linux/fs/f2fs/node.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/node.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/mpage.h>
  11#include <linux/backing-dev.h>
  12#include <linux/blkdev.h>
  13#include <linux/pagevec.h>
  14#include <linux/swap.h>
  15
  16#include "f2fs.h"
  17#include "node.h"
  18#include "segment.h"
  19#include "xattr.h"
  20#include "iostat.h"
  21#include <trace/events/f2fs.h>
  22
  23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  24
  25static struct kmem_cache *nat_entry_slab;
  26static struct kmem_cache *free_nid_slab;
  27static struct kmem_cache *nat_entry_set_slab;
  28static struct kmem_cache *fsync_node_entry_slab;
  29
  30/*
  31 * Check whether the given nid is within node id range.
  32 */
  33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  34{
  35        if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  36                set_sbi_flag(sbi, SBI_NEED_FSCK);
  37                f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
  38                          __func__, nid);
  39                return -EFSCORRUPTED;
  40        }
  41        return 0;
  42}
  43
  44bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  45{
  46        struct f2fs_nm_info *nm_i = NM_I(sbi);
  47        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  48        struct sysinfo val;
  49        unsigned long avail_ram;
  50        unsigned long mem_size = 0;
  51        bool res = false;
  52
  53        if (!nm_i)
  54                return true;
  55
  56        si_meminfo(&val);
  57
  58        /* only uses low memory */
  59        avail_ram = val.totalram - val.totalhigh;
  60
  61        /*
  62         * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  63         */
  64        if (type == FREE_NIDS) {
  65                mem_size = (nm_i->nid_cnt[FREE_NID] *
  66                                sizeof(struct free_nid)) >> PAGE_SHIFT;
  67                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  68        } else if (type == NAT_ENTRIES) {
  69                mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
  70                                sizeof(struct nat_entry)) >> PAGE_SHIFT;
  71                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  72                if (excess_cached_nats(sbi))
  73                        res = false;
  74        } else if (type == DIRTY_DENTS) {
  75                if (sbi->sb->s_bdi->wb.dirty_exceeded)
  76                        return false;
  77                mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  78                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  79        } else if (type == INO_ENTRIES) {
  80                int i;
  81
  82                for (i = 0; i < MAX_INO_ENTRY; i++)
  83                        mem_size += sbi->im[i].ino_num *
  84                                                sizeof(struct ino_entry);
  85                mem_size >>= PAGE_SHIFT;
  86                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  87        } else if (type == EXTENT_CACHE) {
  88                mem_size = (atomic_read(&sbi->total_ext_tree) *
  89                                sizeof(struct extent_tree) +
  90                                atomic_read(&sbi->total_ext_node) *
  91                                sizeof(struct extent_node)) >> PAGE_SHIFT;
  92                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  93        } else if (type == INMEM_PAGES) {
  94                /* it allows 20% / total_ram for inmemory pages */
  95                mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
  96                res = mem_size < (val.totalram / 5);
  97        } else if (type == DISCARD_CACHE) {
  98                mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
  99                                sizeof(struct discard_cmd)) >> PAGE_SHIFT;
 100                res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
 101        } else if (type == COMPRESS_PAGE) {
 102#ifdef CONFIG_F2FS_FS_COMPRESSION
 103                unsigned long free_ram = val.freeram;
 104
 105                /*
 106                 * free memory is lower than watermark or cached page count
 107                 * exceed threshold, deny caching compress page.
 108                 */
 109                res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
 110                        (COMPRESS_MAPPING(sbi)->nrpages <
 111                         free_ram * sbi->compress_percent / 100);
 112#else
 113                res = false;
 114#endif
 115        } else {
 116                if (!sbi->sb->s_bdi->wb.dirty_exceeded)
 117                        return true;
 118        }
 119        return res;
 120}
 121
 122static void clear_node_page_dirty(struct page *page)
 123{
 124        if (PageDirty(page)) {
 125                f2fs_clear_page_cache_dirty_tag(page);
 126                clear_page_dirty_for_io(page);
 127                dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
 128        }
 129        ClearPageUptodate(page);
 130}
 131
 132static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 133{
 134        return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
 135}
 136
 137static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 138{
 139        struct page *src_page;
 140        struct page *dst_page;
 141        pgoff_t dst_off;
 142        void *src_addr;
 143        void *dst_addr;
 144        struct f2fs_nm_info *nm_i = NM_I(sbi);
 145
 146        dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
 147
 148        /* get current nat block page with lock */
 149        src_page = get_current_nat_page(sbi, nid);
 150        if (IS_ERR(src_page))
 151                return src_page;
 152        dst_page = f2fs_grab_meta_page(sbi, dst_off);
 153        f2fs_bug_on(sbi, PageDirty(src_page));
 154
 155        src_addr = page_address(src_page);
 156        dst_addr = page_address(dst_page);
 157        memcpy(dst_addr, src_addr, PAGE_SIZE);
 158        set_page_dirty(dst_page);
 159        f2fs_put_page(src_page, 1);
 160
 161        set_to_next_nat(nm_i, nid);
 162
 163        return dst_page;
 164}
 165
 166static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
 167                                                nid_t nid, bool no_fail)
 168{
 169        struct nat_entry *new;
 170
 171        new = f2fs_kmem_cache_alloc(nat_entry_slab,
 172                                        GFP_F2FS_ZERO, no_fail, sbi);
 173        if (new) {
 174                nat_set_nid(new, nid);
 175                nat_reset_flag(new);
 176        }
 177        return new;
 178}
 179
 180static void __free_nat_entry(struct nat_entry *e)
 181{
 182        kmem_cache_free(nat_entry_slab, e);
 183}
 184
 185/* must be locked by nat_tree_lock */
 186static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 187        struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 188{
 189        if (no_fail)
 190                f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 191        else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 192                return NULL;
 193
 194        if (raw_ne)
 195                node_info_from_raw_nat(&ne->ni, raw_ne);
 196
 197        spin_lock(&nm_i->nat_list_lock);
 198        list_add_tail(&ne->list, &nm_i->nat_entries);
 199        spin_unlock(&nm_i->nat_list_lock);
 200
 201        nm_i->nat_cnt[TOTAL_NAT]++;
 202        nm_i->nat_cnt[RECLAIMABLE_NAT]++;
 203        return ne;
 204}
 205
 206static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 207{
 208        struct nat_entry *ne;
 209
 210        ne = radix_tree_lookup(&nm_i->nat_root, n);
 211
 212        /* for recent accessed nat entry, move it to tail of lru list */
 213        if (ne && !get_nat_flag(ne, IS_DIRTY)) {
 214                spin_lock(&nm_i->nat_list_lock);
 215                if (!list_empty(&ne->list))
 216                        list_move_tail(&ne->list, &nm_i->nat_entries);
 217                spin_unlock(&nm_i->nat_list_lock);
 218        }
 219
 220        return ne;
 221}
 222
 223static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 224                nid_t start, unsigned int nr, struct nat_entry **ep)
 225{
 226        return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 227}
 228
 229static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 230{
 231        radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 232        nm_i->nat_cnt[TOTAL_NAT]--;
 233        nm_i->nat_cnt[RECLAIMABLE_NAT]--;
 234        __free_nat_entry(e);
 235}
 236
 237static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 238                                                        struct nat_entry *ne)
 239{
 240        nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 241        struct nat_entry_set *head;
 242
 243        head = radix_tree_lookup(&nm_i->nat_set_root, set);
 244        if (!head) {
 245                head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
 246                                                GFP_NOFS, true, NULL);
 247
 248                INIT_LIST_HEAD(&head->entry_list);
 249                INIT_LIST_HEAD(&head->set_list);
 250                head->set = set;
 251                head->entry_cnt = 0;
 252                f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 253        }
 254        return head;
 255}
 256
 257static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 258                                                struct nat_entry *ne)
 259{
 260        struct nat_entry_set *head;
 261        bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 262
 263        if (!new_ne)
 264                head = __grab_nat_entry_set(nm_i, ne);
 265
 266        /*
 267         * update entry_cnt in below condition:
 268         * 1. update NEW_ADDR to valid block address;
 269         * 2. update old block address to new one;
 270         */
 271        if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 272                                !get_nat_flag(ne, IS_DIRTY)))
 273                head->entry_cnt++;
 274
 275        set_nat_flag(ne, IS_PREALLOC, new_ne);
 276
 277        if (get_nat_flag(ne, IS_DIRTY))
 278                goto refresh_list;
 279
 280        nm_i->nat_cnt[DIRTY_NAT]++;
 281        nm_i->nat_cnt[RECLAIMABLE_NAT]--;
 282        set_nat_flag(ne, IS_DIRTY, true);
 283refresh_list:
 284        spin_lock(&nm_i->nat_list_lock);
 285        if (new_ne)
 286                list_del_init(&ne->list);
 287        else
 288                list_move_tail(&ne->list, &head->entry_list);
 289        spin_unlock(&nm_i->nat_list_lock);
 290}
 291
 292static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 293                struct nat_entry_set *set, struct nat_entry *ne)
 294{
 295        spin_lock(&nm_i->nat_list_lock);
 296        list_move_tail(&ne->list, &nm_i->nat_entries);
 297        spin_unlock(&nm_i->nat_list_lock);
 298
 299        set_nat_flag(ne, IS_DIRTY, false);
 300        set->entry_cnt--;
 301        nm_i->nat_cnt[DIRTY_NAT]--;
 302        nm_i->nat_cnt[RECLAIMABLE_NAT]++;
 303}
 304
 305static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 306                nid_t start, unsigned int nr, struct nat_entry_set **ep)
 307{
 308        return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 309                                                        start, nr);
 310}
 311
 312bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
 313{
 314        return NODE_MAPPING(sbi) == page->mapping &&
 315                        IS_DNODE(page) && is_cold_node(page);
 316}
 317
 318void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
 319{
 320        spin_lock_init(&sbi->fsync_node_lock);
 321        INIT_LIST_HEAD(&sbi->fsync_node_list);
 322        sbi->fsync_seg_id = 0;
 323        sbi->fsync_node_num = 0;
 324}
 325
 326static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
 327                                                        struct page *page)
 328{
 329        struct fsync_node_entry *fn;
 330        unsigned long flags;
 331        unsigned int seq_id;
 332
 333        fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
 334                                        GFP_NOFS, true, NULL);
 335
 336        get_page(page);
 337        fn->page = page;
 338        INIT_LIST_HEAD(&fn->list);
 339
 340        spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 341        list_add_tail(&fn->list, &sbi->fsync_node_list);
 342        fn->seq_id = sbi->fsync_seg_id++;
 343        seq_id = fn->seq_id;
 344        sbi->fsync_node_num++;
 345        spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 346
 347        return seq_id;
 348}
 349
 350void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
 351{
 352        struct fsync_node_entry *fn;
 353        unsigned long flags;
 354
 355        spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 356        list_for_each_entry(fn, &sbi->fsync_node_list, list) {
 357                if (fn->page == page) {
 358                        list_del(&fn->list);
 359                        sbi->fsync_node_num--;
 360                        spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 361                        kmem_cache_free(fsync_node_entry_slab, fn);
 362                        put_page(page);
 363                        return;
 364                }
 365        }
 366        spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 367        f2fs_bug_on(sbi, 1);
 368}
 369
 370void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
 371{
 372        unsigned long flags;
 373
 374        spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 375        sbi->fsync_seg_id = 0;
 376        spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 377}
 378
 379int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 380{
 381        struct f2fs_nm_info *nm_i = NM_I(sbi);
 382        struct nat_entry *e;
 383        bool need = false;
 384
 385        down_read(&nm_i->nat_tree_lock);
 386        e = __lookup_nat_cache(nm_i, nid);
 387        if (e) {
 388                if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 389                                !get_nat_flag(e, HAS_FSYNCED_INODE))
 390                        need = true;
 391        }
 392        up_read(&nm_i->nat_tree_lock);
 393        return need;
 394}
 395
 396bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 397{
 398        struct f2fs_nm_info *nm_i = NM_I(sbi);
 399        struct nat_entry *e;
 400        bool is_cp = true;
 401
 402        down_read(&nm_i->nat_tree_lock);
 403        e = __lookup_nat_cache(nm_i, nid);
 404        if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 405                is_cp = false;
 406        up_read(&nm_i->nat_tree_lock);
 407        return is_cp;
 408}
 409
 410bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 411{
 412        struct f2fs_nm_info *nm_i = NM_I(sbi);
 413        struct nat_entry *e;
 414        bool need_update = true;
 415
 416        down_read(&nm_i->nat_tree_lock);
 417        e = __lookup_nat_cache(nm_i, ino);
 418        if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 419                        (get_nat_flag(e, IS_CHECKPOINTED) ||
 420                         get_nat_flag(e, HAS_FSYNCED_INODE)))
 421                need_update = false;
 422        up_read(&nm_i->nat_tree_lock);
 423        return need_update;
 424}
 425
 426/* must be locked by nat_tree_lock */
 427static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 428                                                struct f2fs_nat_entry *ne)
 429{
 430        struct f2fs_nm_info *nm_i = NM_I(sbi);
 431        struct nat_entry *new, *e;
 432
 433        new = __alloc_nat_entry(sbi, nid, false);
 434        if (!new)
 435                return;
 436
 437        down_write(&nm_i->nat_tree_lock);
 438        e = __lookup_nat_cache(nm_i, nid);
 439        if (!e)
 440                e = __init_nat_entry(nm_i, new, ne, false);
 441        else
 442                f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 443                                nat_get_blkaddr(e) !=
 444                                        le32_to_cpu(ne->block_addr) ||
 445                                nat_get_version(e) != ne->version);
 446        up_write(&nm_i->nat_tree_lock);
 447        if (e != new)
 448                __free_nat_entry(new);
 449}
 450
 451static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 452                        block_t new_blkaddr, bool fsync_done)
 453{
 454        struct f2fs_nm_info *nm_i = NM_I(sbi);
 455        struct nat_entry *e;
 456        struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
 457
 458        down_write(&nm_i->nat_tree_lock);
 459        e = __lookup_nat_cache(nm_i, ni->nid);
 460        if (!e) {
 461                e = __init_nat_entry(nm_i, new, NULL, true);
 462                copy_node_info(&e->ni, ni);
 463                f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 464        } else if (new_blkaddr == NEW_ADDR) {
 465                /*
 466                 * when nid is reallocated,
 467                 * previous nat entry can be remained in nat cache.
