for each inode.
5193                 */
5194                if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5195                        sync_dirty_buffer(iloc.bh);
5196                if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5197                        ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5198                                               "IO error syncing inode");
5199                        err = -EIO;
5200                }
5201                brelse(iloc.bh);
5202        }
5203        return err;
5204}
5205
5206/*
5207 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5208 * buffers that are attached to a page stradding i_size and are undergoing
5209 * commit. In that case we have to wait for commit to finish and try again.
5210 */
5211static void ext4_wait_for_tail_page_commit(struct inode *inode)
5212{
5213        struct page *page;
5214        unsigned offset;
5215        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5216        tid_t commit_tid = 0;
5217        int ret;
5218
5219        offset = inode->i_size & (PAGE_SIZE - 1);
5220        /*
5221         * If the page is fully truncated, we don't need to wait for any commit
5222         * (and we even should not as __ext4_journalled_invalidatepage() may
5223         * strip all buffers from the page but keep the page dirty which can then
5224         * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5225         * buffers). Also we don't need to wait for any commit if all buffers in
5226         * the page remain valid. This is most beneficial for the common case of
5227         * blocksize == PAGESIZE.
5228         */
5229        if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5230                return;
5231        while (1) {
5232                page = find_lock_page(inode->i_mapping,
5233                                      inode->i_size >> PAGE_SHIFT);
5234                if (!page)
5235                        return;
5236                ret = __ext4_journalled_invalidatepage(page, offset,
5237                                                PAGE_SIZE - offset);
5238                unlock_page(page);
5239                put_page(page);
5240                if (ret != -EBUSY)
5241                        return;
5242                commit_tid = 0;
5243                read_lock(&journal->j_state_lock);
5244                if (journal->j_committing_transaction)
5245                        commit_tid = journal->j_committing_transaction->t_tid;
5246                read_unlock(&journal->j_state_lock);
5247                if (commit_tid)
5248                        jbd2_log_wait_commit(journal, commit_tid);
5249        }
5250}
5251
5252/*
5253 * ext4_setattr()
5254 *
5255 * Called from notify_change.
5256 *
5257 * We want to trap VFS attempts to truncate the file as soon as
5258 * possible.  In particular, we want to make sure that when the VFS
5259 * shrinks i_size, we put the inode on the orphan list and modify
5260 * i_disksize immediately, so that during the subsequent flushing of
5261 * dirty pages and freeing of disk blocks, we can guarantee that any
5262 * commit will leave the blocks being flushed in an unused state on
5263 * disk.  (On recovery, the inode will get truncated and the blocks will
5264 * be freed, so we have a strong guarantee that no future commit will
5265 * leave these blocks visible to the user.)
5266 *
5267 * Another thing we have to assure is that if we are in ordered mode
5268 * and inode is still attached to the committing transaction, we must
5269 * we start writeout of all the dirty pages which are being truncated.
5270 * This way we are sure that all the data written in the previous
5271 * transaction are already on disk (truncate waits for pages under
5272 * writeback).
5273 *
5274 * Called with inode->i_mutex down.
5275 */
5276int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5277                 struct iattr *attr)
5278{
5279        struct inode *inode = d_inode(dentry);
5280        int error, rc = 0;
5281        int orphan = 0;
5282        const unsigned int ia_valid = attr->ia_valid;
5283
5284        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5285                return -EIO;
5286
5287        if (unlikely(IS_IMMUTABLE(inode)))
5288                return -EPERM;
5289
5290        if (unlikely(IS_APPEND(inode) &&
5291                     (ia_valid & (ATTR_MODE | ATTR_UID |
5292                                  ATTR_GID | ATTR_TIMES_SET))))
5293                return -EPERM;
5294
5295        error = setattr_prepare(mnt_userns, dentry, attr);
5296        if (error)
5297                return error;
5298
5299        error = fscrypt_prepare_setattr(dentry, attr);
5300        if (error)
5301                return error;
5302
5303        error = fsverity_prepare_setattr(dentry, attr);
5304        if (error)
5305                return error;
5306
5307        if (is_quota_modification(inode, attr)) {
5308                error = dquot_initialize(inode);
5309                if (error)
5310                        return error;
5311        }
5312        ext4_fc_start_update(inode);
5313        if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5314            (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5315                handle_t *handle;
5316
5317                /* (user+group)*(old+new) structure, inode write (sb,
5318                 * inode block, ? - but truncate inode update has it) */
5319                handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5320                        (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5321                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5322                if (IS_ERR(handle)) {
5323                        error = PTR_ERR(handle);
5324                        goto err_out;
5325                }
5326
5327                /* dquot_transfer() calls back ext4_get_inode_usage() which
5328                 * counts xattr inode references.
