linux/fs/namespace.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/namespace.c
   4 *
   5 * (C) Copyright Al Viro 2000, 2001
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/cred.h>
  19#include <linux/idr.h>
  20#include <linux/init.h>         /* init_rootfs */
  21#include <linux/fs_struct.h>    /* get_fs_root et.al. */
  22#include <linux/fsnotify.h>     /* fsnotify_vfsmount_delete */
  23#include <linux/file.h>
  24#include <linux/uaccess.h>
  25#include <linux/proc_ns.h>
  26#include <linux/magic.h>
  27#include <linux/memblock.h>
  28#include <linux/proc_fs.h>
  29#include <linux/task_work.h>
  30#include <linux/sched/task.h>
  31#include <uapi/linux/mount.h>
  32#include <linux/fs_context.h>
  33#include <linux/shmem_fs.h>
  34
  35#include "pnode.h"
  36#include "internal.h"
  37
  38/* Maximum number of mounts in a mount namespace */
  39unsigned int sysctl_mount_max __read_mostly = 100000;
  40
  41static unsigned int m_hash_mask __read_mostly;
  42static unsigned int m_hash_shift __read_mostly;
  43static unsigned int mp_hash_mask __read_mostly;
  44static unsigned int mp_hash_shift __read_mostly;
  45
  46static __initdata unsigned long mhash_entries;
  47static int __init set_mhash_entries(char *str)
  48{
  49        if (!str)
  50                return 0;
  51        mhash_entries = simple_strtoul(str, &str, 0);
  52        return 1;
  53}
  54__setup("mhash_entries=", set_mhash_entries);
  55
  56static __initdata unsigned long mphash_entries;
  57static int __init set_mphash_entries(char *str)
  58{
  59        if (!str)
  60                return 0;
  61        mphash_entries = simple_strtoul(str, &str, 0);
  62        return 1;
  63}
  64__setup("mphash_entries=", set_mphash_entries);
  65
  66static u64 event;
  67static DEFINE_IDA(mnt_id_ida);
  68static DEFINE_IDA(mnt_group_ida);
  69
  70static struct hlist_head *mount_hashtable __read_mostly;
  71static struct hlist_head *mountpoint_hashtable __read_mostly;
  72static struct kmem_cache *mnt_cache __read_mostly;
  73static DECLARE_RWSEM(namespace_sem);
  74static HLIST_HEAD(unmounted);   /* protected by namespace_sem */
  75static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
  76
  77struct mount_kattr {
  78        unsigned int attr_set;
  79        unsigned int attr_clr;
  80        unsigned int propagation;
  81        unsigned int lookup_flags;
  82        bool recurse;
  83        struct user_namespace *mnt_userns;
  84};
  85
  86/* /sys/fs */
  87struct kobject *fs_kobj;
  88EXPORT_SYMBOL_GPL(fs_kobj);
  89
  90/*
  91 * vfsmount lock may be taken for read to prevent changes to the
  92 * vfsmount hash, ie. during mountpoint lookups or walking back
  93 * up the tree.
  94 *
  95 * It should be taken for write in all cases where the vfsmount
  96 * tree or hash is modified or when a vfsmount structure is modified.