 468                 * So, reinitialize it with new information.
 469                 */
 470                copy_node_info(&e->ni, ni);
 471                f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 472        }
 473        /* let's free early to reduce memory consumption */
 474        if (e != new)
 475                __free_nat_entry(new);
 476
 477        /* sanity check */
 478        f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 479        f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 480                        new_blkaddr == NULL_ADDR);
 481        f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 482                        new_blkaddr == NEW_ADDR);
 483        f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
 484                        new_blkaddr == NEW_ADDR);
 485
 486        /* increment version no as node is removed */
 487        if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 488                unsigned char version = nat_get_version(e);
 489
 490                nat_set_version(e, inc_node_version(version));
 491        }
 492
 493        /* change address */
 494        nat_set_blkaddr(e, new_blkaddr);
 495        if (!__is_valid_data_blkaddr(new_blkaddr))
 496                set_nat_flag(e, IS_CHECKPOINTED, false);
 497        __set_nat_cache_dirty(nm_i, e);
 498
 499        /* update fsync_mark if its inode nat entry is still alive */
 500        if (ni->nid != ni->ino)
 501                e = __lookup_nat_cache(nm_i, ni->ino);
 502        if (e) {
 503                if (fsync_done && ni->nid == ni->ino)
 504                        set_nat_flag(e, HAS_FSYNCED_INODE, true);
 505                set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 506        }
 507        up_write(&nm_i->nat_tree_lock);
 508}
 509
 510int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 511{
 512        struct f2fs_nm_info *nm_i = NM_I(sbi);
 513        int nr = nr_shrink;
 514
 515        if (!down_write_trylock(&nm_i->nat_tree_lock))
 516                return 0;
 517
 518        spin_lock(&nm_i->nat_list_lock);
 519        while (nr_shrink) {
 520                struct nat_entry *ne;
 521
 522                if (list_empty(&nm_i->nat_entries))
 523                        break;
 524
 525                ne = list_first_entry(&nm_i->nat_entries,
 526                                        struct nat_entry, list);
 527                list_del(&ne->list);
 528                spin_unlock(&nm_i->nat_list_lock);
 529
 530                __del_from_nat_cache(nm_i, ne);
 531                nr_shrink--;
 532
 533                spin_lock(&nm_i->nat_list_lock);
 534        }
 535        spin_unlock(&nm_i->nat_list_lock);
 536
 537        up_write(&nm_i->nat_tree_lock);
 538        return nr - nr_shrink;
 539}
 540
 541int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
 542                                                struct node_info *ni)
 543{
 544        struct f2fs_nm_info *nm_i = NM_I(sbi);
 545        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 546        struct f2fs_journal *journal = curseg->journal;
 547        nid_t start_nid = START_NID(nid);
 548        struct f2fs_nat_block *nat_blk;
 549        struct page *page = NULL;
 550        struct f2fs_nat_entry ne;
 551        struct nat_entry *e;
 552        pgoff_t index;
 553        block_t blkaddr;
 554        int i;
 555
 556        ni->nid = nid;
 557retry:
 558        /* Check nat cache */
 559        down_read(&nm_i->nat_tree_lock);
 560        e = __lookup_nat_cache(nm_i, nid);
 561        if (e) {
 562                ni->ino = nat_get_ino(e);
 563                ni->blk_addr = nat_get_blkaddr(e);
 564                ni->version = nat_get_version(e);
 565                up_read(&nm_i->nat_tree_lock);
 566                return 0;
 567        }
 568
 569        /*
 570         * Check current segment summary by trying to grab journal_rwsem first.
 571         * This sem is on the critical path on the checkpoint requiring the above
 572         * nat_tree_lock. Therefore, we should retry, if we failed to grab here
 573         * while not bothering checkpoint.
 574         */
 575        if (!rwsem_is_locked(&sbi->cp_global_sem)) {
 576                down_read(&curseg->journal_rwsem);
 577        } else if (!down_read_trylock(&curseg->journal_rwsem)) {
 578                up_read(&nm_i->nat_tree_lock);
 579                goto retry;
 580        }
 581
 582        i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 583        if (i >= 0) {
 584                ne = nat_in_journal(journal, i);
 585                node_info_from_raw_nat(ni, &ne);
 586        }
 587        up_read(&curseg->journal_rwsem);
 588        if (i >= 0) {
 589                up_read(&nm_i->nat_tree_lock);
 590                goto cache;
 591        }
 592
 593        /* Fill node_info from nat page */
 594        index = current_nat_addr(sbi, nid);
 595        up_read(&nm_i->nat_tree_lock);
 596
 597        page = f2fs_get_meta_page(sbi, index);
 598        if (IS_ERR(page))
 599                return PTR_ERR(page);
 600
 601        nat_blk = (struct f2fs_nat_block *)page_address(page);
 602        ne = nat_blk->entries[nid - start_nid];
 603        node_info_from_raw_nat(ni, &ne);
 604        f2fs_put_page(page, 1);
 605cache:
 606        blkaddr = le32_to_cpu(ne.block_addr);
 607        if (__is_valid_data_blkaddr(blkaddr) &&
 608                !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
 609                return -EFAULT;
 610
 611        /* cache nat entry */
 612        cache_nat_entry(sbi, nid, &ne);
 613        return 0;
 614}
 615
 616/*
 617 * readahead MAX_RA_NODE number of node pages.
 618 */
 619static void f2fs_ra_node_pages(struct page *parent, int start, int n)
 620{
 621        struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 622        struct blk_plug plug;
 623        int i, end;
 624        nid_t nid;
 625
 626        blk_start_plug(&plug);
 627
 628        /* Then, try readahead for siblings of the desired node */
 629        end = start + n;
 630        end = min(end, NIDS_PER_BLOCK);
 631        for (i = start; i < end; i++) {
 632                nid = get_nid(parent, i, false);
 633                f2fs_ra_node_page(sbi, nid);
 634        }
 635
 636        blk_finish_plug(&plug);
 637}
 638
 639pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 640{
 641        const long direct_index = ADDRS_PER_INODE(dn->inode);
 642        const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
 643        const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
 644        unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
 645        int cur_level = dn->cur_level;
 646        int max_level = dn->max_level;
 647        pgoff_t base = 0;
 648
 649        if (!dn->max_level)
 650                return pgofs + 1;
 651
 652        while (max_level-- > cur_level)
 653                skipped_unit *= NIDS_PER_BLOCK;
 654
 655        switch (dn->max_level) {
 656        case 3:
 657                base += 2 * indirect_blks;
 658                fallthrough;
 659        case 2:
 660                base += 2 * direct_blks;
 661                fallthrough;
 662        case 1:
 663                base += direct_index;
 664                break;
 665        default:
 666                f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 667        }
 668
 669        return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 670}
 671
 672/*
 673 * The maximum depth is four.
 674 * Offset[0] will have raw inode offset.
 675 */
 676static int get_node_path(struct inode *inode, long block,
 677                                int offset[4], unsigned int noffset[4])
 678{
 679        const long direct_index = ADDRS_PER_INODE(inode);
 680        const long direct_blks = ADDRS_PER_BLOCK(inode);
 681        const long dptrs_per_blk = NIDS_PER_BLOCK;
 682        const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
 683        const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 684        int n = 0;
 685        int level = 0;
 686
 687        noffset[0] = 0;
 688
 689        if (block < direct_index) {
 690                offset[n] = block;
 691                goto got;
 692        }
 693        block -= direct_index;
 694        if (block < direct_blks) {
 695                offset[n++] = NODE_DIR1_BLOCK;
 696                noffset[n] = 1;
 697                offset[n] = block;
 698                level = 1;
 699                goto got;
 700        }
 701        block -= direct_blks;
 702        if (block < direct_blks) {
 703                offset[n++] = NODE_DIR2_BLOCK;
 704                noffset[n] = 2;
 705                offset[n] = block;
 706                level = 1;
 707                goto got;
 708        }
 709        block -= direct_blks;
 710        if (block < indirect_blks) {
 711                offset[n++] = NODE_IND1_BLOCK;
 712                noffset[n] = 3;
 713                offset[n++] = block / direct_blks;
 714                noffset[n] = 4 + offset[n - 1];
 715                offset[n] = block % direct_blks;
 716                level = 2;
 717                goto got;
 718        }
 719        block -= indirect_blks;
 720        if (block < indirect_blks) {
 721                offset[n++] = NODE_IND2_BLOCK;
 722                noffset[n] = 4 + dptrs_per_blk;
 723                offset[n++] = block / direct_blks;
 724                noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 725                offset[n] = block % direct_blks;
 726                level = 2;
 727                goto got;
 728        }
 729        block -= indirect_blks;
 730        if (block < dindirect_blks) {
 731                offset[n++] = NODE_DIND_BLOCK;
 732                noffset[n] = 5 + (dptrs_per_blk * 2);
 733                offset[n++] = block / indirect_blks;
 734                noffset[n] = 6 + (dptrs_per_blk * 2) +
 735                              offset[n - 1] * (dptrs_per_blk + 1);
 736                offset[n++] = (block / direct_blks) % dptrs_per_blk;
 737                noffset[n] = 7 + (dptrs_per_blk * 2) +
 738                              offset[n - 2] * (dptrs_per_blk + 1) +
 739                              offset[n - 1];
 740                offset[n] = block % direct_blks;
 741                level = 3;
 742                goto got;
 743        } else {
 744                return -E2BIG;
 745        }
 746got:
 747        return level;
 748}
 749
 750/*
 751 * Caller should call f2fs_put_dnode(dn).
