linux/fs/jbd2/transaction.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * linux/fs/jbd2/transaction.c
   4 *
   5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   6 *
   7 * Copyright 1998 Red Hat corp --- All Rights Reserved
   8 *
   9 * Generic filesystem transaction handling code; part of the ext2fs
  10 * journaling system.
  11 *
  12 * This file manages transactions (compound commits managed by the
  13 * journaling code) and handles (individual atomic operations by the
  14 * filesystem).
  15 */
  16
  17#include <linux/time.h>
  18#include <linux/fs.h>
  19#include <linux/jbd2.h>
  20#include <linux/errno.h>
  21#include <linux/slab.h>
  22#include <linux/timer.h>
  23#include <linux/mm.h>
  24#include <linux/highmem.h>
  25#include <linux/hrtimer.h>
  26#include <linux/backing-dev.h>
  27#include <linux/bug.h>
  28#include <linux/module.h>
  29#include <linux/sched/mm.h>
  30
  31#include <trace/events/jbd2.h>
  32
  33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
  34static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
  35
  36static struct kmem_cache *transaction_cache;
  37int __init jbd2_journal_init_transaction_cache(void)
  38{
  39        J_ASSERT(!transaction_cache);
  40        transaction_cache = kmem_cache_create("jbd2_transaction_s",
  41                                        sizeof(transaction_t),
  42                                        0,
  43                                        SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
  44                                        NULL);
  45        if (!transaction_cache) {
  46                pr_emerg("JBD2: failed to create transaction cache\n");
  47                return -ENOMEM;
  48        }
  49        return 0;
  50}
  51
  52void jbd2_journal_destroy_transaction_cache(void)
  53{
  54        kmem_cache_destroy(transaction_cache);
  55        transaction_cache = NULL;
  56}
  57
  58void jbd2_journal_free_transaction(transaction_t *transaction)
  59{
  60        if (unlikely(ZERO_OR_NULL_PTR(transaction)))
  61                return;
  62        kmem_cache_free(transaction_cache, transaction);
  63}
  64
  65/*
  66 * Base amount of descriptor blocks we reserve for each transaction.
  67 */
  68static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
  69{
  70        int tag_space = journal->j_blocksize - sizeof(journal_header_t);
  71        int tags_per_block;
  72
  73        /* Subtract UUID */
  74        tag_space -= 16;
  75        if (jbd2_journal_has_csum_v2or3(journal))
  76                tag_space -= sizeof(struct jbd2_journal_block_tail);
  77        /* Commit code leaves a slack space of 16 bytes at the end of block */
  78        tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
  79        /*
  80         * Revoke descriptors are accounted separately so we need to reserve
  81         * space for commit block and normal transaction descriptor blocks.
  82         */
  83        return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
  84                                tags_per_block);
  85}
  86
  87/*
  88 * jbd2_get_transaction: obtain a new transaction_t object.
  89 *
  90 * Simply initialise a new transaction. Initialize it in
  91 * RUNNING state and add it to the current journal (which should not
  92 * have an existing running transaction: we only make a new transaction
  93 * once we have started to commit the old one).
  94 *
  95 * Preconditions:
  96 *      The journal MUST be locked.  We don't perform atomic mallocs on the
  97 *      new transaction and we can't block without protecting against other
  98 *      processes trying to touch the journal while it is in transition.
  99 *
 100 */
 101
 102static void jbd2_get_transaction(journal_t *journal,
 103                                transaction_t *transaction)
 104{
 105        transaction->t_journal = journal;
 106        transaction->t_state = T_RUNNING;
 107        transaction->t_start_time = ktime_get();
 108        transaction->t_tid = journal->j_transaction_sequence++;
 109        transaction->t_expires = jiffies + journal->j_commit_interval;
 110        spin_lock_init(&transaction->t_handle_lock);
 111        atomic_set(&transaction->t_updates, 0);
 112        atomic_set(&transaction->t_outstanding_credits,
 113                   jbd2_descriptor_blocks_per_trans(journal) +
 114                   atomic_read(&journal->j_reserved_credits));
 115        atomic_set(&transaction->t_outstanding_revokes, 0);
 116        atomic_set(&transaction->t_handle_count, 0);
 117        INIT_LIST_HEAD(&transaction->t_inode_list);
 118        INIT_LIST_HEAD(&transaction->t_private_list);
 119
 120        /* Set up the commit timer for the new transaction. */
 121        journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
 122        add_timer(&journal->j_commit_timer);
 123
 124        J_ASSERT(journal->j_running_transaction == NULL);
 125        journal->j_running_transaction = transaction;
 126        transaction->t_max_wait = 0;
 127        transaction->t_start = jiffies;
 128        transaction->t_requested = 0;
 129}
 130
 131/*
 132 * Handle management.
 133 *
 134 * A handle_t is an object which represents a single atomic update to a
 135 * filesystem, and which tracks all of the modifications which form part
 136 * of that one update.
 137 */
 138
 139/*
 140 * Update transaction's maximum wait time, if debugging is enabled.
 141 *
 142 * In order for t_max_wait to be reliable, it must be protected by a
 143 * lock.  But doing so will mean that start_this_handle() can not be
 144 * run in parallel on SMP systems, which limits our scalability.  So
 145 * unless debugging is enabled, we no longer update t_max_wait, which
 146 * means that maximum wait time reported by the jbd2_run_stats
 147 * tracepoint will always be zero.
 148 */
 149static inline void update_t_max_wait(transaction_t *transaction,
 150                                     unsigned long ts)
 151{
 152#ifdef CONFIG_JBD2_DEBUG
 153        if (jbd2_journal_enable_debug &&
 154            time_after(transaction->t_start, ts)) {
 155                ts = jbd2_time_diff(ts, transaction->t_start);
 156                spin_lock(&transaction->t_handle_lock);
 157                if (ts > transaction->t_max_wait)
 158                        transaction->t_max_wait = ts;
 159                spin_unlock(&transaction->t_handle_lock);
 160        }
 161#endif
 162}
 163
 164/*
 165 * Wait until running transaction passes to T_FLUSH state and new transaction
 166 * can thus be started. Also starts the commit if needed. The function expects
 167 * running transaction to exist and releases j_state_lock.
 168 */
 169static void wait_transaction_locked(journal_t *journal)
 170        __releases(journal->j_state_lock)
 171{
 172        DEFINE_WAIT(wait);
 173        int need_to_start;
 174        tid_t tid = journal->j_running_transaction->t_tid;
 175
 176        prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 177                        TASK_UNINTERRUPTIBLE);
 178        need_to_start = !tid_geq(journal->j_commit_request, tid);
 179        read_unlock(&journal->j_state_lock);
 180        if (need_to_start)
 181                jbd2_log_start_commit(journal, tid);
 182        jbd2_might_wait_for_commit(journal);
 183        schedule();
 184        finish_wait(&journal->j_wait_transaction_locked, &wait);
 185}
 186
 187/*
 188 * Wait until running transaction transitions from T_SWITCH to T_FLUSH
 189 * state and new transaction can thus be started. The function releases
 190 * j_state_lock.
 191 */
 192static void wait_transaction_switching(journal_t *journal)
 193        __releases(journal->j_state_lock)
 194{
 195        DEFINE_WAIT(wait);
 196
 197        if (WARN_ON(!journal->j_running_transaction ||
 198                    journal->j_running_transaction->t_state != T_SWITCH)) {
 199                read_unlock(&journal->j_state_lock);
 200                return;
 201        }
 202        prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 203                        TASK_UNINTERRUPTIBLE);
 204        read_unlock(&journal->j_state_lock);
 205        /*
 206         * We don't call jbd2_might_wait_for_commit() here as there's no
 207         * waiting for outstanding handles happening anymore in T_SWITCH state
 208         * and handling of reserved handles actually relies on that for
 209         * correctness.
 210         */
 211        schedule();
 212        finish_wait(&journal->j_wait_transaction_locked, &wait);
 213}
 214
 215static void sub_reserved_credits(journal_t *journal, int blocks)
 216{
 217        atomic_sub(blocks, &journal->j_reserved_credits);
 218        wake_up(&journal->j_wait_reserved);
 219}
 220
 221/*
 222 * Wait until we can add credits for handle to the running transaction.  Called
 223 * with j_state_lock held for reading. Returns 0 if handle joined the running
 224 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
 225 * caller must retry.
 226 *
 227 * Note: because j_state_lock may be dropped depending on the return
 228 * value, we need to fake out sparse so ti doesn't complain about a
 229 * locking imbalance.  Callers of add_transaction_credits will need to
 230 * make a similar accomodation.
 231 */
 232static int add_transaction_credits(journal_t *journal, int blocks,
 233                                   int rsv_blocks)
 234__must_hold(&journal->j_state_lock)
 235{
 236        transaction_t *t = journal->j_running_transaction;
 237        int needed;
 238        int total = blocks + rsv_blocks;
 239
 240        /*
 241         * If the current transaction is locked down for commit, wait
 242         * for the lock to be released.
 243         */
 244        if (t->t_state != T_RUNNING) {
 245                WARN_ON_ONCE(t->t_state >= T_FLUSH);
 246                wait_transaction_locked(journal);
 247                __acquire(&journal->j_state_lock); /* fake out sparse */
 248                return 1;
 249        }
 250
 251        /*
 252         * If there is not enough space left in the log to write all
 253         * potential buffers requested by this operation, we need to
 254         * stall pending a log checkpoint to free some more log space.
 255         */
 256        needed = atomic_add_return(total, &t->t_outstanding_credits);
 257        if (needed > journal->j_max_transaction_buffers) {
 258                /*
 259                 * If the current transaction is already too large,
 260                 * then start to commit it: we can then go back and
 261                 * attach this handle to a new transaction.
 262                 */
 263                atomic_sub(total, &t->t_outstanding_credits);
 264
 265                /*
 266                 * Is the number of reserved credits in the current transaction too
 267                 * big to fit this handle? Wait until reserved credits are freed.
 268                 */
 269                if (atomic_read(&journal->j_reserved_credits) + total >
 270                    journal->j_max_transaction_buffers) {
 271                        read_unlock(&journal->j_state_lock);
 272                        jbd2_might_wait_for_commit(journal);
 273                        wait_event(journal->j_wait_reserved,
 274                                   atomic_read(&journal->j_reserved_credits) + total <=
 275                                   journal->j_max_transaction_buffers);
 276                        __acquire(&journal->j_state_lock); /* fake out sparse */
 277                        return 1;
 278                }
 279
 280                wait_transaction_locked(journal);
 281                __acquire(&journal->j_state_lock); /* fake out sparse */
 282                return 1;
 283        }
 284
 285        /*
 286         * The commit code assumes that it can get enough log space
 287         * without forcing a checkpoint.  This is *critical* for
 288         * correctness: a checkpoint of a buffer which is also
 289         * associated with a committing transaction creates a deadlock,
 290         * so commit simply cannot force through checkpoints.
 291         *
 292         * We must therefore ensure the necessary space in the journal
 293         * *before* starting to dirty potentially checkpointed buffers
 294         * in the new transaction.
 295         */
 296        if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
 297                atomic_sub(total, &t->t_outstanding_credits);
 298                read_unlock(&journal->j_state_lock);
 299                jbd2_might_wait_for_commit(journal);
 300                write_lock(&journal->j_state_lock);
 301                if (jbd2_log_space_left(journal) <
 302                                        journal->j_max_transaction_buffers)
 303                        __jbd2_log_wait_for_space(journal);
 304                write_unlock(&journal->j_state_lock);
 305                __acquire(&journal->j_state_lock); /* fake out sparse */
 306                return 1;
 307        }
 308
 309        /* No reservation? We are done... */
 310        if (!rsv_blocks)
 311                return 0;
 312
 313        needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
 314        /* We allow at most half of a transaction to be reserved */
 315        if (needed > journal->j_max_transaction_buffers / 2) {
 316                sub_reserved_credits(journal, rsv_blocks);
 317                atomic_sub(total, &t->t_outstanding_credits);
 318                read_unlock(&journal->j_state_lock);
 319                jbd2_might_wait_for_commit(journal);
 320                wait_event(journal->j_wait_reserved,
 321                         atomic_read(&journal->j_reserved_credits) + rsv_blocks
 322                         <= journal->j_max_transaction_buffers / 2);
 323                __acquire(&journal->j_state_lock); /* fake out sparse */
 324                return 1;
 325        }
 326        return 0;
 327}
 328
 329/*
 330 * start_this_handle: Given a handle, deal with any locking or stalling
 331 * needed to make sure that there is enough journal space for the handle
 332 * to begin.  Attach the handle to a transaction and set up the
 333 * transaction's buffer credits.