5329                 */
5330                down_read(&EXT4_I(inode)->xattr_sem);
5331                error = dquot_transfer(inode, attr);
5332                up_read(&EXT4_I(inode)->xattr_sem);
5333
5334                if (error) {
5335                        ext4_journal_stop(handle);
5336                        ext4_fc_stop_update(inode);
5337                        return error;
5338                }
5339                /* Update corresponding info in inode so that everything is in
5340                 * one transaction */
5341                if (attr->ia_valid & ATTR_UID)
5342                        inode->i_uid = attr->ia_uid;
5343                if (attr->ia_valid & ATTR_GID)
5344                        inode->i_gid = attr->ia_gid;
5345                error = ext4_mark_inode_dirty(handle, inode);
5346                ext4_journal_stop(handle);
5347                if (unlikely(error)) {
5348                        ext4_fc_stop_update(inode);
5349                        return error;
5350                }
5351        }
5352
5353        if (attr->ia_valid & ATTR_SIZE) {
5354                handle_t *handle;
5355                loff_t oldsize = inode->i_size;
5356                int shrink = (attr->ia_size < inode->i_size);
5357
5358                if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5359                        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5360
5361                        if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5362                                ext4_fc_stop_update(inode);
5363                                return -EFBIG;
5364                        }
5365                }
5366                if (!S_ISREG(inode->i_mode)) {
5367                        ext4_fc_stop_update(inode);
5368                        return -EINVAL;
5369                }
5370
5371                if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5372                        inode_inc_iversion(inode);
5373
5374                if (shrink) {
5375                        if (ext4_should_order_data(inode)) {
5376                                error = ext4_begin_ordered_truncate(inode,
5377                                                            attr->ia_size);
5378                                if (error)
5379                                        goto err_out;
5380                        }
5381                        /*
5382                         * Blocks are going to be removed from the inode. Wait
5383                         * for dio in flight.
5384                         */
5385                        inode_dio_wait(inode);
5386                }
5387
5388                filemap_invalidate_lock(inode->i_mapping);
5389
5390                rc = ext4_break_layouts(inode);
5391                if (rc) {
5392                        filemap_invalidate_unlock(inode->i_mapping);
5393                        goto err_out;
5394                }
5395
5396                if (attr->ia_size != inode->i_size) {
5397                        handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5398                        if (IS_ERR(handle)) {
5399                                error = PTR_ERR(handle);
5400                                goto out_mmap_sem;
5401                        }
5402                        if (ext4_handle_valid(handle) && shrink) {
5403                                error = ext4_orphan_add(handle, inode);
5404                                orphan = 1;
5405                        }
5406                        /*
5407                         * Update c/mtime on truncate up, ext4_truncate() will
5408                         * update c/mtime in shrink case below
5409                         */
5410                        if (!shrink) {
5411                                inode->i_mtime = current_time(inode);
5412                                inode->i_ctime = inode->i_mtime;
5413                        }
5414
5415                        if (shrink)
5416                                ext4_fc_track_range(handle, inode,
5417                                        (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5418                                        inode->i_sb->s_blocksize_bits,
5419                                        (oldsize > 0 ? oldsize - 1 : 0) >>
5420                                        inode->i_sb->s_blocksize_bits);
5421                        else
5422                                ext4_fc_track_range(
5423                                        handle, inode,
5424                                        (oldsize > 0 ? oldsize - 1 : oldsize) >>
5425                                        inode->i_sb->s_blocksize_bits,
5426                                        (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5427                                        inode->i_sb->s_blocksize_bits);
5428
5429                        down_write(&EXT4_I(inode)->i_data_sem);
5430                        EXT4_I(inode)->i_disksize = attr->ia_size;
5431                        rc = ext4_mark_inode_dirty(handle, inode);
5432                        if (!error)
5433                                error = rc;
5434                        /*
5435                         * We have to update i_size under i_data_sem together
5436                         * with i_disksize to avoid races with writeback code
5437                         * running ext4_wb_update_i_disksize().
