linux/fs/f2fs/segment.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * fs/f2fs/segment.h
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/blkdev.h>
   9#include <linux/backing-dev.h>
  10
  11/* constant macro */
  12#define NULL_SEGNO                      ((unsigned int)(~0))
  13#define NULL_SECNO                      ((unsigned int)(~0))
  14
  15#define DEF_RECLAIM_PREFREE_SEGMENTS    5       /* 5% over total segments */
  16#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS        4096    /* 8GB in maximum */
  17
  18#define F2FS_MIN_SEGMENTS       9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
  19#define F2FS_MIN_META_SEGMENTS  8 /* SB + 2 (CP + SIT + NAT) + SSA */
  20
  21/* L: Logical segment # in volume, R: Relative segment # in main area */
  22#define GET_L2R_SEGNO(free_i, segno)    ((segno) - (free_i)->start_segno)
  23#define GET_R2L_SEGNO(free_i, segno)    ((segno) + (free_i)->start_segno)
  24
  25#define IS_DATASEG(t)   ((t) <= CURSEG_COLD_DATA)
  26#define IS_NODESEG(t)   ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
  27
  28static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
  29                                                unsigned short seg_type)
  30{
  31        f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
  32}
  33
  34#define IS_HOT(t)       ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
  35#define IS_WARM(t)      ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
  36#define IS_COLD(t)      ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
  37
  38#define IS_CURSEG(sbi, seg)                                             \
  39        (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||    \
  40         ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||   \
  41         ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||   \
  42         ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||    \
  43         ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||   \
  44         ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||   \
  45         ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||    \
  46         ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
  47
  48#define IS_CURSEC(sbi, secno)                                           \
  49        (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /            \
  50          (sbi)->segs_per_sec) ||       \
  51         ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /           \
  52          (sbi)->segs_per_sec) ||       \
  53         ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /           \
  54          (sbi)->segs_per_sec) ||       \
  55         ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /            \
  56          (sbi)->segs_per_sec) ||       \
  57         ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /           \
  58          (sbi)->segs_per_sec) ||       \
  59         ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /           \
  60          (sbi)->segs_per_sec) ||       \
  61         ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /    \
  62          (sbi)->segs_per_sec) ||       \
  63         ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /       \
  64          (sbi)->segs_per_sec))
  65
  66#define MAIN_BLKADDR(sbi)                                               \
  67        (SM_I(sbi) ? SM_I(sbi)->main_blkaddr :                          \
  68                le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
  69#define SEG0_BLKADDR(sbi)                                               \
  70        (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr :                          \
  71                le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
  72
  73#define MAIN_SEGS(sbi)  (SM_I(sbi)->main_segments)
  74#define MAIN_SECS(sbi)  ((sbi)->total_sections)
  75
  76#define TOTAL_SEGS(sbi)                                                 \
  77        (SM_I(sbi) ? SM_I(sbi)->segment_count :                                 \
  78                le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
  79#define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
  80
  81#define MAX_BLKADDR(sbi)        (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
  82#define SEGMENT_SIZE(sbi)       (1ULL << ((sbi)->log_blocksize +        \
  83                                        (sbi)->log_blocks_per_seg))
  84
  85#define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) +                    \
  86         (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
  87
  88#define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
  89        (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
  90
  91#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)     ((blk_addr) - SEG0_BLKADDR(sbi))
  92#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
  93        (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
  94#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)                             \
  95        (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
  96
  97#define GET_SEGNO(sbi, blk_addr)                                        \
  98        ((!__is_valid_data_blkaddr(blk_addr)) ?                 \
  99        NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
 100                GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
 101#define BLKS_PER_SEC(sbi)                                       \
 102        ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
 103#define GET_SEC_FROM_SEG(sbi, segno)                            \
 104        (((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
 105#define GET_SEG_FROM_SEC(sbi, secno)                            \
 106        ((secno) * (sbi)->segs_per_sec)
 107#define GET_ZONE_FROM_SEC(sbi, secno)                           \
 108        (((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
 109#define GET_ZONE_FROM_SEG(sbi, segno)                           \
 110        GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
 111
 112#define GET_SUM_BLOCK(sbi, segno)                               \
 113        ((sbi)->sm_info->ssa_blkaddr + (segno))
 114
 115#define GET_SUM_TYPE(footer) ((footer)->entry_type)
 116#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
 117
 118#define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
 119        ((segno) % (sit_i)->sents_per_block)
 120#define SIT_BLOCK_OFFSET(segno)                                 \
 121        ((segno) / SIT_ENTRY_PER_BLOCK)
 122#define START_SEGNO(segno)              \
 123        (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
 124#define SIT_BLK_CNT(sbi)                        \
 125        DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
 126#define f2fs_bitmap_size(nr)                    \
 127        (BITS_TO_LONGS(nr) * sizeof(unsigned long))
 128
 129#define SECTOR_FROM_BLOCK(blk_addr)                                     \
 130        (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
 131#define SECTOR_TO_BLOCK(sectors)                                        \
 132        ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
 133
 134/*
 135 * indicate a block allocation direction: RIGHT and LEFT.
