linux/fs/gfs2/file.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   4 * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/spinlock.h>
   9#include <linux/compat.h>
  10#include <linux/completion.h>
  11#include <linux/buffer_head.h>
  12#include <linux/pagemap.h>
  13#include <linux/uio.h>
  14#include <linux/blkdev.h>
  15#include <linux/mm.h>
  16#include <linux/mount.h>
  17#include <linux/fs.h>
  18#include <linux/gfs2_ondisk.h>
  19#include <linux/falloc.h>
  20#include <linux/swap.h>
  21#include <linux/crc32.h>
  22#include <linux/writeback.h>
  23#include <linux/uaccess.h>
  24#include <linux/dlm.h>
  25#include <linux/dlm_plock.h>
  26#include <linux/delay.h>
  27#include <linux/backing-dev.h>
  28#include <linux/fileattr.h>
  29
  30#include "gfs2.h"
  31#include "incore.h"
  32#include "bmap.h"
  33#include "aops.h"
  34#include "dir.h"
  35#include "glock.h"
  36#include "glops.h"
  37#include "inode.h"
  38#include "log.h"
  39#include "meta_io.h"
  40#include "quota.h"
  41#include "rgrp.h"
  42#include "trans.h"
  43#include "util.h"
  44
  45/**
  46 * gfs2_llseek - seek to a location in a file
  47 * @file: the file
  48 * @offset: the offset
  49 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
  50 *
  51 * SEEK_END requires the glock for the file because it references the
  52 * file's size.
  53 *
  54 * Returns: The new offset, or errno
  55 */
  56
  57static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
  58{
  59        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
  60        struct gfs2_holder i_gh;
  61        loff_t error;
  62
  63        switch (whence) {
  64        case SEEK_END:
  65                error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
  66                                           &i_gh);
  67                if (!error) {
  68                        error = generic_file_llseek(file, offset, whence);
  69                        gfs2_glock_dq_uninit(&i_gh);
  70                }
  71                break;
  72
  73        case SEEK_DATA:
  74                error = gfs2_seek_data(file, offset);
  75                break;
  76
  77        case SEEK_HOLE:
  78                error = gfs2_seek_hole(file, offset);
  79                break;
  80
  81        case SEEK_CUR:
  82        case SEEK_SET:
  83                /*
  84                 * These don't reference inode->i_size and don't depend on the
  85                 * block mapping, so we don't need the glock.
  86                 */
  87                error = generic_file_llseek(file, offset, whence);
  88                break;
  89        default:
  90                error = -EINVAL;
  91        }
  92
  93        return error;
  94}
  95
  96/**
  97 * gfs2_readdir - Iterator for a directory
  98 * @file: The directory to read from
  99 * @ctx: What to feed directory entries to
 100 *
 101 * Returns: errno
 102 */
 103
 104static int gfs2_readdir(struct file *file, struct dir_context *ctx)
 105{
 106        struct inode *dir = file->f_mapping->host;
 107        struct gfs2_inode *dip = GFS2_I(dir);
 108        struct gfs2_holder d_gh;
 109        int error;
 110
 111        error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
 112        if (error)
 113                return error;
 114
 115        error = gfs2_dir_read(dir, ctx, &file->f_ra);
 116
 117        gfs2_glock_dq_uninit(&d_gh);
 118
 119        return error;
 120}
 121
 122/*
 123 * struct fsflag_gfs2flag
 124 *
 125 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
 126 * and to GFS2_DIF_JDATA for non-directories.
 127 */
 128static struct {
 129        u32 fsflag;
 130        u32 gfsflag;
 131} fsflag_gfs2flag[] = {
 132        {FS_SYNC_FL, GFS2_DIF_SYNC},
 133        {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
 134        {FS_APPEND_FL, GFS2_DIF_APPENDONLY},
 135        {FS_NOATIME_FL, GFS2_DIF_NOATIME},
 136        {FS_INDEX_FL, GFS2_DIF_EXHASH},
 137        {FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
 138        {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
 139};
 140
 141static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
 142{
 143        int i;
 144        u32 fsflags = 0;
 145
 146        if (S_ISDIR(inode->i_mode))
 147                gfsflags &= ~GFS2_DIF_JDATA;
 148        else
 149                gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
 150
 151        for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
 152                if (gfsflags & fsflag_gfs2flag[i].gfsflag)
 153                        fsflags |= fsflag_gfs2flag[i].fsflag;
 154        return fsflags;
 155}
 156
 157int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa)
 158{
 159        struct inode *inode = d_inode(dentry);
 160        struct gfs2_inode *ip = GFS2_I(inode);
 161        struct gfs2_holder gh;
 162        int error;
 163        u32 fsflags;
 164
 165        if (d_is_special(dentry))
 166                return -ENOTTY;
 167
 168        gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 169        error = gfs2_glock_nq(&gh);
 170        if (error)
 171                goto out_uninit;
 172
 173        fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
 174
 175        fileattr_fill_flags(fa, fsflags);
 176
 177        gfs2_glock_dq(&gh);
 178out_uninit:
 179        gfs2_holder_uninit(&gh);
 180        return error;
 181}
 182
 183void gfs2_set_inode_flags(struct inode *inode)
 184{
 185        struct gfs2_inode *ip = GFS2_I(inode);
 186        unsigned int flags = inode->i_flags;
 187
 188        flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
 189        if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
 190                flags |= S_NOSEC;
 191        if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
 192                flags |= S_IMMUTABLE;
 193        if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
 194                flags |= S_APPEND;
 195        if (ip->i_diskflags & GFS2_DIF_NOATIME)
 196                flags |= S_NOATIME;
 197        if (ip->i_diskflags & GFS2_DIF_SYNC)
 198                flags |= S_SYNC;
 199        inode->i_flags = flags;