 752 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 753 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
 754 */
 755int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 756{
 757        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 758        struct page *npage[4];
 759        struct page *parent = NULL;
 760        int offset[4];
 761        unsigned int noffset[4];
 762        nid_t nids[4];
 763        int level, i = 0;
 764        int err = 0;
 765
 766        level = get_node_path(dn->inode, index, offset, noffset);
 767        if (level < 0)
 768                return level;
 769
 770        nids[0] = dn->inode->i_ino;
 771        npage[0] = dn->inode_page;
 772
 773        if (!npage[0]) {
 774                npage[0] = f2fs_get_node_page(sbi, nids[0]);
 775                if (IS_ERR(npage[0]))
 776                        return PTR_ERR(npage[0]);
 777        }
 778
 779        /* if inline_data is set, should not report any block indices */
 780        if (f2fs_has_inline_data(dn->inode) && index) {
 781                err = -ENOENT;
 782                f2fs_put_page(npage[0], 1);
 783                goto release_out;
 784        }
 785
 786        parent = npage[0];
 787        if (level != 0)
 788                nids[1] = get_nid(parent, offset[0], true);
 789        dn->inode_page = npage[0];
 790        dn->inode_page_locked = true;
 791
 792        /* get indirect or direct nodes */
 793        for (i = 1; i <= level; i++) {
 794                bool done = false;
 795
 796                if (!nids[i] && mode == ALLOC_NODE) {
 797                        /* alloc new node */
 798                        if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
 799                                err = -ENOSPC;
 800                                goto release_pages;
 801                        }
 802
 803                        dn->nid = nids[i];
 804                        npage[i] = f2fs_new_node_page(dn, noffset[i]);
 805                        if (IS_ERR(npage[i])) {
 806                                f2fs_alloc_nid_failed(sbi, nids[i]);
 807                                err = PTR_ERR(npage[i]);
 808                                goto release_pages;
 809                        }
 810
 811                        set_nid(parent, offset[i - 1], nids[i], i == 1);
 812                        f2fs_alloc_nid_done(sbi, nids[i]);
 813                        done = true;
 814                } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 815                        npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
 816                        if (IS_ERR(npage[i])) {
 817                                err = PTR_ERR(npage[i]);
 818                                goto release_pages;
 819                        }
 820                        done = true;
 821                }
 822                if (i == 1) {
 823                        dn->inode_page_locked = false;
 824                        unlock_page(parent);
 825                } else {
 826                        f2fs_put_page(parent, 1);
 827                }
 828
 829                if (!done) {
 830                        npage[i] = f2fs_get_node_page(sbi, nids[i]);
 831                        if (IS_ERR(npage[i])) {
 832                                err = PTR_ERR(npage[i]);
 833                                f2fs_put_page(npage[0], 0);
 834                                goto release_out;
 835                        }
 836                }
 837                if (i < level) {
 838                        parent = npage[i];
 839                        nids[i + 1] = get_nid(parent, offset[i], false);
 840                }
 841        }
 842        dn->nid = nids[level];
 843        dn->ofs_in_node = offset[level];
 844        dn->node_page = npage[level];
 845        dn->data_blkaddr = f2fs_data_blkaddr(dn);
 846
 847        if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
 848                                        f2fs_sb_has_readonly(sbi)) {
 849                unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
 850                block_t blkaddr;
 851
 852                if (!c_len)
 853                        goto out;
 854
 855                blkaddr = f2fs_data_blkaddr(dn);
 856                if (blkaddr == COMPRESS_ADDR)
 857                        blkaddr = data_blkaddr(dn->inode, dn->node_page,
 858                                                dn->ofs_in_node + 1);
 859
 860                f2fs_update_extent_tree_range_compressed(dn->inode,
 861                                        index, blkaddr,
 862                                        F2FS_I(dn->inode)->i_cluster_size,
 863                                        c_len);
 864        }
 865out:
 866        return 0;
 867
 868release_pages:
 869        f2fs_put_page(parent, 1);
 870        if (i > 1)
 871                f2fs_put_page(npage[0], 0);
 872release_out:
 873        dn->inode_page = NULL;
 874        dn->node_page = NULL;
 875        if (err == -ENOENT) {
 876                dn->cur_level = i;
 877                dn->max_level = level;
 878                dn->ofs_in_node = offset[level];
 879        }
 880        return err;
 881}
 882
 883static int truncate_node(struct dnode_of_data *dn)
 884{
 885        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 886        struct node_info ni;
 887        int err;
 888        pgoff_t index;
 889
 890        err = f2fs_get_node_info(sbi, dn->nid, &ni);
 891        if (err)
 892                return err;
 893
 894        /* Deallocate node address */
 895        f2fs_invalidate_blocks(sbi, ni.blk_addr);
 896        dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 897        set_node_addr(sbi, &ni, NULL_ADDR, false);
 898
 899        if (dn->nid == dn->inode->i_ino) {
 900                f2fs_remove_orphan_inode(sbi, dn->nid);
 901                dec_valid_inode_count(sbi);
 902                f2fs_inode_synced(dn->inode);
 903        }
 904
 905        clear_node_page_dirty(dn->node_page);
 906        set_sbi_flag(sbi, SBI_IS_DIRTY);
 907
 908        index = dn->node_page->index;
 909        f2fs_put_page(dn->node_page, 1);
 910
 911        invalidate_mapping_pages(NODE_MAPPING(sbi),
 912                        index, index);
 913
 914        dn->node_page = NULL;
 915        trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 916
 917        return 0;
 918}
 919
 920static int truncate_dnode(struct dnode_of_data *dn)
 921{
 922        struct page *page;
 923        int err;
 924
 925        if (dn->nid == 0)
 926                return 1;
 927
 928        /* get direct node */
 929        page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 930        if (PTR_ERR(page) == -ENOENT)
 931                return 1;
 932        else if (IS_ERR(page))
 933                return PTR_ERR(page);
 934
 935        /* Make dnode_of_data for parameter */
 936        dn->node_page = page;
 937        dn->ofs_in_node = 0;
 938        f2fs_truncate_data_blocks(dn);
 939        err = truncate_node(dn);
 940        if (err)
 941                return err;
 942
 943        return 1;
 944}
 945
 946static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 947                                                int ofs, int depth)
 948{
 949        struct dnode_of_data rdn = *dn;
 950        struct page *page;
 951        struct f2fs_node *rn;
 952        nid_t child_nid;
 953        unsigned int child_nofs;
 954        int freed = 0;
 955        int i, ret;
 956
 957        if (dn->nid == 0)
 958                return NIDS_PER_BLOCK + 1;
 959
 960        trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 961
 962        page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 963        if (IS_ERR(page)) {
 964                trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 965                return PTR_ERR(page);
 966        }
 967
 968        f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 969
 970        rn = F2FS_NODE(page);
 971        if (depth < 3) {
 972                for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 973                        child_nid = le32_to_cpu(rn->in.nid[i]);
 974                        if (child_nid == 0)
 975                                continue;
 976                        rdn.nid = child_nid;
 977                        ret = truncate_dnode(&rdn);
 978                        if (ret < 0)
 979                                goto out_err;
 980                        if (set_nid(page, i, 0, false))
 981                                dn->node_changed = true;
 982                }
 983        } else {
 984                child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 985                for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 986                        child_nid = le32_to_cpu(rn->in.nid[i]);
 987                        if (child_nid == 0) {
 988                                child_nofs += NIDS_PER_BLOCK + 1;
 989                                continue;
 990                        }
 991                        rdn.nid = child_nid;
 992                        ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 993                        if (ret == (NIDS_PER_BLOCK + 1)) {
 994                                if (set_nid(page, i, 0, false))
 995                                        dn->node_changed = true;
 996                                child_nofs += ret;
 997                        } else if (ret < 0 && ret != -ENOENT) {
 998                                goto out_err;
 999                        }
1000                }
1001                freed = child_nofs;
1002        }
1003
1004        if (!ofs) {
1005                /* remove current indirect node */
1006                dn->node_page = page;
1007                ret = truncate_node(dn);
1008                if (ret)
1009                        goto out_err;
1010                freed++;
1011        } else {
1012                f2fs_put_page(page, 1);
1013        }
1014        trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1015        return freed;
1016
1017out_err:
1018        f2fs_put_page(page, 1);
1019        trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1020        return ret;
1021}
1022
1023static int truncate_partial_nodes(struct dnode_of_data *dn,
1024                        struct f2fs_inode *ri, int *offset, int depth)
1025{
1026        struct page *pages[2];
1027        nid_t nid[3];
1028        nid_t child_nid;
1029        int err = 0;
1030        int i;
1031        int idx = depth - 2;
1032
1033        nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1034        if (!nid[0])
1035                return 0;
1036
1037        /* get indirect nodes in the path */
1038        for (i = 0; i < idx + 1; i++) {
1039                /* reference count'll be increased */
1040                pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1041                if (IS_ERR(pages[i])) {
1042                        err = PTR_ERR(pages[i]);
1043                        idx = i - 1;
1044                        goto fail;
1045                }
1046                nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1047        }
1048
1049        f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1050
1051        /* free direct nodes linked to a partial indirect node */
1052        for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1053                child_nid = get_nid(pages[idx], i, false);
1054                if (!child_nid)
1055                        continue;
1056                dn->nid = child_nid;
1057                err = truncate_dnode(dn);
1058                if (err < 0)
1059                        goto fail;
1060                if (set_nid(pages[idx], i, 0, false))
1061                        dn->node_changed = true;
1062        }
1063
1064        if (offset[idx + 1] == 0) {
1065                dn->node_page = pages[idx];
1066                dn->nid = nid[idx];
1067                err = truncate_node(dn);
1068                if (err)
1069                        goto fail;
1070        } else {
1071                f2fs_put_page(pages[idx], 1);
1072        }
1073        offset[idx]++;
1074        offset[idx + 1] = 0;
1075        idx--;
1076fail:
1077        for (i = idx; i >= 0; i--)
1078                f2fs_put_page(pages[i], 1);
1079
1080        trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1081
1082        return err;
1083}
1084
1085/*
1086 * All the block addresses of data and nodes should be nullified.
1087 */
1088int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1089{
1090        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1091        int err = 0, cont = 1;
1092        int level, offset[4], noffset[4];
1093        unsigned int nofs = 0;
1094        struct f2fs_inode *ri;
1095        struct dnode_of_data dn;
1096        struct page *page;
1097
1098        trace_f2fs_truncate_inode_blocks_enter(inode, from);
1099
1100        level = get_node_path(inode, from, offset, noffset);
1101        if (level < 0) {
1102                trace_f2fs_truncate_inode_blocks_exit(inode, level);
1103                return level;
1104        }
1105
1106        page = f2fs_get_node_page(sbi, inode->i_ino);
1107        if (IS_ERR(page)) {
1108                trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1109                return PTR_ERR(page);
1110        }
1111
1112        set_new_dnode(&dn, inode, page, NULL, 0);
1113        unlock_page(page);
1114
1115        ri = F2FS_INODE(page);
1116        switch (level) {
1117        case 0:
1118        case 1:
1119                nofs = noffset[1];
1120                break;
1121        case 2:
1122                nofs = noffset[1];
1123                if (!offset[level - 1])
1124                        goto skip_partial;
1125                err = truncate_partial_nodes(&dn, ri, offset, level);
1126                if (err < 0 && err != -ENOENT)
1127                        goto fail;
1128                nofs += 1 + NIDS_PER_BLOCK;
1129                break;
1130        case 3:
1131                nofs = 5 + 2 * NIDS_PER_BLOCK;
1132                if (!offset[level - 1])
1133                        goto skip_partial;
1134                err = truncate_partial_nodes(&dn, ri, offset, level);
1135                if (err < 0 && err != -ENOENT)
1136                        goto fail;
1137                break;
1138        default:
1139                BUG();
1140        }
1141
1142skip_partial:
1143        while (cont) {
1144                dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1145                switch (offset[0]) {
1146                case NODE_DIR1_BLOCK:
1147                case NODE_DIR2_BLOCK:
1148                        err = truncate_dnode(&dn);
1149                        break;
1150
1151                case NODE_IND1_BLOCK:
1152                case NODE_IND2_BLOCK:
1153                        err = truncate_nodes(&dn, nofs, offset[1], 2);
1154                        break;
1155
1156                case NODE_DIND_BLOCK:
1157                        err = truncate_nodes(&dn, nofs, offset[1], 3);
1158                        cont = 0;
1159                        break;
1160
1161                default:
1162                        BUG();
1163                }
1164                if (err < 0 && err != -ENOENT)
1165                        goto fail;
1166                if (offset[1] == 0 &&
1167                                ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1168                        lock_page(page);
1169                        BUG_ON(page->mapping != NODE_MAPPING(sbi));
1170                        f2fs_wait_on_page_writeback(page, NODE, true, true);
1171                        ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1172                        set_page_dirty(page);
1173                        unlock_page(page);
1174                }
1175                offset[1] = 0;
1176                offset[0]++;
1177                nofs += err;
1178        }
1179fail:
1180        f2fs_put_page(page, 0);
1181        trace_f2fs_truncate_inode_blocks_exit(inode, err);
1182        return err > 0 ? 0 : err;
1183}
1184
1185/* caller must lock inode page */
1186int f2fs_truncate_xattr_node(struct inode *inode)
1187{
1188        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1189        nid_t nid = F2FS_I(inode)->i_xattr_nid;
1190        struct dnode_of_data dn;
1191        struct page *npage;
1192        int err;
1193
1194        if (!nid)
1195                return 0;
1196
1197        npage = f2fs_get_node_page(sbi, nid);
1198        if (IS_ERR(npage))
1199                return PTR_ERR(npage);
1200
1201        set_new_dnode(&dn, inode, NULL, npage, nid);
1202        err = truncate_node(&dn);
1203        if (err) {
1204                f2fs_put_page(npage, 1);
1205                return err;
1206        }
1207
1208        f2fs_i_xnid_write(inode, 0);
1209
1210        return 0;
1211}
1212
1213/*
1214 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1215 * f2fs_unlock_op().