 136 * RIGHT means allocating new sections towards the end of volume.
 137 * LEFT means the opposite direction.
 138 */
 139enum {
 140        ALLOC_RIGHT = 0,
 141        ALLOC_LEFT
 142};
 143
 144/*
 145 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
 146 * LFS writes data sequentially with cleaning operations.
 147 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
 148 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
 149 * fragmented segment which has similar aging degree.
 150 */
 151enum {
 152        LFS = 0,
 153        SSR,
 154        AT_SSR,
 155};
 156
 157/*
 158 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
 159 * GC_CB is based on cost-benefit algorithm.
 160 * GC_GREEDY is based on greedy algorithm.
 161 * GC_AT is based on age-threshold algorithm.
 162 */
 163enum {
 164        GC_CB = 0,
 165        GC_GREEDY,
 166        GC_AT,
 167        ALLOC_NEXT,
 168        FLUSH_DEVICE,
 169        MAX_GC_POLICY,
 170};
 171
 172/*
 173 * BG_GC means the background cleaning job.
 174 * FG_GC means the on-demand cleaning job.
 175 */
 176enum {
 177        BG_GC = 0,
 178        FG_GC,
 179};
 180
 181/* for a function parameter to select a victim segment */
 182struct victim_sel_policy {
 183        int alloc_mode;                 /* LFS or SSR */
 184        int gc_mode;                    /* GC_CB or GC_GREEDY */
 185        unsigned long *dirty_bitmap;    /* dirty segment/section bitmap */
 186        unsigned int max_search;        /*
 187                                         * maximum # of segments/sections
 188                                         * to search
 189                                         */
 190        unsigned int offset;            /* last scanned bitmap offset */
 191        unsigned int ofs_unit;          /* bitmap search unit */
 192        unsigned int min_cost;          /* minimum cost */
 193        unsigned long long oldest_age;  /* oldest age of segments having the same min cost */
 194        unsigned int min_segno;         /* segment # having min. cost */
 195        unsigned long long age;         /* mtime of GCed section*/
 196        unsigned long long age_threshold;/* age threshold */
 197};
 198
 199struct seg_entry {
 200        unsigned int type:6;            /* segment type like CURSEG_XXX_TYPE */
 201        unsigned int valid_blocks:10;   /* # of valid blocks */
 202        unsigned int ckpt_valid_blocks:10;      /* # of valid blocks last cp */
 203        unsigned int padding:6;         /* padding */
 204        unsigned char *cur_valid_map;   /* validity bitmap of blocks */
 205#ifdef CONFIG_F2FS_CHECK_FS
 206        unsigned char *cur_valid_map_mir;       /* mirror of current valid bitmap */
 207#endif
 208        /*
 209         * # of valid blocks and the validity bitmap stored in the last
 210         * checkpoint pack. This information is used by the SSR mode.