5438                         */
5439                        if (!error)
5440                                i_size_write(inode, attr->ia_size);
5441                        up_write(&EXT4_I(inode)->i_data_sem);
5442                        ext4_journal_stop(handle);
5443                        if (error)
5444                                goto out_mmap_sem;
5445                        if (!shrink) {
5446                                pagecache_isize_extended(inode, oldsize,
5447                                                         inode->i_size);
5448                        } else if (ext4_should_journal_data(inode)) {
5449                                ext4_wait_for_tail_page_commit(inode);
5450                        }
5451                }
5452
5453                /*
5454                 * Truncate pagecache after we've waited for commit
5455                 * in data=journal mode to make pages freeable.
5456                 */
5457                truncate_pagecache(inode, inode->i_size);
5458                /*
5459                 * Call ext4_truncate() even if i_size didn't change to
5460                 * truncate possible preallocated blocks.
5461                 */
5462                if (attr->ia_size <= oldsize) {
5463                        rc = ext4_truncate(inode);
5464                        if (rc)
5465                                error = rc;
5466                }
5467out_mmap_sem:
5468                filemap_invalidate_unlock(inode->i_mapping);
5469        }
5470
5471        if (!error) {
5472                setattr_copy(mnt_userns, inode, attr);
5473                mark_inode_dirty(inode);
5474        }
5475
5476        /*
5477         * If the call to ext4_truncate failed to get a transaction handle at
5478         * all, we need to clean up the in-core orphan list manually.
5479         */
5480        if (orphan && inode->i_nlink)
5481                ext4_orphan_del(NULL, inode);
5482
5483        if (!error && (ia_valid & ATTR_MODE))
5484                rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5485
5486err_out:
5487        if  (error)
5488                ext4_std_error(inode->i_sb, error);
5489        if (!error)
5490                error = rc;
5491        ext4_fc_stop_update(inode);
5492        return error;
5493}
5494
5495int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5496                 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5497{
5498        struct inode *inode = d_inode(path->dentry);
5499        struct ext4_inode *raw_inode;
5500        struct ext4_inode_info *ei = EXT4_I(inode);
5501        unsigned int flags;
5502
5503        if ((request_mask & STATX_BTIME) &&
5504            EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5505                stat->result_mask |= STATX_BTIME;
5506                stat->btime.tv_sec = ei->i_crtime.tv_sec;
5507                stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5508        }
5509
5510        flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5511        if (flags & EXT4_APPEND_FL)
5512                stat->attributes |= STATX_ATTR_APPEND;
5513        if (flags & EXT4_COMPR_FL)
5514                stat->attributes |= STATX_ATTR_COMPRESSED;
5515        if (flags & EXT4_ENCRYPT_FL)
5516                stat->attributes |= STATX_ATTR_ENCRYPTED;
5517        if (flags & EXT4_IMMUTABLE_FL)
5518                stat->attributes |= STATX_ATTR_IMMUTABLE;
5519        if (flags & EXT4_NODUMP_FL)
5520                stat->attributes |= STATX_ATTR_NODUMP;
5521        if (flags & EXT4_VERITY_FL)
5522                stat->attributes |= STATX_ATTR_VERITY;
5523
5524        stat->attributes_mask |= (STATX_ATTR_APPEND |
5525                                  STATX_ATTR_COMPRESSED |
5526                                  STATX_ATTR_ENCRYPTED |
5527                                  STATX_ATTR_IMMUTABLE |
5528                                  STATX_ATTR_NODUMP |
5529                                  STATX_ATTR_VERITY);
5530
5531        generic_fillattr(mnt_userns, inode, stat);
5532        return 0;
5533}
5534
5535int ext4_file_getattr(struct user_namespace *mnt_userns,
5536                      const struct path *path, struct kstat *stat,
5537                      u32 request_mask, unsigned int query_flags)
5538{
5539        struct inode *inode = d_inode(path->dentry);
5540        u64 delalloc_blocks;
5541
5542        ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5543
5544        /*
5545         * If there is inline data in the inode, the inode will normally not
5546         * have data blocks allocated (it may have an external xattr block).