1216 */
1217int f2fs_remove_inode_page(struct inode *inode)
1218{
1219        struct dnode_of_data dn;
1220        int err;
1221
1222        set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1223        err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1224        if (err)
1225                return err;
1226
1227        err = f2fs_truncate_xattr_node(inode);
1228        if (err) {
1229                f2fs_put_dnode(&dn);
1230                return err;
1231        }
1232
1233        /* remove potential inline_data blocks */
1234        if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1235                                S_ISLNK(inode->i_mode))
1236                f2fs_truncate_data_blocks_range(&dn, 1);
1237
1238        /* 0 is possible, after f2fs_new_inode() has failed */
1239        if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1240                f2fs_put_dnode(&dn);
1241                return -EIO;
1242        }
1243
1244        if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1245                f2fs_warn(F2FS_I_SB(inode),
1246                        "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1247                        inode->i_ino, (unsigned long long)inode->i_blocks);
1248                set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1249        }
1250
1251        /* will put inode & node pages */
1252        err = truncate_node(&dn);
1253        if (err) {
1254                f2fs_put_dnode(&dn);
1255                return err;
1256        }
1257        return 0;
1258}
1259
1260struct page *f2fs_new_inode_page(struct inode *inode)
1261{
1262        struct dnode_of_data dn;
1263
1264        /* allocate inode page for new inode */
1265        set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1266
1267        /* caller should f2fs_put_page(page, 1); */
1268        return f2fs_new_node_page(&dn, 0);
1269}
1270
1271struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1272{
1273        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1274        struct node_info new_ni;
1275        struct page *page;
1276        int err;
1277
1278        if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1279                return ERR_PTR(-EPERM);
1280
1281        page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1282        if (!page)
1283                return ERR_PTR(-ENOMEM);
1284
1285        if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1286                goto fail;
1287
1288#ifdef CONFIG_F2FS_CHECK_FS
1289        err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1290        if (err) {
1291                dec_valid_node_count(sbi, dn->inode, !ofs);
1292                goto fail;
1293        }
1294        f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1295#endif
1296        new_ni.nid = dn->nid;
1297        new_ni.ino = dn->inode->i_ino;
1298        new_ni.blk_addr = NULL_ADDR;
1299        new_ni.flag = 0;
1300        new_ni.version = 0;
1301        set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1302
1303        f2fs_wait_on_page_writeback(page, NODE, true, true);
1304        fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1305        set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1306        if (!PageUptodate(page))
1307                SetPageUptodate(page);
1308        if (set_page_dirty(page))
1309                dn->node_changed = true;
1310
1311        if (f2fs_has_xattr_block(ofs))
1312                f2fs_i_xnid_write(dn->inode, dn->nid);
1313
1314        if (ofs == 0)
1315                inc_valid_inode_count(sbi);
1316        return page;
1317
1318fail:
1319        clear_node_page_dirty(page);
1320        f2fs_put_page(page, 1);
1321        return ERR_PTR(err);
1322}
1323
1324/*
1325 * Caller should do after getting the following values.
1326 * 0: f2fs_put_page(page, 0)
1327 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1328 */
1329static int read_node_page(struct page *page, int op_flags)
1330{
1331        struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1332        struct node_info ni;
1333        struct f2fs_io_info fio = {
1334                .sbi = sbi,
1335                .type = NODE,
1336                .op = REQ_OP_READ,
1337                .op_flags = op_flags,
1338                .page = page,
1339                .encrypted_page = NULL,
1340        };
1341        int err;
1342
1343        if (PageUptodate(page)) {
1344                if (!f2fs_inode_chksum_verify(sbi, page)) {
1345                        ClearPageUptodate(page);
1346                        return -EFSBADCRC;
1347                }
1348                return LOCKED_PAGE;
1349        }
1350
1351        err = f2fs_get_node_info(sbi, page->index, &ni);
1352        if (err)
1353                return err;
1354
1355        /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1356        if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR) ||
1357                        is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1358                ClearPageUptodate(page);
1359                return -ENOENT;
1360        }
1361
1362        fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1363
1364        err = f2fs_submit_page_bio(&fio);
1365
1366        if (!err)
1367                f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1368
1369        return err;
1370}
1371
1372/*
1373 * Readahead a node page
1374 */
1375void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1376{
1377        struct page *apage;
1378        int err;
1379
1380        if (!nid)
1381                return;
1382        if (f2fs_check_nid_range(sbi, nid))
1383                return;
1384
1385        apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1386        if (apage)
1387                return;
1388
1389        apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1390        if (!apage)
1391                return;
1392
1393        err = read_node_page(apage, REQ_RAHEAD);
1394        f2fs_put_page(apage, err ? 1 : 0);
1395}
1396
1397static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1398                                        struct page *parent, int start)
1399{
1400        struct page *page;
1401        int err;
1402
1403        if (!nid)
1404                return ERR_PTR(-ENOENT);
1405        if (f2fs_check_nid_range(sbi, nid))
1406                return ERR_PTR(-EINVAL);
1407repeat:
1408        page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1409        if (!page)
1410                return ERR_PTR(-ENOMEM);
1411
1412        err = read_node_page(page, 0);
1413        if (err < 0) {
1414                f2fs_put_page(page, 1);
1415                return ERR_PTR(err);
1416        } else if (err == LOCKED_PAGE) {
1417                err = 0;
1418                goto page_hit;
1419        }
1420
1421        if (parent)
1422                f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1423
1424        lock_page(page);
1425
1426        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1427                f2fs_put_page(page, 1);
1428                goto repeat;
1429        }
1430
1431        if (unlikely(!PageUptodate(page))) {
1432                err = -EIO;
1433                goto out_err;
1434        }
1435
1436        if (!f2fs_inode_chksum_verify(sbi, page)) {
1437                err = -EFSBADCRC;
1438                goto out_err;
1439        }
1440page_hit:
1441        if (unlikely(nid != nid_of_node(page))) {
1442                f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1443                          nid, nid_of_node(page), ino_of_node(page),
1444                          ofs_of_node(page), cpver_of_node(page),
1445                          next_blkaddr_of_node(page));
1446                err = -EINVAL;
1447out_err:
1448                ClearPageUptodate(page);
1449                f2fs_put_page(page, 1);
1450                return ERR_PTR(err);
1451        }
1452        return page;
1453}
1454
1455struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1456{
1457        return __get_node_page(sbi, nid, NULL, 0);
1458}
1459
1460struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1461{
1462        struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1463        nid_t nid = get_nid(parent, start, false);
1464
1465        return __get_node_page(sbi, nid, parent, start);
1466}
1467
1468static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1469{
1470        struct inode *inode;
1471        struct page *page;
1472        int ret;
1473
1474        /* should flush inline_data before evict_inode */
1475        inode = ilookup(sbi->sb, ino);
1476        if (!inode)
1477                return;
1478
1479        page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1480                                        FGP_LOCK|FGP_NOWAIT, 0);
1481        if (!page)
1482                goto iput_out;
1483
1484        if (!PageUptodate(page))
1485                goto page_out;
1486
1487        if (!PageDirty(page))
1488                goto page_out;
1489
1490        if (!clear_page_dirty_for_io(page))
1491                goto page_out;
1492
1493        ret = f2fs_write_inline_data(inode, page);
1494        inode_dec_dirty_pages(inode);
1495        f2fs_remove_dirty_inode(inode);
1496        if (ret)
1497                set_page_dirty(page);
1498page_out:
1499        f2fs_put_page(page, 1);
1500iput_out:
1501        iput(inode);
1502}
1503
1504static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1505{
1506        pgoff_t index;
1507        struct pagevec pvec;
1508        struct page *last_page = NULL;
1509        int nr_pages;
1510
1511        pagevec_init(&pvec);
1512        index = 0;
1513
1514        while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1515                                PAGECACHE_TAG_DIRTY))) {
1516                int i;
1517
1518                for (i = 0; i < nr_pages; i++) {
1519                        struct page *page = pvec.pages[i];
1520
1521                        if (unlikely(f2fs_cp_error(sbi))) {
1522                                f2fs_put_page(last_page, 0);
1523                                pagevec_release(&pvec);
1524                                return ERR_PTR(-EIO);
1525                        }
1526
1527                        if (!IS_DNODE(page) || !is_cold_node(page))
1528                                continue;
1529                        if (ino_of_node(page) != ino)
1530                                continue;
1531
1532                        lock_page(page);
1533
1534                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1535continue_unlock:
1536                                unlock_page(page);
1537                                continue;
1538                        }
1539                        if (ino_of_node(page) != ino)
1540                                goto continue_unlock;
1541
1542                        if (!PageDirty(page)) {
1543                                /* someone wrote it for us */
1544                                goto continue_unlock;
1545                        }
1546
1547                        if (last_page)
1548                                f2fs_put_page(last_page, 0);
1549
1550                        get_page(page);
1551                        last_page = page;
1552                        unlock_page(page);
1553                }
1554                pagevec_release(&pvec);
1555                cond_resched();
1556        }
1557        return last_page;
1558}
1559
1560static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1561                                struct writeback_control *wbc, bool do_balance,
1562                                enum iostat_type io_type, unsigned int *seq_id)
1563{
1564        struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1565        nid_t nid;
1566        struct node_info ni;
1567        struct f2fs_io_info fio = {
1568                .sbi = sbi,
1569                .ino = ino_of_node(page),
1570                .type = NODE,
1571                .op = REQ_OP_WRITE,
1572                .op_flags = wbc_to_write_flags(wbc),
1573                .page = page,
1574                .encrypted_page = NULL,
1575                .submitted = false,
1576                .io_type = io_type,
1577                .io_wbc = wbc,
1578        };
1579        unsigned int seq;
1580
1581        trace_f2fs_writepage(page, NODE);
1582
1583        if (unlikely(f2fs_cp_error(sbi))) {
1584                ClearPageUptodate(page);
1585                dec_page_count(sbi, F2FS_DIRTY_NODES);
1586                unlock_page(page);
1587                return 0;
1588        }
1589
1590        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1591                goto redirty_out;
1592
1593        if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1594                        wbc->sync_mode == WB_SYNC_NONE &&
1595                        IS_DNODE(page) && is_cold_node(page))
1596                goto redirty_out;
1597
1598        /* get old block addr of this node page */
1599        nid = nid_of_node(page);
1600        f2fs_bug_on(sbi, page->index != nid);
1601
1602        if (f2fs_get_node_info(sbi, nid, &ni))
1603                goto redirty_out;
1604
1605        if (wbc->for_reclaim) {
1606                if (!down_read_trylock(&sbi->node_write))
1607                        goto redirty_out;
1608        } else {
1609                down_read(&sbi->node_write);
1610        }
1611
1612        /* This page is already truncated */
1613        if (unlikely(ni.blk_addr == NULL_ADDR)) {
1614                ClearPageUptodate(page);
1615                dec_page_count(sbi, F2FS_DIRTY_NODES);
1616                up_read(&sbi->node_write);
1617                unlock_page(page);
1618                return 0;
1619        }
1620
1621        if (__is_valid_data_blkaddr(ni.blk_addr) &&
1622                !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1623                                        DATA_GENERIC_ENHANCE)) {
1624                up_read(&sbi->node_write);
1625                goto redirty_out;
1626        }
1627
1628        if (atomic && !test_opt(sbi, NOBARRIER))
1629                fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1630
1631        /* should add to global list before clearing PAGECACHE status */
1632        if (f2fs_in_warm_node_list(sbi, page)) {
1633                seq = f2fs_add_fsync_node_entry(sbi, page);
1634                if (seq_id)
1635                        *seq_id = seq;
1636        }
1637
1638        set_page_writeback(page);
1639        ClearPageError(page);
1640
1641        fio.old_blkaddr = ni.blk_addr;
1642        f2fs_do_write_node_page(nid, &fio);
1643        set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1644        dec_page_count(sbi, F2FS_DIRTY_NODES);
1645        up_read(&sbi->node_write);
1646
1647        if (wbc->for_reclaim) {
1648                f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1649                submitted = NULL;
1650        }
1651
1652        unlock_page(page);
1653
1654        if (unlikely(f2fs_cp_error(sbi))) {
1655                f2fs_submit_merged_write(sbi, NODE);
1656                submitted = NULL;
1657        }
1658        if (submitted)
1659                *submitted = fio.submitted;
1660
1661        if (do_balance)
1662                f2fs_balance_fs(sbi, false);
1663        return 0;
1664
1665redirty_out:
1666        redirty_page_for_writepage(wbc, page);
1667        return AOP_WRITEPAGE_ACTIVATE;
1668}
1669
1670int f2fs_move_node_page(struct page *node_page, int gc_type)
1671{
1672        int err = 0;
1673
1674        if (gc_type == FG_GC) {
1675                struct writeback_control wbc = {
1676                        .sync_mode = WB_SYNC_ALL,
1677                        .nr_to_write = 1,
1678                        .for_reclaim = 0,
1679                };
1680
1681                f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1682
1683                set_page_dirty(node_page);
1684
1685                if (!clear_page_dirty_for_io(node_page)) {
1686                        err = -EAGAIN;
1687                        goto out_page;
1688                }
1689
1690                if (__write_node_page(node_page, false, NULL,
1691                                        &wbc, false, FS_GC_NODE_IO, NULL)) {
1692                        err = -EAGAIN;
1693                        unlock_page(node_page);
1694                }
1695                goto release_page;
1696        } else {
1697                /* set page dirty and write it */
1698                if (!PageWriteback(node_page))
1699                        set_page_dirty(node_page);
1700        }
1701out_page:
1702        unlock_page(node_page);
1703release_page:
1704        f2fs_put_page(node_page, 0);
1705        return err;
1706}
1707
1708static int f2fs_write_node_page(struct page *page,
1709                                struct writeback_control *wbc)
1710{
1711        return __write_node_page(page, false, NULL, wbc, false,
1712                                                FS_NODE_IO, NULL);
1713}
1714
1715int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1716                        struct writeback_control *wbc, bool atomic,
1717                        unsigned int *seq_id)
1718{
1719        pgoff_t index;
1720        struct pagevec pvec;
1721        int ret = 0;
1722        struct page *last_page = NULL;
1723        bool marked = false;
1724        nid_t ino = inode->i_ino;
1725        int nr_pages;
1726        int nwritten = 0;
1727
1728        if (atomic) {
1729                last_page = last_fsync_dnode(sbi, ino);
1730                if (IS_ERR_OR_NULL(last_page))
1731                        return PTR_ERR_OR_ZERO(last_page);
1732        }
1733retry:
1734        pagevec_init(&pvec);
1735        index = 0;
1736
1737        while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1738                                PAGECACHE_TAG_DIRTY))) {
1739                int i;
1740
1741                for (i = 0; i < nr_pages; i++) {
1742                        struct page *page = pvec.pages[i];
1743                        bool submitted = false;
1744
1745                        if (unlikely(f2fs_cp_error(sbi))) {
1746                                f2fs_put_page(last_page, 0);
1747                                pagevec_release(&pvec);
1748                                ret = -EIO;
1749                                goto out;
1750                        }
1751
1752                        if (!IS_DNODE(page) || !is_cold_node(page))
1753                                continue;
1754                        if (ino_of_node(page) != ino)
1755                                continue;
1756
1757                        lock_page(page);
1758
1759                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1760continue_unlock:
1761                                unlock_page(page);
1762                                continue;
1763                        }
1764                        if (ino_of_node(page) != ino)
1765                                goto continue_unlock;
1766
1767                        if (!PageDirty(page) && page != last_page) {
1768                                /* someone wrote it for us */
1769                                goto continue_unlock;
1770                        }
1771
1772                        f2fs_wait_on_page_writeback(page, NODE, true, true);
1773
1774                        set_fsync_mark(page, 0);
1775                        set_dentry_mark(page, 0);
1776
1777                        if (!atomic || page == last_page) {
1778                                set_fsync_mark(page, 1);
1779                                if (IS_INODE(page)) {
1780                                        if (is_inode_flag_set(inode,
1781                                                                FI_DIRTY_INODE))
1782                                                f2fs_update_inode(inode, page);
1783                                        set_dentry_mark(page,
1784                                                f2fs_need_dentry_mark(sbi, ino));
1785                                }
1786                                /* may be written by other thread */
1787                                if (!PageDirty(page))
1788                                        set_page_dirty(page);
1789                        }
1790
1791                        if (!clear_page_dirty_for_io(page))
1792                                goto continue_unlock;
1793
1794                        ret = __write_node_page(page, atomic &&
1795                                                page == last_page,
1796                                                &submitted, wbc, true,
1797                                                FS_NODE_IO, seq_id);
1798                        if (ret) {
1799                                unlock_page(page);
1800                                f2fs_put_page(last_page, 0);
1801                                break;
1802                        } else if (submitted) {
1803                                nwritten++;
1804                        }
1805
1806                        if (page == last_page) {
1807                                f2fs_put_page(page, 0);
1808                                marked = true;
1809                                break;
1810                        }
1811                }
1812                pagevec_release(&pvec);
1813                cond_resched();
1814
1815                if (ret || marked)
1816                        break;
1817        }
1818        if (!ret && atomic && !marked) {
1819                f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1820                           ino, last_page->index);
1821                lock_page(last_page);
1822                f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1823                set_page_dirty(last_page);
1824                unlock_page(last_page);
1825                goto retry;
1826        }
1827out:
1828        if (nwritten)
1829                f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1830        return ret ? -EIO : 0;
1831}
1832
1833static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1834{
1835        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1836        bool clean;
1837
1838        if (inode->i_ino != ino)
1839                return 0;
1840
1841        if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1842                return 0;
1843
1844        spin_lock(&sbi->inode_lock[DIRTY_META]);
1845        clean = list_empty(&F2FS_I(inode)->gdirty_list);
1846        spin_unlock(&sbi->inode_lock[DIRTY_META]);
1847
1848        if (clean)
1849                return 0;
1850
1851        inode = igrab(inode);
1852        if (!inode)
1853                return 0;
1854        return 1;
1855}
1856
1857static bool flush_dirty_inode(struct page *page)
1858{
1859        struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1860        struct inode *inode;
1861        nid_t ino = ino_of_node(page);
1862
1863        inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1864        if (!inode)
1865                return false;
1866
1867        f2fs_update_inode(inode, page);
1868        unlock_page(page);
1869
1870        iput(inode);
1871        return true;
1872}
1873
1874void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1875{
1876        pgoff_t index = 0;
1877        struct pagevec pvec;
1878        int nr_pages;
1879
1880        pagevec_init(&pvec);
1881
1882        while ((nr_pages = pagevec_lookup_tag(&pvec,
1883                        NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1884                int i;
1885
1886                for (i = 0; i < nr_pages; i++) {
1887                        struct page *page = pvec.pages[i];
1888
1889                        if (!IS_DNODE(page))
1890                                continue;
1891
1892                        lock_page(page);
1893
1894                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1895continue_unlock:
1896                                unlock_page(page);
1897                                continue;
1898                        }
1899
1900                        if (!PageDirty(page)) {
1901                                /* someone wrote it for us */
1902                                goto continue_unlock;
1903                        }
1904
1905                        /* flush inline_data, if it's async context. */
1906                        if (page_private_inline(page)) {
1907                                clear_page_private_inline(page);
1908                                unlock_page(page);
1909                                flush_inline_data(sbi, ino_of_node(page));
1910                                continue;
1911                        }
1912                        unlock_page(page);
1913                }
1914                pagevec_release(&pvec);
1915                cond_resched();
1916        }
1917}
1918
1919int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1920                                struct writeback_control *wbc,
1921                                bool do_balance, enum iostat_type io_type)
1922{
1923        pgoff_t index;
1924        struct pagevec pvec;
1925        int step = 0;
1926        int nwritten = 0;
1927        int ret = 0;
1928        int nr_pages, done = 0;
1929
1930        pagevec_init(&pvec);
1931
1932next_step:
1933        index = 0;
1934
1935        while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1936                        NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1937                int i;
1938
1939                for (i = 0; i < nr_pages; i++) {
1940                        struct page *page = pvec.pages[i];
1941                        bool submitted = false;
1942                        bool may_dirty = true;
1943
1944                        /* give a priority to WB_SYNC threads */
1945                        if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1946                                        wbc->sync_mode == WB_SYNC_NONE) {
1947                                done = 1;
1948                                break;
1949                        }
1950
1951                        /*
1952                         * flushing sequence with step:
1953                         * 0. indirect nodes
1954                         * 1. dentry dnodes
1955                         * 2. file dnodes
1956                         */
1957                        if (step == 0 && IS_DNODE(page))
1958                                continue;
1959                        if (step == 1 && (!IS_DNODE(page) ||
1960                                                is_cold_node(page)))
1961                                continue;
1962                        if (step == 2 && (!IS_DNODE(page) ||
1963                                                !is_cold_node(page)))
1964                                continue;
1965lock_node:
1966                        if (wbc->sync_mode == WB_SYNC_ALL)
1967                                lock_page(page);
1968                        else if (!trylock_page(page))
1969                                continue;
1970
1971                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1972continue_unlock:
1973                                unlock_page(page);
1974                                continue;
1975                        }
1976
1977                        if (!PageDirty(page)) {
1978                                /* someone wrote it for us */
1979                                goto continue_unlock;
1980                        }
1981
1982                        /* flush inline_data/inode, if it's async context. */
1983                        if (!do_balance)
1984                                goto write_node;
1985
1986                        /* flush inline_data */
1987                        if (page_private_inline(page)) {
1988                                clear_page_private_inline(page);
1989                                unlock_page(page);
1990                                flush_inline_data(sbi, ino_of_node(page));
1991                                goto lock_node;
1992                        }
1993
1994                        /* flush dirty inode */
1995                        if (IS_INODE(page) && may_dirty) {
1996                                may_dirty = false;
1997                                if (flush_dirty_inode(page))
1998                                        goto lock_node;
1999                        }
2000write_node:
2001                        f2fs_wait_on_page_writeback(page, NODE, true, true);
2002
2003                        if (!clear_page_dirty_for_io(page))
2004                                goto continue_unlock;
2005
2006                        set_fsync_mark(page, 0);
2007                        set_dentry_mark(page, 0);
2008
2009                        ret = __write_node_page(page, false, &submitted,
2010                                                wbc, do_balance, io_type, NULL);
2011                        if (ret)
2012                                unlock_page(page);
2013                        else if (submitted)
2014                                nwritten++;
2015
2016                        if (--wbc->nr_to_write == 0)
2017                                break;
2018                }
2019                pagevec_release(&pvec);
2020                cond_resched();
2021
2022                if (wbc->nr_to_write == 0) {
2023                        step = 2;
2024                        break;
2025                }
2026        }
2027
2028        if (step < 2) {
2029                if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2030                                wbc->sync_mode == WB_SYNC_NONE && step == 1)
2031                        goto out;
2032                step++;
2033                goto next_step;
2034        }
2035out:
2036        if (nwritten)
2037                f2fs_submit_merged_write(sbi, NODE);
2038
2039        if (unlikely(f2fs_cp_error(sbi)))
2040                return -EIO;
2041        return ret;
2042}
2043
2044int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2045                                                unsigned int seq_id)
2046{
2047        struct fsync_node_entry *fn;
2048        struct page *page;
2049        struct list_head *head = &sbi->fsync_node_list;
2050        unsigned long flags;
2051        unsigned int cur_seq_id = 0;
2052        int ret2, ret = 0;
2053
2054        while (seq_id && cur_seq_id < seq_id) {
2055                spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2056                if (list_empty(head)) {
2057                        spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2058                        break;
2059                }
2060                fn = list_first_entry(head, struct fsync_node_entry, list);
2061                if (fn->seq_id > seq_id) {
2062                        spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2063                        break;
2064                }
2065                cur_seq_id = fn->seq_id;
2066                page = fn->page;
2067                get_page(page);
2068                spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2069
2070                f2fs_wait_on_page_writeback(page, NODE, true, false);
2071                if (TestClearPageError(page))
2072                        ret = -EIO;
2073
2074                put_page(page);
2075
2076                if (ret)
2077                        break;
2078        }
2079
2080        ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2081        if (!ret)
2082                ret = ret2;
2083
2084        return ret;
2085}
2086
2087static int f2fs_write_node_pages(struct address_space *mapping,
2088                            struct writeback_control *wbc)
2089{
2090        struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2091        struct blk_plug plug;
2092        long diff;
2093
2094        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2095                goto skip_write;
2096
2097        /* balancing f2fs's metadata in background */
2098        f2fs_balance_fs_bg(sbi, true);
2099
2100        /* collect a number of dirty node pages and write together */
2101        if (wbc->sync_mode != WB_SYNC_ALL &&
2102                        get_pages(sbi, F2FS_DIRTY_NODES) <
2103                                        nr_pages_to_skip(sbi, NODE))
2104                goto skip_write;
2105
2106        if (wbc->sync_mode == WB_SYNC_ALL)
2107                atomic_inc(&sbi->wb_sync_req[NODE]);
2108        else if (atomic_read(&sbi->wb_sync_req[NODE]))
2109                goto skip_write;
2110
2111        trace_f2fs_writepages(mapping->host, wbc, NODE);
2112
2113        diff = nr_pages_to_write(sbi, NODE, wbc);
2114        blk_start_plug(&plug);
2115        f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2116        blk_finish_plug(&plug);
2117        wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2118
2119        if (wbc->sync_mode == WB_SYNC_ALL)
2120                atomic_dec(&sbi->wb_sync_req[NODE]);
2121        return 0;
2122
2123skip_write:
2124        wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2125        trace_f2fs_writepages(mapping->host, wbc, NODE);
2126        return 0;
2127}
2128
2129static int f2fs_set_node_page_dirty(struct page *page)