 211         */
 212        unsigned char *ckpt_valid_map;  /* validity bitmap of blocks last cp */
 213        unsigned char *discard_map;
 214        unsigned long long mtime;       /* modification time of the segment */
 215};
 216
 217struct sec_entry {
 218        unsigned int valid_blocks;      /* # of valid blocks in a section */
 219};
 220
 221struct segment_allocation {
 222        void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
 223};
 224
 225#define MAX_SKIP_GC_COUNT                       16
 226
 227struct inmem_pages {
 228        struct list_head list;
 229        struct page *page;
 230        block_t old_addr;               /* for revoking when fail to commit */
 231};
 232
 233struct sit_info {
 234        const struct segment_allocation *s_ops;
 235
 236        block_t sit_base_addr;          /* start block address of SIT area */
 237        block_t sit_blocks;             /* # of blocks used by SIT area */
 238        block_t written_valid_blocks;   /* # of valid blocks in main area */
 239        char *bitmap;                   /* all bitmaps pointer */
 240        char *sit_bitmap;               /* SIT bitmap pointer */
 241#ifdef CONFIG_F2FS_CHECK_FS
 242        char *sit_bitmap_mir;           /* SIT bitmap mirror */
 243
 244        /* bitmap of segments to be ignored by GC in case of errors */
 245        unsigned long *invalid_segmap;
 246#endif
 247        unsigned int bitmap_size;       /* SIT bitmap size */
 248
 249        unsigned long *tmp_map;                 /* bitmap for temporal use */
 250        unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
 251        unsigned int dirty_sentries;            /* # of dirty sentries */
 252        unsigned int sents_per_block;           /* # of SIT entries per block */
 253        struct rw_semaphore sentry_lock;        /* to protect SIT cache */
 254        struct seg_entry *sentries;             /* SIT segment-level cache */
 255        struct sec_entry *sec_entries;          /* SIT section-level cache */
 256
 257        /* for cost-benefit algorithm in cleaning procedure */
 258        unsigned long long elapsed_time;        /* elapsed time after mount */
 259        unsigned long long mounted_time;        /* mount time */
 260        unsigned long long min_mtime;           /* min. modification time */
 261        unsigned long long max_mtime;           /* max. modification time */
 262        unsigned long long dirty_min_mtime;     /* rerange candidates in GC_AT */
 263        unsigned long long dirty_max_mtime;     /* rerange candidates in GC_AT */
 264
 265        unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
 266};
 267
 268struct free_segmap_info {
 269        unsigned int start_segno;       /* start segment number logically */
 270        unsigned int free_segments;     /* # of free segments */
 271        unsigned int free_sections;     /* # of free sections */
 272        spinlock_t segmap_lock;         /* free segmap lock */
 273        unsigned long *free_segmap;     /* free segment bitmap */
 274        unsigned long *free_secmap;     /* free section bitmap */
 275};
 276
 277/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
 278enum dirty_type {
 279        DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
 280        DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
 281        DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
 282        DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
 283        DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
 284        DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
 285        DIRTY,                  /* to count # of dirty segments */
 286        PRE,                    /* to count # of entirely obsolete segments */
 287        NR_DIRTY_TYPE
 288};
 289
 290struct dirty_seglist_info {
 291        const struct victim_selection *v_ops;   /* victim selction operation */
 292        unsigned long *dirty_segmap[NR_DIRTY_TYPE];
 293        unsigned long *dirty_secmap;
 294        struct mutex seglist_lock;              /* lock for segment bitmaps */
 295        int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
 296        unsigned long *victim_secmap;           /* background GC victims */
 297};
 298
 299/* victim selection function for cleaning and SSR */
 300struct victim_selection {
 301        int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
 302                                        int, int, char, unsigned long long);
 303};
 304
 305/* for active log information */
 306struct curseg_info {
 307        struct mutex curseg_mutex;              /* lock for consistency */
 308        struct f2fs_summary_block *sum_blk;     /* cached summary block */
 309        struct rw_semaphore journal_rwsem;      /* protect journal area */
 310        struct f2fs_journal *journal;           /* cached journal info */
 311        unsigned char alloc_type;               /* current allocation type */
 312        unsigned short seg_type;                /* segment type like CURSEG_XXX_TYPE */
 313        unsigned int segno;                     /* current segment number */
 314        unsigned short next_blkoff;             /* next block offset to write */
 315        unsigned int zone;                      /* current zone number */
 316        unsigned int next_segno;                /* preallocated segment */
 317        bool inited;                            /* indicate inmem log is inited */
 318};
 319
 320struct sit_entry_set {
 321        struct list_head set_list;      /* link with all sit sets */
 322        unsigned int start_segno;       /* start segno of sits in set */
 323        unsigned int entry_cnt;         /* the # of sit entries in set */
 324};
 325
 326/*
 327 * inline functions
 328 */
 329static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
 330{
 331        return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
 332}
 333
 334static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
 335                                                unsigned int segno)
 336{
 337        struct sit_info *sit_i = SIT_I(sbi);
 338        return &sit_i->sentries[segno];
 339}
 340
 341static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
 342                                                unsigned int segno)
 343{
 344        struct sit_info *sit_i = SIT_I(sbi);
 345        return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
 346}
 347
 348static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
 349                                unsigned int segno, bool use_section)
 350{
 351        /*
 352         * In order to get # of valid blocks in a section instantly from many
 353         * segments, f2fs manages two counting structures separately.