 200}
 201
 202/* Flags that can be set by user space */
 203#define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|                    \
 204                             GFS2_DIF_IMMUTABLE|                \
 205                             GFS2_DIF_APPENDONLY|               \
 206                             GFS2_DIF_NOATIME|                  \
 207                             GFS2_DIF_SYNC|                     \
 208                             GFS2_DIF_TOPDIR|                   \
 209                             GFS2_DIF_INHERIT_JDATA)
 210
 211/**
 212 * do_gfs2_set_flags - set flags on an inode
 213 * @inode: The inode
 214 * @reqflags: The flags to set
 215 * @mask: Indicates which flags are valid
 216 * @fsflags: The FS_* inode flags passed in
 217 *
 218 */
 219static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask,
 220                             const u32 fsflags)
 221{
 222        struct gfs2_inode *ip = GFS2_I(inode);
 223        struct gfs2_sbd *sdp = GFS2_SB(inode);
 224        struct buffer_head *bh;
 225        struct gfs2_holder gh;
 226        int error;
 227        u32 new_flags, flags;
 228
 229        error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
 230        if (error)
 231                return error;
 232
 233        error = 0;
 234        flags = ip->i_diskflags;
 235        new_flags = (flags & ~mask) | (reqflags & mask);
 236        if ((new_flags ^ flags) == 0)
 237                goto out;
 238
 239        error = -EPERM;
 240        if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
 241                goto out;
 242        if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
 243                goto out;
 244        if (!IS_IMMUTABLE(inode)) {
 245                error = gfs2_permission(&init_user_ns, inode, MAY_WRITE);
 246                if (error)
 247                        goto out;
 248        }
 249        if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
 250                if (new_flags & GFS2_DIF_JDATA)
 251                        gfs2_log_flush(sdp, ip->i_gl,
 252                                       GFS2_LOG_HEAD_FLUSH_NORMAL |
 253                                       GFS2_LFC_SET_FLAGS);
 254                error = filemap_fdatawrite(inode->i_mapping);
 255                if (error)
 256                        goto out;
 257                error = filemap_fdatawait(inode->i_mapping);
 258                if (error)
 259                        goto out;
 260                if (new_flags & GFS2_DIF_JDATA)
 261                        gfs2_ordered_del_inode(ip);
 262        }
 263        error = gfs2_trans_begin(sdp, RES_DINODE, 0);
 264        if (error)
 265                goto out;
 266        error = gfs2_meta_inode_buffer(ip, &bh);
 267        if (error)
 268                goto out_trans_end;
 269        inode->i_ctime = current_time(inode);
 270        gfs2_trans_add_meta(ip->i_gl, bh);
 271        ip->i_diskflags = new_flags;
 272        gfs2_dinode_out(ip, bh->b_data);
 273        brelse(bh);
 274        gfs2_set_inode_flags(inode);
 275        gfs2_set_aops(inode);
 276out_trans_end:
 277        gfs2_trans_end(sdp);
 278out:
 279        gfs2_glock_dq_uninit(&gh);
 280        return error;
 281}
 282
 283int gfs2_fileattr_set(struct user_namespace *mnt_userns,
 284                      struct dentry *dentry, struct fileattr *fa)
 285{
 286        struct inode *inode = d_inode(dentry);
 287        u32 fsflags = fa->flags, gfsflags = 0;
 288        u32 mask;
 289        int i;
 290
 291        if (d_is_special(dentry))
 292                return -ENOTTY;
 293
 294        if (fileattr_has_fsx(fa))
 295                return -EOPNOTSUPP;
 296
 297        for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
 298                if (fsflags & fsflag_gfs2flag[i].fsflag) {
 299                        fsflags &= ~fsflag_gfs2flag[i].fsflag;
 300                        gfsflags |= fsflag_gfs2flag[i].gfsflag;
 301                }
 302        }
 303        if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
 304                return -EINVAL;
 305
 306        mask = GFS2_FLAGS_USER_SET;
 307        if (S_ISDIR(inode->i_mode)) {
 308                mask &= ~GFS2_DIF_JDATA;
 309        } else {
 310                /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
 311                if (gfsflags & GFS2_DIF_TOPDIR)
 312                        return -EINVAL;
 313                mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
 314        }
 315
 316        return do_gfs2_set_flags(inode, gfsflags, mask, fsflags);
 317}
 318
 319static int gfs2_getlabel(struct file *filp, char __user *label)
 320{
 321        struct inode *inode = file_inode(filp);
 322        struct gfs2_sbd *sdp = GFS2_SB(inode);
 323
 324        if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
 325                return -EFAULT;
 326
 327        return 0;
 328}
 329
 330static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 331{
 332        switch(cmd) {
 333        case FITRIM:
 334                return gfs2_fitrim(filp, (void __user *)arg);
 335        case FS_IOC_GETFSLABEL:
 336                return gfs2_getlabel(filp, (char __user *)arg);
 337        }
 338
 339        return -ENOTTY;
 340}
 341
 342#ifdef CONFIG_COMPAT
 343static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 344{
 345        switch(cmd) {
 346        /* Keep this list in sync with gfs2_ioctl */
 347        case FITRIM:
 348        case FS_IOC_GETFSLABEL:
 349                break;
 350        default:
 351                return -ENOIOCTLCMD;
 352        }
 353
 354        return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
 355}
 356#else
 357#define gfs2_compat_ioctl NULL
 358#endif
 359
 360/**
 361 * gfs2_size_hint - Give a hint to the size of a write request
 362 * @filep: The struct file
 363 * @offset: The file offset of the write
 364 * @size: The length of the write
 365 *
 366 * When we are about to do a write, this function records the total
 367 * write size in order to provide a suitable hint to the lower layers
 368 * about how many blocks will be required.