 334 */
 335
 336static int start_this_handle(journal_t *journal, handle_t *handle,
 337                             gfp_t gfp_mask)
 338{
 339        transaction_t   *transaction, *new_transaction = NULL;
 340        int             blocks = handle->h_total_credits;
 341        int             rsv_blocks = 0;
 342        unsigned long ts = jiffies;
 343
 344        if (handle->h_rsv_handle)
 345                rsv_blocks = handle->h_rsv_handle->h_total_credits;
 346
 347        /*
 348         * Limit the number of reserved credits to 1/2 of maximum transaction
 349         * size and limit the number of total credits to not exceed maximum
 350         * transaction size per operation.
 351         */
 352        if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
 353            (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
 354                printk(KERN_ERR "JBD2: %s wants too many credits "
 355                       "credits:%d rsv_credits:%d max:%d\n",
 356                       current->comm, blocks, rsv_blocks,
 357                       journal->j_max_transaction_buffers);
 358                WARN_ON(1);
 359                return -ENOSPC;
 360        }
 361
 362alloc_transaction:
 363        /*
 364         * This check is racy but it is just an optimization of allocating new
 365         * transaction early if there are high chances we'll need it. If we
 366         * guess wrong, we'll retry or free unused transaction.
 367         */
 368        if (!data_race(journal->j_running_transaction)) {
 369                /*
 370                 * If __GFP_FS is not present, then we may be being called from
 371                 * inside the fs writeback layer, so we MUST NOT fail.
 372                 */
 373                if ((gfp_mask & __GFP_FS) == 0)
 374                        gfp_mask |= __GFP_NOFAIL;
 375                new_transaction = kmem_cache_zalloc(transaction_cache,
 376                                                    gfp_mask);
 377                if (!new_transaction)
 378                        return -ENOMEM;
 379        }
 380
 381        jbd_debug(3, "New handle %p going live.\n", handle);
 382
 383        /*
 384         * We need to hold j_state_lock until t_updates has been incremented,
 385         * for proper journal barrier handling
 386         */
 387repeat:
 388        read_lock(&journal->j_state_lock);
 389        BUG_ON(journal->j_flags & JBD2_UNMOUNT);
 390        if (is_journal_aborted(journal) ||
 391            (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
 392                read_unlock(&journal->j_state_lock);
 393                jbd2_journal_free_transaction(new_transaction);
 394                return -EROFS;
 395        }
 396
 397        /*
 398         * Wait on the journal's transaction barrier if necessary. Specifically
 399         * we allow reserved handles to proceed because otherwise commit could
 400         * deadlock on page writeback not being able to complete.
 401         */
 402        if (!handle->h_reserved && journal->j_barrier_count) {
 403                read_unlock(&journal->j_state_lock);
 404                wait_event(journal->j_wait_transaction_locked,
 405                                journal->j_barrier_count == 0);
 406                goto repeat;
 407        }
 408
 409        if (!journal->j_running_transaction) {
 410                read_unlock(&journal->j_state_lock);
 411                if (!new_transaction)
 412                        goto alloc_transaction;
 413                write_lock(&journal->j_state_lock);
 414                if (!journal->j_running_transaction &&
 415                    (handle->h_reserved || !journal->j_barrier_count)) {
 416                        jbd2_get_transaction(journal, new_transaction);
 417                        new_transaction = NULL;
 418                }
 419                write_unlock(&journal->j_state_lock);
 420                goto repeat;
 421        }
 422
 423        transaction = journal->j_running_transaction;
 424
 425        if (!handle->h_reserved) {
 426                /* We may have dropped j_state_lock - restart in that case */
 427                if (add_transaction_credits(journal, blocks, rsv_blocks)) {
 428                        /*
 429                         * add_transaction_credits releases
 430                         * j_state_lock on a non-zero return
 431                         */
 432                        __release(&journal->j_state_lock);
 433                        goto repeat;
 434                }
 435        } else {
 436                /*
 437                 * We have handle reserved so we are allowed to join T_LOCKED
 438                 * transaction and we don't have to check for transaction size
 439                 * and journal space. But we still have to wait while running
 440                 * transaction is being switched to a committing one as it
 441                 * won't wait for any handles anymore.
 442                 */
 443                if (transaction->t_state == T_SWITCH) {
 444                        wait_transaction_switching(journal);
 445                        goto repeat;
 446                }
 447                sub_reserved_credits(journal, blocks);
 448                handle->h_reserved = 0;
 449        }
 450
 451        /* OK, account for the buffers that this operation expects to
 452         * use and add the handle to the running transaction. 
 453         */
 454        update_t_max_wait(transaction, ts);
 455        handle->h_transaction = transaction;
 456        handle->h_requested_credits = blocks;
 457        handle->h_revoke_credits_requested = handle->h_revoke_credits;
 458        handle->h_start_jiffies = jiffies;
 459        atomic_inc(&transaction->t_updates);
 460        atomic_inc(&transaction->t_handle_count);
 461        jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
 462                  handle, blocks,
 463                  atomic_read(&transaction->t_outstanding_credits),
 464                  jbd2_log_space_left(journal));
 465        read_unlock(&journal->j_state_lock);
 466        current->journal_info = handle;
 467
 468        rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
 469        jbd2_journal_free_transaction(new_transaction);
 470        /*
 471         * Ensure that no allocations done while the transaction is open are
 472         * going to recurse back to the fs layer.
 473         */
 474        handle->saved_alloc_context = memalloc_nofs_save();
 475        return 0;
 476}
 477
 478/* Allocate a new handle.  This should probably be in a slab... */
 479static handle_t *new_handle(int nblocks)
 480{
 481        handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
 482        if (!handle)
 483                return NULL;
 484        handle->h_total_credits = nblocks;
 485        handle->h_ref = 1;
 486
 487        return handle;
 488}
 489
 490handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
 491                              int revoke_records, gfp_t gfp_mask,
 492                              unsigned int type, unsigned int line_no)
 493{
 494        handle_t *handle = journal_current_handle();
 495        int err;
 496
 497        if (!journal)
 498                return ERR_PTR(-EROFS);
 499
 500        if (handle) {
 501                J_ASSERT(handle->h_transaction->t_journal == journal);
 502                handle->h_ref++;
 503                return handle;
 504        }
 505
 506        nblocks += DIV_ROUND_UP(revoke_records,
 507                                journal->j_revoke_records_per_block);
 508        handle = new_handle(nblocks);
 509        if (!handle)
 510                return ERR_PTR(-ENOMEM);
 511        if (rsv_blocks) {
 512                handle_t *rsv_handle;
 513
 514                rsv_handle = new_handle(rsv_blocks);
 515                if (!rsv_handle) {
 516                        jbd2_free_handle(handle);
 517                        return ERR_PTR(-ENOMEM);
 518                }
 519                rsv_handle->h_reserved = 1;
 520                rsv_handle->h_journal = journal;
 521                handle->h_rsv_handle = rsv_handle;
 522        }
 523        handle->h_revoke_credits = revoke_records;
 524
 525        err = start_this_handle(journal, handle, gfp_mask);
 526        if (err < 0) {
 527                if (handle->h_rsv_handle)
 528                        jbd2_free_handle(handle->h_rsv_handle);
 529                jbd2_free_handle(handle);
 530                return ERR_PTR(err);
 531        }
 532        handle->h_type = type;
 533        handle->h_line_no = line_no;
 534        trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 535                                handle->h_transaction->t_tid, type,
 536                                line_no, nblocks);
 537
 538        return handle;
 539}
 540EXPORT_SYMBOL(jbd2__journal_start);
 541
 542
 543/**
 544 * jbd2_journal_start() - Obtain a new handle.
 545 * @journal: Journal to start transaction on.
 546 * @nblocks: number of block buffer we might modify
 547 *
 548 * We make sure that the transaction can guarantee at least nblocks of
 549 * modified buffers in the log.  We block until the log can guarantee
 550 * that much space. Additionally, if rsv_blocks > 0, we also create another
 551 * handle with rsv_blocks reserved blocks in the journal. This handle is
 552 * stored in h_rsv_handle. It is not attached to any particular transaction
 553 * and thus doesn't block transaction commit. If the caller uses this reserved
 554 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
 555 * on the parent handle will dispose the reserved one. Reserved handle has to
 556 * be converted to a normal handle using jbd2_journal_start_reserved() before
 557 * it can be used.
 558 *
 559 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
 560 * on failure.
 561 */
 562handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
 563{
 564        return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
 565}
 566EXPORT_SYMBOL(jbd2_journal_start);
 567
 568static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
 569{
 570        journal_t *journal = handle->h_journal;
 571
 572        WARN_ON(!handle->h_reserved);
 573        sub_reserved_credits(journal, handle->h_total_credits);
 574        if (t)
 575                atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
 576}
 577
 578void jbd2_journal_free_reserved(handle_t *handle)
 579{
 580        journal_t *journal = handle->h_journal;
 581
 582        /* Get j_state_lock to pin running transaction if it exists */
 583        read_lock(&journal->j_state_lock);
 584        __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
 585        read_unlock(&journal->j_state_lock);
 586        jbd2_free_handle(handle);
 587}
 588EXPORT_SYMBOL(jbd2_journal_free_reserved);
 589
 590/**
 591 * jbd2_journal_start_reserved() - start reserved handle
 592 * @handle: handle to start
 593 * @type: for handle statistics
 594 * @line_no: for handle statistics
 595 *
 596 * Start handle that has been previously reserved with jbd2_journal_reserve().
 597 * This attaches @handle to the running transaction (or creates one if there's
 598 * not transaction running). Unlike jbd2_journal_start() this function cannot
 599 * block on journal commit, checkpointing, or similar stuff. It can block on
 600 * memory allocation or frozen journal though.
 601 *
 602 * Return 0 on success, non-zero on error - handle is freed in that case.
 603 */
 604int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
 605                                unsigned int line_no)
 606{
 607        journal_t *journal = handle->h_journal;
 608        int ret = -EIO;
 609
 610        if (WARN_ON(!handle->h_reserved)) {
 611                /* Someone passed in normal handle? Just stop it. */
 612                jbd2_journal_stop(handle);
 613                return ret;
 614        }
 615        /*
 616         * Usefulness of mixing of reserved and unreserved handles is
 617         * questionable. So far nobody seems to need it so just error out.
 618         */
 619        if (WARN_ON(current->journal_info)) {
 620                jbd2_journal_free_reserved(handle);
 621                return ret;
 622        }
 623
 624        handle->h_journal = NULL;
 625        /*
 626         * GFP_NOFS is here because callers are likely from writeback or
 627         * similarly constrained call sites
 628         */
 629        ret = start_this_handle(journal, handle, GFP_NOFS);
 630        if (ret < 0) {
 631                handle->h_journal = journal;
 632                jbd2_journal_free_reserved(handle);
 633                return ret;
 634        }
 635        handle->h_type = type;
 636        handle->h_line_no = line_no;
 637        trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 638                                handle->h_transaction->t_tid, type,
 639                                line_no, handle->h_total_credits);
 640        return 0;
 641}
 642EXPORT_SYMBOL(jbd2_journal_start_reserved);
 643
 644/**
 645 * jbd2_journal_extend() - extend buffer credits.
 646 * @handle:  handle to 'extend'
 647 * @nblocks: nr blocks to try to extend by.
 648 * @revoke_records: number of revoke records to try to extend by.
 649 *
 650 * Some transactions, such as large extends and truncates, can be done
 651 * atomically all at once or in several stages.  The operation requests
 652 * a credit for a number of buffer modifications in advance, but can
 653 * extend its credit if it needs more.
 654 *
 655 * jbd2_journal_extend tries to give the running handle more buffer credits.
 656 * It does not guarantee that allocation - this is a best-effort only.
 657 * The calling process MUST be able to deal cleanly with a failure to
 658 * extend here.
 659 *
 660 * Return 0 on success, non-zero on failure.
 661 *
 662 * return code < 0 implies an error
 663 * return code > 0 implies normal transaction-full status.