2130{
2131        trace_f2fs_set_page_dirty(page, NODE);
2132
2133        if (!PageUptodate(page))
2134                SetPageUptodate(page);
2135#ifdef CONFIG_F2FS_CHECK_FS
2136        if (IS_INODE(page))
2137                f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2138#endif
2139        if (!PageDirty(page)) {
2140                __set_page_dirty_nobuffers(page);
2141                inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2142                set_page_private_reference(page);
2143                return 1;
2144        }
2145        return 0;
2146}
2147
2148/*
2149 * Structure of the f2fs node operations
2150 */
2151const struct address_space_operations f2fs_node_aops = {
2152        .writepage      = f2fs_write_node_page,
2153        .writepages     = f2fs_write_node_pages,
2154        .set_page_dirty = f2fs_set_node_page_dirty,
2155        .invalidatepage = f2fs_invalidate_page,
2156        .releasepage    = f2fs_release_page,
2157#ifdef CONFIG_MIGRATION
2158        .migratepage    = f2fs_migrate_page,
2159#endif
2160};
2161
2162static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2163                                                nid_t n)
2164{
2165        return radix_tree_lookup(&nm_i->free_nid_root, n);
2166}
2167
2168static int __insert_free_nid(struct f2fs_sb_info *sbi,
2169                                struct free_nid *i)
2170{
2171        struct f2fs_nm_info *nm_i = NM_I(sbi);
2172        int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2173
2174        if (err)
2175                return err;
2176
2177        nm_i->nid_cnt[FREE_NID]++;
2178        list_add_tail(&i->list, &nm_i->free_nid_list);
2179        return 0;
2180}
2181
2182static void __remove_free_nid(struct f2fs_sb_info *sbi,
2183                        struct free_nid *i, enum nid_state state)
2184{
2185        struct f2fs_nm_info *nm_i = NM_I(sbi);
2186
2187        f2fs_bug_on(sbi, state != i->state);
2188        nm_i->nid_cnt[state]--;
2189        if (state == FREE_NID)
2190                list_del(&i->list);
2191        radix_tree_delete(&nm_i->free_nid_root, i->nid);
2192}
2193
2194static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2195                        enum nid_state org_state, enum nid_state dst_state)
2196{
2197        struct f2fs_nm_info *nm_i = NM_I(sbi);
2198
2199        f2fs_bug_on(sbi, org_state != i->state);
2200        i->state = dst_state;
2201        nm_i->nid_cnt[org_state]--;
2202        nm_i->nid_cnt[dst_state]++;
2203
2204        switch (dst_state) {
2205        case PREALLOC_NID:
2206                list_del(&i->list);
2207                break;
2208        case FREE_NID:
2209                list_add_tail(&i->list, &nm_i->free_nid_list);
2210                break;
2211        default:
2212                BUG_ON(1);
2213        }
2214}
2215
2216bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2217{
2218        struct f2fs_nm_info *nm_i = NM_I(sbi);
2219        unsigned int i;
2220        bool ret = true;
2221
2222        down_read(&nm_i->nat_tree_lock);
2223        for (i = 0; i < nm_i->nat_blocks; i++) {
2224                if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2225                        ret = false;
2226                        break;
2227                }
2228        }
2229        up_read(&nm_i->nat_tree_lock);
2230
2231        return ret;
2232}
2233
2234static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2235                                                        bool set, bool build)
2236{
2237        struct f2fs_nm_info *nm_i = NM_I(sbi);
2238        unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2239        unsigned int nid_ofs = nid - START_NID(nid);
2240
2241        if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2242                return;
2243
2244        if (set) {
2245                if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2246                        return;
2247                __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2248                nm_i->free_nid_count[nat_ofs]++;
2249        } else {
2250                if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2251                        return;
2252                __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2253                if (!build)
2254                        nm_i->free_nid_count[nat_ofs]--;
2255        }
2256}
2257
2258/* return if the nid is recognized as free */
2259static bool add_free_nid(struct f2fs_sb_info *sbi,
2260                                nid_t nid, bool build, bool update)
2261{
2262        struct f2fs_nm_info *nm_i = NM_I(sbi);
2263        struct free_nid *i, *e;
2264        struct nat_entry *ne;
2265        int err = -EINVAL;
2266        bool ret = false;
2267
2268        /* 0 nid should not be used */
2269        if (unlikely(nid == 0))
2270                return false;
2271
2272        if (unlikely(f2fs_check_nid_range(sbi, nid)))
2273                return false;
2274
2275        i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2276        i->nid = nid;
2277        i->state = FREE_NID;
2278
2279        radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2280
2281        spin_lock(&nm_i->nid_list_lock);
2282
2283        if (build) {
2284                /*
2285                 *   Thread A             Thread B
2286                 *  - f2fs_create
2287                 *   - f2fs_new_inode
2288                 *    - f2fs_alloc_nid
2289                 *     - __insert_nid_to_list(PREALLOC_NID)
2290                 *                     - f2fs_balance_fs_bg
2291                 *                      - f2fs_build_free_nids
2292                 *                       - __f2fs_build_free_nids
2293                 *                        - scan_nat_page
2294                 *                         - add_free_nid
2295                 *                          - __lookup_nat_cache
2296                 *  - f2fs_add_link
2297                 *   - f2fs_init_inode_metadata
2298                 *    - f2fs_new_inode_page
2299                 *     - f2fs_new_node_page
2300                 *      - set_node_addr
2301                 *  - f2fs_alloc_nid_done
2302                 *   - __remove_nid_from_list(PREALLOC_NID)
2303                 *                         - __insert_nid_to_list(FREE_NID)
2304                 */
2305                ne = __lookup_nat_cache(nm_i, nid);
2306                if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2307                                nat_get_blkaddr(ne) != NULL_ADDR))
2308                        goto err_out;
2309
2310                e = __lookup_free_nid_list(nm_i, nid);
2311                if (e) {
2312                        if (e->state == FREE_NID)
2313                                ret = true;
2314                        goto err_out;
2315                }
2316        }
2317        ret = true;
2318        err = __insert_free_nid(sbi, i);
2319err_out:
2320        if (update) {
2321                update_free_nid_bitmap(sbi, nid, ret, build);
2322                if (!build)
2323                        nm_i->available_nids++;
2324        }
2325        spin_unlock(&nm_i->nid_list_lock);
2326        radix_tree_preload_end();
2327
2328        if (err)
2329                kmem_cache_free(free_nid_slab, i);
2330        return ret;
2331}
2332
2333static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2334{
2335        struct f2fs_nm_info *nm_i = NM_I(sbi);
2336        struct free_nid *i;
2337        bool need_free = false;
2338
2339        spin_lock(&nm_i->nid_list_lock);
2340        i = __lookup_free_nid_list(nm_i, nid);
2341        if (i && i->state == FREE_NID) {
2342                __remove_free_nid(sbi, i, FREE_NID);
2343                need_free = true;
2344        }
2345        spin_unlock(&nm_i->nid_list_lock);
2346
2347        if (need_free)
2348                kmem_cache_free(free_nid_slab, i);
2349}
2350
2351static int scan_nat_page(struct f2fs_sb_info *sbi,
2352                        struct page *nat_page, nid_t start_nid)
2353{
2354        struct f2fs_nm_info *nm_i = NM_I(sbi);
2355        struct f2fs_nat_block *nat_blk = page_address(nat_page);
2356        block_t blk_addr;
2357        unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2358        int i;
2359
2360        __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2361
2362        i = start_nid % NAT_ENTRY_PER_BLOCK;
2363
2364        for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2365                if (unlikely(start_nid >= nm_i->max_nid))
2366                        break;
2367
2368                blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2369
2370                if (blk_addr == NEW_ADDR)
2371                        return -EINVAL;
2372
2373                if (blk_addr == NULL_ADDR) {
2374                        add_free_nid(sbi, start_nid, true, true);
2375                } else {
2376                        spin_lock(&NM_I(sbi)->nid_list_lock);
2377                        update_free_nid_bitmap(sbi, start_nid, false, true);
2378                        spin_unlock(&NM_I(sbi)->nid_list_lock);
2379                }
2380        }
2381
2382        return 0;
2383}
2384
2385static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2386{
2387        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2388        struct f2fs_journal *journal = curseg->journal;
2389        int i;
2390
2391        down_read(&curseg->journal_rwsem);
2392        for (i = 0; i < nats_in_cursum(journal); i++) {
2393                block_t addr;
2394                nid_t nid;
2395
2396                addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2397                nid = le32_to_cpu(nid_in_journal(journal, i));
2398                if (addr == NULL_ADDR)
2399                        add_free_nid(sbi, nid, true, false);
2400                else
2401                        remove_free_nid(sbi, nid);
2402        }
2403        up_read(&curseg->journal_rwsem);
2404}
2405
2406static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2407{
2408        struct f2fs_nm_info *nm_i = NM_I(sbi);
2409        unsigned int i, idx;
2410        nid_t nid;
2411
2412        down_read(&nm_i->nat_tree_lock);
2413
2414        for (i = 0; i < nm_i->nat_blocks; i++) {
2415                if (!test_bit_le(i, nm_i->nat_block_bitmap))
2416                        continue;
2417                if (!nm_i->free_nid_count[i])
2418                        continue;
2419                for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2420                        idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2421                                                NAT_ENTRY_PER_BLOCK, idx);
2422                        if (idx >= NAT_ENTRY_PER_BLOCK)
2423                                break;
2424
2425                        nid = i * NAT_ENTRY_PER_BLOCK + idx;
2426                        add_free_nid(sbi, nid, true, false);
2427
2428                        if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2429                                goto out;
2430                }
2431        }
2432out:
2433        scan_curseg_cache(sbi);
2434
2435        up_read(&nm_i->nat_tree_lock);
2436}
2437
2438static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2439                                                bool sync, bool mount)
2440{
2441        struct f2fs_nm_info *nm_i = NM_I(sbi);
2442        int i = 0, ret;
2443        nid_t nid = nm_i->next_scan_nid;
2444
2445        if (unlikely(nid >= nm_i->max_nid))
2446                nid = 0;
2447
2448        if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2449                nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2450
2451        /* Enough entries */
2452        if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2453                return 0;
2454
2455        if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2456                return 0;
2457
2458        if (!mount) {
2459                /* try to find free nids in free_nid_bitmap */
2460                scan_free_nid_bits(sbi);
2461
2462                if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2463                        return 0;
2464        }
2465
2466        /* readahead nat pages to be scanned */
2467        f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2468                                                        META_NAT, true);
2469
2470        down_read(&nm_i->nat_tree_lock);
2471
2472        while (1) {
2473                if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2474                                                nm_i->nat_block_bitmap)) {
2475                        struct page *page = get_current_nat_page(sbi, nid);
2476
2477                        if (IS_ERR(page)) {
2478                                ret = PTR_ERR(page);
2479                        } else {
2480                                ret = scan_nat_page(sbi, page, nid);
2481                                f2fs_put_page(page, 1);
2482                        }
2483
2484                        if (ret) {
2485                                up_read(&nm_i->nat_tree_lock);
2486                                f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2487                                return ret;
2488                        }
2489                }
2490
2491                nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2492                if (unlikely(nid >= nm_i->max_nid))
2493                        nid = 0;
2494
2495                if (++i >= FREE_NID_PAGES)
2496                        break;
2497        }
2498
2499        /* go to the next free nat pages to find free nids abundantly */
2500        nm_i->next_scan_nid = nid;
2501
2502        /* find free nids from current sum_pages */
2503        scan_curseg_cache(sbi);
2504
2505        up_read(&nm_i->nat_tree_lock);
2506
2507        f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2508                                        nm_i->ra_nid_pages, META_NAT, false);
2509
2510        return 0;
2511}
2512
2513int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2514{
2515        int ret;
2516
2517        mutex_lock(&NM_I(sbi)->build_lock);
2518        ret = __f2fs_build_free_nids(sbi, sync, mount);
2519        mutex_unlock(&NM_I(sbi)->build_lock);
2520
2521        return ret;
2522}
2523
2524/*
2525 * If this function returns success, caller can obtain a new nid
2526 * from second parameter of this function.
2527 * The returned nid could be used ino as well as nid when inode is created.
2528 */
2529bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2530{
2531        struct f2fs_nm_info *nm_i = NM_I(sbi);
2532        struct free_nid *i = NULL;
2533retry:
2534        if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2535                f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2536                return false;
2537        }
2538
2539        spin_lock(&nm_i->nid_list_lock);
2540
2541        if (unlikely(nm_i->available_nids == 0)) {
2542                spin_unlock(&nm_i->nid_list_lock);
2543                return false;
2544        }
2545
2546        /* We should not use stale free nids created by f2fs_build_free_nids */
2547        if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2548                f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2549                i = list_first_entry(&nm_i->free_nid_list,
2550                                        struct free_nid, list);
2551                *nid = i->nid;
2552
2553                __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2554                nm_i->available_nids--;
2555
2556                update_free_nid_bitmap(sbi, *nid, false, false);
2557
2558                spin_unlock(&nm_i->nid_list_lock);
2559                return true;
2560        }
2561        spin_unlock(&nm_i->nid_list_lock);
2562
2563        /* Let's scan nat pages and its caches to get free nids */
2564        if (!f2fs_build_free_nids(sbi, true, false))
2565                goto retry;
2566        return false;
2567}
2568
2569/*
2570 * f2fs_alloc_nid() should be called prior to this function.
2571 */
2572void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2573{
2574        struct f2fs_nm_info *nm_i = NM_I(sbi);
2575        struct free_nid *i;
2576
2577        spin_lock(&nm_i->nid_list_lock);
2578        i = __lookup_free_nid_list(nm_i, nid);
2579        f2fs_bug_on(sbi, !i);
2580        __remove_free_nid(sbi, i, PREALLOC_NID);
2581        spin_unlock(&nm_i->nid_list_lock);
2582
2583        kmem_cache_free(free_nid_slab, i);
2584}
2585
2586/*
2587 * f2fs_alloc_nid() should be called prior to this function.