  97 */
  98__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  99
 100static inline void lock_mount_hash(void)
 101{
 102        write_seqlock(&mount_lock);
 103}
 104
 105static inline void unlock_mount_hash(void)
 106{
 107        write_sequnlock(&mount_lock);
 108}
 109
 110static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
 111{
 112        unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
 113        tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
 114        tmp = tmp + (tmp >> m_hash_shift);
 115        return &mount_hashtable[tmp & m_hash_mask];
 116}
 117
 118static inline struct hlist_head *mp_hash(struct dentry *dentry)
 119{
 120        unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
 121        tmp = tmp + (tmp >> mp_hash_shift);
 122        return &mountpoint_hashtable[tmp & mp_hash_mask];
 123}
 124
 125static int mnt_alloc_id(struct mount *mnt)
 126{
 127        int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
 128
 129        if (res < 0)
 130                return res;
 131        mnt->mnt_id = res;
 132        return 0;
 133}
 134
 135static void mnt_free_id(struct mount *mnt)
 136{
 137        ida_free(&mnt_id_ida, mnt->mnt_id);
 138}
 139
 140/*
 141 * Allocate a new peer group ID
 142 */
 143static int mnt_alloc_group_id(struct mount *mnt)
 144{
 145        int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
 146
 147        if (res < 0)
 148                return res;
 149        mnt->mnt_group_id = res;
 150        return 0;
 151}
 152
 153/*
 154 * Release a peer group ID
 155 */
 156void mnt_release_group_id(struct mount *mnt)
 157{
 158        ida_free(&mnt_group_ida, mnt->mnt_group_id);
 159        mnt->mnt_group_id = 0;
 160}
 161
 162/*
 163 * vfsmount lock must be held for read
 164 */
 165static inline void mnt_add_count(struct mount *mnt, int n)
 166{
 167#ifdef CONFIG_SMP
 168        this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 169#else
 170        preempt_disable();
 171        mnt->mnt_count += n;
 172        preempt_enable();
 173#endif
 174}
 175
 176/*
 177 * vfsmount lock must be held for write
 178 */
 179int mnt_get_count(struct mount *mnt)
 180{
 181#ifdef CONFIG_SMP
 182        int count = 0;
 183        int cpu;
 184
 185        for_each_possible_cpu(cpu) {
 186                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 187        }
 188
 189        return count;
 190#else
 191        return mnt->mnt_count;
 192#endif
 193}
 194
 195static struct mount *alloc_vfsmnt(const char *name)
 196{
 197        struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 198        if (mnt) {
 199                int err;
 200
 201                err = mnt_alloc_id(mnt);
 202                if (err)
 203                        goto out_free_cache;
 204
 205                if (name) {
 206                        mnt->mnt_devname = kstrdup_const(name,
 207                                                         GFP_KERNEL_ACCOUNT);
 208                        if (!mnt->mnt_devname)
 209                                goto out_free_id;
 210                }
 211
 212#ifdef CONFIG_SMP
 213                mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 214                if (!mnt->mnt_pcp)
 215                        goto out_free_devname;
 216
 217                this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 218#else
 219                mnt->mnt_count = 1;
 220                mnt->mnt_writers = 0;
 221#endif
 222
 223                INIT_HLIST_NODE(&mnt->mnt_hash);
 224                INIT_LIST_HEAD(&mnt->mnt_child);
 225                INIT_LIST_HEAD(&mnt->mnt_mounts);
 226                INIT_LIST_HEAD(&mnt->mnt_list);
 227                INIT_LIST_HEAD(&mnt->mnt_expire);
 228                INIT_LIST_HEAD(&mnt->mnt_share);
 229                INIT_LIST_HEAD(&mnt->mnt_slave_list);
 230                INIT_LIST_HEAD(&mnt->mnt_slave);
 231                INIT_HLIST_NODE(&mnt->mnt_mp_list);
 232                INIT_LIST_HEAD(&mnt->mnt_umounting);
 233                INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
 234                mnt->mnt.mnt_userns = &init_user_ns;
 235        }
 236        return mnt;
 237
 238#ifdef CONFIG_SMP
 239out_free_devname:
 240        kfree_const(mnt->mnt_devname);
 241#endif
 242out_free_id:
 243        mnt_free_id(mnt);
 244out_free_cache:
 245        kmem_cache_free(mnt_cache, mnt);
 246        return NULL;
 247}
 248
 249/*
 250 * Most r/o checks on a fs are for operations that take
 251 * discrete amounts of time, like a write() or unlink().
 252 * We must keep track of when those operations start
 253 * (for permission checks) and when they end, so that
 254 * we can determine when writes are able to occur to
 255 * a filesystem.