 369 *
 370 */
 371
 372static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
 373{
 374        struct inode *inode = file_inode(filep);
 375        struct gfs2_sbd *sdp = GFS2_SB(inode);
 376        struct gfs2_inode *ip = GFS2_I(inode);
 377        size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
 378        int hint = min_t(size_t, INT_MAX, blks);
 379
 380        if (hint > atomic_read(&ip->i_sizehint))
 381                atomic_set(&ip->i_sizehint, hint);
 382}
 383
 384/**
 385 * gfs2_allocate_page_backing - Allocate blocks for a write fault
 386 * @page: The (locked) page to allocate backing for
 387 * @length: Size of the allocation
 388 *
 389 * We try to allocate all the blocks required for the page in one go.  This
 390 * might fail for various reasons, so we keep trying until all the blocks to
 391 * back this page are allocated.  If some of the blocks are already allocated,
 392 * that is ok too.
 393 */
 394static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
 395{
 396        u64 pos = page_offset(page);
 397
 398        do {
 399                struct iomap iomap = { };
 400
 401                if (gfs2_iomap_alloc(page->mapping->host, pos, length, &iomap))
 402                        return -EIO;
 403
 404                if (length < iomap.length)
 405                        iomap.length = length;
 406                length -= iomap.length;
 407                pos += iomap.length;
 408        } while (length > 0);
 409
 410        return 0;
 411}
 412
 413/**
 414 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
 415 * @vmf: The virtual memory fault containing the page to become writable
 416 *
 417 * When the page becomes writable, we need to ensure that we have
 418 * blocks allocated on disk to back that page.
 419 */
 420
 421static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
 422{
 423        struct page *page = vmf->page;
 424        struct inode *inode = file_inode(vmf->vma->vm_file);
 425        struct gfs2_inode *ip = GFS2_I(inode);
 426        struct gfs2_sbd *sdp = GFS2_SB(inode);
 427        struct gfs2_alloc_parms ap = { .aflags = 0, };
 428        u64 offset = page_offset(page);
 429        unsigned int data_blocks, ind_blocks, rblocks;
 430        vm_fault_t ret = VM_FAULT_LOCKED;
 431        struct gfs2_holder gh;
 432        unsigned int length;
 433        loff_t size;
 434        int err;
 435
 436        sb_start_pagefault(inode->i_sb);
 437
 438        gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
 439        err = gfs2_glock_nq(&gh);
 440        if (err) {
 441                ret = block_page_mkwrite_return(err);
 442                goto out_uninit;
 443        }
 444
 445        /* Check page index against inode size */
 446        size = i_size_read(inode);
 447        if (offset >= size) {
 448                ret = VM_FAULT_SIGBUS;
 449                goto out_unlock;
 450        }
 451
 452        /* Update file times before taking page lock */
 453        file_update_time(vmf->vma->vm_file);
 454
 455        /* page is wholly or partially inside EOF */
 456        if (size - offset < PAGE_SIZE)
 457                length = size - offset;
 458        else
 459                length = PAGE_SIZE;
 460
 461        gfs2_size_hint(vmf->vma->vm_file, offset, length);
 462
 463        set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
 464        set_bit(GIF_SW_PAGED, &ip->i_flags);
 465
 466        /*
 467         * iomap_writepage / iomap_writepages currently don't support inline
 468         * files, so always unstuff here.
 469         */
 470
 471        if (!gfs2_is_stuffed(ip) &&
 472            !gfs2_write_alloc_required(ip, offset, length)) {
 473                lock_page(page);
 474                if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
 475                        ret = VM_FAULT_NOPAGE;
 476                        unlock_page(page);
 477                }
 478                goto out_unlock;
 479        }
 480
 481        err = gfs2_rindex_update(sdp);
 482        if (err) {
 483                ret = block_page_mkwrite_return(err);
 484                goto out_unlock;
 485        }
 486
 487        gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
 488        ap.target = data_blocks + ind_blocks;
 489        err = gfs2_quota_lock_check(ip, &ap);
 490        if (err) {
 491                ret = block_page_mkwrite_return(err);
 492                goto out_unlock;
 493        }
 494        err = gfs2_inplace_reserve(ip, &ap);
 495        if (err) {
 496                ret = block_page_mkwrite_return(err);
 497                goto out_quota_unlock;
 498        }
 499
 500        rblocks = RES_DINODE + ind_blocks;
 501        if (gfs2_is_jdata(ip))
 502                rblocks += data_blocks ? data_blocks : 1;
 503        if (ind_blocks || data_blocks) {
 504                rblocks += RES_STATFS + RES_QUOTA;
 505                rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
 506        }
 507        err = gfs2_trans_begin(sdp, rblocks, 0);
 508        if (err) {
 509                ret = block_page_mkwrite_return(err);
 510                goto out_trans_fail;
 511        }
 512
 513        /* Unstuff, if required, and allocate backing blocks for page */
 514        if (gfs2_is_stuffed(ip)) {
 515                err = gfs2_unstuff_dinode(ip);
 516                if (err) {
 517                        ret = block_page_mkwrite_return(err);
 518                        goto out_trans_end;
 519                }
 520        }
 521
 522        lock_page(page);
 523        /* If truncated, we must retry the operation, we may have raced
 524         * with the glock demotion code.