 664 */
 665int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
 666{
 667        transaction_t *transaction = handle->h_transaction;
 668        journal_t *journal;
 669        int result;
 670        int wanted;
 671
 672        if (is_handle_aborted(handle))
 673                return -EROFS;
 674        journal = transaction->t_journal;
 675
 676        result = 1;
 677
 678        read_lock(&journal->j_state_lock);
 679
 680        /* Don't extend a locked-down transaction! */
 681        if (transaction->t_state != T_RUNNING) {
 682                jbd_debug(3, "denied handle %p %d blocks: "
 683                          "transaction not running\n", handle, nblocks);
 684                goto error_out;
 685        }
 686
 687        nblocks += DIV_ROUND_UP(
 688                        handle->h_revoke_credits_requested + revoke_records,
 689                        journal->j_revoke_records_per_block) -
 690                DIV_ROUND_UP(
 691                        handle->h_revoke_credits_requested,
 692                        journal->j_revoke_records_per_block);
 693        spin_lock(&transaction->t_handle_lock);
 694        wanted = atomic_add_return(nblocks,
 695                                   &transaction->t_outstanding_credits);
 696
 697        if (wanted > journal->j_max_transaction_buffers) {
 698                jbd_debug(3, "denied handle %p %d blocks: "
 699                          "transaction too large\n", handle, nblocks);
 700                atomic_sub(nblocks, &transaction->t_outstanding_credits);
 701                goto unlock;
 702        }
 703
 704        trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
 705                                 transaction->t_tid,
 706                                 handle->h_type, handle->h_line_no,
 707                                 handle->h_total_credits,
 708                                 nblocks);
 709
 710        handle->h_total_credits += nblocks;
 711        handle->h_requested_credits += nblocks;
 712        handle->h_revoke_credits += revoke_records;
 713        handle->h_revoke_credits_requested += revoke_records;
 714        result = 0;
 715
 716        jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
 717unlock:
 718        spin_unlock(&transaction->t_handle_lock);
 719error_out:
 720        read_unlock(&journal->j_state_lock);
 721        return result;
 722}
 723
 724static void stop_this_handle(handle_t *handle)
 725{
 726        transaction_t *transaction = handle->h_transaction;
 727        journal_t *journal = transaction->t_journal;
 728        int revokes;
 729
 730        J_ASSERT(journal_current_handle() == handle);
 731        J_ASSERT(atomic_read(&transaction->t_updates) > 0);
 732        current->journal_info = NULL;
 733        /*
 734         * Subtract necessary revoke descriptor blocks from handle credits. We
 735         * take care to account only for revoke descriptor blocks the
 736         * transaction will really need as large sequences of transactions with
 737         * small numbers of revokes are relatively common.
 738         */
 739        revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
 740        if (revokes) {
 741                int t_revokes, revoke_descriptors;
 742                int rr_per_blk = journal->j_revoke_records_per_block;
 743
 744                WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
 745                                > handle->h_total_credits);
 746                t_revokes = atomic_add_return(revokes,
 747                                &transaction->t_outstanding_revokes);
 748                revoke_descriptors =
 749                        DIV_ROUND_UP(t_revokes, rr_per_blk) -
 750                        DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
 751                handle->h_total_credits -= revoke_descriptors;
 752        }
 753        atomic_sub(handle->h_total_credits,
 754                   &transaction->t_outstanding_credits);
 755        if (handle->h_rsv_handle)
 756                __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
 757                                                transaction);
 758        if (atomic_dec_and_test(&transaction->t_updates))
 759                wake_up(&journal->j_wait_updates);
 760
 761        rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
 762        /*
 763         * Scope of the GFP_NOFS context is over here and so we can restore the
 764         * original alloc context.
 765         */
 766        memalloc_nofs_restore(handle->saved_alloc_context);
 767}
 768
 769/**
 770 * jbd2__journal_restart() - restart a handle .
 771 * @handle:  handle to restart
 772 * @nblocks: nr credits requested
 773 * @revoke_records: number of revoke record credits requested
 774 * @gfp_mask: memory allocation flags (for start_this_handle)
 775 *
 776 * Restart a handle for a multi-transaction filesystem
 777 * operation.
 778 *
 779 * If the jbd2_journal_extend() call above fails to grant new buffer credits
 780 * to a running handle, a call to jbd2_journal_restart will commit the
 781 * handle's transaction so far and reattach the handle to a new
 782 * transaction capable of guaranteeing the requested number of
 783 * credits. We preserve reserved handle if there's any attached to the
 784 * passed in handle.
 785 */
 786int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
 787                          gfp_t gfp_mask)
 788{
 789        transaction_t *transaction = handle->h_transaction;
 790        journal_t *journal;
 791        tid_t           tid;
 792        int             need_to_start;
 793        int             ret;
 794
 795        /* If we've had an abort of any type, don't even think about
 796         * actually doing the restart! */
 797        if (is_handle_aborted(handle))
 798                return 0;
 799        journal = transaction->t_journal;
 800        tid = transaction->t_tid;
 801
 802        /*
 803         * First unlink the handle from its current transaction, and start the
 804         * commit on that.
 805         */
 806        jbd_debug(2, "restarting handle %p\n", handle);
 807        stop_this_handle(handle);
 808        handle->h_transaction = NULL;
 809
 810        /*
 811         * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
 812         * get rid of pointless j_state_lock traffic like this.
 813         */
 814        read_lock(&journal->j_state_lock);
 815        need_to_start = !tid_geq(journal->j_commit_request, tid);
 816        read_unlock(&journal->j_state_lock);
 817        if (need_to_start)
 818                jbd2_log_start_commit(journal, tid);
 819        handle->h_total_credits = nblocks +
 820                DIV_ROUND_UP(revoke_records,
 821                             journal->j_revoke_records_per_block);
 822        handle->h_revoke_credits = revoke_records;
 823        ret = start_this_handle(journal, handle, gfp_mask);
 824        trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
 825                                 ret ? 0 : handle->h_transaction->t_tid,
 826                                 handle->h_type, handle->h_line_no,
 827                                 handle->h_total_credits);
 828        return ret;
 829}
 830EXPORT_SYMBOL(jbd2__journal_restart);
 831
 832
 833int jbd2_journal_restart(handle_t *handle, int nblocks)
 834{
 835        return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
 836}
 837EXPORT_SYMBOL(jbd2_journal_restart);
 838
 839/**
 840 * jbd2_journal_lock_updates () - establish a transaction barrier.
 841 * @journal:  Journal to establish a barrier on.
 842 *
 843 * This locks out any further updates from being started, and blocks
 844 * until all existing updates have completed, returning only once the
 845 * journal is in a quiescent state with no updates running.
 846 *
 847 * The journal lock should not be held on entry.
 848 */
 849void jbd2_journal_lock_updates(journal_t *journal)
 850{
 851        DEFINE_WAIT(wait);
 852
 853        jbd2_might_wait_for_commit(journal);
 854
 855        write_lock(&journal->j_state_lock);
 856        ++journal->j_barrier_count;
 857
 858        /* Wait until there are no reserved handles */
 859        if (atomic_read(&journal->j_reserved_credits)) {
 860                write_unlock(&journal->j_state_lock);
 861                wait_event(journal->j_wait_reserved,
 862                           atomic_read(&journal->j_reserved_credits) == 0);
 863                write_lock(&journal->j_state_lock);
 864        }
 865
 866        /* Wait until there are no running updates */
 867        while (1) {
 868                transaction_t *transaction = journal->j_running_transaction;
 869
 870                if (!transaction)
 871                        break;
 872
 873                spin_lock(&transaction->t_handle_lock);
 874                prepare_to_wait(&journal->j_wait_updates, &wait,
 875                                TASK_UNINTERRUPTIBLE);
 876                if (!atomic_read(&transaction->t_updates)) {
 877                        spin_unlock(&transaction->t_handle_lock);
 878                        finish_wait(&journal->j_wait_updates, &wait);
 879                        break;
 880                }
 881                spin_unlock(&transaction->t_handle_lock);
 882                write_unlock(&journal->j_state_lock);
 883                schedule();
 884                finish_wait(&journal->j_wait_updates, &wait);
 885                write_lock(&journal->j_state_lock);
 886        }
 887        write_unlock(&journal->j_state_lock);
 888
 889        /*
 890         * We have now established a barrier against other normal updates, but
 891         * we also need to barrier against other jbd2_journal_lock_updates() calls
 892         * to make sure that we serialise special journal-locked operations
 893         * too.
 894         */
 895        mutex_lock(&journal->j_barrier);
 896}
 897
 898/**
 899 * jbd2_journal_unlock_updates () - release barrier
 900 * @journal:  Journal to release the barrier on.
 901 *
 902 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
 903 *
 904 * Should be called without the journal lock held.
 905 */
 906void jbd2_journal_unlock_updates (journal_t *journal)
 907{
 908        J_ASSERT(journal->j_barrier_count != 0);
 909
 910        mutex_unlock(&journal->j_barrier);
 911        write_lock(&journal->j_state_lock);
 912        --journal->j_barrier_count;
 913        write_unlock(&journal->j_state_lock);
 914        wake_up(&journal->j_wait_transaction_locked);
 915}
 916
 917static void warn_dirty_buffer(struct buffer_head *bh)
 918{
 919        printk(KERN_WARNING
 920               "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
 921               "There's a risk of filesystem corruption in case of system "
 922               "crash.\n",
 923               bh->b_bdev, (unsigned long long)bh->b_blocknr);
 924}
 925
 926/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
 927static void jbd2_freeze_jh_data(struct journal_head *jh)
 928{
 929        struct page *page;
 930        int offset;
 931        char *source;
 932        struct buffer_head *bh = jh2bh(jh);
 933
 934        J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
 935        page = bh->b_page;
 936        offset = offset_in_page(bh->b_data);
 937        source = kmap_atomic(page);
 938        /* Fire data frozen trigger just before we copy the data */
 939        jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
 940        memcpy(jh->b_frozen_data, source + offset, bh->b_size);
 941        kunmap_atomic(source);
 942
 943        /*
 944         * Now that the frozen data is saved off, we need to store any matching
 945         * triggers.
 946         */
 947        jh->b_frozen_triggers = jh->b_triggers;
 948}
 949
 950/*
 951 * If the buffer is already part of the current transaction, then there
 952 * is nothing we need to do.  If it is already part of a prior
 953 * transaction which we are still committing to disk, then we need to
 954 * make sure that we do not overwrite the old copy: we do copy-out to
 955 * preserve the copy going to disk.  We also account the buffer against
 956 * the handle's metadata buffer credits (unless the buffer is already
 957 * part of the transaction, that is).
 958 *
 959 */
 960static int
 961do_get_write_access(handle_t *handle, struct journal_head *jh,
 962                        int force_copy)
 963{
 964        struct buffer_head *bh;
 965        transaction_t *transaction = handle->h_transaction;
 966        journal_t *journal;
 967        int error;
 968        char *frozen_buffer = NULL;
 969        unsigned long start_lock, time_lock;
 970
 971        journal = transaction->t_journal;
 972
 973        jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
 974
 975        JBUFFER_TRACE(jh, "entry");
 976repeat:
 977        bh = jh2bh(jh);
 978
 979        /* @@@ Need to check for errors here at some point. */
 980
 981        start_lock = jiffies;
 982        lock_buffer(bh);
 983        spin_lock(&jh->b_state_lock);
 984
 985        /* If it takes too long to lock the buffer, trace it */
 986        time_lock = jbd2_time_diff(start_lock, jiffies);
 987        if (time_lock > HZ/10)
 988                trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
 989                        jiffies_to_msecs(time_lock));
 990
 991        /* We now hold the buffer lock so it is safe to query the buffer
 992         * state.  Is the buffer dirty?
 993         *
 994         * If so, there are two possibilities.  The buffer may be
 995         * non-journaled, and undergoing a quite legitimate writeback.
 996         * Otherwise, it is journaled, and we don't expect dirty buffers
 997         * in that state (the buffers should be marked JBD_Dirty
 998         * instead.)  So either the IO is being done under our own
 999         * control and this is a bug, or it's a third party IO such as
1000         * dump(8) (which may leave the buffer scheduled for read ---
1001         * ie. locked but not dirty) or tune2fs (which may actually have
1002         * the buffer dirtied, ugh.)  */
1003
1004        if (buffer_dirty(bh)) {
1005                /*
1006                 * First question: is this buffer already part of the current
1007                 * transaction or the existing committing transaction?