5547         * Report at least one sector for such files, so tools like tar, rsync,
5548         * others don't incorrectly think the file is completely sparse.
5549         */
5550        if (unlikely(ext4_has_inline_data(inode)))
5551                stat->blocks += (stat->size + 511) >> 9;
5552
5553        /*
5554         * We can't update i_blocks if the block allocation is delayed
5555         * otherwise in the case of system crash before the real block
5556         * allocation is done, we will have i_blocks inconsistent with
5557         * on-disk file blocks.
5558         * We always keep i_blocks updated together with real
5559         * allocation. But to not confuse with user, stat
5560         * will return the blocks that include the delayed allocation
5561         * blocks for this file.
5562         */
5563        delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5564                                   EXT4_I(inode)->i_reserved_data_blocks);
5565        stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5566        return 0;
5567}
5568
5569static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5570                                   int pextents)
5571{
5572        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5573                return ext4_ind_trans_blocks(inode, lblocks);
5574        return ext4_ext_index_trans_blocks(inode, pextents);
5575}
5576
5577/*
5578 * Account for index blocks, block groups bitmaps and block group
5579 * descriptor blocks if modify datablocks and index blocks
5580 * worse case, the indexs blocks spread over different block groups
5581 *
5582 * If datablocks are discontiguous, they are possible to spread over
5583 * different block groups too. If they are contiguous, with flexbg,
5584 * they could still across block group boundary.
5585 *
5586 * Also account for superblock, inode, quota and xattr blocks
5587 */
5588static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5589                                  int pextents)
5590{
5591        ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5592        int gdpblocks;
5593        int idxblocks;
5594        int ret = 0;
5595
5596        /*
5597         * How many index blocks need to touch to map @lblocks logical blocks
5598         * to @pextents physical extents?
5599         */
5600        idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5601
5602        ret = idxblocks;
5603
5604        /*
5605         * Now let's see how many group bitmaps and group descriptors need
5606         * to account
5607         */
5608        groups = idxblocks + pextents;
5609        gdpblocks = groups;
5610        if (groups > ngroups)
5611                groups = ngroups;
5612        if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5613                gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5614
5615        /* bitmaps and block group descriptor blocks */
5616        ret += groups + gdpblocks;
5617
5618        /* Blocks for super block, inode, quota and xattr blocks */
5619        ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5620
5621        return ret;
5622}
5623
5624/*
5625 * Calculate the total number of credits to reserve to fit
5626 * the modification of a single pages into a single transaction,
5627 * which may include multiple chunks of block allocations.
5628 *
5629 * This could be called via ext4_write_begin()
5630 *
5631 * We need to consider the worse case, when
5632 * one new block per extent.
5633 */
5634int ext4_writepage_trans_blocks(struct inode *inode)
5635{
5636        int bpp = ext4_journal_blocks_per_page(inode);
5637        int ret;
5638
5639        ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5640
5641        /* Account for data blocks for journalled mode */
5642        if (ext4_should_journal_data(inode))
5643                ret += bpp;
5644        return ret;
5645}
5646
5647/*
5648 * Calculate the journal credits for a chunk of data modification.
5649 *
5650 * This is called from DIO, fallocate or whoever calling
5651 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5652 *
5653 * journal buffers for data blocks are not included here, as DIO
5654 * and fallocate do no need to journal data buffers.
5655 */
5656int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5657{
5658        return ext4_meta_trans_blocks(inode, nrblocks, 1);
5659}
5660
5661/*
5662 * The caller must have previously called ext4_reserve_inode_write().