 525         */
 526        if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
 527                ret = VM_FAULT_NOPAGE;
 528                goto out_page_locked;
 529        }
 530
 531        err = gfs2_allocate_page_backing(page, length);
 532        if (err)
 533                ret = block_page_mkwrite_return(err);
 534
 535out_page_locked:
 536        if (ret != VM_FAULT_LOCKED)
 537                unlock_page(page);
 538out_trans_end:
 539        gfs2_trans_end(sdp);
 540out_trans_fail:
 541        gfs2_inplace_release(ip);
 542out_quota_unlock:
 543        gfs2_quota_unlock(ip);
 544out_unlock:
 545        gfs2_glock_dq(&gh);
 546out_uninit:
 547        gfs2_holder_uninit(&gh);
 548        if (ret == VM_FAULT_LOCKED) {
 549                set_page_dirty(page);
 550                wait_for_stable_page(page);
 551        }
 552        sb_end_pagefault(inode->i_sb);
 553        return ret;
 554}
 555
 556static vm_fault_t gfs2_fault(struct vm_fault *vmf)
 557{
 558        struct inode *inode = file_inode(vmf->vma->vm_file);
 559        struct gfs2_inode *ip = GFS2_I(inode);
 560        struct gfs2_holder gh;
 561        vm_fault_t ret;
 562        int err;
 563
 564        gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 565        err = gfs2_glock_nq(&gh);
 566        if (err) {
 567                ret = block_page_mkwrite_return(err);
 568                goto out_uninit;
 569        }
 570        ret = filemap_fault(vmf);
 571        gfs2_glock_dq(&gh);
 572out_uninit:
 573        gfs2_holder_uninit(&gh);
 574        return ret;
 575}
 576
 577static const struct vm_operations_struct gfs2_vm_ops = {
 578        .fault = gfs2_fault,
 579        .map_pages = filemap_map_pages,
 580        .page_mkwrite = gfs2_page_mkwrite,
 581};
 582
 583/**
 584 * gfs2_mmap
 585 * @file: The file to map
 586 * @vma: The VMA which described the mapping
 587 *
 588 * There is no need to get a lock here unless we should be updating
 589 * atime. We ignore any locking errors since the only consequence is
 590 * a missed atime update (which will just be deferred until later).
 591 *
 592 * Returns: 0
 593 */
 594
 595static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
 596{
 597        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
 598
 599        if (!(file->f_flags & O_NOATIME) &&
 600            !IS_NOATIME(&ip->i_inode)) {
 601                struct gfs2_holder i_gh;
 602                int error;
 603
 604                error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
 605                                           &i_gh);
 606                if (error)
 607                        return error;
 608                /* grab lock to update inode */
 609                gfs2_glock_dq_uninit(&i_gh);
 610                file_accessed(file);
 611        }
 612        vma->vm_ops = &gfs2_vm_ops;
 613
 614        return 0;
 615}
 616
 617/**
 618 * gfs2_open_common - This is common to open and atomic_open
 619 * @inode: The inode being opened
 620 * @file: The file being opened
 621 *
 622 * This maybe called under a glock or not depending upon how it has
 623 * been called. We must always be called under a glock for regular
 624 * files, however. For other file types, it does not matter whether
 625 * we hold the glock or not.
 626 *
 627 * Returns: Error code or 0 for success
 628 */
 629
 630int gfs2_open_common(struct inode *inode, struct file *file)
 631{
 632        struct gfs2_file *fp;
 633        int ret;
 634
 635        if (S_ISREG(inode->i_mode)) {
 636                ret = generic_file_open(inode, file);
 637                if (ret)
 638                        return ret;
 639        }
 640
 641        fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
 642        if (!fp)
 643                return -ENOMEM;
 644
 645        mutex_init(&fp->f_fl_mutex);
 646
 647        gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
 648        file->private_data = fp;
 649        if (file->f_mode & FMODE_WRITE) {
 650                ret = gfs2_qa_get(GFS2_I(inode));
 651                if (ret)
 652                        goto fail;
 653        }
 654        return 0;
 655
 656fail:
 657        kfree(file->private_data);
 658        file->private_data = NULL;
 659        return ret;
 660}
 661
 662/**
 663 * gfs2_open - open a file
 664 * @inode: the inode to open
 665 * @file: the struct file for this opening
 666 *
 667 * After atomic_open, this function is only used for opening files
 668 * which are already cached. We must still get the glock for regular
 669 * files to ensure that we have the file size uptodate for the large
 670 * file check which is in the common code. That is only an issue for
 671 * regular files though.
 672 *
 673 * Returns: errno
 674 */
 675
 676static int gfs2_open(struct inode *inode, struct file *file)
 677{
 678        struct gfs2_inode *ip = GFS2_I(inode);
 679        struct gfs2_holder i_gh;
 680        int error;
 681        bool need_unlock = false;
 682
 683        if (S_ISREG(ip->i_inode.i_mode)) {
 684                error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
 685                                           &i_gh);
 686                if (error)
 687                        return error;
 688                need_unlock = true;
 689        }
 690
 691        error = gfs2_open_common(inode, file);
 692
 693        if (need_unlock)
 694                gfs2_glock_dq_uninit(&i_gh);
 695
 696        return error;
 697}
 698
 699/**
 700 * gfs2_release - called to close a struct file
 701 * @inode: the inode the struct file belongs to
 702 * @file: the struct file being closed
 703 *
 704 * Returns: errno
 705 */
 706
 707static int gfs2_release(struct inode *inode, struct file *file)
 708{
 709        struct gfs2_inode *ip = GFS2_I(inode);
 710
 711        kfree(file->private_data);
 712        file->private_data = NULL;
 713
 714        if (gfs2_rs_active(&ip->i_res))
 715                gfs2_rs_delete(ip, &inode->i_writecount);
 716        if (file->f_mode & FMODE_WRITE)
 717                gfs2_qa_put(ip);
 718        return 0;
 719}
 720
 721/**
 722 * gfs2_fsync - sync the dirty data for a file (across the cluster)
 723 * @file: the file that points to the dentry
 724 * @start: the start position in the file to sync
 725 * @end: the end position in the file to sync
 726 * @datasync: set if we can ignore timestamp changes
 727 *
 728 * We split the data flushing here so that we don't wait for the data
 729 * until after we've also sent the metadata to disk. Note that for
 730 * data=ordered, we will write & wait for the data at the log flush
 731 * stage anyway, so this is unlikely to make much of a difference
 732 * except in the data=writeback case.