1008                 */
1009                if (jh->b_transaction) {
1010                        J_ASSERT_JH(jh,
1011                                jh->b_transaction == transaction ||
1012                                jh->b_transaction ==
1013                                        journal->j_committing_transaction);
1014                        if (jh->b_next_transaction)
1015                                J_ASSERT_JH(jh, jh->b_next_transaction ==
1016                                                        transaction);
1017                        warn_dirty_buffer(bh);
1018                }
1019                /*
1020                 * In any case we need to clean the dirty flag and we must
1021                 * do it under the buffer lock to be sure we don't race
1022                 * with running write-out.
1023                 */
1024                JBUFFER_TRACE(jh, "Journalling dirty buffer");
1025                clear_buffer_dirty(bh);
1026                set_buffer_jbddirty(bh);
1027        }
1028
1029        unlock_buffer(bh);
1030
1031        error = -EROFS;
1032        if (is_handle_aborted(handle)) {
1033                spin_unlock(&jh->b_state_lock);
1034                goto out;
1035        }
1036        error = 0;
1037
1038        /*
1039         * The buffer is already part of this transaction if b_transaction or
1040         * b_next_transaction points to it
1041         */
1042        if (jh->b_transaction == transaction ||
1043            jh->b_next_transaction == transaction)
1044                goto done;
1045
1046        /*
1047         * this is the first time this transaction is touching this buffer,
1048         * reset the modified flag
1049         */
1050        jh->b_modified = 0;
1051
1052        /*
1053         * If the buffer is not journaled right now, we need to make sure it
1054         * doesn't get written to disk before the caller actually commits the
1055         * new data
1056         */
1057        if (!jh->b_transaction) {
1058                JBUFFER_TRACE(jh, "no transaction");
1059                J_ASSERT_JH(jh, !jh->b_next_transaction);
1060                JBUFFER_TRACE(jh, "file as BJ_Reserved");
1061                /*
1062                 * Make sure all stores to jh (b_modified, b_frozen_data) are
1063                 * visible before attaching it to the running transaction.
1064                 * Paired with barrier in jbd2_write_access_granted()
1065                 */
1066                smp_wmb();
1067                spin_lock(&journal->j_list_lock);
1068                __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1069                spin_unlock(&journal->j_list_lock);
1070                goto done;
1071        }
1072        /*
1073         * If there is already a copy-out version of this buffer, then we don't
1074         * need to make another one
1075         */
1076        if (jh->b_frozen_data) {
1077                JBUFFER_TRACE(jh, "has frozen data");
1078                J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1079                goto attach_next;
1080        }
1081
1082        JBUFFER_TRACE(jh, "owned by older transaction");
1083        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1084        J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1085
1086        /*
1087         * There is one case we have to be very careful about.  If the
1088         * committing transaction is currently writing this buffer out to disk
1089         * and has NOT made a copy-out, then we cannot modify the buffer
1090         * contents at all right now.  The essence of copy-out is that it is
1091         * the extra copy, not the primary copy, which gets journaled.  If the
1092         * primary copy is already going to disk then we cannot do copy-out
1093         * here.
1094         */
1095        if (buffer_shadow(bh)) {
1096                JBUFFER_TRACE(jh, "on shadow: sleep");
1097                spin_unlock(&jh->b_state_lock);
1098                wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1099                goto repeat;
1100        }
1101
1102        /*
1103         * Only do the copy if the currently-owning transaction still needs it.
1104         * If buffer isn't on BJ_Metadata list, the committing transaction is
1105         * past that stage (here we use the fact that BH_Shadow is set under
1106         * bh_state lock together with refiling to BJ_Shadow list and at this
1107         * point we know the buffer doesn't have BH_Shadow set).
1108         *
1109         * Subtle point, though: if this is a get_undo_access, then we will be
1110         * relying on the frozen_data to contain the new value of the
1111         * committed_data record after the transaction, so we HAVE to force the
1112         * frozen_data copy in that case.
1113         */
1114        if (jh->b_jlist == BJ_Metadata || force_copy) {
1115                JBUFFER_TRACE(jh, "generate frozen data");
1116                if (!frozen_buffer) {
1117                        JBUFFER_TRACE(jh, "allocate memory for buffer");
1118                        spin_unlock(&jh->b_state_lock);
1119                        frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1120                                                   GFP_NOFS | __GFP_NOFAIL);
1121                        goto repeat;
1122                }
1123                jh->b_frozen_data = frozen_buffer;
1124                frozen_buffer = NULL;
1125                jbd2_freeze_jh_data(jh);
1126        }
1127attach_next:
1128        /*
1129         * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1130         * before attaching it to the running transaction. Paired with barrier
1131         * in jbd2_write_access_granted()
1132         */
1133        smp_wmb();
1134        jh->b_next_transaction = transaction;
1135
1136done:
1137        spin_unlock(&jh->b_state_lock);
1138
1139        /*
1140         * If we are about to journal a buffer, then any revoke pending on it is
1141         * no longer valid
1142         */
1143        jbd2_journal_cancel_revoke(handle, jh);
1144
1145out:
1146        if (unlikely(frozen_buffer))    /* It's usually NULL */
1147                jbd2_free(frozen_buffer, bh->b_size);
1148
1149        JBUFFER_TRACE(jh, "exit");
1150        return error;
1151}
1152
1153/* Fast check whether buffer is already attached to the required transaction */
1154static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1155                                                        bool undo)
1156{
1157        struct journal_head *jh;
1158        bool ret = false;
1159
1160        /* Dirty buffers require special handling... */
1161        if (buffer_dirty(bh))
1162                return false;
1163
1164        /*
1165         * RCU protects us from dereferencing freed pages. So the checks we do
1166         * are guaranteed not to oops. However the jh slab object can get freed
1167         * & reallocated while we work with it. So we have to be careful. When
1168         * we see jh attached to the running transaction, we know it must stay
1169         * so until the transaction is committed. Thus jh won't be freed and
1170         * will be attached to the same bh while we run.  However it can
1171         * happen jh gets freed, reallocated, and attached to the transaction
1172         * just after we get pointer to it from bh. So we have to be careful
1173         * and recheck jh still belongs to our bh before we return success.
1174         */
1175        rcu_read_lock();
1176        if (!buffer_jbd(bh))
1177                goto out;
1178        /* This should be bh2jh() but that doesn't work with inline functions */
1179        jh = READ_ONCE(bh->b_private);
1180        if (!jh)
1181                goto out;
1182        /* For undo access buffer must have data copied */
1183        if (undo && !jh->b_committed_data)
1184                goto out;
1185        if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1186            READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1187                goto out;
1188        /*
1189         * There are two reasons for the barrier here:
1190         * 1) Make sure to fetch b_bh after we did previous checks so that we
1191         * detect when jh went through free, realloc, attach to transaction
1192         * while we were checking. Paired with implicit barrier in that path.
1193         * 2) So that access to bh done after jbd2_write_access_granted()
1194         * doesn't get reordered and see inconsistent state of concurrent
1195         * do_get_write_access().
1196         */
1197        smp_mb();
1198        if (unlikely(jh->b_bh != bh))
1199                goto out;
1200        ret = true;
1201out:
1202        rcu_read_unlock();
1203        return ret;
1204}
1205
1206/**
1207 * jbd2_journal_get_write_access() - notify intent to modify a buffer
1208 *                                   for metadata (not data) update.
1209 * @handle: transaction to add buffer modifications to
1210 * @bh:     bh to be used for metadata writes
1211 *
1212 * Returns: error code or 0 on success.
1213 *
1214 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1215 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1216 */
1217
1218int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1219{
1220        struct journal_head *jh;
1221        int rc;
1222
1223        if (is_handle_aborted(handle))
1224                return -EROFS;
1225
1226        if (jbd2_write_access_granted(handle, bh, false))
1227                return 0;
1228
1229        jh = jbd2_journal_add_journal_head(bh);
1230        /* We do not want to get caught playing with fields which the
1231         * log thread also manipulates.  Make sure that the buffer
1232         * completes any outstanding IO before proceeding. */
1233        rc = do_get_write_access(handle, jh, 0);
1234        jbd2_journal_put_journal_head(jh);
1235        return rc;
1236}
1237
1238
1239/*
1240 * When the user wants to journal a newly created buffer_head
1241 * (ie. getblk() returned a new buffer and we are going to populate it
1242 * manually rather than reading off disk), then we need to keep the
1243 * buffer_head locked until it has been completely filled with new
1244 * data.  In this case, we should be able to make the assertion that
1245 * the bh is not already part of an existing transaction.
1246 *
1247 * The buffer should already be locked by the caller by this point.
1248 * There is no lock ranking violation: it was a newly created,
1249 * unlocked buffer beforehand. */
1250
1251/**
1252 * jbd2_journal_get_create_access () - notify intent to use newly created bh
1253 * @handle: transaction to new buffer to
1254 * @bh: new buffer.
1255 *
1256 * Call this if you create a new bh.
1257 */
1258int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1259{
1260        transaction_t *transaction = handle->h_transaction;
1261        journal_t *journal;
1262        struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1263        int err;
1264
1265        jbd_debug(5, "journal_head %p\n", jh);
1266        err = -EROFS;
1267        if (is_handle_aborted(handle))
1268                goto out;
1269        journal = transaction->t_journal;
1270        err = 0;
1271
1272        JBUFFER_TRACE(jh, "entry");
1273        /*
1274         * The buffer may already belong to this transaction due to pre-zeroing
1275         * in the filesystem's new_block code.  It may also be on the previous,
1276         * committing transaction's lists, but it HAS to be in Forget state in
1277         * that case: the transaction must have deleted the buffer for it to be
1278         * reused here.
1279         */
1280        spin_lock(&jh->b_state_lock);
1281        J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1282                jh->b_transaction == NULL ||
1283                (jh->b_transaction == journal->j_committing_transaction &&
1284                          jh->b_jlist == BJ_Forget)));
1285
1286        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1287        J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1288
1289        if (jh->b_transaction == NULL) {
1290                /*
1291                 * Previous jbd2_journal_forget() could have left the buffer
1292                 * with jbddirty bit set because it was being committed. When
1293                 * the commit finished, we've filed the buffer for
1294                 * checkpointing and marked it dirty. Now we are reallocating
1295                 * the buffer so the transaction freeing it must have
1296                 * committed and so it's safe to clear the dirty bit.
1297                 */
1298                clear_buffer_dirty(jh2bh(jh));
1299                /* first access by this transaction */
1300                jh->b_modified = 0;
1301
1302                JBUFFER_TRACE(jh, "file as BJ_Reserved");
1303                spin_lock(&journal->j_list_lock);
1304                __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1305                spin_unlock(&journal->j_list_lock);
1306        } else if (jh->b_transaction == journal->j_committing_transaction) {
1307                /* first access by this transaction */
1308                jh->b_modified = 0;
1309
1310                JBUFFER_TRACE(jh, "set next transaction");
1311                spin_lock(&journal->j_list_lock);
1312                jh->b_next_transaction = transaction;
1313                spin_unlock(&journal->j_list_lock);
1314        }
1315        spin_unlock(&jh->b_state_lock);
1316
1317        /*
1318         * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1319         * blocks which contain freed but then revoked metadata.  We need
1320         * to cancel the revoke in case we end up freeing it yet again
1321         * and the reallocating as data - this would cause a second revoke,
1322         * which hits an assertion error.
1323         */
1324        JBUFFER_TRACE(jh, "cancelling revoke");
1325        jbd2_journal_cancel_revoke(handle, jh);
1326out:
1327        jbd2_journal_put_journal_head(jh);
1328        return err;
1329}
1330
1331/**
1332 * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1333 *     non-rewindable consequences
1334 * @handle: transaction
1335 * @bh: buffer to undo
1336 *
1337 * Sometimes there is a need to distinguish between metadata which has
1338 * been committed to disk and that which has not.  The ext3fs code uses
1339 * this for freeing and allocating space, we have to make sure that we
1340 * do not reuse freed space until the deallocation has been committed,
1341 * since if we overwrote that space we would make the delete
1342 * un-rewindable in case of a crash.
1343 *
1344 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1345 * buffer for parts of non-rewindable operations such as delete
1346 * operations on the bitmaps.  The journaling code must keep a copy of
1347 * the buffer's contents prior to the undo_access call until such time
1348 * as we know that the buffer has definitely been committed to disk.
1349 *
1350 * We never need to know which transaction the committed data is part
1351 * of, buffers touched here are guaranteed to be dirtied later and so
1352 * will be committed to a new transaction in due course, at which point
1353 * we can discard the old committed data pointer.
1354 *
1355 * Returns error number or 0 on success.