 256 */
 257/*
 258 * __mnt_is_readonly: check whether a mount is read-only
 259 * @mnt: the mount to check for its write status
 260 *
 261 * This shouldn't be used directly ouside of the VFS.
 262 * It does not guarantee that the filesystem will stay
 263 * r/w, just that it is right *now*.  This can not and
 264 * should not be used in place of IS_RDONLY(inode).
 265 * mnt_want/drop_write() will _keep_ the filesystem
 266 * r/w.
 267 */
 268bool __mnt_is_readonly(struct vfsmount *mnt)
 269{
 270        return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
 271}
 272EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 273
 274static inline void mnt_inc_writers(struct mount *mnt)
 275{
 276#ifdef CONFIG_SMP
 277        this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 278#else
 279        mnt->mnt_writers++;
 280#endif
 281}
 282
 283static inline void mnt_dec_writers(struct mount *mnt)
 284{
 285#ifdef CONFIG_SMP
 286        this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 287#else
 288        mnt->mnt_writers--;
 289#endif
 290}
 291
 292static unsigned int mnt_get_writers(struct mount *mnt)
 293{
 294#ifdef CONFIG_SMP
 295        unsigned int count = 0;
 296        int cpu;
 297
 298        for_each_possible_cpu(cpu) {
 299                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 300        }
 301
 302        return count;
 303#else
 304        return mnt->mnt_writers;
 305#endif
 306}
 307
 308static int mnt_is_readonly(struct vfsmount *mnt)
 309{
 310        if (mnt->mnt_sb->s_readonly_remount)
 311                return 1;
 312        /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 313        smp_rmb();
 314        return __mnt_is_readonly(mnt);
 315}
 316
 317/*
 318 * Most r/o & frozen checks on a fs are for operations that take discrete
 319 * amounts of time, like a write() or unlink().  We must keep track of when
 320 * those operations start (for permission checks) and when they end, so that we
 321 * can determine when writes are able to occur to a filesystem.
 322 */
 323/**
 324 * __mnt_want_write - get write access to a mount without freeze protection
 325 * @m: the mount on which to take a write
 326 *
 327 * This tells the low-level filesystem that a write is about to be performed to
 328 * it, and makes sure that writes are allowed (mnt it read-write) before
 329 * returning success. This operation does not protect against filesystem being
 330 * frozen. When the write operation is finished, __mnt_drop_write() must be
 331 * called. This is effectively a refcount.
 332 */
 333int __mnt_want_write(struct vfsmount *m)
 334{
 335        struct mount *mnt = real_mount(m);
 336        int ret = 0;
 337
 338        preempt_disable();
 339        mnt_inc_writers(mnt);
 340        /*
 341         * The store to mnt_inc_writers must be visible before we pass
 342         * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 343         * incremented count after it has set MNT_WRITE_HOLD.
 344         */
 345        smp_mb();
 346        while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 347                cpu_relax();
 348        /*
 349         * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 350         * be set to match its requirements. So we must not load that until
 351         * MNT_WRITE_HOLD is cleared.
 352         */
 353        smp_rmb();
 354        if (mnt_is_readonly(m)) {
 355                mnt_dec_writers(mnt);
 356                ret = -EROFS;
 357        }
 358        preempt_enable();
 359
 360        return ret;
 361}
 362
 363/**
 364 * mnt_want_write - get write access to a mount
 365 * @m: the mount on which to take a write
 366 *
 367 * This tells the low-level filesystem that a write is about to be performed to
 368 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 369 * is not frozen) before returning success.  When the write operation is
 370 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 371 */
 372int mnt_want_write(struct vfsmount *m)
 373{
 374        int ret;
 375
 376        sb_start_write(m->mnt_sb);
 377        ret = __mnt_want_write(m);
 378        if (ret)
 379                sb_end_write(m->mnt_sb);
 380        return ret;
 381}
 382EXPORT_SYMBOL_GPL(mnt_want_write);
 383
 384/**
 385 * __mnt_want_write_file - get write access to a file's mount
 386 * @file: the file who's mount on which to take a write
 387 *
 388 * This is like __mnt_want_write, but if the file is already open for writing it
 389 * skips incrementing mnt_writers (since the open file already has a reference)
 390 * and instead only does the check for emergency r/o remounts.  This must be
 391 * paired with __mnt_drop_write_file.