 733 *
 734 * If the fdatawrite fails due to any reason except -EIO, we will
 735 * continue the remainder of the fsync, although we'll still report
 736 * the error at the end. This is to match filemap_write_and_wait_range()
 737 * behaviour.
 738 *
 739 * Returns: errno
 740 */
 741
 742static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
 743                      int datasync)
 744{
 745        struct address_space *mapping = file->f_mapping;
 746        struct inode *inode = mapping->host;
 747        int sync_state = inode->i_state & I_DIRTY;
 748        struct gfs2_inode *ip = GFS2_I(inode);
 749        int ret = 0, ret1 = 0;
 750
 751        if (mapping->nrpages) {
 752                ret1 = filemap_fdatawrite_range(mapping, start, end);
 753                if (ret1 == -EIO)
 754                        return ret1;
 755        }
 756
 757        if (!gfs2_is_jdata(ip))
 758                sync_state &= ~I_DIRTY_PAGES;
 759        if (datasync)
 760                sync_state &= ~I_DIRTY_SYNC;
 761
 762        if (sync_state) {
 763                ret = sync_inode_metadata(inode, 1);
 764                if (ret)
 765                        return ret;
 766                if (gfs2_is_jdata(ip))
 767                        ret = file_write_and_wait(file);
 768                if (ret)
 769                        return ret;
 770                gfs2_ail_flush(ip->i_gl, 1);
 771        }
 772
 773        if (mapping->nrpages)
 774                ret = file_fdatawait_range(file, start, end);
 775
 776        return ret ? ret : ret1;
 777}
 778
 779static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
 780                                     struct gfs2_holder *gh)
 781{
 782        struct file *file = iocb->ki_filp;
 783        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
 784        size_t count = iov_iter_count(to);
 785        ssize_t ret;
 786
 787        if (!count)
 788                return 0; /* skip atime */
 789
 790        gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
 791        ret = gfs2_glock_nq(gh);
 792        if (ret)
 793                goto out_uninit;
 794
 795        ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL, 0);
 796        gfs2_glock_dq(gh);
 797out_uninit:
 798        gfs2_holder_uninit(gh);
 799        return ret;
 800}
 801
 802static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
 803                                      struct gfs2_holder *gh)
 804{
 805        struct file *file = iocb->ki_filp;
 806        struct inode *inode = file->f_mapping->host;
 807        struct gfs2_inode *ip = GFS2_I(inode);
 808        size_t len = iov_iter_count(from);
 809        loff_t offset = iocb->ki_pos;
 810        ssize_t ret;
 811
 812        /*
 813         * Deferred lock, even if its a write, since we do no allocation on
 814         * this path. All we need to change is the atime, and this lock mode
 815         * ensures that other nodes have flushed their buffered read caches
 816         * (i.e. their page cache entries for this inode). We do not,
 817         * unfortunately, have the option of only flushing a range like the
 818         * VFS does.
 819         */
 820        gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
 821        ret = gfs2_glock_nq(gh);
 822        if (ret)
 823                goto out_uninit;
 824
 825        /* Silently fall back to buffered I/O when writing beyond EOF */
 826        if (offset + len > i_size_read(&ip->i_inode))
 827                goto out;
 828
 829        ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL, 0);
 830        if (ret == -ENOTBLK)
 831                ret = 0;
 832out:
 833        gfs2_glock_dq(gh);
 834out_uninit:
 835        gfs2_holder_uninit(gh);
 836        return ret;
 837}
 838
 839static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
 840{
 841        struct gfs2_inode *ip;
 842        struct gfs2_holder gh;
 843        size_t written = 0;
 844        ssize_t ret;
 845
 846        if (iocb->ki_flags & IOCB_DIRECT) {
 847                ret = gfs2_file_direct_read(iocb, to, &gh);
 848                if (likely(ret != -ENOTBLK))
 849                        return ret;
 850                iocb->ki_flags &= ~IOCB_DIRECT;
 851        }
 852        iocb->ki_flags |= IOCB_NOIO;
 853        ret = generic_file_read_iter(iocb, to);
 854        iocb->ki_flags &= ~IOCB_NOIO;
 855        if (ret >= 0) {
 856                if (!iov_iter_count(to))
 857                        return ret;
 858                written = ret;
 859        } else {
 860                if (ret != -EAGAIN)
 861                        return ret;
 862                if (iocb->ki_flags & IOCB_NOWAIT)
 863                        return ret;
 864        }
 865        ip = GFS2_I(iocb->ki_filp->f_mapping->host);
 866        gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 867        ret = gfs2_glock_nq(&gh);
 868        if (ret)
 869                goto out_uninit;
 870        ret = generic_file_read_iter(iocb, to);
 871        if (ret > 0)
 872                written += ret;
 873        gfs2_glock_dq(&gh);
 874out_uninit:
 875        gfs2_holder_uninit(&gh);
 876        return written ? written : ret;
 877}
 878
 879/**
 880 * gfs2_file_write_iter - Perform a write to a file
 881 * @iocb: The io context
 882 * @from: The data to write
 883 *
 884 * We have to do a lock/unlock here to refresh the inode size for
 885 * O_APPEND writes, otherwise we can land up writing at the wrong
 886 * offset. There is still a race, but provided the app is using its
 887 * own file locking, this will make O_APPEND work as expected.