1356 */
1357int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1358{
1359        int err;
1360        struct journal_head *jh;
1361        char *committed_data = NULL;
1362
1363        if (is_handle_aborted(handle))
1364                return -EROFS;
1365
1366        if (jbd2_write_access_granted(handle, bh, true))
1367                return 0;
1368
1369        jh = jbd2_journal_add_journal_head(bh);
1370        JBUFFER_TRACE(jh, "entry");
1371
1372        /*
1373         * Do this first --- it can drop the journal lock, so we want to
1374         * make sure that obtaining the committed_data is done
1375         * atomically wrt. completion of any outstanding commits.
1376         */
1377        err = do_get_write_access(handle, jh, 1);
1378        if (err)
1379                goto out;
1380
1381repeat:
1382        if (!jh->b_committed_data)
1383                committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1384                                            GFP_NOFS|__GFP_NOFAIL);
1385
1386        spin_lock(&jh->b_state_lock);
1387        if (!jh->b_committed_data) {
1388                /* Copy out the current buffer contents into the
1389                 * preserved, committed copy. */
1390                JBUFFER_TRACE(jh, "generate b_committed data");
1391                if (!committed_data) {
1392                        spin_unlock(&jh->b_state_lock);
1393                        goto repeat;
1394                }
1395
1396                jh->b_committed_data = committed_data;
1397                committed_data = NULL;
1398                memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1399        }
1400        spin_unlock(&jh->b_state_lock);
1401out:
1402        jbd2_journal_put_journal_head(jh);
1403        if (unlikely(committed_data))
1404                jbd2_free(committed_data, bh->b_size);
1405        return err;
1406}
1407
1408/**
1409 * jbd2_journal_set_triggers() - Add triggers for commit writeout
1410 * @bh: buffer to trigger on
1411 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1412 *
1413 * Set any triggers on this journal_head.  This is always safe, because
1414 * triggers for a committing buffer will be saved off, and triggers for
1415 * a running transaction will match the buffer in that transaction.
1416 *
1417 * Call with NULL to clear the triggers.
1418 */
1419void jbd2_journal_set_triggers(struct buffer_head *bh,
1420                               struct jbd2_buffer_trigger_type *type)
1421{
1422        struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1423
1424        if (WARN_ON_ONCE(!jh))
1425                return;
1426        jh->b_triggers = type;
1427        jbd2_journal_put_journal_head(jh);
1428}
1429
1430void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1431                                struct jbd2_buffer_trigger_type *triggers)
1432{
1433        struct buffer_head *bh = jh2bh(jh);
1434
1435        if (!triggers || !triggers->t_frozen)
1436                return;
1437
1438        triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1439}
1440
1441void jbd2_buffer_abort_trigger(struct journal_head *jh,
1442                               struct jbd2_buffer_trigger_type *triggers)
1443{
1444        if (!triggers || !triggers->t_abort)
1445                return;
1446
1447        triggers->t_abort(triggers, jh2bh(jh));
1448}
1449
1450/**
1451 * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1452 * @handle: transaction to add buffer to.
1453 * @bh: buffer to mark
1454 *
1455 * mark dirty metadata which needs to be journaled as part of the current
1456 * transaction.
1457 *
1458 * The buffer must have previously had jbd2_journal_get_write_access()
1459 * called so that it has a valid journal_head attached to the buffer
1460 * head.
1461 *
1462 * The buffer is placed on the transaction's metadata list and is marked
1463 * as belonging to the transaction.
1464 *
1465 * Returns error number or 0 on success.
1466 *
1467 * Special care needs to be taken if the buffer already belongs to the
1468 * current committing transaction (in which case we should have frozen
1469 * data present for that commit).  In that case, we don't relink the
1470 * buffer: that only gets done when the old transaction finally
1471 * completes its commit.
1472 */
1473int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1474{
1475        transaction_t *transaction = handle->h_transaction;
1476        journal_t *journal;
1477        struct journal_head *jh;
1478        int ret = 0;
1479
1480        if (is_handle_aborted(handle))
1481                return -EROFS;
1482        if (!buffer_jbd(bh))
1483                return -EUCLEAN;
1484
1485        /*
1486         * We don't grab jh reference here since the buffer must be part
1487         * of the running transaction.
1488         */
1489        jh = bh2jh(bh);
1490        jbd_debug(5, "journal_head %p\n", jh);
1491        JBUFFER_TRACE(jh, "entry");
1492
1493        /*
1494         * This and the following assertions are unreliable since we may see jh
1495         * in inconsistent state unless we grab bh_state lock. But this is
1496         * crucial to catch bugs so let's do a reliable check until the
1497         * lockless handling is fully proven.
1498         */
1499        if (data_race(jh->b_transaction != transaction &&
1500            jh->b_next_transaction != transaction)) {
1501                spin_lock(&jh->b_state_lock);
1502                J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1503                                jh->b_next_transaction == transaction);
1504                spin_unlock(&jh->b_state_lock);
1505        }
1506        if (jh->b_modified == 1) {
1507                /* If it's in our transaction it must be in BJ_Metadata list. */
1508                if (data_race(jh->b_transaction == transaction &&
1509                    jh->b_jlist != BJ_Metadata)) {
1510                        spin_lock(&jh->b_state_lock);
1511                        if (jh->b_transaction == transaction &&
1512                            jh->b_jlist != BJ_Metadata)
1513                                pr_err("JBD2: assertion failure: h_type=%u "
1514                                       "h_line_no=%u block_no=%llu jlist=%u\n",
1515                                       handle->h_type, handle->h_line_no,
1516                                       (unsigned long long) bh->b_blocknr,
1517                                       jh->b_jlist);
1518                        J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1519                                        jh->b_jlist == BJ_Metadata);
1520                        spin_unlock(&jh->b_state_lock);
1521                }
1522                goto out;
1523        }
1524
1525        journal = transaction->t_journal;
1526        spin_lock(&jh->b_state_lock);
1527
1528        if (jh->b_modified == 0) {
1529                /*
1530                 * This buffer's got modified and becoming part
1531                 * of the transaction. This needs to be done
1532                 * once a transaction -bzzz
1533                 */
1534                if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1535                        ret = -ENOSPC;
1536                        goto out_unlock_bh;
1537                }
1538                jh->b_modified = 1;
1539                handle->h_total_credits--;
1540        }
1541
1542        /*
1543         * fastpath, to avoid expensive locking.  If this buffer is already
1544         * on the running transaction's metadata list there is nothing to do.
1545         * Nobody can take it off again because there is a handle open.
1546         * I _think_ we're OK here with SMP barriers - a mistaken decision will
1547         * result in this test being false, so we go in and take the locks.
1548         */
1549        if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1550                JBUFFER_TRACE(jh, "fastpath");
1551                if (unlikely(jh->b_transaction !=
1552                             journal->j_running_transaction)) {
1553                        printk(KERN_ERR "JBD2: %s: "
1554                               "jh->b_transaction (%llu, %p, %u) != "
1555                               "journal->j_running_transaction (%p, %u)\n",
1556                               journal->j_devname,
1557                               (unsigned long long) bh->b_blocknr,
1558                               jh->b_transaction,
1559                               jh->b_transaction ? jh->b_transaction->t_tid : 0,
1560                               journal->j_running_transaction,
1561                               journal->j_running_transaction ?
1562                               journal->j_running_transaction->t_tid : 0);
1563                        ret = -EINVAL;
1564                }
1565                goto out_unlock_bh;
1566        }
1567
1568        set_buffer_jbddirty(bh);
1569
1570        /*
1571         * Metadata already on the current transaction list doesn't
1572         * need to be filed.  Metadata on another transaction's list must
1573         * be committing, and will be refiled once the commit completes:
1574         * leave it alone for now.
1575         */
1576        if (jh->b_transaction != transaction) {
1577                JBUFFER_TRACE(jh, "already on other transaction");
1578                if (unlikely(((jh->b_transaction !=
1579                               journal->j_committing_transaction)) ||
1580                             (jh->b_next_transaction != transaction))) {
1581                        printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1582                               "bad jh for block %llu: "
1583                               "transaction (%p, %u), "
1584                               "jh->b_transaction (%p, %u), "
1585                               "jh->b_next_transaction (%p, %u), jlist %u\n",
1586                               journal->j_devname,
1587                               (unsigned long long) bh->b_blocknr,
1588                               transaction, transaction->t_tid,
1589                               jh->b_transaction,
1590                               jh->b_transaction ?
1591                               jh->b_transaction->t_tid : 0,
1592                               jh->b_next_transaction,
1593                               jh->b_next_transaction ?
1594                               jh->b_next_transaction->t_tid : 0,
1595                               jh->b_jlist);
1596                        WARN_ON(1);
1597                        ret = -EINVAL;
1598                }
1599                /* And this case is illegal: we can't reuse another
1600                 * transaction's data buffer, ever. */
1601                goto out_unlock_bh;
1602        }
1603
1604        /* That test should have eliminated the following case: */
1605        J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1606
1607        JBUFFER_TRACE(jh, "file as BJ_Metadata");
1608        spin_lock(&journal->j_list_lock);
1609        __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1610        spin_unlock(&journal->j_list_lock);
1611out_unlock_bh:
1612        spin_unlock(&jh->b_state_lock);
1613out:
1614        JBUFFER_TRACE(jh, "exit");
1615        return ret;
1616}
1617
1618/**
1619 * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1620 * @handle: transaction handle
1621 * @bh:     bh to 'forget'
1622 *
1623 * We can only do the bforget if there are no commits pending against the
1624 * buffer.  If the buffer is dirty in the current running transaction we
1625 * can safely unlink it.
1626 *
1627 * bh may not be a journalled buffer at all - it may be a non-JBD
1628 * buffer which came off the hashtable.  Check for this.
1629 *
1630 * Decrements bh->b_count by one.
1631 *
1632 * Allow this call even if the handle has aborted --- it may be part of
1633 * the caller's cleanup after an abort.
1634 */
1635int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1636{
1637        transaction_t *transaction = handle->h_transaction;
1638        journal_t *journal;
1639        struct journal_head *jh;
1640        int drop_reserve = 0;
1641        int err = 0;
1642        int was_modified = 0;
1643
1644        if (is_handle_aborted(handle))
1645                return -EROFS;
1646        journal = transaction->t_journal;
1647
1648        BUFFER_TRACE(bh, "entry");
1649
1650        jh = jbd2_journal_grab_journal_head(bh);
1651        if (!jh) {
1652                __bforget(bh);
1653                return 0;
1654        }
1655
1656        spin_lock(&jh->b_state_lock);
1657
1658        /* Critical error: attempting to delete a bitmap buffer, maybe?
1659         * Don't do any jbd operations, and return an error. */
1660        if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1661                         "inconsistent data on disk")) {
1662                err = -EIO;
1663                goto drop;
1664        }
1665
1666        /* keep track of whether or not this transaction modified us */
1667        was_modified = jh->b_modified;
1668
1669        /*
1670         * The buffer's going from the transaction, we must drop
1671         * all references -bzzz
1672         */
1673        jh->b_modified = 0;
1674
1675        if (jh->b_transaction == transaction) {
1676                J_ASSERT_JH(jh, !jh->b_frozen_data);
1677
1678                /* If we are forgetting a buffer which is already part
1679                 * of this transaction, then we can just drop it from
1680                 * the transaction immediately. */
1681                clear_buffer_dirty(bh);
1682                clear_buffer_jbddirty(bh);
1683
1684                JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1685
1686                /*
1687                 * we only want to drop a reference if this transaction
1688                 * modified the buffer
1689                 */
1690                if (was_modified)
1691                        drop_reserve = 1;
1692
1693                /*
1694                 * We are no longer going to journal this buffer.
1695                 * However, the commit of this transaction is still
1696                 * important to the buffer: the delete that we are now
1697                 * processing might obsolete an old log entry, so by
1698                 * committing, we can satisfy the buffer's checkpoint.
1699                 *
1700                 * So, if we have a checkpoint on the buffer, we should
1701                 * now refile the buffer on our BJ_Forget list so that
1702                 * we know to remove the checkpoint after we commit.
