linux/fs/f2fs/segment.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/segment.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/prefetch.h>
  13#include <linux/kthread.h>
  14#include <linux/swap.h>
  15#include <linux/timer.h>
  16#include <linux/freezer.h>
  17#include <linux/sched/signal.h>
  18
  19#include "f2fs.h"
  20#include "segment.h"
  21#include "node.h"
  22#include "gc.h"
  23#include "iostat.h"
  24#include <trace/events/f2fs.h>
  25
  26#define __reverse_ffz(x) __reverse_ffs(~(x))
  27
  28static struct kmem_cache *discard_entry_slab;
  29static struct kmem_cache *discard_cmd_slab;
  30static struct kmem_cache *sit_entry_set_slab;
  31static struct kmem_cache *inmem_entry_slab;
  32
  33static unsigned long __reverse_ulong(unsigned char *str)
  34{
  35        unsigned long tmp = 0;
  36        int shift = 24, idx = 0;
  37
  38#if BITS_PER_LONG == 64
  39        shift = 56;
  40#endif
  41        while (shift >= 0) {
  42                tmp |= (unsigned long)str[idx++] << shift;
  43                shift -= BITS_PER_BYTE;
  44        }
  45        return tmp;
  46}
  47
  48/*
  49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  51 */
  52static inline unsigned long __reverse_ffs(unsigned long word)
  53{
  54        int num = 0;
  55
  56#if BITS_PER_LONG == 64
  57        if ((word & 0xffffffff00000000UL) == 0)
  58                num += 32;
  59        else
  60                word >>= 32;
  61#endif
  62        if ((word & 0xffff0000) == 0)
  63                num += 16;
  64        else
  65                word >>= 16;
  66
  67        if ((word & 0xff00) == 0)
  68                num += 8;
  69        else
  70                word >>= 8;
  71
  72        if ((word & 0xf0) == 0)
  73                num += 4;
  74        else
  75                word >>= 4;
  76
  77        if ((word & 0xc) == 0)
  78                num += 2;
  79        else
  80                word >>= 2;
  81
  82        if ((word & 0x2) == 0)
  83                num += 1;
  84        return num;
  85}
  86
  87/*
  88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  90 * @size must be integral times of unsigned long.
  91 * Example:
  92 *                             MSB <--> LSB
  93 *   f2fs_set_bit(0, bitmap) => 1000 0000
  94 *   f2fs_set_bit(7, bitmap) => 0000 0001
  95 */
  96static unsigned long __find_rev_next_bit(const unsigned long *addr,
  97                        unsigned long size, unsigned long offset)
  98{
  99        const unsigned long *p = addr + BIT_WORD(offset);
 100        unsigned long result = size;
 101        unsigned long tmp;
 102
 103        if (offset >= size)
 104                return size;
 105
 106        size -= (offset & ~(BITS_PER_LONG - 1));
 107        offset %= BITS_PER_LONG;
 108
 109        while (1) {
 110                if (*p == 0)
 111                        goto pass;
 112
 113                tmp = __reverse_ulong((unsigned char *)p);
 114
 115                tmp &= ~0UL >> offset;
 116                if (size < BITS_PER_LONG)
 117                        tmp &= (~0UL << (BITS_PER_LONG - size));
 118                if (tmp)
 119                        goto found;
 120pass:
 121                if (size <= BITS_PER_LONG)
 122                        break;
 123                size -= BITS_PER_LONG;
 124                offset = 0;
 125                p++;
 126        }
 127        return result;
 128found:
 129        return result - size + __reverse_ffs(tmp);
 130}
 131
 132static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 133                        unsigned long size, unsigned long offset)
 134{
 135        const unsigned long *p = addr + BIT_WORD(offset);
 136        unsigned long result = size;
 137        unsigned long tmp;
 138
 139        if (offset >= size)
 140                return size;
 141
 142        size -= (offset & ~(BITS_PER_LONG - 1));
 143        offset %= BITS_PER_LONG;
 144
 145        while (1) {
 146                if (*p == ~0UL)
 147                        goto pass;
 148
 149                tmp = __reverse_ulong((unsigned char *)p);
 150
 151                if (offset)
 152                        tmp |= ~0UL << (BITS_PER_LONG - offset);
 153                if (size < BITS_PER_LONG)
 154                        tmp |= ~0UL >> size;
 155                if (tmp != ~0UL)
 156                        goto found;
 157pass:
 158                if (size <= BITS_PER_LONG)
 159                        break;
 160                size -= BITS_PER_LONG;
 161                offset = 0;
 162                p++;
 163        }
 164        return result;
 165found:
 166        return result - size + __reverse_ffz(tmp);
 167}
 168
 169bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 170{
 171        int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 172        int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 173        int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 174
 175        if (f2fs_lfs_mode(sbi))
 176                return false;
 177        if (sbi->gc_mode == GC_URGENT_HIGH)
 178                return true;
 179        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 180                return true;
 181
 182        return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 183                        SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 184}
 185
 186void f2fs_register_inmem_page(struct inode *inode, struct page *page)
 187{
 188        struct inmem_pages *new;
 189
 190        set_page_private_atomic(page);
 191
 192        new = f2fs_kmem_cache_alloc(inmem_entry_slab,
 193                                        GFP_NOFS, true, NULL);
 194
 195        /* add atomic page indices to the list */
 196        new->page = page;
 197        INIT_LIST_HEAD(&new->list);
 198
 199        /* increase reference count with clean state */
 200        get_page(page);
 201        mutex_lock(&F2FS_I(inode)->inmem_lock);
 202        list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
 203        inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 204        mutex_unlock(&F2FS_I(inode)->inmem_lock);
 205
 206        trace_f2fs_register_inmem_page(page, INMEM);
 207}
 208
 209static int __revoke_inmem_pages(struct inode *inode,
 210                                struct list_head *head, bool drop, bool recover,
 211                                bool trylock)
 212{
 213        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 214        struct inmem_pages *cur, *tmp;
 215        int err = 0;
 216
 217        list_for_each_entry_safe(cur, tmp, head, list) {
 218                struct page *page = cur->page;
 219
 220                if (drop)
 221                        trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 222
 223                if (trylock) {
 224                        /*
 225                         * to avoid deadlock in between page lock and
 226                         * inmem_lock.
 227                         */
 228                        if (!trylock_page(page))
 229                                continue;
 230                } else {
 231                        lock_page(page);
 232                }
 233
 234                f2fs_wait_on_page_writeback(page, DATA, true, true);
 235
 236                if (recover) {
 237                        struct dnode_of_data dn;
 238                        struct node_info ni;
 239
 240                        trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 241retry:
 242                        set_new_dnode(&dn, inode, NULL, NULL, 0);
 243                        err = f2fs_get_dnode_of_data(&dn, page->index,
 244                                                                LOOKUP_NODE);
 245                        if (err) {
 246                                if (err == -ENOMEM) {
 247                                        congestion_wait(BLK_RW_ASYNC,
 248                                                        DEFAULT_IO_TIMEOUT);
 249                                        cond_resched();
 250                                        goto retry;
 251                                }
 252                                err = -EAGAIN;
 253                                goto next;
 254                        }
 255
 256                        err = f2fs_get_node_info(sbi, dn.nid, &ni);
 257                        if (err) {
 258                                f2fs_put_dnode(&dn);
 259                                return err;
 260                        }
 261
 262                        if (cur->old_addr == NEW_ADDR) {
 263                                f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 264                                f2fs_update_data_blkaddr(&dn, NEW_ADDR);
 265                        } else
 266                                f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 267                                        cur->old_addr, ni.version, true, true);
 268                        f2fs_put_dnode(&dn);
 269                }
 270next:
 271                /* we don't need to invalidate this in the sccessful status */
 272                if (drop || recover) {
 273                        ClearPageUptodate(page);
 274                        clear_page_private_gcing(page);
 275                }
 276                detach_page_private(page);
 277                set_page_private(page, 0);
 278                f2fs_put_page(page, 1);
 279
 280                list_del(&cur->list);
 281                kmem_cache_free(inmem_entry_slab, cur);
 282                dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 283        }
 284        return err;
 285}
 286
 287void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
 288{
 289        struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
 290        struct inode *inode;
 291        struct f2fs_inode_info *fi;
 292        unsigned int count = sbi->atomic_files;
 293        unsigned int looped = 0;
 294next:
 295        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 296        if (list_empty(head)) {
 297                spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 298                return;
 299        }
 300        fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
 301        inode = igrab(&fi->vfs_inode);
 302        if (inode)
 303                list_move_tail(&fi->inmem_ilist, head);
 304        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 305
 306        if (inode) {
 307                if (gc_failure) {
 308                        if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
 309                                goto skip;
 310                }
 311                set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
 312                f2fs_drop_inmem_pages(inode);
 313skip:
 314                iput(inode);
 315        }
 316        congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
 317        cond_resched();
 318        if (gc_failure) {
 319                if (++looped >= count)
 320                        return;
 321        }
 322        goto next;
 323}
 324
 325void f2fs_drop_inmem_pages(struct inode *inode)
 326{
 327        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 328        struct f2fs_inode_info *fi = F2FS_I(inode);
 329
 330        do {
 331                mutex_lock(&fi->inmem_lock);
 332                if (list_empty(&fi->inmem_pages)) {
 333                        fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
 334
 335                        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 336                        if (!list_empty(&fi->inmem_ilist))
 337                                list_del_init(&fi->inmem_ilist);
 338                        if (f2fs_is_atomic_file(inode)) {
 339                                clear_inode_flag(inode, FI_ATOMIC_FILE);
 340                                sbi->atomic_files--;
 341                        }
 342                        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 343
 344                        mutex_unlock(&fi->inmem_lock);
 345                        break;
 346                }
 347                __revoke_inmem_pages(inode, &fi->inmem_pages,
 348                                                true, false, true);
 349                mutex_unlock(&fi->inmem_lock);
 350        } while (1);
 351}
 352
 353void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
 354{
 355        struct f2fs_inode_info *fi = F2FS_I(inode);
 356        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 357        struct list_head *head = &fi->inmem_pages;
 358        struct inmem_pages *cur = NULL;
 359
 360        f2fs_bug_on(sbi, !page_private_atomic(page));
 361
 362        mutex_lock(&fi->inmem_lock);
 363        list_for_each_entry(cur, head, list) {
 364                if (cur->page == page)
 365                        break;
 366        }
 367
 368        f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
 369        list_del(&cur->list);
 370        mutex_unlock(&fi->inmem_lock);
 371
 372        dec_page_count(sbi, F2FS_INMEM_PAGES);
 373        kmem_cache_free(inmem_entry_slab, cur);
 374
 375        ClearPageUptodate(page);
 376        clear_page_private_atomic(page);
 377        f2fs_put_page(page, 0);
 378
 379        detach_page_private(page);
 380        set_page_private(page, 0);
 381
 382        trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
 383}
 384
 385static int __f2fs_commit_inmem_pages(struct inode *inode)
 386{
 387        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 388        struct f2fs_inode_info *fi = F2FS_I(inode);
 389        struct inmem_pages *cur, *tmp;
 390        struct f2fs_io_info fio = {
 391                .sbi = sbi,
 392                .ino = inode->i_ino,
 393                .type = DATA,
 394                .op = REQ_OP_WRITE,
 395                .op_flags = REQ_SYNC | REQ_PRIO,
 396                .io_type = FS_DATA_IO,
 397        };
 398        struct list_head revoke_list;
 399        bool submit_bio = false;
 400        int err = 0;
 401
 402        INIT_LIST_HEAD(&revoke_list);
 403
 404        list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 405                struct page *page = cur->page;
 406
 407                lock_page(page);
 408                if (page->mapping == inode->i_mapping) {
 409                        trace_f2fs_commit_inmem_page(page, INMEM);
 410
 411                        f2fs_wait_on_page_writeback(page, DATA, true, true);
 412
 413                        set_page_dirty(page);
 414                        if (clear_page_dirty_for_io(page)) {
 415                                inode_dec_dirty_pages(inode);
 416                                f2fs_remove_dirty_inode(inode);
 417                        }
 418retry:
 419                        fio.page = page;
 420                        fio.old_blkaddr = NULL_ADDR;
 421                        fio.encrypted_page = NULL;
 422                        fio.need_lock = LOCK_DONE;
 423                        err = f2fs_do_write_data_page(&fio);
 424                        if (err) {
 425                                if (err == -ENOMEM) {
 426                                        congestion_wait(BLK_RW_ASYNC,
 427                                                        DEFAULT_IO_TIMEOUT);
 428                                        cond_resched();
 429                                        goto retry;
 430                                }
 431                                unlock_page(page);
 432                                break;
 433                        }
 434                        /* record old blkaddr for revoking */
 435                        cur->old_addr = fio.old_blkaddr;
 436                        submit_bio = true;
 437                }
 438                unlock_page(page);
 439                list_move_tail(&cur->list, &revoke_list);
 440        }
 441
 442        if (submit_bio)
 443                f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
 444
 445        if (err) {
 446                /*
 447                 * try to revoke all committed pages, but still we could fail
 448                 * due to no memory or other reason, if that happened, EAGAIN
 449                 * will be returned, which means in such case, transaction is
 450                 * already not integrity, caller should use journal to do the
 451                 * recovery or rewrite & commit last transaction. For other
 452                 * error number, revoking was done by filesystem itself.
 453                 */
 454                err = __revoke_inmem_pages(inode, &revoke_list,
 455                                                false, true, false);
 456
 457                /* drop all uncommitted pages */
 458                __revoke_inmem_pages(inode, &fi->inmem_pages,
 459                                                true, false, false);
 460        } else {
 461                __revoke_inmem_pages(inode, &revoke_list,
 462                                                false, false, false);
 463        }
 464
 465        return err;
 466}
 467
 468int f2fs_commit_inmem_pages(struct inode *inode)
 469{
 470        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 471        struct f2fs_inode_info *fi = F2FS_I(inode);
 472        int err;
 473
 474        f2fs_balance_fs(sbi, true);
 475
 476        down_write(&fi->i_gc_rwsem[WRITE]);
 477
 478        f2fs_lock_op(sbi);
 479        set_inode_flag(inode, FI_ATOMIC_COMMIT);
 480
 481        mutex_lock(&fi->inmem_lock);
 482        err = __f2fs_commit_inmem_pages(inode);
 483        mutex_unlock(&fi->inmem_lock);
 484
 485        clear_inode_flag(inode, FI_ATOMIC_COMMIT);
 486
 487        f2fs_unlock_op(sbi);
 488        up_write(&fi->i_gc_rwsem[WRITE]);
 489
 490        return err;
 491}
 492
 493/*
 494 * This function balances dirty node and dentry pages.
 495 * In addition, it controls garbage collection.
 496 */
 497void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 498{
 499        if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
 500                f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
 501                f2fs_stop_checkpoint(sbi, false);
 502        }
 503
 504        /* balance_fs_bg is able to be pending */
 505        if (need && excess_cached_nats(sbi))
 506                f2fs_balance_fs_bg(sbi, false);
 507
 508        if (!f2fs_is_checkpoint_ready(sbi))
 509                return;
 510
 511        /*
 512         * We should do GC or end up with checkpoint, if there are so many dirty
 513         * dir/node pages without enough free segments.
 514         */
 515        if (has_not_enough_free_secs(sbi, 0, 0)) {
 516                if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
 517                                        sbi->gc_thread->f2fs_gc_task) {
 518                        DEFINE_WAIT(wait);
 519
 520                        prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
 521                                                TASK_UNINTERRUPTIBLE);
 522                        wake_up(&sbi->gc_thread->gc_wait_queue_head);
 523                        io_schedule();
 524                        finish_wait(&sbi->gc_thread->fggc_wq, &wait);
 525                } else {
 526                        down_write(&sbi->gc_lock);
 527                        f2fs_gc(sbi, false, false, false, NULL_SEGNO);
 528                }
 529        }
 530}
 531
 532void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
 533{
 534        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 535                return;
 536
 537        /* try to shrink extent cache when there is no enough memory */
 538        if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
 539                f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 540
 541        /* check the # of cached NAT entries */
 542        if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 543                f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 544
 545        if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 546                f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 547        else
 548                f2fs_build_free_nids(sbi, false, false);
 549
 550        if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
 551                excess_prefree_segs(sbi))
 552                goto do_sync;
 553
 554        /* there is background inflight IO or foreground operation recently */
 555        if (is_inflight_io(sbi, REQ_TIME) ||
 556                (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
 557                return;
 558
 559        /* exceed periodical checkpoint timeout threshold */
 560        if (f2fs_time_over(sbi, CP_TIME))
 561                goto do_sync;
 562
 563        /* checkpoint is the only way to shrink partial cached entries */
 564        if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
 565                f2fs_available_free_memory(sbi, INO_ENTRIES))
 566                return;
 567
 568do_sync:
 569        if (test_opt(sbi, DATA_FLUSH) && from_bg) {
 570                struct blk_plug plug;
 571
 572                mutex_lock(&sbi->flush_lock);
 573
 574                blk_start_plug(&plug);
 575                f2fs_sync_dirty_inodes(sbi, FILE_INODE);
 576                blk_finish_plug(&plug);
 577
 578                mutex_unlock(&sbi->flush_lock);
 579        }
 580        f2fs_sync_fs(sbi->sb, true);
 581        stat_inc_bg_cp_count(sbi->stat_info);
 582}
 583
 584static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 585                                struct block_device *bdev)
 586{
 587        int ret = blkdev_issue_flush(bdev);
 588
 589        trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 590                                test_opt(sbi, FLUSH_MERGE), ret);
 591        return ret;
 592}
 593
 594static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 595{
 596        int ret = 0;
 597        int i;
 598
 599        if (!f2fs_is_multi_device(sbi))
 600                return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 601
 602        for (i = 0; i < sbi->s_ndevs; i++) {
 603                if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 604                        continue;
 605                ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 606                if (ret)
 607                        break;
 608        }
 609        return ret;
 610}
 611
 612static int issue_flush_thread(void *data)
 613{
 614        struct f2fs_sb_info *sbi = data;
 615        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 616        wait_queue_head_t *q = &fcc->flush_wait_queue;
 617repeat:
 618        if (kthread_should_stop())
 619                return 0;
 620
 621        if (!llist_empty(&fcc->issue_list)) {
 622                struct flush_cmd *cmd, *next;
 623                int ret;
 624
 625                fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 626                fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 627
 628                cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 629
 630                ret = submit_flush_wait(sbi, cmd->ino);
 631                atomic_inc(&fcc->issued_flush);
 632
 633                llist_for_each_entry_safe(cmd, next,
 634                                          fcc->dispatch_list, llnode) {
 635                        cmd->ret = ret;
 636                        complete(&cmd->wait);
 637                }
 638                fcc->dispatch_list = NULL;
 639        }
 640
 641        wait_event_interruptible(*q,
 642                kthread_should_stop() || !llist_empty(&fcc->issue_list));
 643        goto repeat;
 644}
 645
 646int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 647{
 648        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 649        struct flush_cmd cmd;
 650        int ret;
 651
 652        if (test_opt(sbi, NOBARRIER))
 653                return 0;
 654
 655        if (!test_opt(sbi, FLUSH_MERGE)) {
 656                atomic_inc(&fcc->queued_flush);
 657                ret = submit_flush_wait(sbi, ino);
 658                atomic_dec(&fcc->queued_flush);
 659                atomic_inc(&fcc->issued_flush);
 660                return ret;
 661        }
 662
 663        if (atomic_inc_return(&fcc->queued_flush) == 1 ||
 664            f2fs_is_multi_device(sbi)) {
 665                ret = submit_flush_wait(sbi, ino);
 666                atomic_dec(&fcc->queued_flush);
 667
 668                atomic_inc(&fcc->issued_flush);
 669                return ret;
 670        }
 671
 672        cmd.ino = ino;
 673        init_completion(&cmd.wait);
 674
 675        llist_add(&cmd.llnode, &fcc->issue_list);
 676
 677        /*
 678         * update issue_list before we wake up issue_flush thread, this
 679         * smp_mb() pairs with another barrier in ___wait_event(), see
 680         * more details in comments of waitqueue_active().