 888 *
 889 */
 890
 891static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 892{
 893        struct file *file = iocb->ki_filp;
 894        struct inode *inode = file_inode(file);
 895        struct gfs2_inode *ip = GFS2_I(inode);
 896        struct gfs2_holder gh;
 897        ssize_t ret;
 898
 899        gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
 900
 901        if (iocb->ki_flags & IOCB_APPEND) {
 902                ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 903                if (ret)
 904                        return ret;
 905                gfs2_glock_dq_uninit(&gh);
 906        }
 907
 908        inode_lock(inode);
 909        ret = generic_write_checks(iocb, from);
 910        if (ret <= 0)
 911                goto out_unlock;
 912
 913        ret = file_remove_privs(file);
 914        if (ret)
 915                goto out_unlock;
 916
 917        ret = file_update_time(file);
 918        if (ret)
 919                goto out_unlock;
 920
 921        if (iocb->ki_flags & IOCB_DIRECT) {
 922                struct address_space *mapping = file->f_mapping;
 923                ssize_t buffered, ret2;
 924
 925                ret = gfs2_file_direct_write(iocb, from, &gh);
 926                if (ret < 0 || !iov_iter_count(from))
 927                        goto out_unlock;
 928
 929                iocb->ki_flags |= IOCB_DSYNC;
 930                current->backing_dev_info = inode_to_bdi(inode);
 931                buffered = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
 932                current->backing_dev_info = NULL;
 933                if (unlikely(buffered <= 0)) {
 934                        if (!ret)
 935                                ret = buffered;
 936                        goto out_unlock;
 937                }
 938
 939                /*
 940                 * We need to ensure that the page cache pages are written to
 941                 * disk and invalidated to preserve the expected O_DIRECT
 942                 * semantics.  If the writeback or invalidate fails, only report
 943                 * the direct I/O range as we don't know if the buffered pages
 944                 * made it to disk.
 945                 */
 946                iocb->ki_pos += buffered;
 947                ret2 = generic_write_sync(iocb, buffered);
 948                invalidate_mapping_pages(mapping,
 949                                (iocb->ki_pos - buffered) >> PAGE_SHIFT,
 950                                (iocb->ki_pos - 1) >> PAGE_SHIFT);
 951                if (!ret || ret2 > 0)
 952                        ret += ret2;
 953        } else {
 954                current->backing_dev_info = inode_to_bdi(inode);
 955                ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
 956                current->backing_dev_info = NULL;
 957                if (likely(ret > 0)) {
 958                        iocb->ki_pos += ret;
 959                        ret = generic_write_sync(iocb, ret);
 960                }
 961        }
 962
 963out_unlock:
 964        inode_unlock(inode);
 965        return ret;
 966}
 967
 968static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
 969                           int mode)
 970{
 971        struct super_block *sb = inode->i_sb;
 972        struct gfs2_inode *ip = GFS2_I(inode);
 973        loff_t end = offset + len;
 974        struct buffer_head *dibh;
 975        int error;
 976
 977        error = gfs2_meta_inode_buffer(ip, &dibh);
 978        if (unlikely(error))
 979                return error;
 980
 981        gfs2_trans_add_meta(ip->i_gl, dibh);
 982
 983        if (gfs2_is_stuffed(ip)) {
 984                error = gfs2_unstuff_dinode(ip);
 985                if (unlikely(error))
 986                        goto out;
 987        }
 988
 989        while (offset < end) {
 990                struct iomap iomap = { };
 991
 992                error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap);
 993                if (error)
 994                        goto out;
 995                offset = iomap.offset + iomap.length;
 996                if (!(iomap.flags & IOMAP_F_NEW))
 997                        continue;
 998                error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
 999                                         iomap.length >> inode->i_blkbits,
1000                                         GFP_NOFS);
1001                if (error) {
1002                        fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
1003                        goto out;
1004                }
1005        }
1006out:
1007        brelse(dibh);
1008        return error;
1009}
1010
1011/**
1012 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
1013 *                     blocks, determine how many bytes can be written.
1014 * @ip:          The inode in question.
1015 * @len:         Max cap of bytes. What we return in *len must be <= this.
1016 * @data_blocks: Compute and return the number of data blocks needed
1017 * @ind_blocks:  Compute and return the number of indirect blocks needed
1018 * @max_blocks:  The total blocks available to work with.