 354         */
 355        if (use_section && __is_large_section(sbi))
 356                return get_sec_entry(sbi, segno)->valid_blocks;
 357        else
 358                return get_seg_entry(sbi, segno)->valid_blocks;
 359}
 360
 361static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
 362                                unsigned int segno, bool use_section)
 363{
 364        if (use_section && __is_large_section(sbi)) {
 365                unsigned int start_segno = START_SEGNO(segno);
 366                unsigned int blocks = 0;
 367                int i;
 368
 369                for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
 370                        struct seg_entry *se = get_seg_entry(sbi, start_segno);
 371
 372                        blocks += se->ckpt_valid_blocks;
 373                }
 374                return blocks;
 375        }
 376        return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
 377}
 378
 379static inline void seg_info_from_raw_sit(struct seg_entry *se,
 380                                        struct f2fs_sit_entry *rs)
 381{
 382        se->valid_blocks = GET_SIT_VBLOCKS(rs);
 383        se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
 384        memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 385        memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 386#ifdef CONFIG_F2FS_CHECK_FS
 387        memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 388#endif
 389        se->type = GET_SIT_TYPE(rs);
 390        se->mtime = le64_to_cpu(rs->mtime);
 391}
 392
 393static inline void __seg_info_to_raw_sit(struct seg_entry *se,
 394                                        struct f2fs_sit_entry *rs)
 395{
 396        unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
 397                                        se->valid_blocks;
 398        rs->vblocks = cpu_to_le16(raw_vblocks);
 399        memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
 400        rs->mtime = cpu_to_le64(se->mtime);
 401}
 402
 403static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
 404                                struct page *page, unsigned int start)
 405{
 406        struct f2fs_sit_block *raw_sit;
 407        struct seg_entry *se;
 408        struct f2fs_sit_entry *rs;
 409        unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
 410                                        (unsigned long)MAIN_SEGS(sbi));
 411        int i;
 412
 413        raw_sit = (struct f2fs_sit_block *)page_address(page);
 414        memset(raw_sit, 0, PAGE_SIZE);
 415        for (i = 0; i < end - start; i++) {
 416                rs = &raw_sit->entries[i];
 417                se = get_seg_entry(sbi, start + i);
 418                __seg_info_to_raw_sit(se, rs);
 419        }
 420}
 421
 422static inline void seg_info_to_raw_sit(struct seg_entry *se,
 423                                        struct f2fs_sit_entry *rs)
 424{
 425        __seg_info_to_raw_sit(se, rs);
 426
 427        memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 428        se->ckpt_valid_blocks = se->valid_blocks;
 429}
 430
 431static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
 432                unsigned int max, unsigned int segno)
 433{
 434        unsigned int ret;
 435        spin_lock(&free_i->segmap_lock);
 436        ret = find_next_bit(free_i->free_segmap, max, segno);
 437        spin_unlock(&free_i->segmap_lock);
 438        return ret;
 439}
 440
 441static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
 442{
 443        struct free_segmap_info *free_i = FREE_I(sbi);
 444        unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 445        unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
 446        unsigned int next;
 447        unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
 448
 449        spin_lock(&free_i->segmap_lock);
 450        clear_bit(segno, free_i->free_segmap);
 451        free_i->free_segments++;
 452
 453        next = find_next_bit(free_i->free_segmap,
 454                        start_segno + sbi->segs_per_sec, start_segno);
 455        if (next >= start_segno + usable_segs) {
 456                clear_bit(secno, free_i->free_secmap);
 457                free_i->free_sections++;
 458        }
 459        spin_unlock(&free_i->segmap_lock);
 460}
 461
 462static inline void __set_inuse(struct f2fs_sb_info *sbi,
 463                unsigned int segno)
 464{
 465        struct free_segmap_info *free_i = FREE_I(sbi);
 466        unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 467
 468        set_bit(segno, free_i->free_segmap);
 469        free_i->free_segments--;
 470        if (!test_and_set_bit(secno, free_i->free_secmap))
 471                free_i->free_sections--;
 472}
 473
 474static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
 475                unsigned int segno, bool inmem)
 476{
 477        struct free_segmap_info *free_i = FREE_I(sbi);
 478        unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 479        unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
 480        unsigned int next;
 481        unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
 482
 483        spin_lock(&free_i->segmap_lock);
 484        if (test_and_clear_bit(segno, free_i->free_segmap)) {
 485                free_i->free_segments++;
 486
 487                if (!inmem && IS_CURSEC(sbi, secno))
 488                        goto skip_free;
 489                next = find_next_bit(free_i->free_segmap,
 490                                start_segno + sbi->segs_per_sec, start_segno);