 681         */
 682        smp_mb();
 683
 684        if (waitqueue_active(&fcc->flush_wait_queue))
 685                wake_up(&fcc->flush_wait_queue);
 686
 687        if (fcc->f2fs_issue_flush) {
 688                wait_for_completion(&cmd.wait);
 689                atomic_dec(&fcc->queued_flush);
 690        } else {
 691                struct llist_node *list;
 692
 693                list = llist_del_all(&fcc->issue_list);
 694                if (!list) {
 695                        wait_for_completion(&cmd.wait);
 696                        atomic_dec(&fcc->queued_flush);
 697                } else {
 698                        struct flush_cmd *tmp, *next;
 699
 700                        ret = submit_flush_wait(sbi, ino);
 701
 702                        llist_for_each_entry_safe(tmp, next, list, llnode) {
 703                                if (tmp == &cmd) {
 704                                        cmd.ret = ret;
 705                                        atomic_dec(&fcc->queued_flush);
 706                                        continue;
 707                                }
 708                                tmp->ret = ret;
 709                                complete(&tmp->wait);
 710                        }
 711                }
 712        }
 713
 714        return cmd.ret;
 715}
 716
 717int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 718{
 719        dev_t dev = sbi->sb->s_bdev->bd_dev;
 720        struct flush_cmd_control *fcc;
 721        int err = 0;
 722
 723        if (SM_I(sbi)->fcc_info) {
 724                fcc = SM_I(sbi)->fcc_info;
 725                if (fcc->f2fs_issue_flush)
 726                        return err;
 727                goto init_thread;
 728        }
 729
 730        fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 731        if (!fcc)
 732                return -ENOMEM;
 733        atomic_set(&fcc->issued_flush, 0);
 734        atomic_set(&fcc->queued_flush, 0);
 735        init_waitqueue_head(&fcc->flush_wait_queue);
 736        init_llist_head(&fcc->issue_list);
 737        SM_I(sbi)->fcc_info = fcc;
 738        if (!test_opt(sbi, FLUSH_MERGE))
 739                return err;
 740
 741init_thread:
 742        fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 743                                "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 744        if (IS_ERR(fcc->f2fs_issue_flush)) {
 745                err = PTR_ERR(fcc->f2fs_issue_flush);
 746                kfree(fcc);
 747                SM_I(sbi)->fcc_info = NULL;
 748                return err;
 749        }
 750
 751        return err;
 752}
 753
 754void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 755{
 756        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 757
 758        if (fcc && fcc->f2fs_issue_flush) {
 759                struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 760
 761                fcc->f2fs_issue_flush = NULL;
 762                kthread_stop(flush_thread);
 763        }
 764        if (free) {
 765                kfree(fcc);
 766                SM_I(sbi)->fcc_info = NULL;
 767        }
 768}
 769
 770int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 771{
 772        int ret = 0, i;
 773
 774        if (!f2fs_is_multi_device(sbi))
 775                return 0;
 776
 777        if (test_opt(sbi, NOBARRIER))
 778                return 0;
 779
 780        for (i = 1; i < sbi->s_ndevs; i++) {
 781                int count = DEFAULT_RETRY_IO_COUNT;
 782
 783                if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 784                        continue;
 785
 786                do {
 787                        ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 788                        if (ret)
 789                                congestion_wait(BLK_RW_ASYNC,
 790                                                DEFAULT_IO_TIMEOUT);
 791                } while (ret && --count);
 792
 793                if (ret) {
 794                        f2fs_stop_checkpoint(sbi, false);
 795                        break;
 796                }
 797
 798                spin_lock(&sbi->dev_lock);
 799                f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 800                spin_unlock(&sbi->dev_lock);
 801        }
 802
 803        return ret;
 804}
 805
 806static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 807                enum dirty_type dirty_type)
 808{
 809        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 810
 811        /* need not be added */
 812        if (IS_CURSEG(sbi, segno))
 813                return;
 814
 815        if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 816                dirty_i->nr_dirty[dirty_type]++;
 817
 818        if (dirty_type == DIRTY) {
 819                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 820                enum dirty_type t = sentry->type;
 821
 822                if (unlikely(t >= DIRTY)) {
 823                        f2fs_bug_on(sbi, 1);
 824                        return;
 825                }
 826                if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 827                        dirty_i->nr_dirty[t]++;
 828
 829                if (__is_large_section(sbi)) {
 830                        unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 831                        block_t valid_blocks =
 832                                get_valid_blocks(sbi, segno, true);
 833
 834                        f2fs_bug_on(sbi, unlikely(!valid_blocks ||
 835                                        valid_blocks == BLKS_PER_SEC(sbi)));
 836
 837                        if (!IS_CURSEC(sbi, secno))
 838                                set_bit(secno, dirty_i->dirty_secmap);
 839                }
 840        }
 841}
 842
 843static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 844                enum dirty_type dirty_type)
 845{
 846        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 847        block_t valid_blocks;
 848
 849        if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 850                dirty_i->nr_dirty[dirty_type]--;
 851
 852        if (dirty_type == DIRTY) {
 853                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 854                enum dirty_type t = sentry->type;
 855
 856                if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 857                        dirty_i->nr_dirty[t]--;
 858
 859                valid_blocks = get_valid_blocks(sbi, segno, true);
 860                if (valid_blocks == 0) {
 861                        clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 862                                                dirty_i->victim_secmap);
 863#ifdef CONFIG_F2FS_CHECK_FS
 864                        clear_bit(segno, SIT_I(sbi)->invalid_segmap);
 865#endif
 866                }
 867                if (__is_large_section(sbi)) {
 868                        unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 869
 870                        if (!valid_blocks ||
 871                                        valid_blocks == BLKS_PER_SEC(sbi)) {
 872                                clear_bit(secno, dirty_i->dirty_secmap);
 873                                return;
 874                        }
 875
 876                        if (!IS_CURSEC(sbi, secno))
 877                                set_bit(secno, dirty_i->dirty_secmap);
 878                }
 879        }
 880}
 881
 882/*
 883 * Should not occur error such as -ENOMEM.
 884 * Adding dirty entry into seglist is not critical operation.
 885 * If a given segment is one of current working segments, it won't be added.
 886 */
 887static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 888{
 889        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 890        unsigned short valid_blocks, ckpt_valid_blocks;
 891        unsigned int usable_blocks;
 892
 893        if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 894                return;
 895
 896        usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
 897        mutex_lock(&dirty_i->seglist_lock);
 898
 899        valid_blocks = get_valid_blocks(sbi, segno, false);
 900        ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
 901
 902        if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
 903                ckpt_valid_blocks == usable_blocks)) {
 904                __locate_dirty_segment(sbi, segno, PRE);
 905                __remove_dirty_segment(sbi, segno, DIRTY);
 906        } else if (valid_blocks < usable_blocks) {
 907                __locate_dirty_segment(sbi, segno, DIRTY);
 908        } else {
 909                /* Recovery routine with SSR needs this */
 910                __remove_dirty_segment(sbi, segno, DIRTY);
 911        }
 912
 913        mutex_unlock(&dirty_i->seglist_lock);
 914}
 915
 916/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
 917void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
 918{
 919        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 920        unsigned int segno;
 921
 922        mutex_lock(&dirty_i->seglist_lock);
 923        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 924                if (get_valid_blocks(sbi, segno, false))
 925                        continue;
 926                if (IS_CURSEG(sbi, segno))
 927                        continue;
 928                __locate_dirty_segment(sbi, segno, PRE);
 929                __remove_dirty_segment(sbi, segno, DIRTY);
 930        }
 931        mutex_unlock(&dirty_i->seglist_lock);
 932}
 933
 934block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
 935{
 936        int ovp_hole_segs =
 937                (overprovision_segments(sbi) - reserved_segments(sbi));
 938        block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
 939        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 940        block_t holes[2] = {0, 0};      /* DATA and NODE */
 941        block_t unusable;
 942        struct seg_entry *se;
 943        unsigned int segno;
 944
 945        mutex_lock(&dirty_i->seglist_lock);
 946        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 947                se = get_seg_entry(sbi, segno);
 948                if (IS_NODESEG(se->type))
 949                        holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
 950                                                        se->valid_blocks;
 951                else
 952                        holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
 953                                                        se->valid_blocks;
 954        }
 955        mutex_unlock(&dirty_i->seglist_lock);
 956
 957        unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
 958        if (unusable > ovp_holes)
 959                return unusable - ovp_holes;
 960        return 0;
 961}
 962
 963int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
 964{
 965        int ovp_hole_segs =
 966                (overprovision_segments(sbi) - reserved_segments(sbi));
 967        if (unusable > F2FS_OPTION(sbi).unusable_cap)
 968                return -EAGAIN;
 969        if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
 970                dirty_segments(sbi) > ovp_hole_segs)
 971                return -EAGAIN;
 972        return 0;
 973}
 974
 975/* This is only used by SBI_CP_DISABLED */
 976static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
 977{
 978        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 979        unsigned int segno = 0;
 980
 981        mutex_lock(&dirty_i->seglist_lock);
 982        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 983                if (get_valid_blocks(sbi, segno, false))
 984                        continue;
 985                if (get_ckpt_valid_blocks(sbi, segno, false))
 986                        continue;
 987                mutex_unlock(&dirty_i->seglist_lock);
 988                return segno;
 989        }
 990        mutex_unlock(&dirty_i->seglist_lock);
 991        return NULL_SEGNO;
 992}
 993
 994static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
 995                struct block_device *bdev, block_t lstart,
 996                block_t start, block_t len)
 997{
 998        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 999        struct list_head *pend_list;
1000        struct discard_cmd *dc;
1001
1002        f2fs_bug_on(sbi, !len);
1003
1004        pend_list = &dcc->pend_list[plist_idx(len)];
1005
1006        dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
1007        INIT_LIST_HEAD(&dc->list);
1008        dc->bdev = bdev;
1009        dc->lstart = lstart;
1010        dc->start = start;
1011        dc->len = len;
1012        dc->ref = 0;
1013        dc->state = D_PREP;
1014        dc->queued = 0;
1015        dc->error = 0;
1016        init_completion(&dc->wait);
1017        list_add_tail(&dc->list, pend_list);
1018        spin_lock_init(&dc->lock);
1019        dc->bio_ref = 0;
1020        atomic_inc(&dcc->discard_cmd_cnt);
1021        dcc->undiscard_blks += len;
1022
1023        return dc;
1024}
1025
1026static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1027                                struct block_device *bdev, block_t lstart,
1028                                block_t start, block_t len,
1029                                struct rb_node *parent, struct rb_node **p,
1030                                bool leftmost)
1031{
1032        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1033        struct discard_cmd *dc;
1034
1035        dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1036
1037        rb_link_node(&dc->rb_node, parent, p);
1038        rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1039
1040        return dc;
1041}
1042
1043static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1044                                                        struct discard_cmd *dc)
1045{
1046        if (dc->state == D_DONE)
1047                atomic_sub(dc->queued, &dcc->queued_discard);
1048
1049        list_del(&dc->list);
1050        rb_erase_cached(&dc->rb_node, &dcc->root);
1051        dcc->undiscard_blks -= dc->len;
1052
1053        kmem_cache_free(discard_cmd_slab, dc);
1054
1055        atomic_dec(&dcc->discard_cmd_cnt);
1056}
1057
1058static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1059                                                        struct discard_cmd *dc)
1060{
1061        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1062        unsigned long flags;
1063
1064        trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1065
1066        spin_lock_irqsave(&dc->lock, flags);
1067        if (dc->bio_ref) {
1068                spin_unlock_irqrestore(&dc->lock, flags);
1069                return;
1070        }
1071        spin_unlock_irqrestore(&dc->lock, flags);
1072
1073        f2fs_bug_on(sbi, dc->ref);
1074
1075        if (dc->error == -EOPNOTSUPP)
1076                dc->error = 0;
1077
1078        if (dc->error)
1079                printk_ratelimited(
1080                        "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1081                        KERN_INFO, sbi->sb->s_id,
1082                        dc->lstart, dc->start, dc->len, dc->error);
1083        __detach_discard_cmd(dcc, dc);
1084}
1085
1086static void f2fs_submit_discard_endio(struct bio *bio)
1087{
1088        struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1089        unsigned long flags;
1090
1091        spin_lock_irqsave(&dc->lock, flags);
1092        if (!dc->error)
1093                dc->error = blk_status_to_errno(bio->bi_status);
1094        dc->bio_ref--;
1095        if (!dc->bio_ref && dc->state == D_SUBMIT) {
1096                dc->state = D_DONE;
1097                complete_all(&dc->wait);
1098        }
1099        spin_unlock_irqrestore(&dc->lock, flags);
1100        bio_put(bio);
1101}
1102
1103static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1104                                block_t start, block_t end)
1105{
1106#ifdef CONFIG_F2FS_CHECK_FS
1107        struct seg_entry *sentry;
1108        unsigned int segno;
1109        block_t blk = start;
1110        unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1111        unsigned long *map;
1112
1113        while (blk < end) {
1114                segno = GET_SEGNO(sbi, blk);
1115                sentry = get_seg_entry(sbi, segno);
1116                offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1117
1118                if (end < START_BLOCK(sbi, segno + 1))
1119                        size = GET_BLKOFF_FROM_SEG0(sbi, end);
1120                else
1121                        size = max_blocks;
1122                map = (unsigned long *)(sentry->cur_valid_map);
1123                offset = __find_rev_next_bit(map, size, offset);
1124                f2fs_bug_on(sbi, offset != size);
1125                blk = START_BLOCK(sbi, segno + 1);
1126        }
1127#endif
1128}
1129
1130static void __init_discard_policy(struct f2fs_sb_info *sbi,
1131                                struct discard_policy *dpolicy,
1132                                int discard_type, unsigned int granularity)
1133{
1134        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1135
1136        /* common policy */
1137        dpolicy->type = discard_type;
1138        dpolicy->sync = true;
1139        dpolicy->ordered = false;
1140        dpolicy->granularity = granularity;
1141
1142        dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1143        dpolicy->io_aware_gran = MAX_PLIST_NUM;
1144        dpolicy->timeout = false;
1145
1146        if (discard_type == DPOLICY_BG) {
1147                dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1148                dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1149                dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1150                dpolicy->io_aware = true;
1151                dpolicy->sync = false;
1152                dpolicy->ordered = true;
1153                if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1154                        dpolicy->granularity = 1;
1155                        if (atomic_read(&dcc->discard_cmd_cnt))
1156                                dpolicy->max_interval =
1157                                        DEF_MIN_DISCARD_ISSUE_TIME;
1158                }
1159        } else if (discard_type == DPOLICY_FORCE) {
1160                dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1161                dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1162                dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1163                dpolicy->io_aware = false;
1164        } else if (discard_type == DPOLICY_FSTRIM) {
1165                dpolicy->io_aware = false;
1166        } else if (discard_type == DPOLICY_UMOUNT) {
1167                dpolicy->io_aware = false;
1168                /* we need to issue all to keep CP_TRIMMED_FLAG */
1169                dpolicy->granularity = 1;
1170                dpolicy->timeout = true;
1171        }
1172}
1173
1174static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1175                                struct block_device *bdev, block_t lstart,
1176                                block_t start, block_t len);
1177/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1178static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1179                                                struct discard_policy *dpolicy,
1180                                                struct discard_cmd *dc,
1181                                                unsigned int *issued)
1182{
1183        struct block_device *bdev = dc->bdev;
1184        struct request_queue *q = bdev_get_queue(bdev);
1185        unsigned int max_discard_blocks =
1186                        SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1187        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1188        struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1189                                        &(dcc->fstrim_list) : &(dcc->wait_list);
1190        int flag = dpolicy->sync ? REQ_SYNC : 0;
1191        block_t lstart, start, len, total_len;
1192        int err = 0;
1193
1194        if (dc->state != D_PREP)
1195                return 0;
1196
1197        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1198                return 0;
1199
1200        trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1201
1202        lstart = dc->lstart;
1203        start = dc->start;
1204        len = dc->len;
1205        total_len = len;
1206
1207        dc->len = 0;
1208
1209        while (total_len && *issued < dpolicy->max_requests && !err) {
1210                struct bio *bio = NULL;
1211                unsigned long flags;
1212                bool last = true;
1213
1214                if (len > max_discard_blocks) {
1215                        len = max_discard_blocks;
1216                        last = false;
1217                }
1218
1219                (*issued)++;
1220                if (*issued == dpolicy->max_requests)
1221                        last = true;
1222
1223                dc->len += len;
1224
1225                if (time_to_inject(sbi, FAULT_DISCARD)) {
1226                        f2fs_show_injection_info(sbi, FAULT_DISCARD);
1227                        err = -EIO;
1228                        goto submit;
1229                }
1230                err = __blkdev_issue_discard(bdev,
1231                                        SECTOR_FROM_BLOCK(start),
1232                                        SECTOR_FROM_BLOCK(len),
1233                                        GFP_NOFS, 0, &bio);
1234submit:
1235                if (err) {
1236                        spin_lock_irqsave(&dc->lock, flags);
1237                        if (dc->state == D_PARTIAL)
1238                                dc->state = D_SUBMIT;
1239                        spin_unlock_irqrestore(&dc->lock, flags);
1240
1241                        break;
1242                }
1243
1244                f2fs_bug_on(sbi, !bio);
1245
1246                /*
1247                 * should keep before submission to avoid D_DONE
1248                 * right away
1249                 */
1250                spin_lock_irqsave(&dc->lock, flags);
1251                if (last)
1252                        dc->state = D_SUBMIT;
1253                else
1254                        dc->state = D_PARTIAL;
1255                dc->bio_ref++;
1256                spin_unlock_irqrestore(&dc->lock, flags);
1257
1258                atomic_inc(&dcc->queued_discard);
1259                dc->queued++;
1260                list_move_tail(&dc->list, wait_list);
1261
1262                /* sanity check on discard range */
1263                __check_sit_bitmap(sbi, lstart, lstart + len);
1264
1265                bio->bi_private = dc;
1266                bio->bi_end_io = f2fs_submit_discard_endio;
1267                bio->bi_opf |= flag;
1268                submit_bio(bio);
1269
1270                atomic_inc(&dcc->issued_discard);
1271
1272                f2fs_update_iostat(sbi, FS_DISCARD, 1);
1273
1274                lstart += len;
1275                start += len;
1276                total_len -= len;
1277                len = total_len;
1278        }
1279
1280        if (!err && len) {
1281                dcc->undiscard_blks -= len;
1282                __update_discard_tree_range(sbi, bdev, lstart, start, len);
1283        }
1284        return err;
1285}
1286
1287static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1288                                struct block_device *bdev, block_t lstart,
1289                                block_t start, block_t len,
1290                                struct rb_node **insert_p,
1291                                struct rb_node *insert_parent)
1292{
1293        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1294        struct rb_node **p;
1295        struct rb_node *parent = NULL;
1296        bool leftmost = true;
1297
1298        if (insert_p && insert_parent) {
1299                parent = insert_parent;
1300                p = insert_p;
1301                goto do_insert;
1302        }
1303
1304        p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1305                                                        lstart, &leftmost);
1306do_insert:
1307        __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1308                                                                p, leftmost);
1309}
1310
1311static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1312                                                struct discard_cmd *dc)
1313{
1314        list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1315}
1316
1317static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1318                                struct discard_cmd *dc, block_t blkaddr)
1319{
1320        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1321        struct discard_info di = dc->di;
1322        bool modified = false;
1323
1324        if (dc->state == D_DONE || dc->len == 1) {
1325                __remove_discard_cmd(sbi, dc);
1326                return;
1327        }
1328
1329        dcc->undiscard_blks -= di.len;
1330
1331        if (blkaddr > di.lstart) {
1332                dc->len = blkaddr - dc->lstart;
1333                dcc->undiscard_blks += dc->len;
1334                __relocate_discard_cmd(dcc, dc);
1335                modified = true;
1336        }
1337
1338        if (blkaddr < di.lstart + di.len - 1) {
1339                if (modified) {
1340                        __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1341                                        di.start + blkaddr + 1 - di.lstart,
1342                                        di.lstart + di.len - 1 - blkaddr,
1343                                        NULL, NULL);
1344                } else {
1345                        dc->lstart++;
1346                        dc->len--;
1347                        dc->start++;
1348                        dcc->undiscard_blks += dc->len;
1349                        __relocate_discard_cmd(dcc, dc);
1350                }
1351        }
1352}
1353
1354static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1355                                struct block_device *bdev, block_t lstart,
1356                                block_t start, block_t len)
1357{
1358        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1359        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1360        struct discard_cmd *dc;
1361        struct discard_info di = {0};
1362        struct rb_node **insert_p = NULL, *insert_parent = NULL;
1363        struct request_queue *q = bdev_get_queue(bdev);
1364        unsigned int max_discard_blocks =
1365                        SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1366        block_t end = lstart + len;
1367
1368        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1369                                        NULL, lstart,
1370                                        (struct rb_entry **)&prev_dc,
1371                                        (struct rb_entry **)&next_dc,
1372                                        &insert_p, &insert_parent, true, NULL);
1373        if (dc)
1374                prev_dc = dc;
1375
1376        if (!prev_dc) {
1377                di.lstart = lstart;
1378                di.len = next_dc ? next_dc->lstart - lstart : len;
1379                di.len = min(di.len, len);
1380                di.start = start;
1381        }
1382
1383        while (1) {
1384                struct rb_node *node;
1385                bool merged = false;
1386                struct discard_cmd *tdc = NULL;
1387
1388                if (prev_dc) {
1389                        di.lstart = prev_dc->lstart + prev_dc->len;
1390                        if (di.lstart < lstart)
1391                                di.lstart = lstart;
1392                        if (di.lstart >= end)
1393                                break;
1394
1395                        if (!next_dc || next_dc->lstart > end)
1396                                di.len = end - di.lstart;
1397                        else
1398                                di.len = next_dc->lstart - di.lstart;
1399                        di.start = start + di.lstart - lstart;
1400                }
1401
1402                if (!di.len)
1403                        goto next;
1404
1405                if (prev_dc && prev_dc->state == D_PREP &&
1406                        prev_dc->bdev == bdev &&
1407                        __is_discard_back_mergeable(&di, &prev_dc->di,
1408                                                        max_discard_blocks)) {
1409                        prev_dc->di.len += di.len;
1410                        dcc->undiscard_blks += di.len;
1411                        __relocate_discard_cmd(dcc, prev_dc);
1412                        di = prev_dc->di;
1413                        tdc = prev_dc;
1414                        merged = true;
1415                }
1416
1417                if (next_dc && next_dc->state == D_PREP &&
1418                        next_dc->bdev == bdev &&
1419                        __is_discard_front_mergeable(&di, &next_dc->di,
1420                                                        max_discard_blocks)) {
1421                        next_dc->di.lstart = di.lstart;
1422                        next_dc->di.len += di.len;
1423                        next_dc->di.start = di.start;
1424                        dcc->undiscard_blks += di.len;
1425                        __relocate_discard_cmd(dcc, next_dc);
1426                        if (tdc)
1427                                __remove_discard_cmd(sbi, tdc);
1428                        merged = true;
1429                }
1430
1431                if (!merged) {
1432                        __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1433                                                        di.len, NULL, NULL);