2588 */
2589void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2590{
2591        struct f2fs_nm_info *nm_i = NM_I(sbi);
2592        struct free_nid *i;
2593        bool need_free = false;
2594
2595        if (!nid)
2596                return;
2597
2598        spin_lock(&nm_i->nid_list_lock);
2599        i = __lookup_free_nid_list(nm_i, nid);
2600        f2fs_bug_on(sbi, !i);
2601
2602        if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2603                __remove_free_nid(sbi, i, PREALLOC_NID);
2604                need_free = true;
2605        } else {
2606                __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2607        }
2608
2609        nm_i->available_nids++;
2610
2611        update_free_nid_bitmap(sbi, nid, true, false);
2612
2613        spin_unlock(&nm_i->nid_list_lock);
2614
2615        if (need_free)
2616                kmem_cache_free(free_nid_slab, i);
2617}
2618
2619int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2620{
2621        struct f2fs_nm_info *nm_i = NM_I(sbi);
2622        int nr = nr_shrink;
2623
2624        if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2625                return 0;
2626
2627        if (!mutex_trylock(&nm_i->build_lock))
2628                return 0;
2629
2630        while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2631                struct free_nid *i, *next;
2632                unsigned int batch = SHRINK_NID_BATCH_SIZE;
2633
2634                spin_lock(&nm_i->nid_list_lock);
2635                list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2636                        if (!nr_shrink || !batch ||
2637                                nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2638                                break;
2639                        __remove_free_nid(sbi, i, FREE_NID);
2640                        kmem_cache_free(free_nid_slab, i);
2641                        nr_shrink--;
2642                        batch--;
2643                }
2644                spin_unlock(&nm_i->nid_list_lock);
2645        }
2646
2647        mutex_unlock(&nm_i->build_lock);
2648
2649        return nr - nr_shrink;
2650}
2651
2652int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2653{
2654        void *src_addr, *dst_addr;
2655        size_t inline_size;
2656        struct page *ipage;
2657        struct f2fs_inode *ri;
2658
2659        ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2660        if (IS_ERR(ipage))
2661                return PTR_ERR(ipage);
2662
2663        ri = F2FS_INODE(page);
2664        if (ri->i_inline & F2FS_INLINE_XATTR) {
2665                if (!f2fs_has_inline_xattr(inode)) {
2666                        set_inode_flag(inode, FI_INLINE_XATTR);
2667                        stat_inc_inline_xattr(inode);
2668                }
2669        } else {
2670                if (f2fs_has_inline_xattr(inode)) {
2671                        stat_dec_inline_xattr(inode);
2672                        clear_inode_flag(inode, FI_INLINE_XATTR);
2673                }
2674                goto update_inode;
2675        }
2676
2677        dst_addr = inline_xattr_addr(inode, ipage);
2678        src_addr = inline_xattr_addr(inode, page);
2679        inline_size = inline_xattr_size(inode);
2680
2681        f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2682        memcpy(dst_addr, src_addr, inline_size);
2683update_inode:
2684        f2fs_update_inode(inode, ipage);
2685        f2fs_put_page(ipage, 1);
2686        return 0;
2687}
2688
2689int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2690{
2691        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2692        nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2693        nid_t new_xnid;
2694        struct dnode_of_data dn;
2695        struct node_info ni;
2696        struct page *xpage;
2697        int err;
2698
2699        if (!prev_xnid)
2700                goto recover_xnid;
2701
2702        /* 1: invalidate the previous xattr nid */
2703        err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2704        if (err)
2705                return err;
2706
2707        f2fs_invalidate_blocks(sbi, ni.blk_addr);
2708        dec_valid_node_count(sbi, inode, false);
2709        set_node_addr(sbi, &ni, NULL_ADDR, false);
2710
2711recover_xnid:
2712        /* 2: update xattr nid in inode */
2713        if (!f2fs_alloc_nid(sbi, &new_xnid))
2714                return -ENOSPC;
2715
2716        set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2717        xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2718        if (IS_ERR(xpage)) {
2719                f2fs_alloc_nid_failed(sbi, new_xnid);
2720                return PTR_ERR(xpage);
2721        }
2722
2723        f2fs_alloc_nid_done(sbi, new_xnid);
2724        f2fs_update_inode_page(inode);
2725
2726        /* 3: update and set xattr node page dirty */
2727        memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2728
2729        set_page_dirty(xpage);
2730        f2fs_put_page(xpage, 1);
2731
2732        return 0;
2733}
2734
2735int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2736{
2737        struct f2fs_inode *src, *dst;
2738        nid_t ino = ino_of_node(page);
2739        struct node_info old_ni, new_ni;
2740        struct page *ipage;
2741        int err;
2742
2743        err = f2fs_get_node_info(sbi, ino, &old_ni);
2744        if (err)
2745                return err;
2746
2747        if (unlikely(old_ni.blk_addr != NULL_ADDR))
2748                return -EINVAL;
2749retry:
2750        ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2751        if (!ipage) {
2752                congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2753                goto retry;
2754        }
2755
2756        /* Should not use this inode from free nid list */
2757        remove_free_nid(sbi, ino);
2758
2759        if (!PageUptodate(ipage))
2760                SetPageUptodate(ipage);
2761        fill_node_footer(ipage, ino, ino, 0, true);
2762        set_cold_node(ipage, false);
2763
2764        src = F2FS_INODE(page);
2765        dst = F2FS_INODE(ipage);
2766
2767        memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2768        dst->i_size = 0;
2769        dst->i_blocks = cpu_to_le64(1);
2770        dst->i_links = cpu_to_le32(1);
2771        dst->i_xattr_nid = 0;
2772        dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2773        if (dst->i_inline & F2FS_EXTRA_ATTR) {
2774                dst->i_extra_isize = src->i_extra_isize;
2775
2776                if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2777                        F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2778                                                        i_inline_xattr_size))
2779                        dst->i_inline_xattr_size = src->i_inline_xattr_size;
2780
2781                if (f2fs_sb_has_project_quota(sbi) &&
2782                        F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2783                                                                i_projid))
2784                        dst->i_projid = src->i_projid;
2785
2786                if (f2fs_sb_has_inode_crtime(sbi) &&
2787                        F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2788                                                        i_crtime_nsec)) {
2789                        dst->i_crtime = src->i_crtime;
2790                        dst->i_crtime_nsec = src->i_crtime_nsec;
2791                }
2792        }
2793
2794        new_ni = old_ni;
2795        new_ni.ino = ino;
2796
2797        if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2798                WARN_ON(1);
2799        set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2800        inc_valid_inode_count(sbi);
2801        set_page_dirty(ipage);
2802        f2fs_put_page(ipage, 1);
2803        return 0;
2804}
2805
2806int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2807                        unsigned int segno, struct f2fs_summary_block *sum)
2808{
2809        struct f2fs_node *rn;
2810        struct f2fs_summary *sum_entry;
2811        block_t addr;
2812        int i, idx, last_offset, nrpages;
2813
2814        /* scan the node segment */
2815        last_offset = sbi->blocks_per_seg;
2816        addr = START_BLOCK(sbi, segno);
2817        sum_entry = &sum->entries[0];
2818
2819        for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2820                nrpages = bio_max_segs(last_offset - i);
2821
2822                /* readahead node pages */
2823                f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2824
2825                for (idx = addr; idx < addr + nrpages; idx++) {
2826                        struct page *page = f2fs_get_tmp_page(sbi, idx);
2827
2828                        if (IS_ERR(page))
2829                                return PTR_ERR(page);
2830
2831                        rn = F2FS_NODE(page);
2832                        sum_entry->nid = rn->footer.nid;
2833                        sum_entry->version = 0;
2834                        sum_entry->ofs_in_node = 0;
2835                        sum_entry++;
2836                        f2fs_put_page(page, 1);
2837                }
2838
2839                invalidate_mapping_pages(META_MAPPING(sbi), addr,
2840                                                        addr + nrpages);
2841        }
2842        return 0;
2843}
2844
2845static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2846{
2847        struct f2fs_nm_info *nm_i = NM_I(sbi);
2848        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2849        struct f2fs_journal *journal = curseg->journal;
2850        int i;
2851
2852        down_write(&curseg->journal_rwsem);
2853        for (i = 0; i < nats_in_cursum(journal); i++) {
2854                struct nat_entry *ne;
2855                struct f2fs_nat_entry raw_ne;
2856                nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2857
2858                if (f2fs_check_nid_range(sbi, nid))
2859                        continue;
2860
2861                raw_ne = nat_in_journal(journal, i);
2862
2863                ne = __lookup_nat_cache(nm_i, nid);
2864                if (!ne) {
2865                        ne = __alloc_nat_entry(sbi, nid, true);
2866                        __init_nat_entry(nm_i, ne, &raw_ne, true);
2867                }
2868
2869                /*
2870                 * if a free nat in journal has not been used after last
2871                 * checkpoint, we should remove it from available nids,
2872                 * since later we will add it again.
2873                 */
2874                if (!get_nat_flag(ne, IS_DIRTY) &&
2875                                le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2876                        spin_lock(&nm_i->nid_list_lock);
2877                        nm_i->available_nids--;
2878                        spin_unlock(&nm_i->nid_list_lock);
2879                }
2880
2881                __set_nat_cache_dirty(nm_i, ne);
2882        }
2883        update_nats_in_cursum(journal, -i);
2884        up_write(&curseg->journal_rwsem);
2885}
2886
2887static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2888                                                struct list_head *head, int max)
2889{
2890        struct nat_entry_set *cur;
2891
2892        if (nes->entry_cnt >= max)
2893                goto add_out;
2894
2895        list_for_each_entry(cur, head, set_list) {
2896                if (cur->entry_cnt >= nes->entry_cnt) {
2897                        list_add(&nes->set_list, cur->set_list.prev);
2898                        return;
2899                }
2900        }
2901add_out:
2902        list_add_tail(&nes->set_list, head);
2903}
2904
2905static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2906                                                        unsigned int valid)
2907{
2908        if (valid == 0) {
2909                __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2910                __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2911                return;
2912        }
2913
2914        __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2915        if (valid == NAT_ENTRY_PER_BLOCK)
2916                __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2917        else
2918                __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2919}
2920
2921static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2922                                                struct page *page)
2923{
2924        struct f2fs_nm_info *nm_i = NM_I(sbi);
2925        unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2926        struct f2fs_nat_block *nat_blk = page_address(page);
2927        int valid = 0;
2928        int i = 0;
2929
2930        if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2931                return;
2932
2933        if (nat_index == 0) {
2934                valid = 1;
2935                i = 1;
2936        }
2937        for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2938                if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2939                        valid++;
2940        }
2941
2942        __update_nat_bits(nm_i, nat_index, valid);
2943}
2944
2945void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2946{
2947        struct f2fs_nm_info *nm_i = NM_I(sbi);
2948        unsigned int nat_ofs;
2949
2950        down_read(&nm_i->nat_tree_lock);
2951
2952        for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2953                unsigned int valid = 0, nid_ofs = 0;
2954
2955                /* handle nid zero due to it should never be used */
2956                if (unlikely(nat_ofs == 0)) {
2957                        valid = 1;
2958                        nid_ofs = 1;
2959                }
2960
2961                for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2962                        if (!test_bit_le(nid_ofs,
2963                                        nm_i->free_nid_bitmap[nat_ofs]))
2964                                valid++;
2965                }
2966
2967                __update_nat_bits(nm_i, nat_ofs, valid);
2968        }
2969
2970        up_read(&nm_i->nat_tree_lock);
2971}
2972
2973static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2974                struct nat_entry_set *set, struct cp_control *cpc)
2975{
2976        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2977        struct f2fs_journal *journal = curseg->journal;
2978        nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2979        bool to_journal = true;
2980        struct f2fs_nat_block *nat_blk;
2981        struct nat_entry *ne, *cur;
2982        struct page *page = NULL;
2983
2984        /*
2985         * there are two steps to flush nat entries:
2986         * #1, flush nat entries to journal in current hot data summary block.
2987         * #2, flush nat entries to nat page.