 491                if (next >= start_segno + usable_segs) {
 492                        if (test_and_clear_bit(secno, free_i->free_secmap))
 493                                free_i->free_sections++;
 494                }
 495        }
 496skip_free:
 497        spin_unlock(&free_i->segmap_lock);
 498}
 499
 500static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
 501                unsigned int segno)
 502{
 503        struct free_segmap_info *free_i = FREE_I(sbi);
 504        unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 505
 506        spin_lock(&free_i->segmap_lock);
 507        if (!test_and_set_bit(segno, free_i->free_segmap)) {
 508                free_i->free_segments--;
 509                if (!test_and_set_bit(secno, free_i->free_secmap))
 510                        free_i->free_sections--;
 511        }
 512        spin_unlock(&free_i->segmap_lock);
 513}
 514
 515static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
 516                void *dst_addr)
 517{
 518        struct sit_info *sit_i = SIT_I(sbi);
 519
 520#ifdef CONFIG_F2FS_CHECK_FS
 521        if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
 522                                                sit_i->bitmap_size))
 523                f2fs_bug_on(sbi, 1);
 524#endif
 525        memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
 526}
 527
 528static inline block_t written_block_count(struct f2fs_sb_info *sbi)
 529{
 530        return SIT_I(sbi)->written_valid_blocks;
 531}
 532
 533static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
 534{
 535        return FREE_I(sbi)->free_segments;
 536}
 537
 538static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
 539{
 540        return SM_I(sbi)->reserved_segments;
 541}
 542
 543static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
 544{
 545        return FREE_I(sbi)->free_sections;
 546}
 547
 548static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
 549{
 550        return DIRTY_I(sbi)->nr_dirty[PRE];
 551}
 552
 553static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
 554{
 555        return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
 556                DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
 557                DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
 558                DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
 559                DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
 560                DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
 561}
 562
 563static inline int overprovision_segments(struct f2fs_sb_info *sbi)
 564{
 565        return SM_I(sbi)->ovp_segments;
 566}
 567
 568static inline int reserved_sections(struct f2fs_sb_info *sbi)
 569{
 570        return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
 571}
 572
 573static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
 574{
 575        unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
 576                                        get_pages(sbi, F2FS_DIRTY_DENTS);
 577        unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
 578        unsigned int segno, left_blocks;
 579        int i;
 580
 581        /* check current node segment */
 582        for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
 583                segno = CURSEG_I(sbi, i)->segno;
 584                left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
 585                                get_seg_entry(sbi, segno)->ckpt_valid_blocks;
 586
 587                if (node_blocks > left_blocks)
 588                        return false;
 589        }
 590
 591        /* check current data segment */
 592        segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
 593        left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
 594                        get_seg_entry(sbi, segno)->ckpt_valid_blocks;
 595        if (dent_blocks > left_blocks)
 596                return false;
 597        return true;
 598}
 599
 600static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
 601                                        int freed, int needed)
 602{
 603        int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 604        int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 605        int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 606
 607        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 608                return false;
 609
 610        if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
 611                        has_curseg_enough_space(sbi))
 612                return false;
 613        return (free_sections(sbi) + freed) <=
 614                (node_secs + 2 * dent_secs + imeta_secs +
 615                reserved_sections(sbi) + needed);
 616}
 617
 618static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
 619{
 620        if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 621                return true;
 622        if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
 623                return true;
 624        return false;
 625}
 626
 627static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
 628{
 629        return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
 630}
 631
 632static inline int utilization(struct f2fs_sb_info *sbi)
 633{
 634        return div_u64((u64)valid_user_blocks(sbi) * 100,
 635                                        sbi->user_block_count);
 636}
 637
 638/*
 639 * Sometimes f2fs may be better to drop out-of-place update policy.
 640 * And, users can control the policy through sysfs entries.