1434                }
1435 next:
1436                prev_dc = next_dc;
1437                if (!prev_dc)
1438                        break;
1439
1440                node = rb_next(&prev_dc->rb_node);
1441                next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1442        }
1443}
1444
1445static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1446                struct block_device *bdev, block_t blkstart, block_t blklen)
1447{
1448        block_t lblkstart = blkstart;
1449
1450        if (!f2fs_bdev_support_discard(bdev))
1451                return 0;
1452
1453        trace_f2fs_queue_discard(bdev, blkstart, blklen);
1454
1455        if (f2fs_is_multi_device(sbi)) {
1456                int devi = f2fs_target_device_index(sbi, blkstart);
1457
1458                blkstart -= FDEV(devi).start_blk;
1459        }
1460        mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1461        __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1462        mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1463        return 0;
1464}
1465
1466static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1467                                        struct discard_policy *dpolicy)
1468{
1469        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1470        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1471        struct rb_node **insert_p = NULL, *insert_parent = NULL;
1472        struct discard_cmd *dc;
1473        struct blk_plug plug;
1474        unsigned int pos = dcc->next_pos;
1475        unsigned int issued = 0;
1476        bool io_interrupted = false;
1477
1478        mutex_lock(&dcc->cmd_lock);
1479        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1480                                        NULL, pos,
1481                                        (struct rb_entry **)&prev_dc,
1482                                        (struct rb_entry **)&next_dc,
1483                                        &insert_p, &insert_parent, true, NULL);
1484        if (!dc)
1485                dc = next_dc;
1486
1487        blk_start_plug(&plug);
1488
1489        while (dc) {
1490                struct rb_node *node;
1491                int err = 0;
1492
1493                if (dc->state != D_PREP)
1494                        goto next;
1495
1496                if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1497                        io_interrupted = true;
1498                        break;
1499                }
1500
1501                dcc->next_pos = dc->lstart + dc->len;
1502                err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1503
1504                if (issued >= dpolicy->max_requests)
1505                        break;
1506next:
1507                node = rb_next(&dc->rb_node);
1508                if (err)
1509                        __remove_discard_cmd(sbi, dc);
1510                dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1511        }
1512
1513        blk_finish_plug(&plug);
1514
1515        if (!dc)
1516                dcc->next_pos = 0;
1517
1518        mutex_unlock(&dcc->cmd_lock);
1519
1520        if (!issued && io_interrupted)
1521                issued = -1;
1522
1523        return issued;
1524}
1525static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1526                                        struct discard_policy *dpolicy);
1527
1528static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1529                                        struct discard_policy *dpolicy)
1530{
1531        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1532        struct list_head *pend_list;
1533        struct discard_cmd *dc, *tmp;
1534        struct blk_plug plug;
1535        int i, issued;
1536        bool io_interrupted = false;
1537
1538        if (dpolicy->timeout)
1539                f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1540
1541retry:
1542        issued = 0;
1543        for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1544                if (dpolicy->timeout &&
1545                                f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1546                        break;
1547
1548                if (i + 1 < dpolicy->granularity)
1549                        break;
1550
1551                if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1552                        return __issue_discard_cmd_orderly(sbi, dpolicy);
1553
1554                pend_list = &dcc->pend_list[i];
1555
1556                mutex_lock(&dcc->cmd_lock);
1557                if (list_empty(pend_list))
1558                        goto next;
1559                if (unlikely(dcc->rbtree_check))
1560                        f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1561                                                        &dcc->root, false));
1562                blk_start_plug(&plug);
1563                list_for_each_entry_safe(dc, tmp, pend_list, list) {
1564                        f2fs_bug_on(sbi, dc->state != D_PREP);
1565
1566                        if (dpolicy->timeout &&
1567                                f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1568                                break;
1569
1570                        if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1571                                                !is_idle(sbi, DISCARD_TIME)) {
1572                                io_interrupted = true;
1573                                break;
1574                        }
1575
1576                        __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1577
1578                        if (issued >= dpolicy->max_requests)
1579                                break;
1580                }
1581                blk_finish_plug(&plug);
1582next:
1583                mutex_unlock(&dcc->cmd_lock);
1584
1585                if (issued >= dpolicy->max_requests || io_interrupted)
1586                        break;
1587        }
1588
1589        if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1590                __wait_all_discard_cmd(sbi, dpolicy);
1591                goto retry;
1592        }
1593
1594        if (!issued && io_interrupted)
1595                issued = -1;
1596
1597        return issued;
1598}
1599
1600static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1601{
1602        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1603        struct list_head *pend_list;
1604        struct discard_cmd *dc, *tmp;
1605        int i;
1606        bool dropped = false;
1607
1608        mutex_lock(&dcc->cmd_lock);
1609        for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1610                pend_list = &dcc->pend_list[i];
1611                list_for_each_entry_safe(dc, tmp, pend_list, list) {
1612                        f2fs_bug_on(sbi, dc->state != D_PREP);
1613                        __remove_discard_cmd(sbi, dc);
1614                        dropped = true;
1615                }
1616        }
1617        mutex_unlock(&dcc->cmd_lock);
1618
1619        return dropped;
1620}
1621
1622void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1623{
1624        __drop_discard_cmd(sbi);
1625}
1626
1627static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1628                                                        struct discard_cmd *dc)
1629{
1630        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1631        unsigned int len = 0;
1632
1633        wait_for_completion_io(&dc->wait);
1634        mutex_lock(&dcc->cmd_lock);
1635        f2fs_bug_on(sbi, dc->state != D_DONE);
1636        dc->ref--;
1637        if (!dc->ref) {
1638                if (!dc->error)
1639                        len = dc->len;
1640                __remove_discard_cmd(sbi, dc);
1641        }
1642        mutex_unlock(&dcc->cmd_lock);
1643
1644        return len;
1645}
1646
1647static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1648                                                struct discard_policy *dpolicy,
1649                                                block_t start, block_t end)
1650{
1651        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1652        struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1653                                        &(dcc->fstrim_list) : &(dcc->wait_list);
1654        struct discard_cmd *dc, *tmp;
1655        bool need_wait;
1656        unsigned int trimmed = 0;
1657
1658next:
1659        need_wait = false;
1660
1661        mutex_lock(&dcc->cmd_lock);
1662        list_for_each_entry_safe(dc, tmp, wait_list, list) {
1663                if (dc->lstart + dc->len <= start || end <= dc->lstart)
1664                        continue;
1665                if (dc->len < dpolicy->granularity)
1666                        continue;
1667                if (dc->state == D_DONE && !dc->ref) {
1668                        wait_for_completion_io(&dc->wait);
1669                        if (!dc->error)
1670                                trimmed += dc->len;
1671                        __remove_discard_cmd(sbi, dc);
1672                } else {
1673                        dc->ref++;
1674                        need_wait = true;
1675                        break;
1676                }
1677        }
1678        mutex_unlock(&dcc->cmd_lock);
1679
1680        if (need_wait) {
1681                trimmed += __wait_one_discard_bio(sbi, dc);
1682                goto next;
1683        }
1684
1685        return trimmed;
1686}
1687
1688static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1689                                                struct discard_policy *dpolicy)
1690{
1691        struct discard_policy dp;
1692        unsigned int discard_blks;
1693
1694        if (dpolicy)
1695                return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1696
1697        /* wait all */
1698        __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1699        discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1700        __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1701        discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1702
1703        return discard_blks;
1704}
1705
1706/* This should be covered by global mutex, &sit_i->sentry_lock */
1707static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1708{
1709        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1710        struct discard_cmd *dc;
1711        bool need_wait = false;
1712
1713        mutex_lock(&dcc->cmd_lock);
1714        dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1715                                                        NULL, blkaddr);
1716        if (dc) {
1717                if (dc->state == D_PREP) {
1718                        __punch_discard_cmd(sbi, dc, blkaddr);
1719                } else {
1720                        dc->ref++;
1721                        need_wait = true;
1722                }
1723        }
1724        mutex_unlock(&dcc->cmd_lock);
1725
1726        if (need_wait)
1727                __wait_one_discard_bio(sbi, dc);
1728}
1729
1730void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1731{
1732        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1733
1734        if (dcc && dcc->f2fs_issue_discard) {
1735                struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1736
1737                dcc->f2fs_issue_discard = NULL;
1738                kthread_stop(discard_thread);
1739        }
1740}
1741
1742/* This comes from f2fs_put_super */
1743bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1744{
1745        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1746        struct discard_policy dpolicy;
1747        bool dropped;
1748
1749        __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1750                                        dcc->discard_granularity);
1751        __issue_discard_cmd(sbi, &dpolicy);
1752        dropped = __drop_discard_cmd(sbi);
1753
1754        /* just to make sure there is no pending discard commands */
1755        __wait_all_discard_cmd(sbi, NULL);
1756
1757        f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1758        return dropped;
1759}
1760
1761static int issue_discard_thread(void *data)
1762{
1763        struct f2fs_sb_info *sbi = data;
1764        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1765        wait_queue_head_t *q = &dcc->discard_wait_queue;
1766        struct discard_policy dpolicy;
1767        unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1768        int issued;
1769
1770        set_freezable();
1771
1772        do {
1773                if (sbi->gc_mode == GC_URGENT_HIGH ||
1774                        !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1775                        __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1776                else
1777                        __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1778                                                dcc->discard_granularity);
1779
1780                if (!atomic_read(&dcc->discard_cmd_cnt))
1781                       wait_ms = dpolicy.max_interval;
1782
1783                wait_event_interruptible_timeout(*q,
1784                                kthread_should_stop() || freezing(current) ||
1785                                dcc->discard_wake,
1786                                msecs_to_jiffies(wait_ms));
1787
1788                if (dcc->discard_wake)
1789                        dcc->discard_wake = 0;
1790
1791                /* clean up pending candidates before going to sleep */
1792                if (atomic_read(&dcc->queued_discard))
1793                        __wait_all_discard_cmd(sbi, NULL);
1794
1795                if (try_to_freeze())
1796                        continue;
1797                if (f2fs_readonly(sbi->sb))
1798                        continue;
1799                if (kthread_should_stop())
1800                        return 0;
1801                if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1802                        wait_ms = dpolicy.max_interval;
1803                        continue;
1804                }
1805                if (!atomic_read(&dcc->discard_cmd_cnt))
1806                        continue;
1807
1808                sb_start_intwrite(sbi->sb);
1809
1810                issued = __issue_discard_cmd(sbi, &dpolicy);
1811                if (issued > 0) {
1812                        __wait_all_discard_cmd(sbi, &dpolicy);
1813                        wait_ms = dpolicy.min_interval;
1814                } else if (issued == -1) {
1815                        wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1816                        if (!wait_ms)
1817                                wait_ms = dpolicy.mid_interval;
1818                } else {
1819                        wait_ms = dpolicy.max_interval;
1820                }
1821
1822                sb_end_intwrite(sbi->sb);
1823
1824        } while (!kthread_should_stop());
1825        return 0;
1826}
1827
1828#ifdef CONFIG_BLK_DEV_ZONED
1829static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1830                struct block_device *bdev, block_t blkstart, block_t blklen)
1831{
1832        sector_t sector, nr_sects;
1833        block_t lblkstart = blkstart;
1834        int devi = 0;
1835
1836        if (f2fs_is_multi_device(sbi)) {
1837                devi = f2fs_target_device_index(sbi, blkstart);
1838                if (blkstart < FDEV(devi).start_blk ||
1839                    blkstart > FDEV(devi).end_blk) {
1840                        f2fs_err(sbi, "Invalid block %x", blkstart);
1841                        return -EIO;
1842                }
1843                blkstart -= FDEV(devi).start_blk;
1844        }
1845
1846        /* For sequential zones, reset the zone write pointer */
1847        if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1848                sector = SECTOR_FROM_BLOCK(blkstart);
1849                nr_sects = SECTOR_FROM_BLOCK(blklen);
1850
1851                if (sector & (bdev_zone_sectors(bdev) - 1) ||
1852                                nr_sects != bdev_zone_sectors(bdev)) {
1853                        f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1854                                 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1855                                 blkstart, blklen);
1856                        return -EIO;
1857                }
1858                trace_f2fs_issue_reset_zone(bdev, blkstart);
1859                return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1860                                        sector, nr_sects, GFP_NOFS);
1861        }
1862
1863        /* For conventional zones, use regular discard if supported */
1864        return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1865}
1866#endif
1867
1868static int __issue_discard_async(struct f2fs_sb_info *sbi,
1869                struct block_device *bdev, block_t blkstart, block_t blklen)
1870{
1871#ifdef CONFIG_BLK_DEV_ZONED
1872        if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1873                return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1874#endif
1875        return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1876}
1877
1878static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1879                                block_t blkstart, block_t blklen)
1880{
1881        sector_t start = blkstart, len = 0;
1882        struct block_device *bdev;
1883        struct seg_entry *se;
1884        unsigned int offset;
1885        block_t i;
1886        int err = 0;
1887
1888        bdev = f2fs_target_device(sbi, blkstart, NULL);
1889
1890        for (i = blkstart; i < blkstart + blklen; i++, len++) {
1891                if (i != start) {
1892                        struct block_device *bdev2 =
1893                                f2fs_target_device(sbi, i, NULL);
1894
1895                        if (bdev2 != bdev) {
1896                                err = __issue_discard_async(sbi, bdev,
1897                                                start, len);
1898                                if (err)
1899                                        return err;
1900                                bdev = bdev2;
1901                                start = i;
1902                                len = 0;
1903                        }
1904                }
1905
1906                se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1907                offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1908
1909                if (f2fs_block_unit_discard(sbi) &&
1910                                !f2fs_test_and_set_bit(offset, se->discard_map))
1911                        sbi->discard_blks--;
1912        }
1913
1914        if (len)
1915                err = __issue_discard_async(sbi, bdev, start, len);
1916        return err;
1917}
1918
1919static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1920                                                        bool check_only)
1921{
1922        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1923        int max_blocks = sbi->blocks_per_seg;
1924        struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1925        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1926        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1927        unsigned long *discard_map = (unsigned long *)se->discard_map;
1928        unsigned long *dmap = SIT_I(sbi)->tmp_map;
1929        unsigned int start = 0, end = -1;
1930        bool force = (cpc->reason & CP_DISCARD);
1931        struct discard_entry *de = NULL;
1932        struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1933        int i;
1934
1935        if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1936                        !f2fs_block_unit_discard(sbi))
1937                return false;
1938
1939        if (!force) {
1940                if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1941                        SM_I(sbi)->dcc_info->nr_discards >=
1942                                SM_I(sbi)->dcc_info->max_discards)
1943                        return false;
1944        }
1945
1946        /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1947        for (i = 0; i < entries; i++)
1948                dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1949                                (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1950
1951        while (force || SM_I(sbi)->dcc_info->nr_discards <=
1952                                SM_I(sbi)->dcc_info->max_discards) {
1953                start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1954                if (start >= max_blocks)
1955                        break;
1956
1957                end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1958                if (force && start && end != max_blocks
1959                                        && (end - start) < cpc->trim_minlen)
1960                        continue;
1961
1962                if (check_only)
1963                        return true;
1964
1965                if (!de) {
1966                        de = f2fs_kmem_cache_alloc(discard_entry_slab,
1967                                                GFP_F2FS_ZERO, true, NULL);
1968                        de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1969                        list_add_tail(&de->list, head);
1970                }
1971
1972                for (i = start; i < end; i++)
1973                        __set_bit_le(i, (void *)de->discard_map);
1974
1975                SM_I(sbi)->dcc_info->nr_discards += end - start;
1976        }
1977        return false;
1978}
1979
1980static void release_discard_addr(struct discard_entry *entry)
1981{
1982        list_del(&entry->list);
1983        kmem_cache_free(discard_entry_slab, entry);
1984}
1985
1986void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1987{
1988        struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1989        struct discard_entry *entry, *this;
1990
1991        /* drop caches */
1992        list_for_each_entry_safe(entry, this, head, list)
1993                release_discard_addr(entry);
1994}
1995
1996/*
1997 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1998 */
1999static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2000{
2001        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2002        unsigned int segno;
2003
2004        mutex_lock(&dirty_i->seglist_lock);
2005        for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2006                __set_test_and_free(sbi, segno, false);
2007        mutex_unlock(&dirty_i->seglist_lock);
2008}
2009
2010void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2011                                                struct cp_control *cpc)
2012{
2013        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2014        struct list_head *head = &dcc->entry_list;
2015        struct discard_entry *entry, *this;
2016        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2017        unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2018        unsigned int start = 0, end = -1;
2019        unsigned int secno, start_segno;
2020        bool force = (cpc->reason & CP_DISCARD);
2021        bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2022                                                DISCARD_UNIT_SECTION;
2023
2024        if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2025                section_alignment = true;
2026
2027        mutex_lock(&dirty_i->seglist_lock);
2028
2029        while (1) {
2030                int i;
2031
2032                if (section_alignment && end != -1)
2033                        end--;
2034                start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2035                if (start >= MAIN_SEGS(sbi))
2036                        break;
2037                end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2038                                                                start + 1);
2039
2040                if (section_alignment) {
2041                        start = rounddown(start, sbi->segs_per_sec);
2042                        end = roundup(end, sbi->segs_per_sec);
2043                }
2044
2045                for (i = start; i < end; i++) {
2046                        if (test_and_clear_bit(i, prefree_map))
2047                                dirty_i->nr_dirty[PRE]--;
2048                }
2049
2050                if (!f2fs_realtime_discard_enable(sbi))
2051                        continue;
2052
2053                if (force && start >= cpc->trim_start &&
2054                                        (end - 1) <= cpc->trim_end)
2055                                continue;
2056
2057                if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2058                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2059                                (end - start) << sbi->log_blocks_per_seg);
2060                        continue;
2061                }
2062next:
2063                secno = GET_SEC_FROM_SEG(sbi, start);
2064                start_segno = GET_SEG_FROM_SEC(sbi, secno);
2065                if (!IS_CURSEC(sbi, secno) &&
2066                        !get_valid_blocks(sbi, start, true))
2067                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2068                                sbi->segs_per_sec << sbi->log_blocks_per_seg);
2069
2070                start = start_segno + sbi->segs_per_sec;
2071                if (start < end)
2072                        goto next;
2073                else
2074                        end = start - 1;
2075        }
2076        mutex_unlock(&dirty_i->seglist_lock);
2077
2078        if (!f2fs_block_unit_discard(sbi))
2079                goto wakeup;
2080
2081        /* send small discards */
2082        list_for_each_entry_safe(entry, this, head, list) {
2083                unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2084                bool is_valid = test_bit_le(0, entry->discard_map);
2085
2086find_next:
2087                if (is_valid) {
2088                        next_pos = find_next_zero_bit_le(entry->discard_map,
2089                                        sbi->blocks_per_seg, cur_pos);
2090                        len = next_pos - cur_pos;
2091
2092                        if (f2fs_sb_has_blkzoned(sbi) ||
2093                            (force && len < cpc->trim_minlen))
2094                                goto skip;
2095
2096                        f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2097                                                                        len);
2098                        total_len += len;
2099                } else {
2100                        next_pos = find_next_bit_le(entry->discard_map,
2101                                        sbi->blocks_per_seg, cur_pos);
2102                }
2103skip:
2104                cur_pos = next_pos;
2105                is_valid = !is_valid;
2106
2107                if (cur_pos < sbi->blocks_per_seg)
2108                        goto find_next;
2109
2110                release_discard_addr(entry);
2111                dcc->nr_discards -= total_len;
2112        }
2113
2114wakeup:
2115        wake_up_discard_thread(sbi, false);
2116}
2117
2118int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2119{
2120        dev_t dev = sbi->sb->s_bdev->bd_dev;
2121        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2122        int err = 0;
2123
2124        if (!f2fs_realtime_discard_enable(sbi))
2125                return 0;
2126
2127        dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2128                                "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2129        if (IS_ERR(dcc->f2fs_issue_discard))
2130                err = PTR_ERR(dcc->f2fs_issue_discard);
2131
2132        return err;
2133}
2134
2135static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2136{
2137        struct discard_cmd_control *dcc;
2138        int err = 0, i;
2139
2140        if (SM_I(sbi)->dcc_info) {
2141                dcc = SM_I(sbi)->dcc_info;
2142                goto init_thread;
2143        }
2144
2145        dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2146        if (!dcc)
2147                return -ENOMEM;
2148
2149        dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2150        if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2151                dcc->discard_granularity = sbi->blocks_per_seg;
2152        else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2153                dcc->discard_granularity = BLKS_PER_SEC(sbi);
2154
2155        INIT_LIST_HEAD(&dcc->entry_list);
2156        for (i = 0; i < MAX_PLIST_NUM; i++)
2157                INIT_LIST_HEAD(&dcc->pend_list[i]);
2158        INIT_LIST_HEAD(&dcc->wait_list);
2159        INIT_LIST_HEAD(&dcc->fstrim_list);
2160        mutex_init(&dcc->cmd_lock);
2161        atomic_set(&dcc->issued_discard, 0);
2162        atomic_set(&dcc->queued_discard, 0);
2163        atomic_set(&dcc->discard_cmd_cnt, 0);
2164        dcc->nr_discards = 0;
2165        dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2166        dcc->undiscard_blks = 0;
2167        dcc->next_pos = 0;
2168        dcc->root = RB_ROOT_CACHED;
2169        dcc->rbtree_check = false;
2170
2171        init_waitqueue_head(&dcc->discard_wait_queue);
2172        SM_I(sbi)->dcc_info = dcc;
2173init_thread:
2174        err = f2fs_start_discard_thread(sbi);
2175        if (err) {
2176                kfree(dcc);
2177                SM_I(sbi)->dcc_info = NULL;
2178        }
2179
2180        return err;
2181}
2182
2183static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2184{
2185        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2186
2187        if (!dcc)
2188                return;
2189
2190        f2fs_stop_discard_thread(sbi);
2191
2192        /*
2193         * Recovery can cache discard commands, so in error path of
2194         * fill_super(), it needs to give a chance to handle them.