5663 * Give this, we know that the caller already has write access to iloc->bh.
5664 */
5665int ext4_mark_iloc_dirty(handle_t *handle,
5666                         struct inode *inode, struct ext4_iloc *iloc)
5667{
5668        int err = 0;
5669
5670        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5671                put_bh(iloc->bh);
5672                return -EIO;
5673        }
5674        ext4_fc_track_inode(handle, inode);
5675
5676        if (IS_I_VERSION(inode))
5677                inode_inc_iversion(inode);
5678
5679        /* the do_update_inode consumes one bh->b_count */
5680        get_bh(iloc->bh);
5681
5682        /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5683        err = ext4_do_update_inode(handle, inode, iloc);
5684        put_bh(iloc->bh);
5685        return err;
5686}
5687
5688/*
5689 * On success, We end up with an outstanding reference count against
5690 * iloc->bh.  This _must_ be cleaned up later.
5691 */
5692
5693int
5694ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5695                         struct ext4_iloc *iloc)
5696{
5697        int err;
5698
5699        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5700                return -EIO;
5701
5702        err = ext4_get_inode_loc(inode, iloc);
5703        if (!err) {
5704                BUFFER_TRACE(iloc->bh, "get_write_access");
5705                err = ext4_journal_get_write_access(handle, inode->i_sb,
5706                                                    iloc->bh, EXT4_JTR_NONE);
5707                if (err) {
5708                        brelse(iloc->bh);
5709                        iloc->bh = NULL;
5710                }
5711        }
5712        ext4_std_error(inode->i_sb, err);
5713        return err;
5714}
5715
5716static int __ext4_expand_extra_isize(struct inode *inode,
5717                                     unsigned int new_extra_isize,
5718                                     struct ext4_iloc *iloc,
5719                                     handle_t *handle, int *no_expand)
5720{
5721        struct ext4_inode *raw_inode;
5722        struct ext4_xattr_ibody_header *header;
5723        unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5724        struct ext4_inode_info *ei = EXT4_I(inode);
5725        int error;
5726
5727        /* this was checked at iget time, but double check for good measure */
5728        if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5729            (ei->i_extra_isize & 3)) {
5730                EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5731                                 ei->i_extra_isize,
5732                                 EXT4_INODE_SIZE(inode->i_sb));
5733                return -EFSCORRUPTED;
5734        }
5735        if ((new_extra_isize < ei->i_extra_isize) ||
5736            (new_extra_isize < 4) ||
5737            (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5738                return -EINVAL; /* Should never happen */
5739
5740        raw_inode = ext4_raw_inode(iloc);
5741
5742        header = IHDR(inode, raw_inode);
5743
5744        /* No extended attributes present */
5745        if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5746            header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5747                memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5748                       EXT4_I(inode)->i_extra_isize, 0,
5749                       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5750                EXT4_I(inode)->i_extra_isize = new_extra_isize;
5751                return 0;
5752        }
5753
5754        /* try to expand with EAs present */
5755        error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5756                                           raw_inode, handle);
5757        if (error) {
5758                /*
5759                 * Inode size expansion failed; don't try again
5760                 */
5761                *no_expand = 1;
5762        }
5763
5764        return error;
5765}
5766
5767/*
5768 * Expand an inode by new_extra_isize bytes.
5769 * Returns 0 on success or negative error number on failure.
5770 */
5771static int ext4_try_to_expand_extra_isize(struct inode *inode,
5772                                          unsigned int new_extra_isize,
5773                                          struct ext4_iloc iloc,
5774                                          handle_t *handle)
5775{
5776        int no_expand;
5777        int error;
5778
5779        if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5780                return -EOVERFLOW;
5781
5782        /*
5783         * In nojournal mode, we can immediately attempt to expand
5784         * the inode.  When journaled, we first need to obtain extra
5785         * buffer credits since we may write into the EA block
5786         * with this same handle. If journal_extend fails, then it will
5787         * only result in a minor loss of functionality for that inode.