2988         */
2989        if ((cpc->reason & CP_UMOUNT) ||
2990                !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2991                to_journal = false;
2992
2993        if (to_journal) {
2994                down_write(&curseg->journal_rwsem);
2995        } else {
2996                page = get_next_nat_page(sbi, start_nid);
2997                if (IS_ERR(page))
2998                        return PTR_ERR(page);
2999
3000                nat_blk = page_address(page);
3001                f2fs_bug_on(sbi, !nat_blk);
3002        }
3003
3004        /* flush dirty nats in nat entry set */
3005        list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3006                struct f2fs_nat_entry *raw_ne;
3007                nid_t nid = nat_get_nid(ne);
3008                int offset;
3009
3010                f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3011
3012                if (to_journal) {
3013                        offset = f2fs_lookup_journal_in_cursum(journal,
3014                                                        NAT_JOURNAL, nid, 1);
3015                        f2fs_bug_on(sbi, offset < 0);
3016                        raw_ne = &nat_in_journal(journal, offset);
3017                        nid_in_journal(journal, offset) = cpu_to_le32(nid);
3018                } else {
3019                        raw_ne = &nat_blk->entries[nid - start_nid];
3020                }
3021                raw_nat_from_node_info(raw_ne, &ne->ni);
3022                nat_reset_flag(ne);
3023                __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3024                if (nat_get_blkaddr(ne) == NULL_ADDR) {
3025                        add_free_nid(sbi, nid, false, true);
3026                } else {
3027                        spin_lock(&NM_I(sbi)->nid_list_lock);
3028                        update_free_nid_bitmap(sbi, nid, false, false);
3029                        spin_unlock(&NM_I(sbi)->nid_list_lock);
3030                }
3031        }
3032
3033        if (to_journal) {
3034                up_write(&curseg->journal_rwsem);
3035        } else {
3036                update_nat_bits(sbi, start_nid, page);
3037                f2fs_put_page(page, 1);
3038        }
3039
3040        /* Allow dirty nats by node block allocation in write_begin */
3041        if (!set->entry_cnt) {
3042                radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3043                kmem_cache_free(nat_entry_set_slab, set);
3044        }
3045        return 0;
3046}
3047
3048/*
3049 * This function is called during the checkpointing process.
3050 */
3051int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3052{
3053        struct f2fs_nm_info *nm_i = NM_I(sbi);
3054        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3055        struct f2fs_journal *journal = curseg->journal;
3056        struct nat_entry_set *setvec[SETVEC_SIZE];
3057        struct nat_entry_set *set, *tmp;
3058        unsigned int found;
3059        nid_t set_idx = 0;
3060        LIST_HEAD(sets);
3061        int err = 0;
3062
3063        /*
3064         * during unmount, let's flush nat_bits before checking
3065         * nat_cnt[DIRTY_NAT].
3066         */
3067        if (cpc->reason & CP_UMOUNT) {
3068                down_write(&nm_i->nat_tree_lock);
3069                remove_nats_in_journal(sbi);
3070                up_write(&nm_i->nat_tree_lock);
3071        }
3072
3073        if (!nm_i->nat_cnt[DIRTY_NAT])
3074                return 0;
3075
3076        down_write(&nm_i->nat_tree_lock);
3077
3078        /*
3079         * if there are no enough space in journal to store dirty nat
3080         * entries, remove all entries from journal and merge them
3081         * into nat entry set.
3082         */
3083        if (cpc->reason & CP_UMOUNT ||
3084                !__has_cursum_space(journal,
3085                        nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3086                remove_nats_in_journal(sbi);
3087
3088        while ((found = __gang_lookup_nat_set(nm_i,
3089                                        set_idx, SETVEC_SIZE, setvec))) {
3090                unsigned idx;
3091
3092                set_idx = setvec[found - 1]->set + 1;
3093                for (idx = 0; idx < found; idx++)
3094                        __adjust_nat_entry_set(setvec[idx], &sets,
3095                                                MAX_NAT_JENTRIES(journal));
3096        }
3097
3098        /* flush dirty nats in nat entry set */
3099        list_for_each_entry_safe(set, tmp, &sets, set_list) {
3100                err = __flush_nat_entry_set(sbi, set, cpc);
3101                if (err)
3102                        break;
3103        }
3104
3105        up_write(&nm_i->nat_tree_lock);
3106        /* Allow dirty nats by node block allocation in write_begin */
3107
3108        return err;
3109}
3110
3111static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3112{
3113        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3114        struct f2fs_nm_info *nm_i = NM_I(sbi);
3115        unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3116        unsigned int i;
3117        __u64 cp_ver = cur_cp_version(ckpt);
3118        block_t nat_bits_addr;
3119
3120        nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3121        nm_i->nat_bits = f2fs_kvzalloc(sbi,
3122                        nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3123        if (!nm_i->nat_bits)
3124                return -ENOMEM;
3125
3126        nm_i->full_nat_bits = nm_i->nat_bits + 8;
3127        nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3128
3129        if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3130                return 0;
3131
3132        nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3133                                                nm_i->nat_bits_blocks;
3134        for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3135                struct page *page;
3136
3137                page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3138                if (IS_ERR(page))
3139                        return PTR_ERR(page);
3140
3141                memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3142                                        page_address(page), F2FS_BLKSIZE);
3143                f2fs_put_page(page, 1);
3144        }
3145
3146        cp_ver |= (cur_cp_crc(ckpt) << 32);
3147        if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3148                clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3149                f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3150                        cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3151                return 0;
3152        }
3153
3154        f2fs_notice(sbi, "Found nat_bits in checkpoint");
3155        return 0;
3156}
3157
3158static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3159{
3160        struct f2fs_nm_info *nm_i = NM_I(sbi);
3161        unsigned int i = 0;
3162        nid_t nid, last_nid;
3163
3164        if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3165                return;
3166
3167        for (i = 0; i < nm_i->nat_blocks; i++) {
3168                i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3169                if (i >= nm_i->nat_blocks)
3170                        break;
3171
3172                __set_bit_le(i, nm_i->nat_block_bitmap);
3173
3174                nid = i * NAT_ENTRY_PER_BLOCK;
3175                last_nid = nid + NAT_ENTRY_PER_BLOCK;
3176
3177                spin_lock(&NM_I(sbi)->nid_list_lock);
3178                for (; nid < last_nid; nid++)
3179                        update_free_nid_bitmap(sbi, nid, true, true);
3180                spin_unlock(&NM_I(sbi)->nid_list_lock);
3181        }
3182
3183        for (i = 0; i < nm_i->nat_blocks; i++) {
3184                i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3185                if (i >= nm_i->nat_blocks)
3186                        break;
3187
3188                __set_bit_le(i, nm_i->nat_block_bitmap);
3189        }
3190}
3191
3192static int init_node_manager(struct f2fs_sb_info *sbi)
3193{
3194        struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3195        struct f2fs_nm_info *nm_i = NM_I(sbi);
3196        unsigned char *version_bitmap;
3197        unsigned int nat_segs;
3198        int err;
3199
3200        nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3201
3202        /* segment_count_nat includes pair segment so divide to 2. */
3203        nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3204        nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3205        nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3206
3207        /* not used nids: 0, node, meta, (and root counted as valid node) */
3208        nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3209                                                F2FS_RESERVED_NODE_NUM;
3210        nm_i->nid_cnt[FREE_NID] = 0;
3211        nm_i->nid_cnt[PREALLOC_NID] = 0;
3212        nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3213        nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3214        nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3215
3216        INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3217        INIT_LIST_HEAD(&nm_i->free_nid_list);
3218        INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3219        INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3220        INIT_LIST_HEAD(&nm_i->nat_entries);
3221        spin_lock_init(&nm_i->nat_list_lock);
3222
3223        mutex_init(&nm_i->build_lock);
3224        spin_lock_init(&nm_i->nid_list_lock);
3225        init_rwsem(&nm_i->nat_tree_lock);
3226
3227        nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3228        nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3229        version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3230        nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3231                                        GFP_KERNEL);
3232        if (!nm_i->nat_bitmap)
3233                return -ENOMEM;
3234
3235        err = __get_nat_bitmaps(sbi);
3236        if (err)
3237                return err;
3238
3239#ifdef CONFIG_F2FS_CHECK_FS
3240        nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3241                                        GFP_KERNEL);
3242        if (!nm_i->nat_bitmap_mir)
3243                return -ENOMEM;
3244#endif
3245
3246        return 0;
3247}
3248
3249static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3250{
3251        struct f2fs_nm_info *nm_i = NM_I(sbi);
3252        int i;
3253
3254        nm_i->free_nid_bitmap =
3255                f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3256                                              nm_i->nat_blocks),
3257                              GFP_KERNEL);
3258        if (!nm_i->free_nid_bitmap)
3259                return -ENOMEM;
3260
3261        for (i = 0; i < nm_i->nat_blocks; i++) {
3262                nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3263                        f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3264                if (!nm_i->free_nid_bitmap[i])
3265                        return -ENOMEM;
3266        }
3267
3268        nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3269                                                                GFP_KERNEL);
3270        if (!nm_i->nat_block_bitmap)
3271                return -ENOMEM;
3272
3273        nm_i->free_nid_count =
3274                f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3275                                              nm_i->nat_blocks),
3276                              GFP_KERNEL);
3277        if (!nm_i->free_nid_count)
3278                return -ENOMEM;
3279        return 0;
3280}
3281
3282int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3283{
3284        int err;
3285
3286        sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3287                                                        GFP_KERNEL);
3288        if (!sbi->nm_info)
3289                return -ENOMEM;
3290
3291        err = init_node_manager(sbi);
3292        if (err)
3293                return err;
3294
3295        err = init_free_nid_cache(sbi);
3296        if (err)
3297                return err;
3298
3299        /* load free nid status from nat_bits table */
3300        load_free_nid_bitmap(sbi);
3301
3302        return f2fs_build_free_nids(sbi, true, true);
3303}
3304
3305void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3306{
3307        struct f2fs_nm_info *nm_i = NM_I(sbi);
3308        struct free_nid *i, *next_i;
3309        struct nat_entry *natvec[NATVEC_SIZE];
3310        struct nat_entry_set *setvec[SETVEC_SIZE];
3311        nid_t nid = 0;
3312        unsigned int found;
3313
3314        if (!nm_i)
3315                return;
3316
3317        /* destroy free nid list */
3318        spin_lock(&nm_i->nid_list_lock);
3319        list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3320                __remove_free_nid(sbi, i, FREE_NID);
3321                spin_unlock(&nm_i->nid_list_lock);
3322                kmem_cache_free(free_nid_slab, i);
3323                spin_lock(&nm_i->nid_list_lock);
3324        }
3325        f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3326        f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3327        f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3328        spin_unlock(&nm_i->nid_list_lock);
3329
3330        /* destroy nat cache */
3331        down_write(&nm_i->nat_tree_lock);
3332        while ((found = __gang_lookup_nat_cache(nm_i,
3333                                        nid, NATVEC_SIZE, natvec))) {
3334                unsigned idx;
3335
3336                nid = nat_get_nid(natvec[found - 1]) + 1;
3337                for (idx = 0; idx < found; idx++) {
3338                        spin_lock(&nm_i->nat_list_lock);
3339                        list_del(&natvec[idx]->list);
3340                        spin_unlock(&nm_i->nat_list_lock);
3341
3342                        __del_from_nat_cache(nm_i, natvec[idx]);
3343                }
3344        }
3345        f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3346
3347        /* destroy nat set cache */
3348        nid = 0;
3349        while ((found = __gang_lookup_nat_set(nm_i,
3350                                        nid, SETVEC_SIZE, setvec))) {
3351                unsigned idx;
3352
3353                nid = setvec[found - 1]->set + 1;
3354                for (idx = 0; idx < found; idx++) {
3355                        /* entry_cnt is not zero, when cp_error was occurred */
3356                        f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3357                        radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3358                        kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3359                }
3360        }
3361        up_write(&nm_i->nat_tree_lock);
3362
3363        kvfree(nm_i->nat_block_bitmap);
3364        if (nm_i->free_nid_bitmap) {
3365                int i;
3366
3367                for (i = 0; i < nm_i->nat_blocks; i++)
3368                        kvfree(nm_i->free_nid_bitmap[i]);
3369                kvfree(nm_i->free_nid_bitmap);
3370        }
3371        kvfree(nm_i->free_nid_count);
3372
3373        kvfree(nm_i->nat_bitmap);
3374        kvfree(nm_i->nat_bits);
3375#ifdef CONFIG_F2FS_CHECK_FS
3376        kvfree(nm_i->nat_bitmap_mir);
3377#endif
3378        sbi->nm_info = NULL;
3379        kfree(nm_i);
3380}
3381
3382int __init f2fs_create_node_manager_caches(void)
3383{
3384        nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3385                        sizeof(struct nat_entry));
3386        if (!nat_entry_slab)
3387                goto fail;
3388
3389        free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3390                        sizeof(struct free_nid));
3391        if (!free_nid_slab)
3392                goto destroy_nat_entry;
3393
3394        nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3395                        sizeof(struct nat_entry_set));
3396        if (!nat_entry_set_slab)
3397                goto destroy_free_nid;
3398
3399        fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3400                        sizeof(struct fsync_node_entry));
3401        if (!fsync_node_entry_slab)
3402                goto destroy_nat_entry_set;
3403        return 0;
3404
3405destroy_nat_entry_set:
3406        kmem_cache_destroy(nat_entry_set_slab);
3407destroy_free_nid:
3408        kmem_cache_destroy(free_nid_slab);
3409destroy_nat_entry:
3410        kmem_cache_destroy(nat_entry_slab);
3411fail:
3412        return -ENOMEM;
3413}
3414
3415void f2fs_destroy_node_manager_caches(void)
3416{
3417        kmem_cache_destroy(fsync_node_entry_slab);
3418        kmem_cache_destroy(nat_entry_set_slab);
3419        kmem_cache_destroy(free_nid_slab);
3420        kmem_cache_destroy(nat_entry_slab);
3421}
3422