2195         */
2196        if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2197                f2fs_issue_discard_timeout(sbi);
2198
2199        kfree(dcc);
2200        SM_I(sbi)->dcc_info = NULL;
2201}
2202
2203static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2204{
2205        struct sit_info *sit_i = SIT_I(sbi);
2206
2207        if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2208                sit_i->dirty_sentries++;
2209                return false;
2210        }
2211
2212        return true;
2213}
2214
2215static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2216                                        unsigned int segno, int modified)
2217{
2218        struct seg_entry *se = get_seg_entry(sbi, segno);
2219
2220        se->type = type;
2221        if (modified)
2222                __mark_sit_entry_dirty(sbi, segno);
2223}
2224
2225static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2226                                                                block_t blkaddr)
2227{
2228        unsigned int segno = GET_SEGNO(sbi, blkaddr);
2229
2230        if (segno == NULL_SEGNO)
2231                return 0;
2232        return get_seg_entry(sbi, segno)->mtime;
2233}
2234
2235static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2236                                                unsigned long long old_mtime)
2237{
2238        struct seg_entry *se;
2239        unsigned int segno = GET_SEGNO(sbi, blkaddr);
2240        unsigned long long ctime = get_mtime(sbi, false);
2241        unsigned long long mtime = old_mtime ? old_mtime : ctime;
2242
2243        if (segno == NULL_SEGNO)
2244                return;
2245
2246        se = get_seg_entry(sbi, segno);
2247
2248        if (!se->mtime)
2249                se->mtime = mtime;
2250        else
2251                se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2252                                                se->valid_blocks + 1);
2253
2254        if (ctime > SIT_I(sbi)->max_mtime)
2255                SIT_I(sbi)->max_mtime = ctime;
2256}
2257
2258static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2259{
2260        struct seg_entry *se;
2261        unsigned int segno, offset;
2262        long int new_vblocks;
2263        bool exist;
2264#ifdef CONFIG_F2FS_CHECK_FS
2265        bool mir_exist;
2266#endif
2267
2268        segno = GET_SEGNO(sbi, blkaddr);
2269
2270        se = get_seg_entry(sbi, segno);
2271        new_vblocks = se->valid_blocks + del;
2272        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2273
2274        f2fs_bug_on(sbi, (new_vblocks < 0 ||
2275                        (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2276
2277        se->valid_blocks = new_vblocks;
2278
2279        /* Update valid block bitmap */
2280        if (del > 0) {
2281                exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2282#ifdef CONFIG_F2FS_CHECK_FS
2283                mir_exist = f2fs_test_and_set_bit(offset,
2284                                                se->cur_valid_map_mir);
2285                if (unlikely(exist != mir_exist)) {
2286                        f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2287                                 blkaddr, exist);
2288                        f2fs_bug_on(sbi, 1);
2289                }
2290#endif
2291                if (unlikely(exist)) {
2292                        f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2293                                 blkaddr);
2294                        f2fs_bug_on(sbi, 1);
2295                        se->valid_blocks--;
2296                        del = 0;
2297                }
2298
2299                if (f2fs_block_unit_discard(sbi) &&
2300                                !f2fs_test_and_set_bit(offset, se->discard_map))
2301                        sbi->discard_blks--;
2302
2303                /*
2304                 * SSR should never reuse block which is checkpointed
2305                 * or newly invalidated.
2306                 */
2307                if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2308                        if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2309                                se->ckpt_valid_blocks++;
2310                }
2311        } else {
2312                exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2313#ifdef CONFIG_F2FS_CHECK_FS
2314                mir_exist = f2fs_test_and_clear_bit(offset,
2315                                                se->cur_valid_map_mir);
2316                if (unlikely(exist != mir_exist)) {
2317                        f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2318                                 blkaddr, exist);
2319                        f2fs_bug_on(sbi, 1);
2320                }
2321#endif
2322                if (unlikely(!exist)) {
2323                        f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2324                                 blkaddr);
2325                        f2fs_bug_on(sbi, 1);
2326                        se->valid_blocks++;
2327                        del = 0;
2328                } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2329                        /*
2330                         * If checkpoints are off, we must not reuse data that
2331                         * was used in the previous checkpoint. If it was used
2332                         * before, we must track that to know how much space we
2333                         * really have.
2334                         */
2335                        if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2336                                spin_lock(&sbi->stat_lock);
2337                                sbi->unusable_block_count++;
2338                                spin_unlock(&sbi->stat_lock);
2339                        }
2340                }
2341
2342                if (f2fs_block_unit_discard(sbi) &&
2343                        f2fs_test_and_clear_bit(offset, se->discard_map))
2344                        sbi->discard_blks++;
2345        }
2346        if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2347                se->ckpt_valid_blocks += del;
2348
2349        __mark_sit_entry_dirty(sbi, segno);
2350
2351        /* update total number of valid blocks to be written in ckpt area */
2352        SIT_I(sbi)->written_valid_blocks += del;
2353
2354        if (__is_large_section(sbi))
2355                get_sec_entry(sbi, segno)->valid_blocks += del;
2356}
2357
2358void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2359{
2360        unsigned int segno = GET_SEGNO(sbi, addr);
2361        struct sit_info *sit_i = SIT_I(sbi);
2362
2363        f2fs_bug_on(sbi, addr == NULL_ADDR);
2364        if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2365                return;
2366
2367        invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2368        f2fs_invalidate_compress_page(sbi, addr);
2369
2370        /* add it into sit main buffer */
2371        down_write(&sit_i->sentry_lock);
2372
2373        update_segment_mtime(sbi, addr, 0);
2374        update_sit_entry(sbi, addr, -1);
2375
2376        /* add it into dirty seglist */
2377        locate_dirty_segment(sbi, segno);
2378
2379        up_write(&sit_i->sentry_lock);
2380}
2381
2382bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2383{
2384        struct sit_info *sit_i = SIT_I(sbi);
2385        unsigned int segno, offset;
2386        struct seg_entry *se;
2387        bool is_cp = false;
2388
2389        if (!__is_valid_data_blkaddr(blkaddr))
2390                return true;
2391
2392        down_read(&sit_i->sentry_lock);
2393
2394        segno = GET_SEGNO(sbi, blkaddr);
2395        se = get_seg_entry(sbi, segno);
2396        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2397
2398        if (f2fs_test_bit(offset, se->ckpt_valid_map))
2399                is_cp = true;
2400
2401        up_read(&sit_i->sentry_lock);
2402
2403        return is_cp;
2404}
2405
2406/*
2407 * This function should be resided under the curseg_mutex lock
2408 */
2409static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2410                                        struct f2fs_summary *sum)
2411{
2412        struct curseg_info *curseg = CURSEG_I(sbi, type);
2413        void *addr = curseg->sum_blk;
2414
2415        addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2416        memcpy(addr, sum, sizeof(struct f2fs_summary));
2417}
2418
2419/*
2420 * Calculate the number of current summary pages for writing
2421 */
2422int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2423{
2424        int valid_sum_count = 0;
2425        int i, sum_in_page;
2426
2427        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2428                if (sbi->ckpt->alloc_type[i] == SSR)
2429                        valid_sum_count += sbi->blocks_per_seg;
2430                else {
2431                        if (for_ra)
2432                                valid_sum_count += le16_to_cpu(
2433                                        F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2434                        else
2435                                valid_sum_count += curseg_blkoff(sbi, i);
2436                }
2437        }
2438
2439        sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2440                        SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2441        if (valid_sum_count <= sum_in_page)
2442                return 1;
2443        else if ((valid_sum_count - sum_in_page) <=
2444                (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2445                return 2;
2446        return 3;
2447}
2448
2449/*
2450 * Caller should put this summary page
2451 */
2452struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2453{
2454        if (unlikely(f2fs_cp_error(sbi)))
2455                return ERR_PTR(-EIO);
2456        return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2457}
2458
2459void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2460                                        void *src, block_t blk_addr)
2461{
2462        struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2463
2464        memcpy(page_address(page), src, PAGE_SIZE);
2465        set_page_dirty(page);
2466        f2fs_put_page(page, 1);
2467}
2468
2469static void write_sum_page(struct f2fs_sb_info *sbi,
2470                        struct f2fs_summary_block *sum_blk, block_t blk_addr)
2471{
2472        f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2473}
2474
2475static void write_current_sum_page(struct f2fs_sb_info *sbi,
2476                                                int type, block_t blk_addr)
2477{
2478        struct curseg_info *curseg = CURSEG_I(sbi, type);
2479        struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2480        struct f2fs_summary_block *src = curseg->sum_blk;
2481        struct f2fs_summary_block *dst;
2482
2483        dst = (struct f2fs_summary_block *)page_address(page);
2484        memset(dst, 0, PAGE_SIZE);
2485
2486        mutex_lock(&curseg->curseg_mutex);
2487
2488        down_read(&curseg->journal_rwsem);
2489        memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2490        up_read(&curseg->journal_rwsem);
2491
2492        memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2493        memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2494
2495        mutex_unlock(&curseg->curseg_mutex);
2496
2497        set_page_dirty(page);
2498        f2fs_put_page(page, 1);
2499}
2500
2501static int is_next_segment_free(struct f2fs_sb_info *sbi,
2502                                struct curseg_info *curseg, int type)
2503{
2504        unsigned int segno = curseg->segno + 1;
2505        struct free_segmap_info *free_i = FREE_I(sbi);
2506
2507        if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2508                return !test_bit(segno, free_i->free_segmap);
2509        return 0;
2510}
2511
2512/*
2513 * Find a new segment from the free segments bitmap to right order
2514 * This function should be returned with success, otherwise BUG
2515 */
2516static void get_new_segment(struct f2fs_sb_info *sbi,
2517                        unsigned int *newseg, bool new_sec, int dir)
2518{
2519        struct free_segmap_info *free_i = FREE_I(sbi);
2520        unsigned int segno, secno, zoneno;
2521        unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2522        unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2523        unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2524        unsigned int left_start = hint;
2525        bool init = true;
2526        int go_left = 0;
2527        int i;
2528
2529        spin_lock(&free_i->segmap_lock);
2530
2531        if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2532                segno = find_next_zero_bit(free_i->free_segmap,
2533                        GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2534                if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2535                        goto got_it;
2536        }
2537find_other_zone:
2538        secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2539        if (secno >= MAIN_SECS(sbi)) {
2540                if (dir == ALLOC_RIGHT) {
2541                        secno = find_next_zero_bit(free_i->free_secmap,
2542                                                        MAIN_SECS(sbi), 0);
2543                        f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2544                } else {
2545                        go_left = 1;
2546                        left_start = hint - 1;
2547                }
2548        }
2549        if (go_left == 0)
2550                goto skip_left;
2551
2552        while (test_bit(left_start, free_i->free_secmap)) {
2553                if (left_start > 0) {
2554                        left_start--;
2555                        continue;
2556                }
2557                left_start = find_next_zero_bit(free_i->free_secmap,
2558                                                        MAIN_SECS(sbi), 0);
2559                f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2560                break;
2561        }
2562        secno = left_start;
2563skip_left:
2564        segno = GET_SEG_FROM_SEC(sbi, secno);
2565        zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2566
2567        /* give up on finding another zone */
2568        if (!init)
2569                goto got_it;
2570        if (sbi->secs_per_zone == 1)
2571                goto got_it;
2572        if (zoneno == old_zoneno)
2573                goto got_it;
2574        if (dir == ALLOC_LEFT) {
2575                if (!go_left && zoneno + 1 >= total_zones)
2576                        goto got_it;
2577                if (go_left && zoneno == 0)
2578                        goto got_it;
2579        }
2580        for (i = 0; i < NR_CURSEG_TYPE; i++)
2581                if (CURSEG_I(sbi, i)->zone == zoneno)
2582                        break;
2583
2584        if (i < NR_CURSEG_TYPE) {
2585                /* zone is in user, try another */
2586                if (go_left)
2587                        hint = zoneno * sbi->secs_per_zone - 1;
2588                else if (zoneno + 1 >= total_zones)
2589                        hint = 0;
2590                else
2591                        hint = (zoneno + 1) * sbi->secs_per_zone;
2592                init = false;
2593                goto find_other_zone;
2594        }
2595got_it:
2596        /* set it as dirty segment in free segmap */
2597        f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2598        __set_inuse(sbi, segno);
2599        *newseg = segno;
2600        spin_unlock(&free_i->segmap_lock);
2601}
2602
2603static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2604{
2605        struct curseg_info *curseg = CURSEG_I(sbi, type);
2606        struct summary_footer *sum_footer;
2607        unsigned short seg_type = curseg->seg_type;
2608
2609        curseg->inited = true;
2610        curseg->segno = curseg->next_segno;
2611        curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2612        curseg->next_blkoff = 0;
2613        curseg->next_segno = NULL_SEGNO;
2614
2615        sum_footer = &(curseg->sum_blk->footer);
2616        memset(sum_footer, 0, sizeof(struct summary_footer));
2617
2618        sanity_check_seg_type(sbi, seg_type);
2619
2620        if (IS_DATASEG(seg_type))
2621                SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2622        if (IS_NODESEG(seg_type))
2623                SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2624        __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2625}
2626
2627static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2628{
2629        struct curseg_info *curseg = CURSEG_I(sbi, type);
2630        unsigned short seg_type = curseg->seg_type;
2631
2632        sanity_check_seg_type(sbi, seg_type);
2633
2634        /* if segs_per_sec is large than 1, we need to keep original policy. */
2635        if (__is_large_section(sbi))
2636                return curseg->segno;
2637
2638        /* inmem log may not locate on any segment after mount */
2639        if (!curseg->inited)
2640                return 0;
2641
2642        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2643                return 0;
2644
2645        if (test_opt(sbi, NOHEAP) &&
2646                (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2647                return 0;
2648
2649        if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2650                return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2651
2652        /* find segments from 0 to reuse freed segments */
2653        if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2654                return 0;
2655
2656        return curseg->segno;
2657}
2658
2659/*
2660 * Allocate a current working segment.
2661 * This function always allocates a free segment in LFS manner.