 641 * There are five policies with triggering conditions as follows.
 642 * F2FS_IPU_FORCE - all the time,
 643 * F2FS_IPU_SSR - if SSR mode is activated,
 644 * F2FS_IPU_UTIL - if FS utilization is over threashold,
 645 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
 646 *                     threashold,
 647 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
 648 *                     storages. IPU will be triggered only if the # of dirty
 649 *                     pages over min_fsync_blocks. (=default option)
 650 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
 651 * F2FS_IPU_NOCACHE - disable IPU bio cache.
 652 * F2FS_IPUT_DISABLE - disable IPU. (=default option in LFS mode)
 653 */
 654#define DEF_MIN_IPU_UTIL        70
 655#define DEF_MIN_FSYNC_BLOCKS    8
 656#define DEF_MIN_HOT_BLOCKS      16
 657
 658#define SMALL_VOLUME_SEGMENTS   (16 * 512)      /* 16GB */
 659
 660enum {
 661        F2FS_IPU_FORCE,
 662        F2FS_IPU_SSR,
 663        F2FS_IPU_UTIL,
 664        F2FS_IPU_SSR_UTIL,
 665        F2FS_IPU_FSYNC,
 666        F2FS_IPU_ASYNC,
 667        F2FS_IPU_NOCACHE,
 668};
 669
 670static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
 671                int type)
 672{
 673        struct curseg_info *curseg = CURSEG_I(sbi, type);
 674        return curseg->segno;
 675}
 676
 677static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
 678                int type)
 679{
 680        struct curseg_info *curseg = CURSEG_I(sbi, type);
 681        return curseg->alloc_type;
 682}
 683
 684static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
 685{
 686        struct curseg_info *curseg = CURSEG_I(sbi, type);
 687        return curseg->next_blkoff;
 688}
 689
 690static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
 691{
 692        f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
 693}
 694
 695static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
 696{
 697        struct f2fs_sb_info *sbi = fio->sbi;
 698
 699        if (__is_valid_data_blkaddr(fio->old_blkaddr))
 700                verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
 701                                        META_GENERIC : DATA_GENERIC);
 702        verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
 703                                        META_GENERIC : DATA_GENERIC_ENHANCE);
 704}
 705
 706/*
 707 * Summary block is always treated as an invalid block
 708 */
 709static inline int check_block_count(struct f2fs_sb_info *sbi,
 710                int segno, struct f2fs_sit_entry *raw_sit)
 711{
 712        bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
 713        int valid_blocks = 0;
 714        int cur_pos = 0, next_pos;
 715        unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
 716
 717        /* check bitmap with valid block count */
 718        do {
 719                if (is_valid) {
 720                        next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
 721                                        usable_blks_per_seg,
 722                                        cur_pos);
 723                        valid_blocks += next_pos - cur_pos;
 724                } else
 725                        next_pos = find_next_bit_le(&raw_sit->valid_map,
 726                                        usable_blks_per_seg,
 727                                        cur_pos);
 728                cur_pos = next_pos;
 729                is_valid = !is_valid;
 730        } while (cur_pos < usable_blks_per_seg);
 731
 732        if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
 733                f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
 734                         GET_SIT_VBLOCKS(raw_sit), valid_blocks);
 735                set_sbi_flag(sbi, SBI_NEED_FSCK);
 736                return -EFSCORRUPTED;
 737        }
 738
 739        if (usable_blks_per_seg < sbi->blocks_per_seg)
 740                f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
 741                                sbi->blocks_per_seg,
 742                                usable_blks_per_seg) != sbi->blocks_per_seg);
 743
 744        /* check segment usage, and check boundary of a given segment number */
 745        if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
 746                                        || segno > TOTAL_SEGS(sbi) - 1)) {
 747                f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
 748                         GET_SIT_VBLOCKS(raw_sit), segno);
 749                set_sbi_flag(sbi, SBI_NEED_FSCK);
 750                return -EFSCORRUPTED;
 751        }
 752        return 0;
 753}
 754
 755static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
 756                                                unsigned int start)
 757{
 758        struct sit_info *sit_i = SIT_I(sbi);
 759        unsigned int offset = SIT_BLOCK_OFFSET(start);
 760        block_t blk_addr = sit_i->sit_base_addr + offset;
 761
 762        check_seg_range(sbi, start);
 763
 764#ifdef CONFIG_F2FS_CHECK_FS
 765        if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
