linux/fs/f2fs/node.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * fs/f2fs/node.h
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8/* start node id of a node block dedicated to the given node id */
   9#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
  10
  11/* node block offset on the NAT area dedicated to the given start node id */
  12#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
  13
  14/* # of pages to perform synchronous readahead before building free nids */
  15#define FREE_NID_PAGES  8
  16#define MAX_FREE_NIDS   (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
  17
  18/* size of free nid batch when shrinking */
  19#define SHRINK_NID_BATCH_SIZE   8
  20
  21#define DEF_RA_NID_PAGES        0       /* # of nid pages to be readaheaded */
  22
  23/* maximum readahead size for node during getting data blocks */
  24#define MAX_RA_NODE             128
  25
  26/* control the memory footprint threshold (10MB per 1GB ram) */
  27#define DEF_RAM_THRESHOLD       1
  28
  29/* control dirty nats ratio threshold (default: 10% over max nid count) */
  30#define DEF_DIRTY_NAT_RATIO_THRESHOLD           10
  31/* control total # of nats */
  32#define DEF_NAT_CACHE_THRESHOLD                 100000
  33
  34/* vector size for gang look-up from nat cache that consists of radix tree */
  35#define NATVEC_SIZE     64
  36#define SETVEC_SIZE     32
  37
  38/* return value for read_node_page */
  39#define LOCKED_PAGE     1
  40
  41/* check pinned file's alignment status of physical blocks */
  42#define FILE_NOT_ALIGNED        1
  43
  44/* For flag in struct node_info */
  45enum {
  46        IS_CHECKPOINTED,        /* is it checkpointed before? */
  47        HAS_FSYNCED_INODE,      /* is the inode fsynced before? */
  48        HAS_LAST_FSYNC,         /* has the latest node fsync mark? */
  49        IS_DIRTY,               /* this nat entry is dirty? */
  50        IS_PREALLOC,            /* nat entry is preallocated */
  51};
  52
  53/*
  54 * For node information
  55 */
  56struct node_info {
  57        nid_t nid;              /* node id */
  58        nid_t ino;              /* inode number of the node's owner */
  59        block_t blk_addr;       /* block address of the node */
  60        unsigned char version;  /* version of the node */
  61        unsigned char flag;     /* for node information bits */
  62};
  63
  64struct nat_entry {
  65        struct list_head list;  /* for clean or dirty nat list */
  66        struct node_info ni;    /* in-memory node information */
  67};
  68
  69#define nat_get_nid(nat)                ((nat)->ni.nid)
  70#define nat_set_nid(nat, n)             ((nat)->ni.nid = (n))
  71#define nat_get_blkaddr(nat)            ((nat)->ni.blk_addr)
  72#define nat_set_blkaddr(nat, b)         ((nat)->ni.blk_addr = (b))
  73#define nat_get_ino(nat)                ((nat)->ni.ino)
  74#define nat_set_ino(nat, i)             ((nat)->ni.ino = (i))
  75#define nat_get_version(nat)            ((nat)->ni.version)
  76#define nat_set_version(nat, v)         ((nat)->ni.version = (v))
  77
  78#define inc_node_version(version)       (++(version))
  79
  80static inline void copy_node_info(struct node_info *dst,
  81                                                struct node_info *src)
  82{
  83        dst->nid = src->nid;
  84        dst->ino = src->ino;
  85        dst->blk_addr = src->blk_addr;
  86        dst->version = src->version;
  87        /* should not copy flag here */
  88}
  89
  90static inline void set_nat_flag(struct nat_entry *ne,
  91                                unsigned int type, bool set)
  92{
  93        unsigned char mask = 0x01 << type;
  94        if (set)
  95                ne->ni.flag |= mask;
  96        else
  97                ne->ni.flag &= ~mask;
  98}
  99
 100static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
 101{
 102        unsigned char mask = 0x01 << type;
 103        return ne->ni.flag & mask;
 104}
 105
 106static inline void nat_reset_flag(struct nat_entry *ne)
 107{