5788         * If this is felt to be critical, then e2fsck should be run to
5789         * force a large enough s_min_extra_isize.
5790         */
5791        if (ext4_journal_extend(handle,
5792                                EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5793                return -ENOSPC;
5794
5795        if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5796                return -EBUSY;
5797
5798        error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5799                                          handle, &no_expand);
5800        ext4_write_unlock_xattr(inode, &no_expand);
5801
5802        return error;
5803}
5804
5805int ext4_expand_extra_isize(struct inode *inode,
5806                            unsigned int new_extra_isize,
5807                            struct ext4_iloc *iloc)
5808{
5809        handle_t *handle;
5810        int no_expand;
5811        int error, rc;
5812
5813        if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5814                brelse(iloc->bh);
5815                return -EOVERFLOW;
5816        }
5817
5818        handle = ext4_journal_start(inode, EXT4_HT_INODE,
5819                                    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5820        if (IS_ERR(handle)) {
5821                error = PTR_ERR(handle);
5822                brelse(iloc->bh);
5823                return error;
5824        }
5825
5826        ext4_write_lock_xattr(inode, &no_expand);
5827
5828        BUFFER_TRACE(iloc->bh, "get_write_access");
5829        error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5830                                              EXT4_JTR_NONE);
5831        if (error) {
5832                brelse(iloc->bh);
5833                goto out_unlock;
5834        }
5835
5836        error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5837                                          handle, &no_expand);
5838
5839        rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5840        if (!error)
5841                error = rc;
5842
5843out_unlock:
5844        ext4_write_unlock_xattr(inode, &no_expand);
5845        ext4_journal_stop(handle);
5846        return error;
5847}
5848
5849/*
5850 * What we do here is to mark the in-core inode as clean with respect to inode
5851 * dirtiness (it may still be data-dirty).
5852 * This means that the in-core inode may be reaped by prune_icache
5853 * without having to perform any I/O.  This is a very good thing,
5854 * because *any* task may call prune_icache - even ones which
5855 * have a transaction open against a different journal.
5856 *
5857 * Is this cheating?  Not really.  Sure, we haven't written the
5858 * inode out, but prune_icache isn't a user-visible syncing function.
5859 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5860 * we start and wait on commits.
5861 */
5862int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5863                                const char *func, unsigned int line)
5864{
5865        struct ext4_iloc iloc;
5866        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5867        int err;
5868
5869        might_sleep();
5870        trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5871        err = ext4_reserve_inode_write(handle, inode, &iloc);
5872        if (err)
5873                goto out;
5874
5875        if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5876                ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5877                                               iloc, handle);
5878
5879        err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5880out:
5881        if (unlikely(err))
5882                ext4_error_inode_err(inode, func, line, 0, err,
5883                                        "mark_inode_dirty error");
5884        return err;
5885}
5886
5887/*
5888 * ext4_dirty_inode() is called from __mark_inode_dirty()
5889 *
5890 * We're really interested in the case where a file is being extended.
5891 * i_size has been changed by generic_commit_write() and we thus need
5892 * to include the updated inode in the current transaction.
5893 *
5894 * Also, dquot_alloc_block() will always dirty the inode when blocks
5895 * are allocated to the file.
5896 *
5897 * If the inode is marked synchronous, we don't honour that here - doing
5898 * so would cause a commit on atime updates, which we don't bother doing.
5899 * We handle synchronous inodes at the highest possible level.
5900 */
5901void ext4_dirty_inode(struct inode *inode, int flags)
5902{
5903        handle_t *handle;
5904
5905        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5906        if (IS_ERR(handle))
5907                return;
5908        ext4_mark_inode_dirty(handle, inode);
5909        ext4_journal_stop(handle);
5910}
5911
5912int ext4_change_inode_journal_flag(struct inode *inode, int val)
5913{
5914        journal_t *journal;
5915        handle_t *handle;
5916        int err;
5917        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5918
5919        /*
5920         * We have to be very careful here: changing a data block's
5921         * journaling status dynamically is dangerous.  If we write a
5922         * data block to the journal, change the status and then delete
5923         * that block, we risk forgetting to revoke the old log record
5924         * from the journal and so a subsequent replay can corrupt data.