 392 */
 393int __mnt_want_write_file(struct file *file)
 394{
 395        if (file->f_mode & FMODE_WRITER) {
 396                /*
 397                 * Superblock may have become readonly while there are still
 398                 * writable fd's, e.g. due to a fs error with errors=remount-ro
 399                 */
 400                if (__mnt_is_readonly(file->f_path.mnt))
 401                        return -EROFS;
 402                return 0;
 403        }
 404        return __mnt_want_write(file->f_path.mnt);
 405}
 406
 407/**
 408 * mnt_want_write_file - get write access to a file's mount
 409 * @file: the file who's mount on which to take a write
 410 *
 411 * This is like mnt_want_write, but if the file is already open for writing it
 412 * skips incrementing mnt_writers (since the open file already has a reference)
 413 * and instead only does the freeze protection and the check for emergency r/o
 414 * remounts.  This must be paired with mnt_drop_write_file.
 415 */
 416int mnt_want_write_file(struct file *file)
 417{
 418        int ret;
 419
 420        sb_start_write(file_inode(file)->i_sb);
 421        ret = __mnt_want_write_file(file);
 422        if (ret)
 423                sb_end_write(file_inode(file)->i_sb);
 424        return ret;
 425}
 426EXPORT_SYMBOL_GPL(mnt_want_write_file);
 427
 428/**
 429 * __mnt_drop_write - give up write access to a mount
 430 * @mnt: the mount on which to give up write access
 431 *
 432 * Tells the low-level filesystem that we are done
 433 * performing writes to it.  Must be matched with
 434 * __mnt_want_write() call above.
 435 */
 436void __mnt_drop_write(struct vfsmount *mnt)
 437{
 438        preempt_disable();
 439        mnt_dec_writers(real_mount(mnt));
 440        preempt_enable();
 441}
 442
 443/**
 444 * mnt_drop_write - give up write access to a mount
 445 * @mnt: the mount on which to give up write access
 446 *
 447 * Tells the low-level filesystem that we are done performing writes to it and
 448 * also allows filesystem to be frozen again.  Must be matched with
 449 * mnt_want_write() call above.
 450 */
 451void mnt_drop_write(struct vfsmount *mnt)
 452{
 453        __mnt_drop_write(mnt);
 454        sb_end_write(mnt->mnt_sb);
 455}
 456EXPORT_SYMBOL_GPL(mnt_drop_write);
 457
 458void __mnt_drop_write_file(struct file *file)
 459{
 460        if (!(file->f_mode & FMODE_WRITER))
 461                __mnt_drop_write(file->f_path.mnt);
 462}
 463
 464void mnt_drop_write_file(struct file *file)
 465{
 466        __mnt_drop_write_file(file);
 467        sb_end_write(file_inode(file)->i_sb);
 468}
 469EXPORT_SYMBOL(mnt_drop_write_file);
 470
 471static inline int mnt_hold_writers(struct mount *mnt)
 472{
 473        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 474        /*
 475         * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 476         * should be visible before we do.
 477         */
 478        smp_mb();
 479
 480        /*
 481         * With writers on hold, if this value is zero, then there are
 482         * definitely no active writers (although held writers may subsequently
 483         * increment the count, they'll have to wait, and decrement it after
 484         * seeing MNT_READONLY).
 485         *
 486         * It is OK to have counter incremented on one CPU and decremented on
 487         * another: the sum will add up correctly. The danger would be when we
 488         * sum up each counter, if we read a counter before it is incremented,
 489         * but then read another CPU's count which it has been subsequently
 490         * decremented from -- we would see more decrements than we should.