 766                        f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
 767                f2fs_bug_on(sbi, 1);
 768#endif
 769
 770        /* calculate sit block address */
 771        if (f2fs_test_bit(offset, sit_i->sit_bitmap))
 772                blk_addr += sit_i->sit_blocks;
 773
 774        return blk_addr;
 775}
 776
 777static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
 778                                                pgoff_t block_addr)
 779{
 780        struct sit_info *sit_i = SIT_I(sbi);
 781        block_addr -= sit_i->sit_base_addr;
 782        if (block_addr < sit_i->sit_blocks)
 783                block_addr += sit_i->sit_blocks;
 784        else
 785                block_addr -= sit_i->sit_blocks;
 786
 787        return block_addr + sit_i->sit_base_addr;
 788}
 789
 790static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
 791{
 792        unsigned int block_off = SIT_BLOCK_OFFSET(start);
 793
 794        f2fs_change_bit(block_off, sit_i->sit_bitmap);
 795#ifdef CONFIG_F2FS_CHECK_FS
 796        f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
 797#endif
 798}
 799
 800static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
 801                                                bool base_time)
 802{
 803        struct sit_info *sit_i = SIT_I(sbi);
 804        time64_t diff, now = ktime_get_boottime_seconds();
 805
 806        if (now >= sit_i->mounted_time)
 807                return sit_i->elapsed_time + now - sit_i->mounted_time;
 808
 809        /* system time is set to the past */
 810        if (!base_time) {
 811                diff = sit_i->mounted_time - now;
 812                if (sit_i->elapsed_time >= diff)
 813                        return sit_i->elapsed_time - diff;
 814                return 0;
 815        }
 816        return sit_i->elapsed_time;
 817}
 818
 819static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
 820                        unsigned int ofs_in_node, unsigned char version)
 821{
 822        sum->nid = cpu_to_le32(nid);
 823        sum->ofs_in_node = cpu_to_le16(ofs_in_node);
 824        sum->version = version;
 825}
 826
 827static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
 828{
 829        return __start_cp_addr(sbi) +
 830                le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
 831}
 832
 833static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
 834{
 835        return __start_cp_addr(sbi) +
 836                le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
 837                                - (base + 1) + type;
 838}
 839
 840static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
 841{
 842        if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
 843                return true;
 844        return false;
 845}
 846
 847/*
 848 * It is very important to gather dirty pages and write at once, so that we can
 849 * submit a big bio without interfering other data writes.
 850 * By default, 512 pages for directory data,
 851 * 512 pages (2MB) * 8 for nodes, and
 852 * 256 pages * 8 for meta are set.
 853 */
 854static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
 855{
 856        if (sbi->sb->s_bdi->wb.dirty_exceeded)
 857                return 0;
 858
 859        if (type == DATA)
 860                return sbi->blocks_per_seg;
 861        else if (type == NODE)
 862                return 8 * sbi->blocks_per_seg;
 863        else if (type == META)
 864                return 8 * BIO_MAX_VECS;
 865        else
 866                return 0;
 867}
 868
 869/*
 870 * When writing pages, it'd better align nr_to_write for segment size.
 871 */
 872static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
 873                                        struct writeback_control *wbc)
 874{
 875        long nr_to_write, desired;
 876
 877        if (wbc->sync_mode != WB_SYNC_NONE)
 878                return 0;
 879
 880        nr_to_write = wbc->nr_to_write;
 881        desired = BIO_MAX_VECS;
 882        if (type == NODE)
 883                desired <<= 1;
 884
 885        wbc->nr_to_write = desired;
 886        return desired - nr_to_write;
 887}
 888
 889static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
 890{
 891        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 892        bool wakeup = false;
 893        int i;
 894
 895        if (force)
 896                goto wake_up;
 897
 898        mutex_lock(&dcc->cmd_lock);
 899        for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
 900                if (i + 1 < dcc->discard_granularity)
 901                        break;
 902                if (!list_empty(&dcc->pend_list[i])) {
 903                        wakeup = true;
 904                        break;
 905                }
 906        }
 907        mutex_unlock(&dcc->cmd_lock);
 908        if (!wakeup || !is_idle(sbi, DISCARD_TIME))
 909                return;
 910wake_up:
 911        dcc->discard_wake = 1;
 912        wake_up_interruptible_all(&dcc->discard_wait_queue);
 913}
 914