1703                 */
1704
1705                spin_lock(&journal->j_list_lock);
1706                if (jh->b_cp_transaction) {
1707                        __jbd2_journal_temp_unlink_buffer(jh);
1708                        __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1709                } else {
1710                        __jbd2_journal_unfile_buffer(jh);
1711                        jbd2_journal_put_journal_head(jh);
1712                }
1713                spin_unlock(&journal->j_list_lock);
1714        } else if (jh->b_transaction) {
1715                J_ASSERT_JH(jh, (jh->b_transaction ==
1716                                 journal->j_committing_transaction));
1717                /* However, if the buffer is still owned by a prior
1718                 * (committing) transaction, we can't drop it yet... */
1719                JBUFFER_TRACE(jh, "belongs to older transaction");
1720                /* ... but we CAN drop it from the new transaction through
1721                 * marking the buffer as freed and set j_next_transaction to
1722                 * the new transaction, so that not only the commit code
1723                 * knows it should clear dirty bits when it is done with the
1724                 * buffer, but also the buffer can be checkpointed only
1725                 * after the new transaction commits. */
1726
1727                set_buffer_freed(bh);
1728
1729                if (!jh->b_next_transaction) {
1730                        spin_lock(&journal->j_list_lock);
1731                        jh->b_next_transaction = transaction;
1732                        spin_unlock(&journal->j_list_lock);
1733                } else {
1734                        J_ASSERT(jh->b_next_transaction == transaction);
1735
1736                        /*
1737                         * only drop a reference if this transaction modified
1738                         * the buffer
1739                         */
1740                        if (was_modified)
1741                                drop_reserve = 1;
1742                }
1743        } else {
1744                /*
1745                 * Finally, if the buffer is not belongs to any
1746                 * transaction, we can just drop it now if it has no
1747                 * checkpoint.
1748                 */
1749                spin_lock(&journal->j_list_lock);
1750                if (!jh->b_cp_transaction) {
1751                        JBUFFER_TRACE(jh, "belongs to none transaction");
1752                        spin_unlock(&journal->j_list_lock);
1753                        goto drop;
1754                }
1755
1756                /*
1757                 * Otherwise, if the buffer has been written to disk,
1758                 * it is safe to remove the checkpoint and drop it.
1759                 */
1760                if (!buffer_dirty(bh)) {
1761                        __jbd2_journal_remove_checkpoint(jh);
1762                        spin_unlock(&journal->j_list_lock);
1763                        goto drop;
1764                }
1765
1766                /*
1767                 * The buffer is still not written to disk, we should
1768                 * attach this buffer to current transaction so that the
1769                 * buffer can be checkpointed only after the current
1770                 * transaction commits.
1771                 */
1772                clear_buffer_dirty(bh);
1773                __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1774                spin_unlock(&journal->j_list_lock);
1775        }
1776drop:
1777        __brelse(bh);
1778        spin_unlock(&jh->b_state_lock);
1779        jbd2_journal_put_journal_head(jh);
1780        if (drop_reserve) {
1781                /* no need to reserve log space for this block -bzzz */
1782                handle->h_total_credits++;
1783        }
1784        return err;
1785}
1786
1787/**
1788 * jbd2_journal_stop() - complete a transaction
1789 * @handle: transaction to complete.
1790 *
1791 * All done for a particular handle.
1792 *
1793 * There is not much action needed here.  We just return any remaining
1794 * buffer credits to the transaction and remove the handle.  The only
1795 * complication is that we need to start a commit operation if the
1796 * filesystem is marked for synchronous update.
1797 *
1798 * jbd2_journal_stop itself will not usually return an error, but it may
1799 * do so in unusual circumstances.  In particular, expect it to
1800 * return -EIO if a jbd2_journal_abort has been executed since the
1801 * transaction began.
1802 */
1803int jbd2_journal_stop(handle_t *handle)
1804{
1805        transaction_t *transaction = handle->h_transaction;
1806        journal_t *journal;
1807        int err = 0, wait_for_commit = 0;
1808        tid_t tid;
1809        pid_t pid;
1810
1811        if (--handle->h_ref > 0) {
1812                jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1813                                                 handle->h_ref);
1814                if (is_handle_aborted(handle))
1815                        return -EIO;
1816                return 0;
1817        }
1818        if (!transaction) {
1819                /*
1820                 * Handle is already detached from the transaction so there is
1821                 * nothing to do other than free the handle.
1822                 */
1823                memalloc_nofs_restore(handle->saved_alloc_context);
1824                goto free_and_exit;
1825        }
1826        journal = transaction->t_journal;
1827        tid = transaction->t_tid;
1828
1829        if (is_handle_aborted(handle))
1830                err = -EIO;
1831
1832        jbd_debug(4, "Handle %p going down\n", handle);
1833        trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1834                                tid, handle->h_type, handle->h_line_no,
1835                                jiffies - handle->h_start_jiffies,
1836                                handle->h_sync, handle->h_requested_credits,
1837                                (handle->h_requested_credits -
1838                                 handle->h_total_credits));
1839
1840        /*
1841         * Implement synchronous transaction batching.  If the handle
1842         * was synchronous, don't force a commit immediately.  Let's
1843         * yield and let another thread piggyback onto this
1844         * transaction.  Keep doing that while new threads continue to
1845         * arrive.  It doesn't cost much - we're about to run a commit
1846         * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1847         * operations by 30x or more...
1848         *
1849         * We try and optimize the sleep time against what the
1850         * underlying disk can do, instead of having a static sleep
1851         * time.  This is useful for the case where our storage is so
1852         * fast that it is more optimal to go ahead and force a flush
1853         * and wait for the transaction to be committed than it is to
1854         * wait for an arbitrary amount of time for new writers to
1855         * join the transaction.  We achieve this by measuring how
1856         * long it takes to commit a transaction, and compare it with
1857         * how long this transaction has been running, and if run time
1858         * < commit time then we sleep for the delta and commit.  This
1859         * greatly helps super fast disks that would see slowdowns as
1860         * more threads started doing fsyncs.
1861         *
1862         * But don't do this if this process was the most recent one
1863         * to perform a synchronous write.  We do this to detect the
1864         * case where a single process is doing a stream of sync
1865         * writes.  No point in waiting for joiners in that case.
1866         *
1867         * Setting max_batch_time to 0 disables this completely.
1868         */
1869        pid = current->pid;
1870        if (handle->h_sync && journal->j_last_sync_writer != pid &&
1871            journal->j_max_batch_time) {
1872                u64 commit_time, trans_time;
1873
1874                journal->j_last_sync_writer = pid;
1875
1876                read_lock(&journal->j_state_lock);
1877                commit_time = journal->j_average_commit_time;
1878                read_unlock(&journal->j_state_lock);
1879
1880                trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1881                                                   transaction->t_start_time));
1882
1883                commit_time = max_t(u64, commit_time,
1884                                    1000*journal->j_min_batch_time);
1885                commit_time = min_t(u64, commit_time,
1886                                    1000*journal->j_max_batch_time);
1887
1888                if (trans_time < commit_time) {
1889                        ktime_t expires = ktime_add_ns(ktime_get(),
1890                                                       commit_time);
1891                        set_current_state(TASK_UNINTERRUPTIBLE);
1892                        schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1893                }
1894        }
1895
1896        if (handle->h_sync)
1897                transaction->t_synchronous_commit = 1;
1898
1899        /*
1900         * If the handle is marked SYNC, we need to set another commit
1901         * going!  We also want to force a commit if the transaction is too
1902         * old now.
1903         */
1904        if (handle->h_sync ||
1905            time_after_eq(jiffies, transaction->t_expires)) {
1906                /* Do this even for aborted journals: an abort still
1907                 * completes the commit thread, it just doesn't write
1908                 * anything to disk. */
1909
1910                jbd_debug(2, "transaction too old, requesting commit for "
1911                                        "handle %p\n", handle);
1912                /* This is non-blocking */
1913                jbd2_log_start_commit(journal, tid);
1914
1915                /*
1916                 * Special case: JBD2_SYNC synchronous updates require us
1917                 * to wait for the commit to complete.
1918                 */
1919                if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1920                        wait_for_commit = 1;
1921        }
1922
1923        /*
1924         * Once stop_this_handle() drops t_updates, the transaction could start
1925         * committing on us and eventually disappear.  So we must not
1926         * dereference transaction pointer again after calling
1927         * stop_this_handle().
1928         */
1929        stop_this_handle(handle);
1930
1931        if (wait_for_commit)
1932                err = jbd2_log_wait_commit(journal, tid);
1933
1934free_and_exit:
1935        if (handle->h_rsv_handle)
1936                jbd2_free_handle(handle->h_rsv_handle);
1937        jbd2_free_handle(handle);
1938        return err;
1939}
1940
1941/*
1942 *
1943 * List management code snippets: various functions for manipulating the
1944 * transaction buffer lists.
1945 *
1946 */
1947
1948/*
1949 * Append a buffer to a transaction list, given the transaction's list head
1950 * pointer.
1951 *
1952 * j_list_lock is held.
1953 *
1954 * jh->b_state_lock is held.
1955 */
1956
1957static inline void
1958__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1959{
1960        if (!*list) {
1961                jh->b_tnext = jh->b_tprev = jh;
1962                *list = jh;
1963        } else {
1964                /* Insert at the tail of the list to preserve order */
1965                struct journal_head *first = *list, *last = first->b_tprev;
1966                jh->b_tprev = last;
1967                jh->b_tnext = first;
1968                last->b_tnext = first->b_tprev = jh;
1969        }
1970}
1971
1972/*
1973 * Remove a buffer from a transaction list, given the transaction's list
1974 * head pointer.
1975 *
1976 * Called with j_list_lock held, and the journal may not be locked.
1977 *
1978 * jh->b_state_lock is held.
1979 */
1980
1981static inline void
1982__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1983{
1984        if (*list == jh) {
1985                *list = jh->b_tnext;
1986                if (*list == jh)
1987                        *list = NULL;
1988        }
1989        jh->b_tprev->b_tnext = jh->b_tnext;
1990        jh->b_tnext->b_tprev = jh->b_tprev;
1991}
1992
1993/*
1994 * Remove a buffer from the appropriate transaction list.
1995 *
1996 * Note that this function can *change* the value of
1997 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1998 * t_reserved_list.  If the caller is holding onto a copy of one of these
1999 * pointers, it could go bad.  Generally the caller needs to re-read the
2000 * pointer from the transaction_t.
2001 *
2002 * Called under j_list_lock.
2003 */
2004static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2005{
2006        struct journal_head **list = NULL;
2007        transaction_t *transaction;
2008        struct buffer_head *bh = jh2bh(jh);
2009
2010        lockdep_assert_held(&jh->b_state_lock);
2011        transaction = jh->b_transaction;
2012        if (transaction)
2013                assert_spin_locked(&transaction->t_journal->j_list_lock);
2014
2015        J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2016        if (jh->b_jlist != BJ_None)
2017                J_ASSERT_JH(jh, transaction != NULL);
2018
2019        switch (jh->b_jlist) {
2020        case BJ_None:
2021                return;
2022        case BJ_Metadata:
2023                transaction->t_nr_buffers--;
2024                J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2025                list = &transaction->t_buffers;
2026                break;
2027        case BJ_Forget:
2028                list = &transaction->t_forget;
2029                break;
2030        case BJ_Shadow:
2031                list = &transaction->t_shadow_list;
2032                break;
2033        case BJ_Reserved:
2034                list = &transaction->t_reserved_list;
2035                break;
2036        }
2037
2038        __blist_del_buffer(list, jh);
2039        jh->b_jlist = BJ_None;
2040        if (transaction && is_journal_aborted(transaction->t_journal))
2041                clear_buffer_jbddirty(bh);
2042        else if (test_clear_buffer_jbddirty(bh))
2043                mark_buffer_dirty(bh);  /* Expose it to the VM */
2044}
2045
2046/*
2047 * Remove buffer from all transactions. The caller is responsible for dropping
2048 * the jh reference that belonged to the transaction.
2049 *
2050 * Called with bh_state lock and j_list_lock
2051 */
2052static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2053{
2054        J_ASSERT_JH(jh, jh->b_transaction != NULL);
2055        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2056
2057        __jbd2_journal_temp_unlink_buffer(jh);
2058        jh->b_transaction = NULL;
2059}
2060
2061void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2062{
2063        struct buffer_head *bh = jh2bh(jh);
2064
2065        /* Get reference so that buffer cannot be freed before we unlock it */
2066        get_bh(bh);
2067        spin_lock(&jh->b_state_lock);
2068        spin_lock(&journal->j_list_lock);
2069        __jbd2_journal_unfile_buffer(jh);
2070        spin_unlock(&journal->j_list_lock);
2071        spin_unlock(&jh->b_state_lock);
2072        jbd2_journal_put_journal_head(jh);
2073        __brelse(bh);
2074}
2075
2076/*
2077 * Called from jbd2_journal_try_to_free_buffers().