 491         * MNT_WRITE_HOLD protects against this scenario, because
 492         * mnt_want_write first increments count, then smp_mb, then spins on
 493         * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 494         * we're counting up here.
 495         */
 496        if (mnt_get_writers(mnt) > 0)
 497                return -EBUSY;
 498
 499        return 0;
 500}
 501
 502static inline void mnt_unhold_writers(struct mount *mnt)
 503{
 504        /*
 505         * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 506         * that become unheld will see MNT_READONLY.
 507         */
 508        smp_wmb();
 509        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 510}
 511
 512static int mnt_make_readonly(struct mount *mnt)
 513{
 514        int ret;
 515
 516        ret = mnt_hold_writers(mnt);
 517        if (!ret)
 518                mnt->mnt.mnt_flags |= MNT_READONLY;
 519        mnt_unhold_writers(mnt);
 520        return ret;
 521}
 522
 523int sb_prepare_remount_readonly(struct super_block *sb)
 524{
 525        struct mount *mnt;
 526        int err = 0;
 527
 528        /* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 529        if (atomic_long_read(&sb->s_remove_count))
 530                return -EBUSY;
 531
 532        lock_mount_hash();
 533        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 534                if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 535                        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 536                        smp_mb();
 537                        if (mnt_get_writers(mnt) > 0) {
 538                                err = -EBUSY;
 539                                break;
 540                        }
 541                }
 542        }
 543        if (!err && atomic_long_read(&sb->s_remove_count))
 544                err = -EBUSY;
 545
 546        if (!err) {
 547                sb->s_readonly_remount = 1;
 548                smp_wmb();
 549        }
 550        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 551                if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 552                        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 553        }
 554        unlock_mount_hash();
 555
 556        return err;
 557}
 558
 559static void free_vfsmnt(struct mount *mnt)
 560{
 561        struct user_namespace *mnt_userns;
 562
 563        mnt_userns = mnt_user_ns(&mnt->mnt);
 564        if (mnt_userns != &init_user_ns)
 565                put_user_ns(mnt_userns);
 566        kfree_const(mnt->mnt_devname);
 567#ifdef CONFIG_SMP
 568        free_percpu(mnt->mnt_pcp);
 569#endif
 570        kmem_cache_free(mnt_cache, mnt);
 571}
 572
 573static void delayed_free_vfsmnt(struct rcu_head *head)
 574{
 575        free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 576}
 577
 578/* call under rcu_read_lock */
 579int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 580{
 581        struct mount *mnt;
 582        if (read_seqretry(&mount_lock, seq))
 583                return 1;
 584        if (bastard == NULL)
 585                return 0;
 586        mnt = real_mount(bastard);
 587        mnt_add_count(mnt, 1);
 588        smp_mb();                       // see mntput_no_expire()
 589        if (likely(!read_seqretry(&mount_lock, seq)))
 590                return 0;
 591        if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 592                mnt_add_count(mnt, -1);
 593                return 1;
 594        }
 595        lock_mount_hash();
 596        if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
 597                mnt_add_count(mnt, -1);
 598                unlock_mount_hash();
 599                return 1;
 600        }
 601        unlock_mount_hash();
 602        /* caller will mntput() */
 603        return -1;
 604}
 605
 606/* call under rcu_read_lock */
 607bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 608{
 609        int res = __legitimize_mnt(bastard, seq);
 610        if (likely(!res))
 611                return true;
 612        if (unlikely(res < 0)) {
 613                rcu_read_unlock();
 614                mntput(bastard);
 615                rcu_read_lock();
 616        }
 617        return false;
 618}
 619
 620/*
 621 * find the first mount at @dentry on vfsmount @mnt.