 108        /* these states can be set only after checkpoint was done */
 109        set_nat_flag(ne, IS_CHECKPOINTED, true);
 110        set_nat_flag(ne, HAS_FSYNCED_INODE, false);
 111        set_nat_flag(ne, HAS_LAST_FSYNC, true);
 112}
 113
 114static inline void node_info_from_raw_nat(struct node_info *ni,
 115                                                struct f2fs_nat_entry *raw_ne)
 116{
 117        ni->ino = le32_to_cpu(raw_ne->ino);
 118        ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
 119        ni->version = raw_ne->version;
 120}
 121
 122static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
 123                                                struct node_info *ni)
 124{
 125        raw_ne->ino = cpu_to_le32(ni->ino);
 126        raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
 127        raw_ne->version = ni->version;
 128}
 129
 130static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
 131{
 132        return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
 133                                        NM_I(sbi)->dirty_nats_ratio / 100;
 134}
 135
 136static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
 137{
 138        return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
 139}
 140
 141static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
 142{
 143        return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
 144}
 145
 146enum mem_type {
 147        FREE_NIDS,      /* indicates the free nid list */
 148        NAT_ENTRIES,    /* indicates the cached nat entry */
 149        DIRTY_DENTS,    /* indicates dirty dentry pages */
 150        INO_ENTRIES,    /* indicates inode entries */
 151        EXTENT_CACHE,   /* indicates extent cache */
 152        INMEM_PAGES,    /* indicates inmemory pages */
 153        DISCARD_CACHE,  /* indicates memory of cached discard cmds */
 154        COMPRESS_PAGE,  /* indicates memory of cached compressed pages */
 155        BASE_CHECK,     /* check kernel status */
 156};
 157
 158struct nat_entry_set {
 159        struct list_head set_list;      /* link with other nat sets */
 160        struct list_head entry_list;    /* link with dirty nat entries */
 161        nid_t set;                      /* set number*/
 162        unsigned int entry_cnt;         /* the # of nat entries in set */
 163};
 164
 165struct free_nid {
 166        struct list_head list;  /* for free node id list */
 167        nid_t nid;              /* node id */
 168        int state;              /* in use or not: FREE_NID or PREALLOC_NID */
 169};
 170
 171static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
 172{
 173        struct f2fs_nm_info *nm_i = NM_I(sbi);
 174        struct free_nid *fnid;
 175
 176        spin_lock(&nm_i->nid_list_lock);
 177        if (nm_i->nid_cnt[FREE_NID] <= 0) {
 178                spin_unlock(&nm_i->nid_list_lock);
 179                return;
 180        }
 181        fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
 182        *nid = fnid->nid;
 183        spin_unlock(&nm_i->nid_list_lock);
 184}
 185
 186/*
 187 * inline functions
 188 */
 189static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
 190{
 191        struct f2fs_nm_info *nm_i = NM_I(sbi);
 192
 193#ifdef CONFIG_F2FS_CHECK_FS
 194        if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
 195                                                nm_i->bitmap_size))
 196                f2fs_bug_on(sbi, 1);
 197#endif
 198        memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
 199}
 200
 201static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
 202{
 203        struct f2fs_nm_info *nm_i = NM_I(sbi);
 204        pgoff_t block_off;
 205        pgoff_t block_addr;
 206
 207        /*
 208         * block_off = segment_off * 512 + off_in_segment
 209         * OLD = (segment_off * 512) * 2 + off_in_segment
 210         * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
 211         */
 212        block_off = NAT_BLOCK_OFFSET(start);
 213
 214        block_addr = (pgoff_t)(nm_i->nat_blkaddr +
 215                (block_off << 1) -