2078 *
2079 * Called under jh->b_state_lock
2080 */
2081static void
2082__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2083{
2084        struct journal_head *jh;
2085
2086        jh = bh2jh(bh);
2087
2088        if (buffer_locked(bh) || buffer_dirty(bh))
2089                goto out;
2090
2091        if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2092                goto out;
2093
2094        spin_lock(&journal->j_list_lock);
2095        if (jh->b_cp_transaction != NULL) {
2096                /* written-back checkpointed metadata buffer */
2097                JBUFFER_TRACE(jh, "remove from checkpoint list");
2098                __jbd2_journal_remove_checkpoint(jh);
2099        }
2100        spin_unlock(&journal->j_list_lock);
2101out:
2102        return;
2103}
2104
2105/**
2106 * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2107 * @journal: journal for operation
2108 * @page: to try and free
2109 *
2110 * For all the buffers on this page,
2111 * if they are fully written out ordered data, move them onto BUF_CLEAN
2112 * so try_to_free_buffers() can reap them.
2113 *
2114 * This function returns non-zero if we wish try_to_free_buffers()
2115 * to be called. We do this if the page is releasable by try_to_free_buffers().
2116 * We also do it if the page has locked or dirty buffers and the caller wants
2117 * us to perform sync or async writeout.
2118 *
2119 * This complicates JBD locking somewhat.  We aren't protected by the
2120 * BKL here.  We wish to remove the buffer from its committing or
2121 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2122 *
2123 * This may *change* the value of transaction_t->t_datalist, so anyone
2124 * who looks at t_datalist needs to lock against this function.
2125 *
2126 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2127 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2128 * will come out of the lock with the buffer dirty, which makes it
2129 * ineligible for release here.
2130 *
2131 * Who else is affected by this?  hmm...  Really the only contender
2132 * is do_get_write_access() - it could be looking at the buffer while
2133 * journal_try_to_free_buffer() is changing its state.  But that
2134 * cannot happen because we never reallocate freed data as metadata
2135 * while the data is part of a transaction.  Yes?
2136 *
2137 * Return 0 on failure, 1 on success
2138 */
2139int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
2140{
2141        struct buffer_head *head;
2142        struct buffer_head *bh;
2143        int ret = 0;
2144
2145        J_ASSERT(PageLocked(page));
2146
2147        head = page_buffers(page);
2148        bh = head;
2149        do {
2150                struct journal_head *jh;
2151
2152                /*
2153                 * We take our own ref against the journal_head here to avoid
2154                 * having to add tons of locking around each instance of
2155                 * jbd2_journal_put_journal_head().
2156                 */
2157                jh = jbd2_journal_grab_journal_head(bh);
2158                if (!jh)
2159                        continue;
2160
2161                spin_lock(&jh->b_state_lock);
2162                __journal_try_to_free_buffer(journal, bh);
2163                spin_unlock(&jh->b_state_lock);
2164                jbd2_journal_put_journal_head(jh);
2165                if (buffer_jbd(bh))
2166                        goto busy;
2167        } while ((bh = bh->b_this_page) != head);
2168
2169        ret = try_to_free_buffers(page);
2170busy:
2171        return ret;
2172}
2173
2174/*
2175 * This buffer is no longer needed.  If it is on an older transaction's
2176 * checkpoint list we need to record it on this transaction's forget list
2177 * to pin this buffer (and hence its checkpointing transaction) down until
2178 * this transaction commits.  If the buffer isn't on a checkpoint list, we
2179 * release it.
2180 * Returns non-zero if JBD no longer has an interest in the buffer.
2181 *
2182 * Called under j_list_lock.
2183 *
2184 * Called under jh->b_state_lock.
2185 */
2186static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2187{
2188        int may_free = 1;
2189        struct buffer_head *bh = jh2bh(jh);
2190
2191        if (jh->b_cp_transaction) {
2192                JBUFFER_TRACE(jh, "on running+cp transaction");
2193                __jbd2_journal_temp_unlink_buffer(jh);
2194                /*
2195                 * We don't want to write the buffer anymore, clear the
2196                 * bit so that we don't confuse checks in
2197                 * __journal_file_buffer
2198                 */
2199                clear_buffer_dirty(bh);
2200                __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2201                may_free = 0;
2202        } else {
2203                JBUFFER_TRACE(jh, "on running transaction");
2204                __jbd2_journal_unfile_buffer(jh);
2205                jbd2_journal_put_journal_head(jh);
2206        }
2207        return may_free;
2208}
2209
2210/*
2211 * jbd2_journal_invalidatepage
2212 *
2213 * This code is tricky.  It has a number of cases to deal with.
2214 *
2215 * There are two invariants which this code relies on:
2216 *
2217 * i_size must be updated on disk before we start calling invalidatepage on the
2218 * data.
2219 *
2220 *  This is done in ext3 by defining an ext3_setattr method which
2221 *  updates i_size before truncate gets going.  By maintaining this
2222 *  invariant, we can be sure that it is safe to throw away any buffers
2223 *  attached to the current transaction: once the transaction commits,
2224 *  we know that the data will not be needed.
2225 *
2226 *  Note however that we can *not* throw away data belonging to the
2227 *  previous, committing transaction!
2228 *
2229 * Any disk blocks which *are* part of the previous, committing
2230 * transaction (and which therefore cannot be discarded immediately) are
2231 * not going to be reused in the new running transaction
2232 *
2233 *  The bitmap committed_data images guarantee this: any block which is
2234 *  allocated in one transaction and removed in the next will be marked
2235 *  as in-use in the committed_data bitmap, so cannot be reused until
2236 *  the next transaction to delete the block commits.  This means that
2237 *  leaving committing buffers dirty is quite safe: the disk blocks
2238 *  cannot be reallocated to a different file and so buffer aliasing is
2239 *  not possible.
2240 *
2241 *
2242 * The above applies mainly to ordered data mode.  In writeback mode we
2243 * don't make guarantees about the order in which data hits disk --- in
2244 * particular we don't guarantee that new dirty data is flushed before
2245 * transaction commit --- so it is always safe just to discard data
2246 * immediately in that mode.  --sct
2247 */
2248
2249/*
2250 * The journal_unmap_buffer helper function returns zero if the buffer
2251 * concerned remains pinned as an anonymous buffer belonging to an older
2252 * transaction.
2253 *
2254 * We're outside-transaction here.  Either or both of j_running_transaction
2255 * and j_committing_transaction may be NULL.
2256 */
2257static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2258                                int partial_page)
2259{
2260        transaction_t *transaction;
2261        struct journal_head *jh;
2262        int may_free = 1;
2263
2264        BUFFER_TRACE(bh, "entry");
2265
2266        /*
2267         * It is safe to proceed here without the j_list_lock because the
2268         * buffers cannot be stolen by try_to_free_buffers as long as we are
2269         * holding the page lock. --sct
2270         */
2271
2272        jh = jbd2_journal_grab_journal_head(bh);
2273        if (!jh)
2274                goto zap_buffer_unlocked;
2275
2276        /* OK, we have data buffer in journaled mode */
2277        write_lock(&journal->j_state_lock);
2278        spin_lock(&jh->b_state_lock);
2279        spin_lock(&journal->j_list_lock);
2280
2281        /*
2282         * We cannot remove the buffer from checkpoint lists until the
2283         * transaction adding inode to orphan list (let's call it T)
2284         * is committed.  Otherwise if the transaction changing the
2285         * buffer would be cleaned from the journal before T is
2286         * committed, a crash will cause that the correct contents of
2287         * the buffer will be lost.  On the other hand we have to
2288         * clear the buffer dirty bit at latest at the moment when the
2289         * transaction marking the buffer as freed in the filesystem
2290         * structures is committed because from that moment on the
2291         * block can be reallocated and used by a different page.
2292         * Since the block hasn't been freed yet but the inode has
2293         * already been added to orphan list, it is safe for us to add
2294         * the buffer to BJ_Forget list of the newest transaction.
2295         *
2296         * Also we have to clear buffer_mapped flag of a truncated buffer
2297         * because the buffer_head may be attached to the page straddling
2298         * i_size (can happen only when blocksize < pagesize) and thus the
2299         * buffer_head can be reused when the file is extended again. So we end
2300         * up keeping around invalidated buffers attached to transactions'
2301         * BJ_Forget list just to stop checkpointing code from cleaning up
2302         * the transaction this buffer was modified in.
2303         */
2304        transaction = jh->b_transaction;
2305        if (transaction == NULL) {
2306                /* First case: not on any transaction.  If it
2307                 * has no checkpoint link, then we can zap it:
2308                 * it's a writeback-mode buffer so we don't care
2309                 * if it hits disk safely. */
2310                if (!jh->b_cp_transaction) {
2311                        JBUFFER_TRACE(jh, "not on any transaction: zap");
2312                        goto zap_buffer;
2313                }
2314
2315                if (!buffer_dirty(bh)) {
2316                        /* bdflush has written it.  We can drop it now */
2317                        __jbd2_journal_remove_checkpoint(jh);
2318                        goto zap_buffer;
2319                }
2320
2321                /* OK, it must be in the journal but still not
2322                 * written fully to disk: it's metadata or
2323                 * journaled data... */
2324
2325                if (journal->j_running_transaction) {
2326                        /* ... and once the current transaction has
2327                         * committed, the buffer won't be needed any
2328                         * longer. */
2329                        JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2330                        may_free = __dispose_buffer(jh,
2331                                        journal->j_running_transaction);
2332                        goto zap_buffer;
2333                } else {
2334                        /* There is no currently-running transaction. So the
2335                         * orphan record which we wrote for this file must have
2336                         * passed into commit.  We must attach this buffer to
2337                         * the committing transaction, if it exists. */
2338                        if (journal->j_committing_transaction) {
2339                                JBUFFER_TRACE(jh, "give to committing trans");
2340                                may_free = __dispose_buffer(jh,
2341                                        journal->j_committing_transaction);
2342                                goto zap_buffer;
2343                        } else {
2344                                /* The orphan record's transaction has
2345                                 * committed.  We can cleanse this buffer */
2346                                clear_buffer_jbddirty(bh);
2347                                __jbd2_journal_remove_checkpoint(jh);
2348                                goto zap_buffer;
2349                        }
2350                }
2351        } else if (transaction == journal->j_committing_transaction) {
2352                JBUFFER_TRACE(jh, "on committing transaction");
2353                /*
2354                 * The buffer is committing, we simply cannot touch
2355                 * it. If the page is straddling i_size we have to wait
2356                 * for commit and try again.
2357                 */
2358                if (partial_page) {
2359                        spin_unlock(&journal->j_list_lock);
2360                        spin_unlock(&jh->b_state_lock);
2361                        write_unlock(&journal->j_state_lock);
2362                        jbd2_journal_put_journal_head(jh);
2363                        return -EBUSY;
2364                }
2365                /*
2366                 * OK, buffer won't be reachable after truncate. We just clear
2367                 * b_modified to not confuse transaction credit accounting, and
2368                 * set j_next_transaction to the running transaction (if there
2369                 * is one) and mark buffer as freed so that commit code knows
2370                 * it should clear dirty bits when it is done with the buffer.
2371                 */
2372                set_buffer_freed(bh);
2373                if (journal->j_running_transaction && buffer_jbddirty(bh))
2374                        jh->b_next_transaction = journal->j_running_transaction;
2375                jh->b_modified = 0;
2376                spin_unlock(&journal->j_list_lock);
2377                spin_unlock(&jh->b_state_lock);
2378                write_unlock(&journal->j_state_lock);
2379                jbd2_journal_put_journal_head(jh);
2380                return 0;
2381        } else {
2382                /* Good, the buffer belongs to the running transaction.
2383                 * We are writing our own transaction's data, not any
2384                 * previous one's, so it is safe to throw it away
2385                 * (remember that we expect the filesystem to have set
2386                 * i_size already for this truncate so recovery will not
2387                 * expose the disk blocks we are discarding here.) */
2388                J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2389                JBUFFER_TRACE(jh, "on running transaction");
2390                may_free = __dispose_buffer(jh, transaction);
2391        }
2392
2393zap_buffer:
2394        /*
2395         * This is tricky. Although the buffer is truncated, it may be reused
2396         * if blocksize < pagesize and it is attached to the page straddling
2397         * EOF. Since the buffer might have been added to BJ_Forget list of the
2398         * running transaction, journal_get_write_access() won't clear
2399         * b_modified and credit accounting gets confused. So clear b_modified
2400         * here.