2662 */
2663static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2664{
2665        struct curseg_info *curseg = CURSEG_I(sbi, type);
2666        unsigned short seg_type = curseg->seg_type;
2667        unsigned int segno = curseg->segno;
2668        int dir = ALLOC_LEFT;
2669
2670        if (curseg->inited)
2671                write_sum_page(sbi, curseg->sum_blk,
2672                                GET_SUM_BLOCK(sbi, segno));
2673        if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2674                dir = ALLOC_RIGHT;
2675
2676        if (test_opt(sbi, NOHEAP))
2677                dir = ALLOC_RIGHT;
2678
2679        segno = __get_next_segno(sbi, type);
2680        get_new_segment(sbi, &segno, new_sec, dir);
2681        curseg->next_segno = segno;
2682        reset_curseg(sbi, type, 1);
2683        curseg->alloc_type = LFS;
2684}
2685
2686static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2687                                        int segno, block_t start)
2688{
2689        struct seg_entry *se = get_seg_entry(sbi, segno);
2690        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2691        unsigned long *target_map = SIT_I(sbi)->tmp_map;
2692        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2693        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2694        int i;
2695
2696        for (i = 0; i < entries; i++)
2697                target_map[i] = ckpt_map[i] | cur_map[i];
2698
2699        return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2700}
2701
2702/*
2703 * If a segment is written by LFS manner, next block offset is just obtained
2704 * by increasing the current block offset. However, if a segment is written by
2705 * SSR manner, next block offset obtained by calling __next_free_blkoff
2706 */
2707static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2708                                struct curseg_info *seg)
2709{
2710        if (seg->alloc_type == SSR)
2711                seg->next_blkoff =
2712                        __next_free_blkoff(sbi, seg->segno,
2713                                                seg->next_blkoff + 1);
2714        else
2715                seg->next_blkoff++;
2716}
2717
2718bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2719{
2720        return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2721}
2722
2723/*
2724 * This function always allocates a used segment(from dirty seglist) by SSR
2725 * manner, so it should recover the existing segment information of valid blocks
2726 */
2727static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2728{
2729        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2730        struct curseg_info *curseg = CURSEG_I(sbi, type);
2731        unsigned int new_segno = curseg->next_segno;
2732        struct f2fs_summary_block *sum_node;
2733        struct page *sum_page;
2734
2735        if (flush)
2736                write_sum_page(sbi, curseg->sum_blk,
2737                                        GET_SUM_BLOCK(sbi, curseg->segno));
2738
2739        __set_test_and_inuse(sbi, new_segno);
2740
2741        mutex_lock(&dirty_i->seglist_lock);
2742        __remove_dirty_segment(sbi, new_segno, PRE);
2743        __remove_dirty_segment(sbi, new_segno, DIRTY);
2744        mutex_unlock(&dirty_i->seglist_lock);
2745
2746        reset_curseg(sbi, type, 1);
2747        curseg->alloc_type = SSR;
2748        curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2749
2750        sum_page = f2fs_get_sum_page(sbi, new_segno);
2751        if (IS_ERR(sum_page)) {
2752                /* GC won't be able to use stale summary pages by cp_error */
2753                memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2754                return;
2755        }
2756        sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2757        memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2758        f2fs_put_page(sum_page, 1);
2759}
2760
2761static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2762                                int alloc_mode, unsigned long long age);
2763
2764static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2765                                        int target_type, int alloc_mode,
2766                                        unsigned long long age)
2767{
2768        struct curseg_info *curseg = CURSEG_I(sbi, type);
2769
2770        curseg->seg_type = target_type;
2771
2772        if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2773                struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2774
2775                curseg->seg_type = se->type;
2776                change_curseg(sbi, type, true);
2777        } else {
2778                /* allocate cold segment by default */
2779                curseg->seg_type = CURSEG_COLD_DATA;
2780                new_curseg(sbi, type, true);
2781        }
2782        stat_inc_seg_type(sbi, curseg);
2783}
2784
2785static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2786{
2787        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2788
2789        if (!sbi->am.atgc_enabled)
2790                return;
2791
2792        down_read(&SM_I(sbi)->curseg_lock);
2793
2794        mutex_lock(&curseg->curseg_mutex);
2795        down_write(&SIT_I(sbi)->sentry_lock);
2796
2797        get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2798
2799        up_write(&SIT_I(sbi)->sentry_lock);
2800        mutex_unlock(&curseg->curseg_mutex);
2801
2802        up_read(&SM_I(sbi)->curseg_lock);
2803
2804}
2805void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2806{
2807        __f2fs_init_atgc_curseg(sbi);
2808}
2809
2810static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2811{
2812        struct curseg_info *curseg = CURSEG_I(sbi, type);
2813
2814        mutex_lock(&curseg->curseg_mutex);
2815        if (!curseg->inited)
2816                goto out;
2817
2818        if (get_valid_blocks(sbi, curseg->segno, false)) {
2819                write_sum_page(sbi, curseg->sum_blk,
2820                                GET_SUM_BLOCK(sbi, curseg->segno));
2821        } else {
2822                mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2823                __set_test_and_free(sbi, curseg->segno, true);
2824                mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2825        }
2826out:
2827        mutex_unlock(&curseg->curseg_mutex);
2828}
2829
2830void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2831{
2832        __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2833
2834        if (sbi->am.atgc_enabled)
2835                __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2836}
2837
2838static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2839{
2840        struct curseg_info *curseg = CURSEG_I(sbi, type);
2841
2842        mutex_lock(&curseg->curseg_mutex);
2843        if (!curseg->inited)
2844                goto out;
2845        if (get_valid_blocks(sbi, curseg->segno, false))
2846                goto out;
2847
2848        mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2849        __set_test_and_inuse(sbi, curseg->segno);
2850        mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2851out:
2852        mutex_unlock(&curseg->curseg_mutex);
2853}
2854
2855void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2856{
2857        __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2858
2859        if (sbi->am.atgc_enabled)
2860                __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2861}
2862
2863static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2864                                int alloc_mode, unsigned long long age)
2865{
2866        struct curseg_info *curseg = CURSEG_I(sbi, type);
2867        const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2868        unsigned segno = NULL_SEGNO;
2869        unsigned short seg_type = curseg->seg_type;
2870        int i, cnt;
2871        bool reversed = false;
2872
2873        sanity_check_seg_type(sbi, seg_type);
2874
2875        /* f2fs_need_SSR() already forces to do this */
2876        if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2877                curseg->next_segno = segno;
2878                return 1;
2879        }
2880
2881        /* For node segments, let's do SSR more intensively */
2882        if (IS_NODESEG(seg_type)) {
2883                if (seg_type >= CURSEG_WARM_NODE) {
2884                        reversed = true;
2885                        i = CURSEG_COLD_NODE;
2886                } else {
2887                        i = CURSEG_HOT_NODE;
2888                }
2889                cnt = NR_CURSEG_NODE_TYPE;
2890        } else {
2891                if (seg_type >= CURSEG_WARM_DATA) {
2892                        reversed = true;
2893                        i = CURSEG_COLD_DATA;
2894                } else {
2895                        i = CURSEG_HOT_DATA;
2896                }
2897                cnt = NR_CURSEG_DATA_TYPE;
2898        }
2899
2900        for (; cnt-- > 0; reversed ? i-- : i++) {
2901                if (i == seg_type)
2902                        continue;
2903                if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2904                        curseg->next_segno = segno;
2905                        return 1;
2906                }
2907        }
2908
2909        /* find valid_blocks=0 in dirty list */
2910        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2911                segno = get_free_segment(sbi);
2912                if (segno != NULL_SEGNO) {
2913                        curseg->next_segno = segno;
2914                        return 1;
2915                }
2916        }
2917        return 0;
2918}
2919
2920/*
2921 * flush out current segment and replace it with new segment
2922 * This function should be returned with success, otherwise BUG
2923 */
2924static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2925                                                int type, bool force)
2926{
2927        struct curseg_info *curseg = CURSEG_I(sbi, type);
2928
2929        if (force)
2930                new_curseg(sbi, type, true);
2931        else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2932                                        curseg->seg_type == CURSEG_WARM_NODE)
2933                new_curseg(sbi, type, false);
2934        else if (curseg->alloc_type == LFS &&
2935                        is_next_segment_free(sbi, curseg, type) &&
2936                        likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2937                new_curseg(sbi, type, false);
2938        else if (f2fs_need_SSR(sbi) &&
2939                        get_ssr_segment(sbi, type, SSR, 0))
2940                change_curseg(sbi, type, true);
2941        else
2942                new_curseg(sbi, type, false);
2943
2944        stat_inc_seg_type(sbi, curseg);
2945}
2946
2947void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2948                                        unsigned int start, unsigned int end)
2949{
2950        struct curseg_info *curseg = CURSEG_I(sbi, type);
2951        unsigned int segno;
2952
2953        down_read(&SM_I(sbi)->curseg_lock);
2954        mutex_lock(&curseg->curseg_mutex);
2955        down_write(&SIT_I(sbi)->sentry_lock);
2956
2957        segno = CURSEG_I(sbi, type)->segno;
2958        if (segno < start || segno > end)
2959                goto unlock;
2960
2961        if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2962                change_curseg(sbi, type, true);
2963        else
2964                new_curseg(sbi, type, true);
2965
2966        stat_inc_seg_type(sbi, curseg);
2967
2968        locate_dirty_segment(sbi, segno);
2969unlock:
2970        up_write(&SIT_I(sbi)->sentry_lock);
2971
2972        if (segno != curseg->segno)
2973                f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2974                            type, segno, curseg->segno);
2975
2976        mutex_unlock(&curseg->curseg_mutex);
2977        up_read(&SM_I(sbi)->curseg_lock);
2978}
2979
2980static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2981                                                bool new_sec, bool force)
2982{
2983        struct curseg_info *curseg = CURSEG_I(sbi, type);
2984        unsigned int old_segno;
2985
2986        if (!curseg->inited)
2987                goto alloc;
2988
2989        if (force || curseg->next_blkoff ||
2990                get_valid_blocks(sbi, curseg->segno, new_sec))
2991                goto alloc;
2992
2993        if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2994                return;
2995alloc:
2996        old_segno = curseg->segno;
2997        SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2998        locate_dirty_segment(sbi, old_segno);
2999}
3000
3001static void __allocate_new_section(struct f2fs_sb_info *sbi,
3002                                                int type, bool force)
3003{
3004        __allocate_new_segment(sbi, type, true, force);
3005}
3006
3007void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3008{
3009        down_read(&SM_I(sbi)->curseg_lock);
3010        down_write(&SIT_I(sbi)->sentry_lock);
3011        __allocate_new_section(sbi, type, force);
3012        up_write(&SIT_I(sbi)->sentry_lock);
3013        up_read(&SM_I(sbi)->curseg_lock);
3014}
3015
3016void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3017{
3018        int i;
3019
3020        down_read(&SM_I(sbi)->curseg_lock);
3021        down_write(&SIT_I(sbi)->sentry_lock);
3022        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3023                __allocate_new_segment(sbi, i, false, false);
3024        up_write(&SIT_I(sbi)->sentry_lock);
3025        up_read(&SM_I(sbi)->curseg_lock);
3026}
3027
3028static const struct segment_allocation default_salloc_ops = {
3029        .allocate_segment = allocate_segment_by_default,
3030};
3031
3032bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3033                                                struct cp_control *cpc)
3034{
3035        __u64 trim_start = cpc->trim_start;
3036        bool has_candidate = false;
3037
3038        down_write(&SIT_I(sbi)->sentry_lock);
3039        for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3040                if (add_discard_addrs(sbi, cpc, true)) {
3041                        has_candidate = true;
3042                        break;
3043                }
3044        }
3045        up_write(&SIT_I(sbi)->sentry_lock);
3046
3047        cpc->trim_start = trim_start;
3048        return has_candidate;
3049}
3050
3051static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3052                                        struct discard_policy *dpolicy,
3053                                        unsigned int start, unsigned int end)
3054{
3055        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3056        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3057        struct rb_node **insert_p = NULL, *insert_parent = NULL;
3058        struct discard_cmd *dc;
3059        struct blk_plug plug;
3060        int issued;
3061        unsigned int trimmed = 0;
3062
3063next:
3064        issued = 0;
3065
3066        mutex_lock(&dcc->cmd_lock);
3067        if (unlikely(dcc->rbtree_check))
3068                f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3069                                                        &dcc->root, false));
3070
3071        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3072                                        NULL, start,
3073                                        (struct rb_entry **)&prev_dc,
3074                                        (struct rb_entry **)&next_dc,
3075                                        &insert_p, &insert_parent, true, NULL);
3076        if (!dc)
3077                dc = next_dc;
3078
3079        blk_start_plug(&plug);
3080
3081        while (dc && dc->lstart <= end) {
3082                struct rb_node *node;
3083                int err = 0;
3084
3085                if (dc->len < dpolicy->granularity)
3086                        goto skip;
3087
3088                if (dc->state != D_PREP) {
3089                        list_move_tail(&dc->list, &dcc->fstrim_list);
3090                        goto skip;
3091                }
3092
3093                err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3094
3095                if (issued >= dpolicy->max_requests) {
3096                        start = dc->lstart + dc->len;
3097
3098                        if (err)
3099                                __remove_discard_cmd(sbi, dc);
3100
3101                        blk_finish_plug(&plug);
3102                        mutex_unlock(&dcc->cmd_lock);
3103                        trimmed += __wait_all_discard_cmd(sbi, NULL);
3104                        congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3105                        goto next;
3106                }
3107skip:
3108                node = rb_next(&dc->rb_node);
3109                if (err)
3110                        __remove_discard_cmd(sbi, dc);
3111                dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3112
3113                if (fatal_signal_pending(current))
3114                        break;
3115        }
3116
3117        blk_finish_plug(&plug);
3118        mutex_unlock(&dcc->cmd_lock);
3119
3120        return trimmed;
3121}
3122
3123int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3124{
3125        __u64 start = F2FS_BYTES_TO_BLK(range->start);
3126        __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3127        unsigned int start_segno, end_segno;
3128        block_t start_block, end_block;
3129        struct cp_control cpc;
3130        struct discard_policy dpolicy;
3131        unsigned long long trimmed = 0;
3132        int err = 0;
3133        bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3134
3135        if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3136                return -EINVAL;
3137
3138        if (end < MAIN_BLKADDR(sbi))
3139                goto out;
3140
3141        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3142                f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3143                return -EFSCORRUPTED;
3144        }
3145
3146        /* start/end segment number in main_area */
3147        start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3148        end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3149                                                GET_SEGNO(sbi, end);
3150        if (need_align) {
3151                start_segno = rounddown(start_segno, sbi->segs_per_sec);
3152                end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3153        }
3154
3155        cpc.reason = CP_DISCARD;
3156        cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3157        cpc.trim_start = start_segno;
3158        cpc.trim_end = end_segno;
3159
3160        if (sbi->discard_blks == 0)
3161                goto out;
3162
3163        down_write(&sbi->gc_lock);
3164        err = f2fs_write_checkpoint(sbi, &cpc);
3165        up_write(&sbi->gc_lock);
3166        if (err)
3167                goto out;
3168
3169        /*
3170         * We filed discard candidates, but actually we don't need to wait for
3171         * all of them, since they'll be issued in idle time along with runtime
3172         * discard option. User configuration looks like using runtime discard
3173         * or periodic fstrim instead of it.
3174         */
3175        if (f2fs_realtime_discard_enable(sbi))
3176                goto out;
3177
3178        start_block = START_BLOCK(sbi, start_segno);
3179        end_block = START_BLOCK(sbi, end_segno + 1);
3180
3181        __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3182        trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3183                                        start_block, end_block);
3184
3185        trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3186                                        start_block, end_block);
3187out:
3188        if (!err)
3189                range->len = F2FS_BLK_TO_BYTES(trimmed);
3190        return err;
3191}
3192
3193static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3194                                        struct curseg_info *curseg)
3195{
3196        return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3197                                                        curseg->segno);
3198}
3199
3200int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3201{
3202        switch (hint) {
3203        case WRITE_LIFE_SHORT:
3204                return CURSEG_HOT_DATA;
3205        case WRITE_LIFE_EXTREME:
3206                return CURSEG_COLD_DATA;
3207        default:
3208                return CURSEG_WARM_DATA;
3209        }
3210}
3211
3212/* This returns write hints for each segment type. This hints will be
3213 * passed down to block layer. There are mapping tables which depend on
3214 * the mount option 'whint_mode'.
3215 *
3216 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3217 *
3218 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3219 *
3220 * User                  F2FS                     Block
3221 * ----                  ----                     -----
3222 *                       META                     WRITE_LIFE_NOT_SET
3223 *                       HOT_NODE                 "
3224 *                       WARM_NODE                "
3225 *                       COLD_NODE                "
3226 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3227 * extension list        "                        "
3228 *
3229 * -- buffered io
3230 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3231 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3232 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3233 * WRITE_LIFE_NONE       "                        "
3234 * WRITE_LIFE_MEDIUM     "                        "
3235 * WRITE_LIFE_LONG       "                        "
3236 *
3237 * -- direct io
3238 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3239 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3240 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3241 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3242 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3243 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3244 *
3245 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3246 *
3247 * User                  F2FS                     Block
3248 * ----                  ----                     -----
3249 *                       META                     WRITE_LIFE_MEDIUM;
3250 *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3251 *                       WARM_NODE                "
3252 *                       COLD_NODE                WRITE_LIFE_NONE
3253 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3254 * extension list        "                        "
3255 *
3256 * -- buffered io
3257 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3258 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3259 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3260 * WRITE_LIFE_NONE       "                        "
3261 * WRITE_LIFE_MEDIUM     "                        "
3262 * WRITE_LIFE_LONG       "                        "
3263 *
3264 * -- direct io
3265 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3266 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3267 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3268 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3269 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3270 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3271 */
3272
3273enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3274                                enum page_type type, enum temp_type temp)
3275{
3276        if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3277                if (type == DATA) {
3278                        if (temp == WARM)
3279                                return WRITE_LIFE_NOT_SET;
3280                        else if (temp == HOT)
3281                                return WRITE_LIFE_SHORT;
3282                        else if (temp == COLD)
3283                                return WRITE_LIFE_EXTREME;
3284                } else {
3285                        return WRITE_LIFE_NOT_SET;
3286                }
3287        } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3288                if (type == DATA) {
3289                        if (temp == WARM)
3290                                return WRITE_LIFE_LONG;
3291                        else if (temp == HOT)
3292                                return WRITE_LIFE_SHORT;
3293                        else if (temp == COLD)
3294                                return WRITE_LIFE_EXTREME;
3295                } else if (type == NODE) {
3296                        if (temp == WARM || temp == HOT)
3297                                return WRITE_LIFE_NOT_SET;
3298                        else if (temp == COLD)
3299                                return WRITE_LIFE_NONE;
3300                } else if (type == META) {
3301                        return WRITE_LIFE_MEDIUM;
3302                }
3303        }
3304        return WRITE_LIFE_NOT_SET;
3305}
3306
3307static int __get_segment_type_2(struct f2fs_io_info *fio)
3308{
3309        if (fio->type == DATA)
3310                return CURSEG_HOT_DATA;
3311        else
3312                return CURSEG_HOT_NODE;
3313}
3314
3315static int __get_segment_type_4(struct f2fs_io_info *fio)
3316{
3317        if (fio->type == DATA) {
3318                struct inode *inode = fio->page->mapping->host;
3319
3320                if (S_ISDIR(inode->i_mode))
3321                        return CURSEG_HOT_DATA;
3322                else
3323                        return CURSEG_COLD_DATA;
3324        } else {
3325                if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3326                        return CURSEG_WARM_NODE;
3327                else
3328                        return CURSEG_COLD_NODE;
3329        }
3330}
3331
3332static int __get_segment_type_6(struct f2fs_io_info *fio)
3333{
3334        if (fio->type == DATA) {
3335                struct inode *inode = fio->page->mapping->host;
3336
3337                if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3338                        return CURSEG_COLD_DATA_PINNED;
3339
3340                if (page_private_gcing(fio->page)) {
3341                        if (fio->sbi->am.atgc_enabled &&
3342                                (fio->io_type == FS_DATA_IO) &&
3343                                (fio->sbi->gc_mode != GC_URGENT_HIGH))
3344                                return CURSEG_ALL_DATA_ATGC;
3345                        else
3346                                return CURSEG_COLD_DATA;
3347                }
3348                if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3349                        return CURSEG_COLD_DATA;
3350                if (file_is_hot(inode) ||
3351                                is_inode_flag_set(inode, FI_HOT_DATA) ||
3352                                f2fs_is_atomic_file(inode) ||
3353                                f2fs_is_volatile_file(inode))
3354                        return CURSEG_HOT_DATA;
3355                return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3356        } else {
3357                if (IS_DNODE(fio->page))
3358                        return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3359                                                CURSEG_HOT_NODE;
3360                return CURSEG_COLD_NODE;
3361        }
3362}
3363
3364static int __get_segment_type(struct f2fs_io_info *fio)
3365{
3366        int type = 0;
3367
3368        switch (F2FS_OPTION(fio->sbi).active_logs) {
3369        case 2:
3370                type = __get_segment_type_2(fio);
3371                break;
3372        case 4:
3373                type = __get_segment_type_4(fio);
3374                break;
3375        case 6:
3376                type = __get_segment_type_6(fio);
3377                break;
3378        default:
3379                f2fs_bug_on(fio->sbi, true);
3380        }
3381
3382        if (IS_HOT(type))
3383                fio->temp = HOT;
3384        else if (IS_WARM(type))
3385                fio->temp = WARM;
3386        else
3387                fio->temp = COLD;
3388        return type;
3389}
3390
3391void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3392                block_t old_blkaddr, block_t *new_blkaddr,
3393                struct f2fs_summary *sum, int type,
3394                struct f2fs_io_info *fio)
3395{
3396        struct sit_info *sit_i = SIT_I(sbi);
3397        struct curseg_info *curseg = CURSEG_I(sbi, type);
3398        unsigned long long old_mtime;
3399        bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3400        struct seg_entry *se = NULL;
3401
3402        down_read(&SM_I(sbi)->curseg_lock);
3403
3404        mutex_lock(&curseg->curseg_mutex);
3405        down_write(&sit_i->sentry_lock);
3406
3407        if (from_gc) {
3408                f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3409                se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3410                sanity_check_seg_type(sbi, se->type);
3411                f2fs_bug_on(sbi, IS_NODESEG(se->type));
3412        }
3413        *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3414
3415        f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3416
3417        f2fs_wait_discard_bio(sbi, *new_blkaddr);
3418
3419        /*
3420         * __add_sum_entry should be resided under the curseg_mutex
3421         * because, this function updates a summary entry in the
3422         * current summary block.