 216                (block_off & (sbi->blocks_per_seg - 1)));
 217
 218        if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
 219                block_addr += sbi->blocks_per_seg;
 220
 221        return block_addr;
 222}
 223
 224static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
 225                                                pgoff_t block_addr)
 226{
 227        struct f2fs_nm_info *nm_i = NM_I(sbi);
 228
 229        block_addr -= nm_i->nat_blkaddr;
 230        block_addr ^= 1 << sbi->log_blocks_per_seg;
 231        return block_addr + nm_i->nat_blkaddr;
 232}
 233
 234static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
 235{
 236        unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
 237
 238        f2fs_change_bit(block_off, nm_i->nat_bitmap);
 239#ifdef CONFIG_F2FS_CHECK_FS
 240        f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
 241#endif
 242}
 243
 244static inline nid_t ino_of_node(struct page *node_page)
 245{
 246        struct f2fs_node *rn = F2FS_NODE(node_page);
 247        return le32_to_cpu(rn->footer.ino);
 248}
 249
 250static inline nid_t nid_of_node(struct page *node_page)
 251{
 252        struct f2fs_node *rn = F2FS_NODE(node_page);
 253        return le32_to_cpu(rn->footer.nid);
 254}
 255
 256static inline unsigned int ofs_of_node(struct page *node_page)
 257{
 258        struct f2fs_node *rn = F2FS_NODE(node_page);
 259        unsigned flag = le32_to_cpu(rn->footer.flag);
 260        return flag >> OFFSET_BIT_SHIFT;
 261}
 262
 263static inline __u64 cpver_of_node(struct page *node_page)
 264{
 265        struct f2fs_node *rn = F2FS_NODE(node_page);
 266        return le64_to_cpu(rn->footer.cp_ver);
 267}
 268
 269static inline block_t next_blkaddr_of_node(struct page *node_page)
 270{
 271        struct f2fs_node *rn = F2FS_NODE(node_page);
 272        return le32_to_cpu(rn->footer.next_blkaddr);
 273}
 274
 275static inline void fill_node_footer(struct page *page, nid_t nid,
 276                                nid_t ino, unsigned int ofs, bool reset)
 277{
 278        struct f2fs_node *rn = F2FS_NODE(page);
 279        unsigned int old_flag = 0;
 280
 281        if (reset)
 282                memset(rn, 0, sizeof(*rn));
 283        else
 284                old_flag = le32_to_cpu(rn->footer.flag);
 285
 286        rn->footer.nid = cpu_to_le32(nid);
 287        rn->footer.ino = cpu_to_le32(ino);
 288
 289        /* should remain old flag bits such as COLD_BIT_SHIFT */
 290        rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
 291                                        (old_flag & OFFSET_BIT_MASK));
 292}
 293
 294static inline void copy_node_footer(struct page *dst, struct page *src)
 295{
 296        struct f2fs_node *src_rn = F2FS_NODE(src);
 297        struct f2fs_node *dst_rn = F2FS_NODE(dst);
 298        memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
 299}
 300
 301static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
 302{
 303        struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
 304        struct f2fs_node *rn = F2FS_NODE(page);
 305        __u64 cp_ver = cur_cp_version(ckpt);
 306
 307        if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
 308                cp_ver |= (cur_cp_crc(ckpt) << 32);
 309
 310        rn->footer.cp_ver = cpu_to_le64(cp_ver);
 311        rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
 312}
 313
 314static inline bool is_recoverable_dnode(struct page *page)
 315{
 316        struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
 317        __u64 cp_ver = cur_cp_version(ckpt);
 318
 319        /* Don't care crc part, if fsck.f2fs sets it. */
 320        if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
 321                return (cp_ver << 32) == (cpver_of_node(page) << 32);
 322
 323        if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
 324                cp_ver |= (cur_cp_crc(ckpt) << 32);
 325
 326        return cp_ver == cpver_of_node(page);
 327}
 328
 329/*
 330 * f2fs assigns the following node offsets described as (num).