5925         * So, first we make sure that the journal is empty and that
5926         * nobody is changing anything.
5927         */
5928
5929        journal = EXT4_JOURNAL(inode);
5930        if (!journal)
5931                return 0;
5932        if (is_journal_aborted(journal))
5933                return -EROFS;
5934
5935        /* Wait for all existing dio workers */
5936        inode_dio_wait(inode);
5937
5938        /*
5939         * Before flushing the journal and switching inode's aops, we have
5940         * to flush all dirty data the inode has. There can be outstanding
5941         * delayed allocations, there can be unwritten extents created by
5942         * fallocate or buffered writes in dioread_nolock mode covered by
5943         * dirty data which can be converted only after flushing the dirty
5944         * data (and journalled aops don't know how to handle these cases).
5945         */
5946        if (val) {
5947                filemap_invalidate_lock(inode->i_mapping);
5948                err = filemap_write_and_wait(inode->i_mapping);
5949                if (err < 0) {
5950                        filemap_invalidate_unlock(inode->i_mapping);
5951                        return err;
5952                }
5953        }
5954
5955        percpu_down_write(&sbi->s_writepages_rwsem);
5956        jbd2_journal_lock_updates(journal);
5957
5958        /*
5959         * OK, there are no updates running now, and all cached data is
5960         * synced to disk.  We are now in a completely consistent state
5961         * which doesn't have anything in the journal, and we know that
5962         * no filesystem updates are running, so it is safe to modify
5963         * the inode's in-core data-journaling state flag now.
5964         */
5965
5966        if (val)
5967                ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5968        else {
5969                err = jbd2_journal_flush(journal, 0);
5970                if (err < 0) {
5971                        jbd2_journal_unlock_updates(journal);
5972                        percpu_up_write(&sbi->s_writepages_rwsem);
5973                        return err;
5974                }
5975                ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5976        }
5977        ext4_set_aops(inode);
5978
5979        jbd2_journal_unlock_updates(journal);
5980        percpu_up_write(&sbi->s_writepages_rwsem);
5981
5982        if (val)
5983                filemap_invalidate_unlock(inode->i_mapping);
5984
5985        /* Finally we can mark the inode as dirty. */
5986
5987        handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5988        if (IS_ERR(handle))
5989                return PTR_ERR(handle);
5990
5991        ext4_fc_mark_ineligible(inode->i_sb,
5992                EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
5993        err = ext4_mark_inode_dirty(handle, inode);
5994        ext4_handle_sync(handle);
5995        ext4_journal_stop(handle);
5996        ext4_std_error(inode->i_sb, err);
5997
5998        return err;
5999}
6000
6001static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6002                            struct buffer_head *bh)
6003{
6004        return !buffer_mapped(bh);
6005}
6006
6007vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6008{
6009        struct vm_area_struct *vma = vmf->vma;
6010        struct page *page = vmf->page;
6011        loff_t size;
6012        unsigned long len;
6013        int err;
6014        vm_fault_t ret;
6015        struct file *file = vma->vm_file;
6016        struct inode *inode = file_inode(file);
6017        struct address_space *mapping = inode->i_mapping;
6018        handle_t *handle;
6019        get_block_t *get_block;
6020        int retries = 0;
6021
6022        if (unlikely(IS_IMMUTABLE(inode)))
6023                return VM_FAULT_SIGBUS;
6024
6025        sb_start_pagefault(inode->i_sb);
6026        file_update_time(vma->vm_file);
6027
6028        filemap_invalidate_lock_shared(mapping);
6029
6030        err = ext4_convert_inline_data(inode);
6031        if (err)
6032                goto out_ret;
6033
6034        /*
6035         * On data journalling we skip straight to the transaction handle:
6036         * there's no delalloc; page truncated will be checked later; the
6037         * early return w/ all buffers mapped (calculates size/len) can't
6038         * be used; and there's no dioread_nolock, so only ext4_get_block.