3423         */
3424        __add_sum_entry(sbi, type, sum);
3425
3426        __refresh_next_blkoff(sbi, curseg);
3427
3428        stat_inc_block_count(sbi, curseg);
3429
3430        if (from_gc) {
3431                old_mtime = get_segment_mtime(sbi, old_blkaddr);
3432        } else {
3433                update_segment_mtime(sbi, old_blkaddr, 0);
3434                old_mtime = 0;
3435        }
3436        update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3437
3438        /*
3439         * SIT information should be updated before segment allocation,
3440         * since SSR needs latest valid block information.
3441         */
3442        update_sit_entry(sbi, *new_blkaddr, 1);
3443        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3444                update_sit_entry(sbi, old_blkaddr, -1);
3445
3446        if (!__has_curseg_space(sbi, curseg)) {
3447                if (from_gc)
3448                        get_atssr_segment(sbi, type, se->type,
3449                                                AT_SSR, se->mtime);
3450                else
3451                        sit_i->s_ops->allocate_segment(sbi, type, false);
3452        }
3453        /*
3454         * segment dirty status should be updated after segment allocation,
3455         * so we just need to update status only one time after previous
3456         * segment being closed.
3457         */
3458        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3459        locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3460
3461        up_write(&sit_i->sentry_lock);
3462
3463        if (page && IS_NODESEG(type)) {
3464                fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3465
3466                f2fs_inode_chksum_set(sbi, page);
3467        }
3468
3469        if (fio) {
3470                struct f2fs_bio_info *io;
3471
3472                if (F2FS_IO_ALIGNED(sbi))
3473                        fio->retry = false;
3474
3475                INIT_LIST_HEAD(&fio->list);
3476                fio->in_list = true;
3477                io = sbi->write_io[fio->type] + fio->temp;
3478                spin_lock(&io->io_lock);
3479                list_add_tail(&fio->list, &io->io_list);
3480                spin_unlock(&io->io_lock);
3481        }
3482
3483        mutex_unlock(&curseg->curseg_mutex);
3484
3485        up_read(&SM_I(sbi)->curseg_lock);
3486}
3487
3488static void update_device_state(struct f2fs_io_info *fio)
3489{
3490        struct f2fs_sb_info *sbi = fio->sbi;
3491        unsigned int devidx;
3492
3493        if (!f2fs_is_multi_device(sbi))
3494                return;
3495
3496        devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3497
3498        /* update device state for fsync */
3499        f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3500
3501        /* update device state for checkpoint */
3502        if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3503                spin_lock(&sbi->dev_lock);
3504                f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3505                spin_unlock(&sbi->dev_lock);
3506        }
3507}
3508
3509static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3510{
3511        int type = __get_segment_type(fio);
3512        bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3513
3514        if (keep_order)
3515                down_read(&fio->sbi->io_order_lock);
3516reallocate:
3517        f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3518                        &fio->new_blkaddr, sum, type, fio);
3519        if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3520                invalidate_mapping_pages(META_MAPPING(fio->sbi),
3521                                        fio->old_blkaddr, fio->old_blkaddr);
3522                f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3523        }
3524
3525        /* writeout dirty page into bdev */
3526        f2fs_submit_page_write(fio);
3527        if (fio->retry) {
3528                fio->old_blkaddr = fio->new_blkaddr;
3529                goto reallocate;
3530        }
3531
3532        update_device_state(fio);
3533
3534        if (keep_order)
3535                up_read(&fio->sbi->io_order_lock);
3536}
3537
3538void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3539                                        enum iostat_type io_type)
3540{
3541        struct f2fs_io_info fio = {
3542                .sbi = sbi,
3543                .type = META,
3544                .temp = HOT,
3545                .op = REQ_OP_WRITE,
3546                .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3547                .old_blkaddr = page->index,
3548                .new_blkaddr = page->index,
3549                .page = page,
3550                .encrypted_page = NULL,
3551                .in_list = false,
3552        };
3553
3554        if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3555                fio.op_flags &= ~REQ_META;
3556
3557        set_page_writeback(page);
3558        ClearPageError(page);
3559        f2fs_submit_page_write(&fio);
3560
3561        stat_inc_meta_count(sbi, page->index);
3562        f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3563}
3564
3565void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3566{
3567        struct f2fs_summary sum;
3568
3569        set_summary(&sum, nid, 0, 0);
3570        do_write_page(&sum, fio);
3571
3572        f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3573}
3574
3575void f2fs_outplace_write_data(struct dnode_of_data *dn,
3576                                        struct f2fs_io_info *fio)
3577{
3578        struct f2fs_sb_info *sbi = fio->sbi;
3579        struct f2fs_summary sum;
3580
3581        f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3582        set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3583        do_write_page(&sum, fio);
3584        f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3585
3586        f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3587}
3588
3589int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3590{
3591        int err;
3592        struct f2fs_sb_info *sbi = fio->sbi;
3593        unsigned int segno;
3594
3595        fio->new_blkaddr = fio->old_blkaddr;
3596        /* i/o temperature is needed for passing down write hints */
3597        __get_segment_type(fio);
3598
3599        segno = GET_SEGNO(sbi, fio->new_blkaddr);
3600
3601        if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3602                set_sbi_flag(sbi, SBI_NEED_FSCK);
3603                f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3604                          __func__, segno);
3605                err = -EFSCORRUPTED;
3606                goto drop_bio;
3607        }
3608
3609        if (f2fs_cp_error(sbi)) {
3610                err = -EIO;
3611                goto drop_bio;
3612        }
3613
3614        stat_inc_inplace_blocks(fio->sbi);
3615
3616        if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3617                err = f2fs_merge_page_bio(fio);
3618        else
3619                err = f2fs_submit_page_bio(fio);
3620        if (!err) {
3621                update_device_state(fio);
3622                f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3623        }
3624
3625        return err;
3626drop_bio:
3627        if (fio->bio && *(fio->bio)) {
3628                struct bio *bio = *(fio->bio);
3629
3630                bio->bi_status = BLK_STS_IOERR;
3631                bio_endio(bio);
3632                *(fio->bio) = NULL;
3633        }
3634        return err;
3635}
3636
3637static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3638                                                unsigned int segno)
3639{
3640        int i;
3641
3642        for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3643                if (CURSEG_I(sbi, i)->segno == segno)
3644                        break;
3645        }
3646        return i;
3647}
3648
3649void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3650                                block_t old_blkaddr, block_t new_blkaddr,
3651                                bool recover_curseg, bool recover_newaddr,
3652                                bool from_gc)
3653{
3654        struct sit_info *sit_i = SIT_I(sbi);
3655        struct curseg_info *curseg;
3656        unsigned int segno, old_cursegno;
3657        struct seg_entry *se;
3658        int type;
3659        unsigned short old_blkoff;
3660        unsigned char old_alloc_type;
3661
3662        segno = GET_SEGNO(sbi, new_blkaddr);
3663        se = get_seg_entry(sbi, segno);
3664        type = se->type;
3665
3666        down_write(&SM_I(sbi)->curseg_lock);
3667
3668        if (!recover_curseg) {
3669                /* for recovery flow */
3670                if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3671                        if (old_blkaddr == NULL_ADDR)
3672                                type = CURSEG_COLD_DATA;
3673                        else
3674                                type = CURSEG_WARM_DATA;
3675                }
3676        } else {
3677                if (IS_CURSEG(sbi, segno)) {
3678                        /* se->type is volatile as SSR allocation */
3679                        type = __f2fs_get_curseg(sbi, segno);
3680                        f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3681                } else {
3682                        type = CURSEG_WARM_DATA;
3683                }
3684        }
3685
3686        f2fs_bug_on(sbi, !IS_DATASEG(type));
3687        curseg = CURSEG_I(sbi, type);
3688
3689        mutex_lock(&curseg->curseg_mutex);
3690        down_write(&sit_i->sentry_lock);
3691
3692        old_cursegno = curseg->segno;
3693        old_blkoff = curseg->next_blkoff;
3694        old_alloc_type = curseg->alloc_type;
3695
3696        /* change the current segment */
3697        if (segno != curseg->segno) {
3698                curseg->next_segno = segno;
3699                change_curseg(sbi, type, true);
3700        }
3701
3702        curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3703        __add_sum_entry(sbi, type, sum);
3704
3705        if (!recover_curseg || recover_newaddr) {
3706                if (!from_gc)
3707                        update_segment_mtime(sbi, new_blkaddr, 0);
3708                update_sit_entry(sbi, new_blkaddr, 1);
3709        }
3710        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3711                invalidate_mapping_pages(META_MAPPING(sbi),
3712                                        old_blkaddr, old_blkaddr);
3713                f2fs_invalidate_compress_page(sbi, old_blkaddr);
3714                if (!from_gc)
3715                        update_segment_mtime(sbi, old_blkaddr, 0);
3716                update_sit_entry(sbi, old_blkaddr, -1);
3717        }
3718
3719        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3720        locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3721
3722        locate_dirty_segment(sbi, old_cursegno);
3723
3724        if (recover_curseg) {
3725                if (old_cursegno != curseg->segno) {
3726                        curseg->next_segno = old_cursegno;
3727                        change_curseg(sbi, type, true);
3728                }
3729                curseg->next_blkoff = old_blkoff;
3730                curseg->alloc_type = old_alloc_type;
3731        }
3732
3733        up_write(&sit_i->sentry_lock);
3734        mutex_unlock(&curseg->curseg_mutex);
3735        up_write(&SM_I(sbi)->curseg_lock);
3736}
3737
3738void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3739                                block_t old_addr, block_t new_addr,
3740                                unsigned char version, bool recover_curseg,
3741                                bool recover_newaddr)
3742{
3743        struct f2fs_summary sum;
3744
3745        set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3746
3747        f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3748                                        recover_curseg, recover_newaddr, false);
3749
3750        f2fs_update_data_blkaddr(dn, new_addr);
3751}
3752
3753void f2fs_wait_on_page_writeback(struct page *page,
3754                                enum page_type type, bool ordered, bool locked)
3755{
3756        if (PageWriteback(page)) {
3757                struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3758
3759                /* submit cached LFS IO */
3760                f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3761                /* sbumit cached IPU IO */
3762                f2fs_submit_merged_ipu_write(sbi, NULL, page);
3763                if (ordered) {
3764                        wait_on_page_writeback(page);
3765                        f2fs_bug_on(sbi, locked && PageWriteback(page));
3766                } else {
3767                        wait_for_stable_page(page);
3768                }
3769        }
3770}
3771
3772void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3773{
3774        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3775        struct page *cpage;
3776
3777        if (!f2fs_post_read_required(inode))
3778                return;
3779
3780        if (!__is_valid_data_blkaddr(blkaddr))
3781                return;
3782
3783        cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3784        if (cpage) {
3785                f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3786                f2fs_put_page(cpage, 1);
3787        }
3788}
3789
3790void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3791                                                                block_t len)
3792{
3793        block_t i;
3794
3795        for (i = 0; i < len; i++)
3796                f2fs_wait_on_block_writeback(inode, blkaddr + i);
3797}
3798
3799static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3800{
3801        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3802        struct curseg_info *seg_i;
3803        unsigned char *kaddr;
3804        struct page *page;
3805        block_t start;
3806        int i, j, offset;
3807
3808        start = start_sum_block(sbi);
3809
3810        page = f2fs_get_meta_page(sbi, start++);
3811        if (IS_ERR(page))
3812                return PTR_ERR(page);
3813        kaddr = (unsigned char *)page_address(page);
3814
3815        /* Step 1: restore nat cache */
3816        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3817        memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3818
3819        /* Step 2: restore sit cache */
3820        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3821        memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3822        offset = 2 * SUM_JOURNAL_SIZE;
3823
3824        /* Step 3: restore summary entries */
3825        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3826                unsigned short blk_off;
3827                unsigned int segno;
3828
3829                seg_i = CURSEG_I(sbi, i);
3830                segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3831                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3832                seg_i->next_segno = segno;
3833                reset_curseg(sbi, i, 0);
3834                seg_i->alloc_type = ckpt->alloc_type[i];
3835                seg_i->next_blkoff = blk_off;
3836
3837                if (seg_i->alloc_type == SSR)
3838                        blk_off = sbi->blocks_per_seg;
3839
3840                for (j = 0; j < blk_off; j++) {
3841                        struct f2fs_summary *s;
3842
3843                        s = (struct f2fs_summary *)(kaddr + offset);
3844                        seg_i->sum_blk->entries[j] = *s;
3845                        offset += SUMMARY_SIZE;
3846                        if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3847                                                SUM_FOOTER_SIZE)
3848                                continue;
3849
3850                        f2fs_put_page(page, 1);
3851                        page = NULL;
3852
3853                        page = f2fs_get_meta_page(sbi, start++);
3854                        if (IS_ERR(page))
3855                                return PTR_ERR(page);
3856                        kaddr = (unsigned char *)page_address(page);
3857                        offset = 0;
3858                }
3859        }
3860        f2fs_put_page(page, 1);
3861        return 0;
3862}
3863
3864static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3865{
3866        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3867        struct f2fs_summary_block *sum;
3868        struct curseg_info *curseg;
3869        struct page *new;
3870        unsigned short blk_off;
3871        unsigned int segno = 0;
3872        block_t blk_addr = 0;
3873        int err = 0;
3874
3875        /* get segment number and block addr */
3876        if (IS_DATASEG(type)) {
3877                segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3878                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3879                                                        CURSEG_HOT_DATA]);
3880                if (__exist_node_summaries(sbi))
3881                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3882                else
3883                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3884        } else {
3885                segno = le32_to_cpu(ckpt->cur_node_segno[type -
3886                                                        CURSEG_HOT_NODE]);
3887                blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3888                                                        CURSEG_HOT_NODE]);
3889                if (__exist_node_summaries(sbi))
3890                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3891                                                        type - CURSEG_HOT_NODE);
3892                else
3893                        blk_addr = GET_SUM_BLOCK(sbi, segno);
3894        }
3895
3896        new = f2fs_get_meta_page(sbi, blk_addr);
3897        if (IS_ERR(new))
3898                return PTR_ERR(new);
3899        sum = (struct f2fs_summary_block *)page_address(new);
3900
3901        if (IS_NODESEG(type)) {
3902                if (__exist_node_summaries(sbi)) {
3903                        struct f2fs_summary *ns = &sum->entries[0];
3904                        int i;
3905
3906                        for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3907                                ns->version = 0;
3908                                ns->ofs_in_node = 0;
3909                        }
3910                } else {
3911                        err = f2fs_restore_node_summary(sbi, segno, sum);
3912                        if (err)
3913                                goto out;
3914                }
3915        }
3916
3917        /* set uncompleted segment to curseg */
3918        curseg = CURSEG_I(sbi, type);
3919        mutex_lock(&curseg->curseg_mutex);
3920
3921        /* update journal info */
3922        down_write(&curseg->journal_rwsem);
3923        memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3924        up_write(&curseg->journal_rwsem);
3925
3926        memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3927        memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3928        curseg->next_segno = segno;
3929        reset_curseg(sbi, type, 0);
3930        curseg->alloc_type = ckpt->alloc_type[type];
3931        curseg->next_blkoff = blk_off;
3932        mutex_unlock(&curseg->curseg_mutex);
3933out:
3934        f2fs_put_page(new, 1);
3935        return err;
3936}
3937
3938static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3939{
3940        struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3941        struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3942        int type = CURSEG_HOT_DATA;
3943        int err;
3944
3945        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3946                int npages = f2fs_npages_for_summary_flush(sbi, true);
3947
3948                if (npages >= 2)
3949                        f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3950                                                        META_CP, true);
3951
3952                /* restore for compacted data summary */
3953                err = read_compacted_summaries(sbi);
3954                if (err)
3955                        return err;
3956                type = CURSEG_HOT_NODE;
3957        }
3958
3959        if (__exist_node_summaries(sbi))
3960                f2fs_ra_meta_pages(sbi,
3961                                sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3962                                NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3963
3964        for (; type <= CURSEG_COLD_NODE; type++) {
3965                err = read_normal_summaries(sbi, type);
3966                if (err)
3967                        return err;
3968        }
3969
3970        /* sanity check for summary blocks */
3971        if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3972                        sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3973                f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3974                         nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3975                return -EINVAL;
3976        }
3977
3978        return 0;
3979}
3980
3981static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3982{
3983        struct page *page;
3984        unsigned char *kaddr;
3985        struct f2fs_summary *summary;
3986        struct curseg_info *seg_i;
3987        int written_size = 0;
3988        int i, j;
3989
3990        page = f2fs_grab_meta_page(sbi, blkaddr++);
3991        kaddr = (unsigned char *)page_address(page);
3992        memset(kaddr, 0, PAGE_SIZE);
3993
3994        /* Step 1: write nat cache */
3995        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3996        memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3997        written_size += SUM_JOURNAL_SIZE;
3998
3999        /* Step 2: write sit cache */
4000        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4001        memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4002        written_size += SUM_JOURNAL_SIZE;
4003
4004        /* Step 3: write summary entries */
4005        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4006                unsigned short blkoff;
4007
4008                seg_i = CURSEG_I(sbi, i);
4009                if (sbi->ckpt->alloc_type[i] == SSR)
4010                        blkoff = sbi->blocks_per_seg;
4011                else
4012                        blkoff = curseg_blkoff(sbi, i);
4013
4014                for (j = 0; j < blkoff; j++) {
4015                        if (!page) {
4016                                page = f2fs_grab_meta_page(sbi, blkaddr++);
4017                                kaddr = (unsigned char *)page_address(page);
4018                                memset(kaddr, 0, PAGE_SIZE);
4019                                written_size = 0;
4020                        }
4021                        summary = (struct f2fs_summary *)(kaddr + written_size);
4022                        *summary = seg_i->sum_blk->entries[j];
4023                        written_size += SUMMARY_SIZE;
4024
4025                        if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4026                                                        SUM_FOOTER_SIZE)
4027                                continue;
4028
4029                        set_page_dirty(page);
4030                        f2fs_put_page(page, 1);
4031                        page = NULL;
4032                }
4033        }
4034        if (page) {
4035                set_page_dirty(page);
4036                f2fs_put_page(page, 1);
4037        }
4038}
4039
4040static void write_normal_summaries(struct f2fs_sb_info *sbi,
4041                                        block_t blkaddr, int type)
4042{
4043        int i, end;
4044
4045        if (IS_DATASEG(type))
4046                end = type + NR_CURSEG_DATA_TYPE;
4047        else
4048                end = type + NR_CURSEG_NODE_TYPE;
4049
4050        for (i = type; i < end; i++)
4051                write_current_sum_page(sbi, i, blkaddr + (i - type));
4052}
4053
4054void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4055{
4056        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4057                write_compacted_summaries(sbi, start_blk);
4058        else
4059                write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4060}
4061
4062void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4063{
4064        write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4065}
4066
4067int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4068                                        unsigned int val, int alloc)
4069{
4070        int i;
4071
4072        if (type == NAT_JOURNAL) {
4073                for (i = 0; i < nats_in_cursum(journal); i++) {
4074                        if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4075                                return i;
4076                }
4077                if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4078                        return update_nats_in_cursum(journal, 1);
4079        } else if (type == SIT_JOURNAL) {
4080                for (i = 0; i < sits_in_cursum(journal); i++)
4081                        if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4082                                return i;
4083                if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4084                        return update_sits_in_cursum(journal, 1);
4085        }
4086        return -1;
4087}
4088
4089static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4090                                        unsigned int segno)
4091{
4092        return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4093}
4094
4095static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4096                                        unsigned int start)
4097{
4098        struct sit_info *sit_i = SIT_I(sbi);
4099        struct page *page;
4100        pgoff_t src_off, dst_off;
4101
4102        src_off = current_sit_addr(sbi, start);
4103        dst_off = next_sit_addr(sbi, src_off);
4104
4105        page = f2fs_grab_meta_page(sbi, dst_off);
4106        seg_info_to_sit_page(sbi, page, start);
4107
4108        set_page_dirty(page);
4109        set_to_next_sit(sit_i, start);
4110
4111        return page;
4112}
4113
4114static struct sit_entry_set *grab_sit_entry_set(void)
4115{
4116        struct sit_entry_set *ses =
4117                        f2fs_kmem_cache_alloc(sit_entry_set_slab,
4118                                                GFP_NOFS, true, NULL);
4119
4120        ses->entry_cnt = 0;
4121        INIT_LIST_HEAD(&ses->set_list);
4122        return ses;
4123}
4124
4125static void release_sit_entry_set(struct sit_entry_set *ses)
4126{
4127        list_del(&ses->set_list);
4128        kmem_cache_free(sit_entry_set_slab, ses);
4129}
4130
4131static void adjust_sit_entry_set(struct sit_entry_set *ses,
4132                                                struct list_head *head)
4133{
4134        struct sit_entry_set *next = ses;
4135
4136        if (list_is_last(&ses->set_list, head))
4137                return;
4138
4139        list_for_each_entry_continue(next, head, set_list)
4140                if (ses->entry_cnt <= next->entry_cnt)
4141                        break;
4142
4143        list_move_tail(&ses->set_list, &next->set_list);
4144}
4145
4146static void add_sit_entry(unsigned int segno, struct list_head *head)
4147{
4148        struct sit_entry_set *ses;
4149        unsigned int start_segno = START_SEGNO(segno);
4150
4151        list_for_each_entry(ses, head, set_list) {
4152                if (ses->start_segno == start_segno) {
4153                        ses->entry_cnt++;
4154                        adjust_sit_entry_set(ses, head);
4155                        return;
4156                }
4157        }
4158
4159        ses = grab_sit_entry_set();
4160
4161        ses->start_segno = start_segno;
4162        ses->entry_cnt++;
4163        list_add(&ses->set_list, head);
4164}
4165
4166static void add_sits_in_set(struct f2fs_sb_info *sbi)
4167{
4168        struct f2fs_sm_info *sm_info = SM_I(sbi);
4169        struct list_head *set_list = &sm_info->sit_entry_set;
4170        unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4171        unsigned int segno;
4172
4173        for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4174                add_sit_entry(segno, set_list);
4175}
4176
4177static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4178{
4179        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4180        struct f2fs_journal *journal = curseg->journal;
4181        int i;
4182
4183        down_write(&curseg->journal_rwsem);
4184        for (i = 0; i < sits_in_cursum(journal); i++) {
4185                unsigned int segno;
4186                bool dirtied;
4187
4188                segno = le32_to_cpu(segno_in_journal(journal, i));
4189                dirtied = __mark_sit_entry_dirty(sbi, segno);
4190
4191                if (!dirtied)
4192                        add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4193        }
4194        update_sits_in_cursum(journal, -i);
4195        up_write(&curseg->journal_rwsem);
4196}
4197
4198/*
4199 * CP calls this function, which flushes SIT entries including sit_journal,
4200 * and moves prefree segs to free segs.