 331 * N = NIDS_PER_BLOCK
 332 *
 333 *  Inode block (0)
 334 *    |- direct node (1)
 335 *    |- direct node (2)
 336 *    |- indirect node (3)
 337 *    |            `- direct node (4 => 4 + N - 1)
 338 *    |- indirect node (4 + N)
 339 *    |            `- direct node (5 + N => 5 + 2N - 1)
 340 *    `- double indirect node (5 + 2N)
 341 *                 `- indirect node (6 + 2N)
 342 *                       `- direct node
 343 *                 ......
 344 *                 `- indirect node ((6 + 2N) + x(N + 1))
 345 *                       `- direct node
 346 *                 ......
 347 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
 348 *                       `- direct node
 349 */
 350static inline bool IS_DNODE(struct page *node_page)
 351{
 352        unsigned int ofs = ofs_of_node(node_page);
 353
 354        if (f2fs_has_xattr_block(ofs))
 355                return true;
 356
 357        if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
 358                        ofs == 5 + 2 * NIDS_PER_BLOCK)
 359                return false;
 360        if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
 361                ofs -= 6 + 2 * NIDS_PER_BLOCK;
 362                if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
 363                        return false;
 364        }
 365        return true;
 366}
 367
 368static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
 369{
 370        struct f2fs_node *rn = F2FS_NODE(p);
 371
 372        f2fs_wait_on_page_writeback(p, NODE, true, true);
 373
 374        if (i)
 375                rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
 376        else
 377                rn->in.nid[off] = cpu_to_le32(nid);
 378        return set_page_dirty(p);
 379}
 380
 381static inline nid_t get_nid(struct page *p, int off, bool i)
 382{
 383        struct f2fs_node *rn = F2FS_NODE(p);
 384
 385        if (i)
 386                return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
 387        return le32_to_cpu(rn->in.nid[off]);
 388}
 389
 390/*
 391 * Coldness identification:
 392 *  - Mark cold files in f2fs_inode_info
 393 *  - Mark cold node blocks in their node footer
 394 *  - Mark cold data pages in page cache
 395 */
 396
 397static inline int is_node(struct page *page, int type)
 398{
 399        struct f2fs_node *rn = F2FS_NODE(page);
 400        return le32_to_cpu(rn->footer.flag) & (1 << type);
 401}
 402
 403#define is_cold_node(page)      is_node(page, COLD_BIT_SHIFT)
 404#define is_fsync_dnode(page)    is_node(page, FSYNC_BIT_SHIFT)
 405#define is_dent_dnode(page)     is_node(page, DENT_BIT_SHIFT)
 406
 407static inline void set_cold_node(struct page *page, bool is_dir)
 408{
 409        struct f2fs_node *rn = F2FS_NODE(page);
 410        unsigned int flag = le32_to_cpu(rn->footer.flag);
 411
 412        if (is_dir)
 413                flag &= ~(0x1 << COLD_BIT_SHIFT);
 414        else
 415                flag |= (0x1 << COLD_BIT_SHIFT);
 416        rn->footer.flag = cpu_to_le32(flag);
 417}
 418
 419static inline void set_mark(struct page *page, int mark, int type)
 420{
 421        struct f2fs_node *rn = F2FS_NODE(page);
 422        unsigned int flag = le32_to_cpu(rn->footer.flag);
 423        if (mark)
 424                flag |= (0x1 << type);
 425        else
 426                flag &= ~(0x1 << type);
 427        rn->footer.flag = cpu_to_le32(flag);
 428
 429#ifdef CONFIG_F2FS_CHECK_FS
 430        f2fs_inode_chksum_set(F2FS_P_SB(page), page);
 431#endif
 432}
 433#define set_dentry_mark(page, mark)     set_mark(page, mark, DENT_BIT_SHIFT)
 434#define set_fsync_mark(page, mark)      set_mark(page, mark, FSYNC_BIT_SHIFT)
 435