1019 *
1020 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
1021 */
1022static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
1023                            unsigned int *data_blocks, unsigned int *ind_blocks,
1024                            unsigned int max_blocks)
1025{
1026        loff_t max = *len;
1027        const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1028        unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
1029
1030        for (tmp = max_data; tmp > sdp->sd_diptrs;) {
1031                tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
1032                max_data -= tmp;
1033        }
1034
1035        *data_blocks = max_data;
1036        *ind_blocks = max_blocks - max_data;
1037        *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
1038        if (*len > max) {
1039                *len = max;
1040                gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
1041        }
1042}
1043
1044static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1045{
1046        struct inode *inode = file_inode(file);
1047        struct gfs2_sbd *sdp = GFS2_SB(inode);
1048        struct gfs2_inode *ip = GFS2_I(inode);
1049        struct gfs2_alloc_parms ap = { .aflags = 0, };
1050        unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1051        loff_t bytes, max_bytes, max_blks;
1052        int error;
1053        const loff_t pos = offset;
1054        const loff_t count = len;
1055        loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
1056        loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
1057        loff_t max_chunk_size = UINT_MAX & bsize_mask;
1058
1059        next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
1060
1061        offset &= bsize_mask;
1062
1063        len = next - offset;
1064        bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
1065        if (!bytes)
1066                bytes = UINT_MAX;
1067        bytes &= bsize_mask;
1068        if (bytes == 0)
1069                bytes = sdp->sd_sb.sb_bsize;
1070
1071        gfs2_size_hint(file, offset, len);
1072
1073        gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
1074        ap.min_target = data_blocks + ind_blocks;
1075
1076        while (len > 0) {
1077                if (len < bytes)
1078                        bytes = len;
1079                if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1080                        len -= bytes;
1081                        offset += bytes;
1082                        continue;
1083                }
1084
1085                /* We need to determine how many bytes we can actually
1086                 * fallocate without exceeding quota or going over the
1087                 * end of the fs. We start off optimistically by assuming
1088                 * we can write max_bytes */
1089                max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1090
1091                /* Since max_bytes is most likely a theoretical max, we
1092                 * calculate a more realistic 'bytes' to serve as a good
1093                 * starting point for the number of bytes we may be able
1094                 * to write */
1095                gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1096                ap.target = data_blocks + ind_blocks;
1097
1098                error = gfs2_quota_lock_check(ip, &ap);
1099                if (error)
1100                        return error;
1101                /* ap.allowed tells us how many blocks quota will allow
1102                 * us to write. Check if this reduces max_blks */
1103                max_blks = UINT_MAX;
1104                if (ap.allowed)
1105                        max_blks = ap.allowed;
1106
1107                error = gfs2_inplace_reserve(ip, &ap);
1108                if (error)
1109                        goto out_qunlock;
1110
1111                /* check if the selected rgrp limits our max_blks further */
1112                if (ip->i_res.rs_reserved < max_blks)
1113                        max_blks = ip->i_res.rs_reserved;
1114
1115                /* Almost done. Calculate bytes that can be written using
1116                 * max_blks. We also recompute max_bytes, data_blocks and
1117                 * ind_blocks */
1118                calc_max_reserv(ip, &max_bytes, &data_blocks,
1119                                &ind_blocks, max_blks);
1120
1121                rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1122                          RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1123                if (gfs2_is_jdata(ip))
1124                        rblocks += data_blocks ? data_blocks : 1;
1125
1126                error = gfs2_trans_begin(sdp, rblocks,
1127                                         PAGE_SIZE >> inode->i_blkbits);
1128                if (error)
1129                        goto out_trans_fail;
1130
1131                error = fallocate_chunk(inode, offset, max_bytes, mode);
1132                gfs2_trans_end(sdp);
1133
1134                if (error)
1135                        goto out_trans_fail;
1136
1137                len -= max_bytes;
1138                offset += max_bytes;
1139                gfs2_inplace_release(ip);
1140                gfs2_quota_unlock(ip);
1141        }
1142
1143        if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
1144                i_size_write(inode, pos + count);
1145        file_update_time(file);
1146        mark_inode_dirty(inode);
1147
1148        if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1149                return vfs_fsync_range(file, pos, pos + count - 1,
1150                               (file->f_flags & __O_SYNC) ? 0 : 1);
1151        return 0;
1152
1153out_trans_fail:
1154        gfs2_inplace_release(ip);
1155out_qunlock:
1156        gfs2_quota_unlock(ip);
1157        return error;
1158}
1159
1160static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1161{
1162        struct inode *inode = file_inode(file);
1163        struct gfs2_sbd *sdp = GFS2_SB(inode);
1164        struct gfs2_inode *ip = GFS2_I(inode);
1165        struct gfs2_holder gh;
1166        int ret;
1167
1168        if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1169                return -EOPNOTSUPP;
1170        /* fallocate is needed by gfs2_grow to reserve space in the rindex */
1171        if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1172                return -EOPNOTSUPP;
1173
1174        inode_lock(inode);
1175
1176        gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1177        ret = gfs2_glock_nq(&gh);
1178        if (ret)
1179                goto out_uninit;
1180
1181        if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1182            (offset + len) > inode->i_size) {
1183                ret = inode_newsize_ok(inode, offset + len);
1184                if (ret)
1185                        goto out_unlock;
1186        }
1187
1188        ret = get_write_access(inode);
1189        if (ret)
1190                goto out_unlock;
1191
1192        if (mode & FALLOC_FL_PUNCH_HOLE) {
1193                ret = __gfs2_punch_hole(file, offset, len);
1194        } else {
1195                ret = __gfs2_fallocate(file, mode, offset, len);
1196                if (ret)
1197                        gfs2_rs_deltree(&ip->i_res);
1198        }
1199
1200        put_write_access(inode);
1201out_unlock:
1202        gfs2_glock_dq(&gh);
1203out_uninit:
1204        gfs2_holder_uninit(&gh);
1205        inode_unlock(inode);
1206        return ret;
1207}
1208