4201 */
4202void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4203{
4204        struct sit_info *sit_i = SIT_I(sbi);
4205        unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4206        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4207        struct f2fs_journal *journal = curseg->journal;
4208        struct sit_entry_set *ses, *tmp;
4209        struct list_head *head = &SM_I(sbi)->sit_entry_set;
4210        bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4211        struct seg_entry *se;
4212
4213        down_write(&sit_i->sentry_lock);
4214
4215        if (!sit_i->dirty_sentries)
4216                goto out;
4217
4218        /*
4219         * add and account sit entries of dirty bitmap in sit entry
4220         * set temporarily
4221         */
4222        add_sits_in_set(sbi);
4223
4224        /*
4225         * if there are no enough space in journal to store dirty sit
4226         * entries, remove all entries from journal and add and account
4227         * them in sit entry set.
4228         */
4229        if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4230                                                                !to_journal)
4231                remove_sits_in_journal(sbi);
4232
4233        /*
4234         * there are two steps to flush sit entries:
4235         * #1, flush sit entries to journal in current cold data summary block.
4236         * #2, flush sit entries to sit page.
4237         */
4238        list_for_each_entry_safe(ses, tmp, head, set_list) {
4239                struct page *page = NULL;
4240                struct f2fs_sit_block *raw_sit = NULL;
4241                unsigned int start_segno = ses->start_segno;
4242                unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4243                                                (unsigned long)MAIN_SEGS(sbi));
4244                unsigned int segno = start_segno;
4245
4246                if (to_journal &&
4247                        !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4248                        to_journal = false;
4249
4250                if (to_journal) {
4251                        down_write(&curseg->journal_rwsem);
4252                } else {
4253                        page = get_next_sit_page(sbi, start_segno);
4254                        raw_sit = page_address(page);
4255                }
4256
4257                /* flush dirty sit entries in region of current sit set */
4258                for_each_set_bit_from(segno, bitmap, end) {
4259                        int offset, sit_offset;
4260
4261                        se = get_seg_entry(sbi, segno);
4262#ifdef CONFIG_F2FS_CHECK_FS
4263                        if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4264                                                SIT_VBLOCK_MAP_SIZE))
4265                                f2fs_bug_on(sbi, 1);
4266#endif
4267
4268                        /* add discard candidates */
4269                        if (!(cpc->reason & CP_DISCARD)) {
4270                                cpc->trim_start = segno;
4271                                add_discard_addrs(sbi, cpc, false);
4272                        }
4273
4274                        if (to_journal) {
4275                                offset = f2fs_lookup_journal_in_cursum(journal,
4276                                                        SIT_JOURNAL, segno, 1);
4277                                f2fs_bug_on(sbi, offset < 0);
4278                                segno_in_journal(journal, offset) =
4279                                                        cpu_to_le32(segno);
4280                                seg_info_to_raw_sit(se,
4281                                        &sit_in_journal(journal, offset));
4282                                check_block_count(sbi, segno,
4283                                        &sit_in_journal(journal, offset));
4284                        } else {
4285                                sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4286                                seg_info_to_raw_sit(se,
4287                                                &raw_sit->entries[sit_offset]);
4288                                check_block_count(sbi, segno,
4289                                                &raw_sit->entries[sit_offset]);
4290                        }
4291
4292                        __clear_bit(segno, bitmap);
4293                        sit_i->dirty_sentries--;
4294                        ses->entry_cnt--;
4295                }
4296
4297                if (to_journal)
4298                        up_write(&curseg->journal_rwsem);
4299                else
4300                        f2fs_put_page(page, 1);
4301
4302                f2fs_bug_on(sbi, ses->entry_cnt);
4303                release_sit_entry_set(ses);
4304        }
4305
4306        f2fs_bug_on(sbi, !list_empty(head));
4307        f2fs_bug_on(sbi, sit_i->dirty_sentries);
4308out:
4309        if (cpc->reason & CP_DISCARD) {
4310                __u64 trim_start = cpc->trim_start;
4311
4312                for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4313                        add_discard_addrs(sbi, cpc, false);
4314
4315                cpc->trim_start = trim_start;
4316        }
4317        up_write(&sit_i->sentry_lock);
4318
4319        set_prefree_as_free_segments(sbi);
4320}
4321
4322static int build_sit_info(struct f2fs_sb_info *sbi)
4323{
4324        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4325        struct sit_info *sit_i;
4326        unsigned int sit_segs, start;
4327        char *src_bitmap, *bitmap;
4328        unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4329        unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4330
4331        /* allocate memory for SIT information */
4332        sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4333        if (!sit_i)
4334                return -ENOMEM;
4335
4336        SM_I(sbi)->sit_info = sit_i;
4337
4338        sit_i->sentries =
4339                f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4340                                              MAIN_SEGS(sbi)),
4341                              GFP_KERNEL);
4342        if (!sit_i->sentries)
4343                return -ENOMEM;
4344
4345        main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4346        sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4347                                                                GFP_KERNEL);
4348        if (!sit_i->dirty_sentries_bitmap)
4349                return -ENOMEM;
4350
4351#ifdef CONFIG_F2FS_CHECK_FS
4352        bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4353#else
4354        bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4355#endif
4356        sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4357        if (!sit_i->bitmap)
4358                return -ENOMEM;
4359
4360        bitmap = sit_i->bitmap;
4361
4362        for (start = 0; start < MAIN_SEGS(sbi); start++) {
4363                sit_i->sentries[start].cur_valid_map = bitmap;
4364                bitmap += SIT_VBLOCK_MAP_SIZE;
4365
4366                sit_i->sentries[start].ckpt_valid_map = bitmap;
4367                bitmap += SIT_VBLOCK_MAP_SIZE;
4368
4369#ifdef CONFIG_F2FS_CHECK_FS
4370                sit_i->sentries[start].cur_valid_map_mir = bitmap;
4371                bitmap += SIT_VBLOCK_MAP_SIZE;
4372#endif
4373
4374                if (discard_map) {
4375                        sit_i->sentries[start].discard_map = bitmap;
4376                        bitmap += SIT_VBLOCK_MAP_SIZE;
4377                }
4378        }
4379
4380        sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4381        if (!sit_i->tmp_map)
4382                return -ENOMEM;
4383
4384        if (__is_large_section(sbi)) {
4385                sit_i->sec_entries =
4386                        f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4387                                                      MAIN_SECS(sbi)),
4388                                      GFP_KERNEL);
4389                if (!sit_i->sec_entries)
4390                        return -ENOMEM;
4391        }
4392
4393        /* get information related with SIT */
4394        sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4395
4396        /* setup SIT bitmap from ckeckpoint pack */
4397        sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4398        src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4399
4400        sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4401        if (!sit_i->sit_bitmap)
4402                return -ENOMEM;
4403
4404#ifdef CONFIG_F2FS_CHECK_FS
4405        sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4406                                        sit_bitmap_size, GFP_KERNEL);
4407        if (!sit_i->sit_bitmap_mir)
4408                return -ENOMEM;
4409
4410        sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4411                                        main_bitmap_size, GFP_KERNEL);
4412        if (!sit_i->invalid_segmap)
4413                return -ENOMEM;
4414#endif
4415
4416        /* init SIT information */
4417        sit_i->s_ops = &default_salloc_ops;
4418
4419        sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4420        sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4421        sit_i->written_valid_blocks = 0;
4422        sit_i->bitmap_size = sit_bitmap_size;
4423        sit_i->dirty_sentries = 0;
4424        sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4425        sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4426        sit_i->mounted_time = ktime_get_boottime_seconds();
4427        init_rwsem(&sit_i->sentry_lock);
4428        return 0;
4429}
4430
4431static int build_free_segmap(struct f2fs_sb_info *sbi)
4432{
4433        struct free_segmap_info *free_i;
4434        unsigned int bitmap_size, sec_bitmap_size;
4435
4436        /* allocate memory for free segmap information */
4437        free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4438        if (!free_i)
4439                return -ENOMEM;
4440
4441        SM_I(sbi)->free_info = free_i;
4442
4443        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4444        free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4445        if (!free_i->free_segmap)
4446                return -ENOMEM;
4447
4448        sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4449        free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4450        if (!free_i->free_secmap)
4451                return -ENOMEM;
4452
4453        /* set all segments as dirty temporarily */
4454        memset(free_i->free_segmap, 0xff, bitmap_size);
4455        memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4456
4457        /* init free segmap information */
4458        free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4459        free_i->free_segments = 0;
4460        free_i->free_sections = 0;
4461        spin_lock_init(&free_i->segmap_lock);
4462        return 0;
4463}
4464
4465static int build_curseg(struct f2fs_sb_info *sbi)
4466{
4467        struct curseg_info *array;
4468        int i;
4469
4470        array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4471                                        sizeof(*array)), GFP_KERNEL);
4472        if (!array)
4473                return -ENOMEM;
4474
4475        SM_I(sbi)->curseg_array = array;
4476
4477        for (i = 0; i < NO_CHECK_TYPE; i++) {
4478                mutex_init(&array[i].curseg_mutex);
4479                array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4480                if (!array[i].sum_blk)
4481                        return -ENOMEM;
4482                init_rwsem(&array[i].journal_rwsem);
4483                array[i].journal = f2fs_kzalloc(sbi,
4484                                sizeof(struct f2fs_journal), GFP_KERNEL);
4485                if (!array[i].journal)
4486                        return -ENOMEM;
4487                if (i < NR_PERSISTENT_LOG)
4488                        array[i].seg_type = CURSEG_HOT_DATA + i;
4489                else if (i == CURSEG_COLD_DATA_PINNED)
4490                        array[i].seg_type = CURSEG_COLD_DATA;
4491                else if (i == CURSEG_ALL_DATA_ATGC)
4492                        array[i].seg_type = CURSEG_COLD_DATA;
4493                array[i].segno = NULL_SEGNO;
4494                array[i].next_blkoff = 0;
4495                array[i].inited = false;
4496        }
4497        return restore_curseg_summaries(sbi);
4498}
4499
4500static int build_sit_entries(struct f2fs_sb_info *sbi)
4501{
4502        struct sit_info *sit_i = SIT_I(sbi);
4503        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4504        struct f2fs_journal *journal = curseg->journal;
4505        struct seg_entry *se;
4506        struct f2fs_sit_entry sit;
4507        int sit_blk_cnt = SIT_BLK_CNT(sbi);
4508        unsigned int i, start, end;
4509        unsigned int readed, start_blk = 0;
4510        int err = 0;
4511        block_t total_node_blocks = 0;
4512
4513        do {
4514                readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4515                                                        META_SIT, true);
4516
4517                start = start_blk * sit_i->sents_per_block;
4518                end = (start_blk + readed) * sit_i->sents_per_block;
4519
4520                for (; start < end && start < MAIN_SEGS(sbi); start++) {
4521                        struct f2fs_sit_block *sit_blk;
4522                        struct page *page;
4523
4524                        se = &sit_i->sentries[start];
4525                        page = get_current_sit_page(sbi, start);
4526                        if (IS_ERR(page))
4527                                return PTR_ERR(page);
4528                        sit_blk = (struct f2fs_sit_block *)page_address(page);
4529                        sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4530                        f2fs_put_page(page, 1);
4531
4532                        err = check_block_count(sbi, start, &sit);
4533                        if (err)
4534                                return err;
4535                        seg_info_from_raw_sit(se, &sit);
4536                        if (IS_NODESEG(se->type))
4537                                total_node_blocks += se->valid_blocks;
4538
4539                        if (f2fs_block_unit_discard(sbi)) {
4540                                /* build discard map only one time */
4541                                if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4542                                        memset(se->discard_map, 0xff,
4543                                                SIT_VBLOCK_MAP_SIZE);
4544                                } else {
4545                                        memcpy(se->discard_map,
4546                                                se->cur_valid_map,
4547                                                SIT_VBLOCK_MAP_SIZE);
4548                                        sbi->discard_blks +=
4549                                                sbi->blocks_per_seg -
4550                                                se->valid_blocks;
4551                                }
4552                        }
4553
4554                        if (__is_large_section(sbi))
4555                                get_sec_entry(sbi, start)->valid_blocks +=
4556                                                        se->valid_blocks;
4557                }
4558                start_blk += readed;
4559        } while (start_blk < sit_blk_cnt);
4560
4561        down_read(&curseg->journal_rwsem);
4562        for (i = 0; i < sits_in_cursum(journal); i++) {
4563                unsigned int old_valid_blocks;
4564
4565                start = le32_to_cpu(segno_in_journal(journal, i));
4566                if (start >= MAIN_SEGS(sbi)) {
4567                        f2fs_err(sbi, "Wrong journal entry on segno %u",
4568                                 start);
4569                        err = -EFSCORRUPTED;
4570                        break;
4571                }
4572
4573                se = &sit_i->sentries[start];
4574                sit = sit_in_journal(journal, i);
4575
4576                old_valid_blocks = se->valid_blocks;
4577                if (IS_NODESEG(se->type))
4578                        total_node_blocks -= old_valid_blocks;
4579
4580                err = check_block_count(sbi, start, &sit);
4581                if (err)
4582                        break;
4583                seg_info_from_raw_sit(se, &sit);
4584                if (IS_NODESEG(se->type))
4585                        total_node_blocks += se->valid_blocks;
4586
4587                if (f2fs_block_unit_discard(sbi)) {
4588                        if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4589                                memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4590                        } else {
4591                                memcpy(se->discard_map, se->cur_valid_map,
4592                                                        SIT_VBLOCK_MAP_SIZE);
4593                                sbi->discard_blks += old_valid_blocks;
4594                                sbi->discard_blks -= se->valid_blocks;
4595                        }
4596                }
4597
4598                if (__is_large_section(sbi)) {
4599                        get_sec_entry(sbi, start)->valid_blocks +=
4600                                                        se->valid_blocks;
4601                        get_sec_entry(sbi, start)->valid_blocks -=
4602                                                        old_valid_blocks;
4603                }
4604        }
4605        up_read(&curseg->journal_rwsem);
4606
4607        if (!err && total_node_blocks != valid_node_count(sbi)) {
4608                f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4609                         total_node_blocks, valid_node_count(sbi));
4610                err = -EFSCORRUPTED;
4611        }
4612
4613        return err;
4614}
4615
4616static void init_free_segmap(struct f2fs_sb_info *sbi)
4617{
4618        unsigned int start;
4619        int type;
4620        struct seg_entry *sentry;
4621
4622        for (start = 0; start < MAIN_SEGS(sbi); start++) {
4623                if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4624                        continue;
4625                sentry = get_seg_entry(sbi, start);
4626                if (!sentry->valid_blocks)
4627                        __set_free(sbi, start);
4628                else
4629                        SIT_I(sbi)->written_valid_blocks +=
4630                                                sentry->valid_blocks;
4631        }
4632
4633        /* set use the current segments */
4634        for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4635                struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4636
4637                __set_test_and_inuse(sbi, curseg_t->segno);
4638        }
4639}
4640
4641static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4642{
4643        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4644        struct free_segmap_info *free_i = FREE_I(sbi);
4645        unsigned int segno = 0, offset = 0, secno;
4646        block_t valid_blocks, usable_blks_in_seg;
4647        block_t blks_per_sec = BLKS_PER_SEC(sbi);
4648
4649        while (1) {
4650                /* find dirty segment based on free segmap */
4651                segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4652                if (segno >= MAIN_SEGS(sbi))
4653                        break;
4654                offset = segno + 1;
4655                valid_blocks = get_valid_blocks(sbi, segno, false);
4656                usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4657                if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4658                        continue;
4659                if (valid_blocks > usable_blks_in_seg) {
4660                        f2fs_bug_on(sbi, 1);
4661                        continue;
4662                }
4663                mutex_lock(&dirty_i->seglist_lock);
4664                __locate_dirty_segment(sbi, segno, DIRTY);
4665                mutex_unlock(&dirty_i->seglist_lock);
4666        }
4667
4668        if (!__is_large_section(sbi))
4669                return;
4670
4671        mutex_lock(&dirty_i->seglist_lock);
4672        for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4673                valid_blocks = get_valid_blocks(sbi, segno, true);
4674                secno = GET_SEC_FROM_SEG(sbi, segno);
4675
4676                if (!valid_blocks || valid_blocks == blks_per_sec)
4677                        continue;
4678                if (IS_CURSEC(sbi, secno))
4679                        continue;
4680                set_bit(secno, dirty_i->dirty_secmap);
4681        }
4682        mutex_unlock(&dirty_i->seglist_lock);
4683}
4684
4685static int init_victim_secmap(struct f2fs_sb_info *sbi)
4686{
4687        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4688        unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4689
4690        dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4691        if (!dirty_i->victim_secmap)
4692                return -ENOMEM;
4693        return 0;
4694}
4695
4696static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4697{
4698        struct dirty_seglist_info *dirty_i;
4699        unsigned int bitmap_size, i;
4700
4701        /* allocate memory for dirty segments list information */
4702        dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4703                                                                GFP_KERNEL);
4704        if (!dirty_i)
4705                return -ENOMEM;
4706
4707        SM_I(sbi)->dirty_info = dirty_i;
4708        mutex_init(&dirty_i->seglist_lock);
4709
4710        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4711
4712        for (i = 0; i < NR_DIRTY_TYPE; i++) {
4713                dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4714                                                                GFP_KERNEL);
4715                if (!dirty_i->dirty_segmap[i])
4716                        return -ENOMEM;
4717        }
4718
4719        if (__is_large_section(sbi)) {
4720                bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4721                dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4722                                                bitmap_size, GFP_KERNEL);
4723                if (!dirty_i->dirty_secmap)
4724                        return -ENOMEM;
4725        }
4726
4727        init_dirty_segmap(sbi);
4728        return init_victim_secmap(sbi);
4729}
4730
4731static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4732{
4733        int i;
4734
4735        /*
4736         * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4737         * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4738         */
4739        for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4740                struct curseg_info *curseg = CURSEG_I(sbi, i);
4741                struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4742                unsigned int blkofs = curseg->next_blkoff;
4743
4744                if (f2fs_sb_has_readonly(sbi) &&
4745                        i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4746                        continue;
4747
4748                sanity_check_seg_type(sbi, curseg->seg_type);
4749
4750                if (f2fs_test_bit(blkofs, se->cur_valid_map))
4751                        goto out;
4752
4753                if (curseg->alloc_type == SSR)
4754                        continue;
4755
4756                for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4757                        if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4758                                continue;
4759out:
4760                        f2fs_err(sbi,
4761                                 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4762                                 i, curseg->segno, curseg->alloc_type,
4763                                 curseg->next_blkoff, blkofs);
4764                        return -EFSCORRUPTED;
4765                }
4766        }
4767        return 0;
4768}
4769
4770#ifdef CONFIG_BLK_DEV_ZONED
4771
4772static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4773                                    struct f2fs_dev_info *fdev,
4774                                    struct blk_zone *zone)
4775{
4776        unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4777        block_t zone_block, wp_block, last_valid_block;
4778        unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4779        int i, s, b, ret;
4780        struct seg_entry *se;
4781
4782        if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4783                return 0;
4784
4785        wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4786        wp_segno = GET_SEGNO(sbi, wp_block);
4787        wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4788        zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4789        zone_segno = GET_SEGNO(sbi, zone_block);
4790        zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4791
4792        if (zone_segno >= MAIN_SEGS(sbi))
4793                return 0;
4794
4795        /*
4796         * Skip check of zones cursegs point to, since
4797         * fix_curseg_write_pointer() checks them.