2401         */
2402        jh->b_modified = 0;
2403        spin_unlock(&journal->j_list_lock);
2404        spin_unlock(&jh->b_state_lock);
2405        write_unlock(&journal->j_state_lock);
2406        jbd2_journal_put_journal_head(jh);
2407zap_buffer_unlocked:
2408        clear_buffer_dirty(bh);
2409        J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2410        clear_buffer_mapped(bh);
2411        clear_buffer_req(bh);
2412        clear_buffer_new(bh);
2413        clear_buffer_delay(bh);
2414        clear_buffer_unwritten(bh);
2415        bh->b_bdev = NULL;
2416        return may_free;
2417}
2418
2419/**
2420 * jbd2_journal_invalidatepage()
2421 * @journal: journal to use for flush...
2422 * @page:    page to flush
2423 * @offset:  start of the range to invalidate
2424 * @length:  length of the range to invalidate
2425 *
2426 * Reap page buffers containing data after in the specified range in page.
2427 * Can return -EBUSY if buffers are part of the committing transaction and
2428 * the page is straddling i_size. Caller then has to wait for current commit
2429 * and try again.
2430 */
2431int jbd2_journal_invalidatepage(journal_t *journal,
2432                                struct page *page,
2433                                unsigned int offset,
2434                                unsigned int length)
2435{
2436        struct buffer_head *head, *bh, *next;
2437        unsigned int stop = offset + length;
2438        unsigned int curr_off = 0;
2439        int partial_page = (offset || length < PAGE_SIZE);
2440        int may_free = 1;
2441        int ret = 0;
2442
2443        if (!PageLocked(page))
2444                BUG();
2445        if (!page_has_buffers(page))
2446                return 0;
2447
2448        BUG_ON(stop > PAGE_SIZE || stop < length);
2449
2450        /* We will potentially be playing with lists other than just the
2451         * data lists (especially for journaled data mode), so be
2452         * cautious in our locking. */
2453
2454        head = bh = page_buffers(page);
2455        do {
2456                unsigned int next_off = curr_off + bh->b_size;
2457                next = bh->b_this_page;
2458
2459                if (next_off > stop)
2460                        return 0;
2461
2462                if (offset <= curr_off) {
2463                        /* This block is wholly outside the truncation point */
2464                        lock_buffer(bh);
2465                        ret = journal_unmap_buffer(journal, bh, partial_page);
2466                        unlock_buffer(bh);
2467                        if (ret < 0)
2468                                return ret;
2469                        may_free &= ret;
2470                }
2471                curr_off = next_off;
2472                bh = next;
2473
2474        } while (bh != head);
2475
2476        if (!partial_page) {
2477                if (may_free && try_to_free_buffers(page))
2478                        J_ASSERT(!page_has_buffers(page));
2479        }
2480        return 0;
2481}
2482
2483/*
2484 * File a buffer on the given transaction list.
2485 */
2486void __jbd2_journal_file_buffer(struct journal_head *jh,
2487                        transaction_t *transaction, int jlist)
2488{
2489        struct journal_head **list = NULL;
2490        int was_dirty = 0;
2491        struct buffer_head *bh = jh2bh(jh);
2492
2493        lockdep_assert_held(&jh->b_state_lock);
2494        assert_spin_locked(&transaction->t_journal->j_list_lock);
2495
2496        J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2497        J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2498                                jh->b_transaction == NULL);
2499
2500        if (jh->b_transaction && jh->b_jlist == jlist)
2501                return;
2502
2503        if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2504            jlist == BJ_Shadow || jlist == BJ_Forget) {
2505                /*
2506                 * For metadata buffers, we track dirty bit in buffer_jbddirty
2507                 * instead of buffer_dirty. We should not see a dirty bit set
2508                 * here because we clear it in do_get_write_access but e.g.
2509                 * tune2fs can modify the sb and set the dirty bit at any time
2510                 * so we try to gracefully handle that.
2511                 */
2512                if (buffer_dirty(bh))
2513                        warn_dirty_buffer(bh);
2514                if (test_clear_buffer_dirty(bh) ||
2515                    test_clear_buffer_jbddirty(bh))
2516                        was_dirty = 1;
2517        }
2518
2519        if (jh->b_transaction)
2520                __jbd2_journal_temp_unlink_buffer(jh);
2521        else
2522                jbd2_journal_grab_journal_head(bh);
2523        jh->b_transaction = transaction;
2524
2525        switch (jlist) {
2526        case BJ_None:
2527                J_ASSERT_JH(jh, !jh->b_committed_data);
2528                J_ASSERT_JH(jh, !jh->b_frozen_data);
2529                return;
2530        case BJ_Metadata:
2531                transaction->t_nr_buffers++;
2532                list = &transaction->t_buffers;
2533                break;
2534        case BJ_Forget:
2535                list = &transaction->t_forget;
2536                break;
2537        case BJ_Shadow:
2538                list = &transaction->t_shadow_list;
2539                break;
2540        case BJ_Reserved:
2541                list = &transaction->t_reserved_list;
2542                break;
2543        }
2544
2545        __blist_add_buffer(list, jh);
2546        jh->b_jlist = jlist;
2547
2548        if (was_dirty)
2549                set_buffer_jbddirty(bh);
2550}
2551
2552void jbd2_journal_file_buffer(struct journal_head *jh,
2553                                transaction_t *transaction, int jlist)
2554{
2555        spin_lock(&jh->b_state_lock);
2556        spin_lock(&transaction->t_journal->j_list_lock);
2557        __jbd2_journal_file_buffer(jh, transaction, jlist);
2558        spin_unlock(&transaction->t_journal->j_list_lock);
2559        spin_unlock(&jh->b_state_lock);
2560}
2561
2562/*
2563 * Remove a buffer from its current buffer list in preparation for
2564 * dropping it from its current transaction entirely.  If the buffer has
2565 * already started to be used by a subsequent transaction, refile the
2566 * buffer on that transaction's metadata list.
2567 *
2568 * Called under j_list_lock
2569 * Called under jh->b_state_lock
2570 *
2571 * When this function returns true, there's no next transaction to refile to
2572 * and the caller has to drop jh reference through
2573 * jbd2_journal_put_journal_head().
2574 */
2575bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2576{
2577        int was_dirty, jlist;
2578        struct buffer_head *bh = jh2bh(jh);
2579
2580        lockdep_assert_held(&jh->b_state_lock);
2581        if (jh->b_transaction)
2582                assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2583
2584        /* If the buffer is now unused, just drop it. */
2585        if (jh->b_next_transaction == NULL) {
2586                __jbd2_journal_unfile_buffer(jh);
2587                return true;
2588        }
2589
2590        /*
2591         * It has been modified by a later transaction: add it to the new
2592         * transaction's metadata list.
2593         */
2594
2595        was_dirty = test_clear_buffer_jbddirty(bh);
2596        __jbd2_journal_temp_unlink_buffer(jh);
2597
2598        /*
2599         * b_transaction must be set, otherwise the new b_transaction won't
2600         * be holding jh reference
2601         */
2602        J_ASSERT_JH(jh, jh->b_transaction != NULL);
2603
2604        /*
2605         * We set b_transaction here because b_next_transaction will inherit
2606         * our jh reference and thus __jbd2_journal_file_buffer() must not
2607         * take a new one.
2608         */
2609        WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2610        WRITE_ONCE(jh->b_next_transaction, NULL);
2611        if (buffer_freed(bh))
2612                jlist = BJ_Forget;
2613        else if (jh->b_modified)
2614                jlist = BJ_Metadata;
2615        else
2616                jlist = BJ_Reserved;
2617        __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2618        J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2619
2620        if (was_dirty)
2621                set_buffer_jbddirty(bh);
2622        return false;
2623}
2624
2625/*
2626 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2627 * bh reference so that we can safely unlock bh.
2628 *
2629 * The jh and bh may be freed by this call.
2630 */
2631void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2632{
2633        bool drop;
2634
2635        spin_lock(&jh->b_state_lock);
2636        spin_lock(&journal->j_list_lock);
2637        drop = __jbd2_journal_refile_buffer(jh);
2638        spin_unlock(&jh->b_state_lock);
2639        spin_unlock(&journal->j_list_lock);
2640        if (drop)
2641                jbd2_journal_put_journal_head(jh);
2642}
2643
2644/*
2645 * File inode in the inode list of the handle's transaction
2646 */
2647static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2648                unsigned long flags, loff_t start_byte, loff_t end_byte)
2649{
2650        transaction_t *transaction = handle->h_transaction;
2651        journal_t *journal;
2652
2653        if (is_handle_aborted(handle))
2654                return -EROFS;
2655        journal = transaction->t_journal;
2656
2657        jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2658                        transaction->t_tid);
2659
2660        spin_lock(&journal->j_list_lock);
2661        jinode->i_flags |= flags;
2662
2663        if (jinode->i_dirty_end) {
2664                jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2665                jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2666        } else {
2667                jinode->i_dirty_start = start_byte;
2668                jinode->i_dirty_end = end_byte;
2669        }
2670
2671        /* Is inode already attached where we need it? */
2672        if (jinode->i_transaction == transaction ||
2673            jinode->i_next_transaction == transaction)
2674                goto done;
2675
2676        /*
2677         * We only ever set this variable to 1 so the test is safe. Since
2678         * t_need_data_flush is likely to be set, we do the test to save some
2679         * cacheline bouncing
2680         */
2681        if (!transaction->t_need_data_flush)
2682                transaction->t_need_data_flush = 1;
2683        /* On some different transaction's list - should be
2684         * the committing one */
2685        if (jinode->i_transaction) {
2686                J_ASSERT(jinode->i_next_transaction == NULL);
2687                J_ASSERT(jinode->i_transaction ==
2688                                        journal->j_committing_transaction);
2689                jinode->i_next_transaction = transaction;
2690                goto done;
2691        }
2692        /* Not on any transaction list... */
2693        J_ASSERT(!jinode->i_next_transaction);
2694        jinode->i_transaction = transaction;
2695        list_add(&jinode->i_list, &transaction->t_inode_list);
2696done:
2697        spin_unlock(&journal->j_list_lock);
2698
2699        return 0;
2700}
2701
2702int jbd2_journal_inode_ranged_write(handle_t *handle,
2703                struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2704{
2705        return jbd2_journal_file_inode(handle, jinode,
2706                        JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2707                        start_byte + length - 1);
2708}
2709
2710int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2711                loff_t start_byte, loff_t length)
2712{
2713        return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2714                        start_byte, start_byte + length - 1);
2715}
2716
2717/*
2718 * File truncate and transaction commit interact with each other in a
2719 * non-trivial way.  If a transaction writing data block A is
2720 * committing, we cannot discard the data by truncate until we have
2721 * written them.  Otherwise if we crashed after the transaction with
2722 * write has committed but before the transaction with truncate has
2723 * committed, we could see stale data in block A.  This function is a
2724 * helper to solve this problem.  It starts writeout of the truncated
2725 * part in case it is in the committing transaction.
2726 *
2727 * Filesystem code must call this function when inode is journaled in
2728 * ordered mode before truncation happens and after the inode has been
2729 * placed on orphan list with the new inode size. The second condition
2730 * avoids the race that someone writes new data and we start
2731 * committing the transaction after this function has been called but
2732 * before a transaction for truncate is started (and furthermore it
2733 * allows us to optimize the case where the addition to orphan list
2734 * happens in the same transaction as write --- we don't have to write
2735 * any data in such case).
2736 */
2737int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2738                                        struct jbd2_inode *jinode,
2739                                        loff_t new_size)
2740{
2741        transaction_t *inode_trans, *commit_trans;
2742        int ret = 0;
2743
2744        /* This is a quick check to avoid locking if not necessary */
2745        if (!jinode->i_transaction)
2746                goto out;
2747        /* Locks are here just to force reading of recent values, it is
2748         * enough that the transaction was not committing before we started
2749         * a transaction adding the inode to orphan list */
2750        read_lock(&journal->j_state_lock);
2751        commit_trans = journal->j_committing_transaction;
2752        read_unlock(&journal->j_state_lock);
2753        spin_lock(&journal->j_list_lock);
2754        inode_trans = jinode->i_transaction;
2755        spin_unlock(&journal->j_list_lock);
2756        if (inode_trans == commit_trans) {
2757                ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2758                        new_size, LLONG_MAX);
2759                if (ret)
2760                        jbd2_journal_abort(journal, ret);
2761        }
2762out:
2763        return ret;
2764}
2765