1209static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1210                                      struct file *out, loff_t *ppos,
1211                                      size_t len, unsigned int flags)
1212{
1213        ssize_t ret;
1214
1215        gfs2_size_hint(out, *ppos, len);
1216
1217        ret = iter_file_splice_write(pipe, out, ppos, len, flags);
1218        return ret;
1219}
1220
1221#ifdef CONFIG_GFS2_FS_LOCKING_DLM
1222
1223/**
1224 * gfs2_lock - acquire/release a posix lock on a file
1225 * @file: the file pointer
1226 * @cmd: either modify or retrieve lock state, possibly wait
1227 * @fl: type and range of lock
1228 *
1229 * Returns: errno
1230 */
1231
1232static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1233{
1234        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1235        struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1236        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1237
1238        if (!(fl->fl_flags & FL_POSIX))
1239                return -ENOLCK;
1240        if (cmd == F_CANCELLK) {
1241                /* Hack: */
1242                cmd = F_SETLK;
1243                fl->fl_type = F_UNLCK;
1244        }
1245        if (unlikely(gfs2_withdrawn(sdp))) {
1246                if (fl->fl_type == F_UNLCK)
1247                        locks_lock_file_wait(file, fl);
1248                return -EIO;
1249        }
1250        if (IS_GETLK(cmd))
1251                return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1252        else if (fl->fl_type == F_UNLCK)
1253                return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1254        else
1255                return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1256}
1257
1258static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1259{
1260        struct gfs2_file *fp = file->private_data;
1261        struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1262        struct gfs2_inode *ip = GFS2_I(file_inode(file));
1263        struct gfs2_glock *gl;
1264        unsigned int state;
1265        u16 flags;
1266        int error = 0;
1267        int sleeptime;
1268
1269        state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1270        flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1271
1272        mutex_lock(&fp->f_fl_mutex);
1273
1274        if (gfs2_holder_initialized(fl_gh)) {
1275                struct file_lock request;
1276                if (fl_gh->gh_state == state)
1277                        goto out;
1278                locks_init_lock(&request);
1279                request.fl_type = F_UNLCK;
1280                request.fl_flags = FL_FLOCK;
1281                locks_lock_file_wait(file, &request);
1282                gfs2_glock_dq(fl_gh);
1283                gfs2_holder_reinit(state, flags, fl_gh);
1284        } else {
1285                error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1286                                       &gfs2_flock_glops, CREATE, &gl);
1287                if (error)
1288                        goto out;
1289                gfs2_holder_init(gl, state, flags, fl_gh);
1290                gfs2_glock_put(gl);
1291        }
1292        for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1293                error = gfs2_glock_nq(fl_gh);
1294                if (error != GLR_TRYFAILED)
1295                        break;
1296                fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1297                fl_gh->gh_error = 0;
1298                msleep(sleeptime);
1299        }
1300        if (error) {
1301                gfs2_holder_uninit(fl_gh);
1302                if (error == GLR_TRYFAILED)
1303                        error = -EAGAIN;
1304        } else {
1305                error = locks_lock_file_wait(file, fl);
1306                gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1307        }
1308
1309out:
1310        mutex_unlock(&fp->f_fl_mutex);
1311        return error;
1312}
1313
1314static void do_unflock(struct file *file, struct file_lock *fl)
1315{
1316        struct gfs2_file *fp = file->private_data;
1317        struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1318
1319        mutex_lock(&fp->f_fl_mutex);
1320        locks_lock_file_wait(file, fl);
1321        if (gfs2_holder_initialized(fl_gh)) {
1322                gfs2_glock_dq(fl_gh);
1323                gfs2_holder_uninit(fl_gh);
1324        }
1325        mutex_unlock(&fp->f_fl_mutex);
1326}
1327
1328/**
1329 * gfs2_flock - acquire/release a flock lock on a file
1330 * @file: the file pointer
1331 * @cmd: either modify or retrieve lock state, possibly wait
1332 * @fl: type and range of lock
1333 *
1334 * Returns: errno
1335 */
1336
1337static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1338{
1339        if (!(fl->fl_flags & FL_FLOCK))
1340                return -ENOLCK;
1341        if (fl->fl_type & LOCK_MAND)
1342                return -EOPNOTSUPP;
1343
1344        if (fl->fl_type == F_UNLCK) {
1345                do_unflock(file, fl);
1346                return 0;
1347        } else {
1348                return do_flock(file, cmd, fl);
1349        }
1350}
1351
1352const struct file_operations gfs2_file_fops = {
1353        .llseek         = gfs2_llseek,
1354        .read_iter      = gfs2_file_read_iter,
1355        .write_iter     = gfs2_file_write_iter,
1356        .iopoll         = iomap_dio_iopoll,
1357        .unlocked_ioctl = gfs2_ioctl,
1358        .compat_ioctl   = gfs2_compat_ioctl,
1359        .mmap           = gfs2_mmap,
1360        .open           = gfs2_open,
1361        .release        = gfs2_release,
1362        .fsync          = gfs2_fsync,
1363        .lock           = gfs2_lock,
1364        .flock          = gfs2_flock,
1365        .splice_read    = generic_file_splice_read,
1366        .splice_write   = gfs2_file_splice_write,
1367        .setlease       = simple_nosetlease,
1368        .fallocate      = gfs2_fallocate,
1369};
1370
1371const struct file_operations gfs2_dir_fops = {
1372        .iterate_shared = gfs2_readdir,
1373        .unlocked_ioctl = gfs2_ioctl,
1374        .compat_ioctl   = gfs2_compat_ioctl,
1375        .open           = gfs2_open,
1376        .release        = gfs2_release,
1377        .fsync          = gfs2_fsync,
1378        .lock           = gfs2_lock,
1379        .flock          = gfs2_flock,
1380        .llseek         = default_llseek,
1381};
1382
1383#endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1384
1385const struct file_operations gfs2_file_fops_nolock = {
1386        .llseek         = gfs2_llseek,
1387        .read_iter      = gfs2_file_read_iter,
1388        .write_iter     = gfs2_file_write_iter,
1389        .iopoll         = iomap_dio_iopoll,
1390        .unlocked_ioctl = gfs2_ioctl,
1391        .compat_ioctl   = gfs2_compat_ioctl,
1392        .mmap           = gfs2_mmap,
1393        .open           = gfs2_open,
1394        .release        = gfs2_release,
1395        .fsync          = gfs2_fsync,
1396        .splice_read    = generic_file_splice_read,
1397        .splice_write   = gfs2_file_splice_write,
1398        .setlease       = generic_setlease,
1399        .fallocate      = gfs2_fallocate,
1400};
1401
1402const struct file_operations gfs2_dir_fops_nolock = {
1403        .iterate_shared = gfs2_readdir,
1404        .unlocked_ioctl = gfs2_ioctl,
1405        .compat_ioctl   = gfs2_compat_ioctl,
1406        .open           = gfs2_open,
1407        .release        = gfs2_release,
1408        .fsync          = gfs2_fsync,
1409        .llseek         = default_llseek,
1410};
1411
1412