6039         */
6040        if (ext4_should_journal_data(inode))
6041                goto retry_alloc;
6042
6043        /* Delalloc case is easy... */
6044        if (test_opt(inode->i_sb, DELALLOC) &&
6045            !ext4_nonda_switch(inode->i_sb)) {
6046                do {
6047                        err = block_page_mkwrite(vma, vmf,
6048                                                   ext4_da_get_block_prep);
6049                } while (err == -ENOSPC &&
6050                       ext4_should_retry_alloc(inode->i_sb, &retries));
6051                goto out_ret;
6052        }
6053
6054        lock_page(page);
6055        size = i_size_read(inode);
6056        /* Page got truncated from under us? */
6057        if (page->mapping != mapping || page_offset(page) > size) {
6058                unlock_page(page);
6059                ret = VM_FAULT_NOPAGE;
6060                goto out;
6061        }
6062
6063        if (page->index == size >> PAGE_SHIFT)
6064                len = size & ~PAGE_MASK;
6065        else
6066                len = PAGE_SIZE;
6067        /*
6068         * Return if we have all the buffers mapped. This avoids the need to do
6069         * journal_start/journal_stop which can block and take a long time
6070         *
6071         * This cannot be done for data journalling, as we have to add the
6072         * inode to the transaction's list to writeprotect pages on commit.
6073         */
6074        if (page_has_buffers(page)) {
6075                if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6076                                            0, len, NULL,
6077                                            ext4_bh_unmapped)) {
6078                        /* Wait so that we don't change page under IO */
6079                        wait_for_stable_page(page);
6080                        ret = VM_FAULT_LOCKED;
6081                        goto out;
6082                }
6083        }
6084        unlock_page(page);
6085        /* OK, we need to fill the hole... */
6086        if (ext4_should_dioread_nolock(inode))
6087                get_block = ext4_get_block_unwritten;
6088        else
6089                get_block = ext4_get_block;
6090retry_alloc:
6091        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6092                                    ext4_writepage_trans_blocks(inode));
6093        if (IS_ERR(handle)) {
6094                ret = VM_FAULT_SIGBUS;
6095                goto out;
6096        }
6097        /*
6098         * Data journalling can't use block_page_mkwrite() because it
6099         * will set_buffer_dirty() before do_journal_get_write_access()
6100         * thus might hit warning messages for dirty metadata buffers.
6101         */
6102        if (!ext4_should_journal_data(inode)) {
6103                err = block_page_mkwrite(vma, vmf, get_block);
6104        } else {
6105                lock_page(page);
6106                size = i_size_read(inode);
6107                /* Page got truncated from under us? */
6108                if (page->mapping != mapping || page_offset(page) > size) {
6109                        ret = VM_FAULT_NOPAGE;
6110                        goto out_error;
6111                }
6112
6113                if (page->index == size >> PAGE_SHIFT)
6114                        len = size & ~PAGE_MASK;
6115                else
6116                        len = PAGE_SIZE;
6117
6118                err = __block_write_begin(page, 0, len, ext4_get_block);
6119                if (!err) {
6120                        ret = VM_FAULT_SIGBUS;
6121                        if (ext4_walk_page_buffers(handle, inode,
6122                                        page_buffers(page), 0, len, NULL,
6123                                        do_journal_get_write_access))
6124                                goto out_error;
6125                        if (ext4_walk_page_buffers(handle, inode,
6126                                        page_buffers(page), 0, len, NULL,
6127                                        write_end_fn))
6128                                goto out_error;
6129                        if (ext4_jbd2_inode_add_write(handle, inode,
6130                                                      page_offset(page), len))
6131                                goto out_error;
6132                        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6133                } else {
6134                        unlock_page(page);
6135                }
6136        }
6137        ext4_journal_stop(handle);
6138        if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6139                goto retry_alloc;
6140out_ret:
6141        ret = block_page_mkwrite_return(err);
6142out:
6143        filemap_invalidate_unlock_shared(mapping);
6144        sb_end_pagefault(inode->i_sb);
6145        return ret;
6146out_error:
6147        unlock_page(page);
6148        ext4_journal_stop(handle);
6149        goto out;
6150}
6151