4798         */
4799        for (i = 0; i < NO_CHECK_TYPE; i++)
4800                if (zone_secno == GET_SEC_FROM_SEG(sbi,
4801                                                   CURSEG_I(sbi, i)->segno))
4802                        return 0;
4803
4804        /*
4805         * Get last valid block of the zone.
4806         */
4807        last_valid_block = zone_block - 1;
4808        for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4809                segno = zone_segno + s;
4810                se = get_seg_entry(sbi, segno);
4811                for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4812                        if (f2fs_test_bit(b, se->cur_valid_map)) {
4813                                last_valid_block = START_BLOCK(sbi, segno) + b;
4814                                break;
4815                        }
4816                if (last_valid_block >= zone_block)
4817                        break;
4818        }
4819
4820        /*
4821         * If last valid block is beyond the write pointer, report the
4822         * inconsistency. This inconsistency does not cause write error
4823         * because the zone will not be selected for write operation until
4824         * it get discarded. Just report it.
4825         */
4826        if (last_valid_block >= wp_block) {
4827                f2fs_notice(sbi, "Valid block beyond write pointer: "
4828                            "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4829                            GET_SEGNO(sbi, last_valid_block),
4830                            GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4831                            wp_segno, wp_blkoff);
4832                return 0;
4833        }
4834
4835        /*
4836         * If there is no valid block in the zone and if write pointer is
4837         * not at zone start, reset the write pointer.
4838         */
4839        if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4840                f2fs_notice(sbi,
4841                            "Zone without valid block has non-zero write "
4842                            "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4843                            wp_segno, wp_blkoff);
4844                ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4845                                        zone->len >> log_sectors_per_block);
4846                if (ret) {
4847                        f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4848                                 fdev->path, ret);
4849                        return ret;
4850                }
4851        }
4852
4853        return 0;
4854}
4855
4856static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4857                                                  block_t zone_blkaddr)
4858{
4859        int i;
4860
4861        for (i = 0; i < sbi->s_ndevs; i++) {
4862                if (!bdev_is_zoned(FDEV(i).bdev))
4863                        continue;
4864                if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4865                                zone_blkaddr <= FDEV(i).end_blk))
4866                        return &FDEV(i);
4867        }
4868
4869        return NULL;
4870}
4871
4872static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4873                              void *data)
4874{
4875        memcpy(data, zone, sizeof(struct blk_zone));
4876        return 0;
4877}
4878
4879static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4880{
4881        struct curseg_info *cs = CURSEG_I(sbi, type);
4882        struct f2fs_dev_info *zbd;
4883        struct blk_zone zone;
4884        unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4885        block_t cs_zone_block, wp_block;
4886        unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4887        sector_t zone_sector;
4888        int err;
4889
4890        cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4891        cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4892
4893        zbd = get_target_zoned_dev(sbi, cs_zone_block);
4894        if (!zbd)
4895                return 0;
4896
4897        /* report zone for the sector the curseg points to */
4898        zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4899                << log_sectors_per_block;
4900        err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4901                                  report_one_zone_cb, &zone);
4902        if (err != 1) {
4903                f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4904                         zbd->path, err);
4905                return err;
4906        }
4907
4908        if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4909                return 0;
4910
4911        wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4912        wp_segno = GET_SEGNO(sbi, wp_block);
4913        wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4914        wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4915
4916        if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4917                wp_sector_off == 0)
4918                return 0;
4919
4920        f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4921                    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4922                    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4923
4924        f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4925                    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4926
4927        f2fs_allocate_new_section(sbi, type, true);
4928
4929        /* check consistency of the zone curseg pointed to */
4930        if (check_zone_write_pointer(sbi, zbd, &zone))
4931                return -EIO;
4932
4933        /* check newly assigned zone */
4934        cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4935        cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4936
4937        zbd = get_target_zoned_dev(sbi, cs_zone_block);
4938        if (!zbd)
4939                return 0;
4940
4941        zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4942                << log_sectors_per_block;
4943        err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4944                                  report_one_zone_cb, &zone);
4945        if (err != 1) {
4946                f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4947                         zbd->path, err);
4948                return err;
4949        }
4950
4951        if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4952                return 0;
4953
4954        if (zone.wp != zone.start) {
4955                f2fs_notice(sbi,
4956                            "New zone for curseg[%d] is not yet discarded. "
4957                            "Reset the zone: curseg[0x%x,0x%x]",
4958                            type, cs->segno, cs->next_blkoff);
4959                err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4960                                zone_sector >> log_sectors_per_block,
4961                                zone.len >> log_sectors_per_block);
4962                if (err) {
4963                        f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4964                                 zbd->path, err);
4965                        return err;
4966                }
4967        }
4968
4969        return 0;
4970}
4971
4972int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4973{
4974        int i, ret;
4975
4976        for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4977                ret = fix_curseg_write_pointer(sbi, i);
4978                if (ret)
4979                        return ret;
4980        }
4981
4982        return 0;
4983}
4984
4985struct check_zone_write_pointer_args {
4986        struct f2fs_sb_info *sbi;
4987        struct f2fs_dev_info *fdev;
4988};
4989
4990static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4991                                      void *data)
4992{
4993        struct check_zone_write_pointer_args *args;
4994
4995        args = (struct check_zone_write_pointer_args *)data;
4996
4997        return check_zone_write_pointer(args->sbi, args->fdev, zone);
4998}
4999
5000int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5001{
5002        int i, ret;
5003        struct check_zone_write_pointer_args args;
5004
5005        for (i = 0; i < sbi->s_ndevs; i++) {
5006                if (!bdev_is_zoned(FDEV(i).bdev))
5007                        continue;
5008
5009                args.sbi = sbi;
5010                args.fdev = &FDEV(i);
5011                ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5012                                          check_zone_write_pointer_cb, &args);
5013                if (ret < 0)
5014                        return ret;
5015        }
5016
5017        return 0;
5018}
5019
5020static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
5021                                                unsigned int dev_idx)
5022{
5023        if (!bdev_is_zoned(FDEV(dev_idx).bdev))
5024                return true;
5025        return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
5026}
5027
5028/* Return the zone index in the given device */
5029static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
5030                                        int dev_idx)
5031{
5032        block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5033
5034        return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
5035                                                sbi->log_blocks_per_blkz;
5036}
5037
5038/*
5039 * Return the usable segments in a section based on the zone's
5040 * corresponding zone capacity. Zone is equal to a section.
5041 */
5042static inline unsigned int f2fs_usable_zone_segs_in_sec(
5043                struct f2fs_sb_info *sbi, unsigned int segno)
5044{
5045        unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
5046
5047        dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
5048        zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
5049
5050        /* Conventional zone's capacity is always equal to zone size */
5051        if (is_conv_zone(sbi, zone_idx, dev_idx))
5052                return sbi->segs_per_sec;
5053
5054        /*
5055         * If the zone_capacity_blocks array is NULL, then zone capacity
5056         * is equal to the zone size for all zones
5057         */
5058        if (!FDEV(dev_idx).zone_capacity_blocks)
5059                return sbi->segs_per_sec;
5060
5061        /* Get the segment count beyond zone capacity block */
5062        unusable_segs_in_sec = (sbi->blocks_per_blkz -
5063                                FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5064                                sbi->log_blocks_per_seg;
5065        return sbi->segs_per_sec - unusable_segs_in_sec;
5066}
5067
5068/*
5069 * Return the number of usable blocks in a segment. The number of blocks
5070 * returned is always equal to the number of blocks in a segment for
5071 * segments fully contained within a sequential zone capacity or a
5072 * conventional zone. For segments partially contained in a sequential
5073 * zone capacity, the number of usable blocks up to the zone capacity
5074 * is returned. 0 is returned in all other cases.
5075 */
5076static inline unsigned int f2fs_usable_zone_blks_in_seg(
5077                        struct f2fs_sb_info *sbi, unsigned int segno)
5078{
5079        block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5080        unsigned int zone_idx, dev_idx, secno;
5081
5082        secno = GET_SEC_FROM_SEG(sbi, segno);
5083        seg_start = START_BLOCK(sbi, segno);
5084        dev_idx = f2fs_target_device_index(sbi, seg_start);
5085        zone_idx = get_zone_idx(sbi, secno, dev_idx);
5086
5087        /*
5088         * Conventional zone's capacity is always equal to zone size,
5089         * so, blocks per segment is unchanged.
5090         */
5091        if (is_conv_zone(sbi, zone_idx, dev_idx))
5092                return sbi->blocks_per_seg;
5093
5094        if (!FDEV(dev_idx).zone_capacity_blocks)
5095                return sbi->blocks_per_seg;
5096
5097        sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5098        sec_cap_blkaddr = sec_start_blkaddr +
5099                                FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5100
5101        /*
5102         * If segment starts before zone capacity and spans beyond
5103         * zone capacity, then usable blocks are from seg start to
5104         * zone capacity. If the segment starts after the zone capacity,
5105         * then there are no usable blocks.
5106         */
5107        if (seg_start >= sec_cap_blkaddr)
5108                return 0;
5109        if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5110                return sec_cap_blkaddr - seg_start;
5111
5112        return sbi->blocks_per_seg;
5113}
5114#else
5115int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5116{
5117        return 0;
5118}
5119
5120int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5121{
5122        return 0;
5123}
5124
5125static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5126                                                        unsigned int segno)
5127{
5128        return 0;
5129}
5130
5131static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5132                                                        unsigned int segno)
5133{
5134        return 0;
5135}
5136#endif
5137unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5138                                        unsigned int segno)
5139{
5140        if (f2fs_sb_has_blkzoned(sbi))
5141                return f2fs_usable_zone_blks_in_seg(sbi, segno);
5142
5143        return sbi->blocks_per_seg;
5144}
5145
5146unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5147                                        unsigned int segno)
5148{
5149        if (f2fs_sb_has_blkzoned(sbi))
5150                return f2fs_usable_zone_segs_in_sec(sbi, segno);
5151
5152        return sbi->segs_per_sec;
5153}
5154
5155/*
5156 * Update min, max modified time for cost-benefit GC algorithm
5157 */
5158static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5159{
5160        struct sit_info *sit_i = SIT_I(sbi);
5161        unsigned int segno;
5162
5163        down_write(&sit_i->sentry_lock);
5164
5165        sit_i->min_mtime = ULLONG_MAX;
5166
5167        for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5168                unsigned int i;
5169                unsigned long long mtime = 0;
5170
5171                for (i = 0; i < sbi->segs_per_sec; i++)
5172                        mtime += get_seg_entry(sbi, segno + i)->mtime;
5173
5174                mtime = div_u64(mtime, sbi->segs_per_sec);
5175
5176                if (sit_i->min_mtime > mtime)
5177                        sit_i->min_mtime = mtime;
5178        }
5179        sit_i->max_mtime = get_mtime(sbi, false);
5180        sit_i->dirty_max_mtime = 0;
5181        up_write(&sit_i->sentry_lock);
5182}
5183
5184int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5185{
5186        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5187        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5188        struct f2fs_sm_info *sm_info;
5189        int err;
5190
5191        sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5192        if (!sm_info)
5193                return -ENOMEM;
5194
5195        /* init sm info */
5196        sbi->sm_info = sm_info;
5197        sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5198        sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5199        sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5200        sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5201        sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5202        sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5203        sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5204        sm_info->rec_prefree_segments = sm_info->main_segments *
5205                                        DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5206        if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5207                sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5208
5209        if (!f2fs_lfs_mode(sbi))
5210                sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5211        sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5212        sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5213        sm_info->min_seq_blocks = sbi->blocks_per_seg;
5214        sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5215        sm_info->min_ssr_sections = reserved_sections(sbi);
5216
5217        INIT_LIST_HEAD(&sm_info->sit_entry_set);
5218
5219        init_rwsem(&sm_info->curseg_lock);
5220
5221        if (!f2fs_readonly(sbi->sb)) {
5222                err = f2fs_create_flush_cmd_control(sbi);
5223                if (err)
5224                        return err;
5225        }
5226
5227        err = create_discard_cmd_control(sbi);
5228        if (err)
5229                return err;
5230
5231        err = build_sit_info(sbi);
5232        if (err)
5233                return err;
5234        err = build_free_segmap(sbi);
5235        if (err)
5236                return err;
5237        err = build_curseg(sbi);
5238        if (err)
5239                return err;
5240
5241        /* reinit free segmap based on SIT */
5242        err = build_sit_entries(sbi);
5243        if (err)
5244                return err;
5245
5246        init_free_segmap(sbi);
5247        err = build_dirty_segmap(sbi);
5248        if (err)
5249                return err;
5250
5251        err = sanity_check_curseg(sbi);
5252        if (err)
5253                return err;
5254
5255        init_min_max_mtime(sbi);
5256        return 0;
5257}
5258
5259static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5260                enum dirty_type dirty_type)
5261{
5262        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5263
5264        mutex_lock(&dirty_i->seglist_lock);
5265        kvfree(dirty_i->dirty_segmap[dirty_type]);
5266        dirty_i->nr_dirty[dirty_type] = 0;
5267        mutex_unlock(&dirty_i->seglist_lock);
5268}
5269
5270static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5271{
5272        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5273
5274        kvfree(dirty_i->victim_secmap);
5275}
5276
5277static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5278{
5279        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5280        int i;
5281
5282        if (!dirty_i)
5283                return;
5284
5285        /* discard pre-free/dirty segments list */
5286        for (i = 0; i < NR_DIRTY_TYPE; i++)
5287                discard_dirty_segmap(sbi, i);
5288
5289        if (__is_large_section(sbi)) {
5290                mutex_lock(&dirty_i->seglist_lock);
5291                kvfree(dirty_i->dirty_secmap);
5292                mutex_unlock(&dirty_i->seglist_lock);
5293        }
5294
5295        destroy_victim_secmap(sbi);
5296        SM_I(sbi)->dirty_info = NULL;
5297        kfree(dirty_i);
5298}
5299
5300static void destroy_curseg(struct f2fs_sb_info *sbi)
5301{
5302        struct curseg_info *array = SM_I(sbi)->curseg_array;
5303        int i;
5304
5305        if (!array)
5306                return;
5307        SM_I(sbi)->curseg_array = NULL;
5308        for (i = 0; i < NR_CURSEG_TYPE; i++) {
5309                kfree(array[i].sum_blk);
5310                kfree(array[i].journal);
5311        }
5312        kfree(array);
5313}
5314
5315static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5316{
5317        struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5318
5319        if (!free_i)
5320                return;
5321        SM_I(sbi)->free_info = NULL;
5322        kvfree(free_i->free_segmap);
5323        kvfree(free_i->free_secmap);
5324        kfree(free_i);
5325}
5326
5327static void destroy_sit_info(struct f2fs_sb_info *sbi)
5328{
5329        struct sit_info *sit_i = SIT_I(sbi);
5330
5331        if (!sit_i)
5332                return;
5333
5334        if (sit_i->sentries)
5335                kvfree(sit_i->bitmap);
5336        kfree(sit_i->tmp_map);
5337
5338        kvfree(sit_i->sentries);
5339        kvfree(sit_i->sec_entries);
5340        kvfree(sit_i->dirty_sentries_bitmap);
5341
5342        SM_I(sbi)->sit_info = NULL;
5343        kvfree(sit_i->sit_bitmap);
5344#ifdef CONFIG_F2FS_CHECK_FS
5345        kvfree(sit_i->sit_bitmap_mir);
5346        kvfree(sit_i->invalid_segmap);
5347#endif
5348        kfree(sit_i);
5349}
5350
5351void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5352{
5353        struct f2fs_sm_info *sm_info = SM_I(sbi);
5354
5355        if (!sm_info)
5356                return;
5357        f2fs_destroy_flush_cmd_control(sbi, true);
5358        destroy_discard_cmd_control(sbi);
5359        destroy_dirty_segmap(sbi);
5360        destroy_curseg(sbi);
5361        destroy_free_segmap(sbi);
5362        destroy_sit_info(sbi);
5363        sbi->sm_info = NULL;
5364        kfree(sm_info);
5365}
5366
5367int __init f2fs_create_segment_manager_caches(void)
5368{
5369        discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5370                        sizeof(struct discard_entry));
5371        if (!discard_entry_slab)
5372                goto fail;
5373
5374        discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5375                        sizeof(struct discard_cmd));
5376        if (!discard_cmd_slab)
5377                goto destroy_discard_entry;
5378
5379        sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5380                        sizeof(struct sit_entry_set));
5381        if (!sit_entry_set_slab)
5382                goto destroy_discard_cmd;
5383
5384        inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5385                        sizeof(struct inmem_pages));
5386        if (!inmem_entry_slab)
5387                goto destroy_sit_entry_set;
5388        return 0;
5389
5390destroy_sit_entry_set:
5391        kmem_cache_destroy(sit_entry_set_slab);
5392destroy_discard_cmd:
5393        kmem_cache_destroy(discard_cmd_slab);
5394destroy_discard_entry:
5395        kmem_cache_destroy(discard_entry_slab);
5396fail:
5397        return -ENOMEM;
5398}
5399
5400void f2fs_destroy_segment_manager_caches(void)
5401{
5402        kmem_cache_destroy(sit_entry_set_slab);
5403        kmem_cache_destroy(discard_cmd_slab);
5404        kmem_cache_destroy(discard_entry_slab);
5405        kmem_cache_destroy(inmem_entry_slab);
5406}
5407