 622 * call under rcu_read_lock()
 623 */
 624struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 625{
 626        struct hlist_head *head = m_hash(mnt, dentry);
 627        struct mount *p;
 628
 629        hlist_for_each_entry_rcu(p, head, mnt_hash)
 630                if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 631                        return p;
 632        return NULL;
 633}
 634
 635/*
 636 * lookup_mnt - Return the first child mount mounted at path
 637 *
 638 * "First" means first mounted chronologically.  If you create the
 639 * following mounts:
 640 *
 641 * mount /dev/sda1 /mnt
 642 * mount /dev/sda2 /mnt
 643 * mount /dev/sda3 /mnt
 644 *
 645 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 646 * return successively the root dentry and vfsmount of /dev/sda1, then
 647 * /dev/sda2, then /dev/sda3, then NULL.
 648 *
 649 * lookup_mnt takes a reference to the found vfsmount.
 650 */
 651struct vfsmount *lookup_mnt(const struct path *path)
 652{
 653        struct mount *child_mnt;
 654        struct vfsmount *m;
 655        unsigned seq;
 656
 657        rcu_read_lock();
 658        do {
 659                seq = read_seqbegin(&mount_lock);
 660                child_mnt = __lookup_mnt(path->mnt, path->dentry);
 661                m = child_mnt ? &child_mnt->mnt : NULL;
 662        } while (!legitimize_mnt(m, seq));
 663        rcu_read_unlock();
 664        return m;
 665}
 666
 667static inline void lock_ns_list(struct mnt_namespace *ns)
 668{
 669        spin_lock(&ns->ns_lock);
 670}
 671
 672static inline void unlock_ns_list(struct mnt_namespace *ns)
 673{
 674        spin_unlock(&ns->ns_lock);
 675}
 676
 677static inline bool mnt_is_cursor(struct mount *mnt)
 678{
 679        return mnt->mnt.mnt_flags & MNT_CURSOR;
 680}
 681
 682/*
 683 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 684 *                         current mount namespace.
 685 *
 686 * The common case is dentries are not mountpoints at all and that
 687 * test is handled inline.  For the slow case when we are actually
 688 * dealing with a mountpoint of some kind, walk through all of the
 689 * mounts in the current mount namespace and test to see if the dentry
 690 * is a mountpoint.
 691 *
 692 * The mount_hashtable is not usable in the context because we
 693 * need to identify all mounts that may be in the current mount
 694 * namespace not just a mount that happens to have some specified
 695 * parent mount.
 696 */
 697bool __is_local_mountpoint(struct dentry *dentry)
 698{
 699        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 700        struct mount *mnt;
 701        bool is_covered = false;
 702
 703        down_read(&namespace_sem);
 704        lock_ns_list(ns);
 705        list_for_each_entry(mnt, &ns->list, mnt_list) {
 706                if (mnt_is_cursor(mnt))
 707                        continue;
 708                is_covered = (mnt->mnt_mountpoint == dentry);
 709                if (is_covered)
 710                        break;
 711        }
 712        unlock_ns_list(ns);
 713        up_read(&namespace_sem);
 714
 715        return is_covered;
 716}
 717
 718static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 719{
 720        struct hlist_head *chain = mp_hash(dentry);
 721        struct mountpoint *mp;
 722
 723        hlist_for_each_entry(mp, chain, m_hash) {
 724                if (mp->m_dentry == dentry) {
 725                        mp->m_count++;
 726                        return mp;
 727                }
 728        }
 729        return NULL;
 730}
 731
 732static struct mountpoint *get_mountpoint(struct dentry *dentry)
 733{
 734        struct mountpoint *mp, *new = NULL;
 735        int ret;
 736
 737        if (d_mountpoint(dentry)) {
 738                /* might be worth a WARN_ON() */
 739                if (d_unlinked(dentry))
 740                        return ERR_PTR(-ENOENT);
 741mountpoint:
 742                read_seqlock_excl(&mount_lock);
 743                mp = lookup_mountpoint(dentry);
 744                read_sequnlock_excl(&mount_lock);
 745                if (mp)
 746                        goto done;
 747        }
 748
 749        if (!new)
 750                new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 751        if (!new)
 752                return ERR_PTR(-ENOMEM);
 753
 754
 755        /* Exactly one processes may set d_mounted */
 756        ret = d_set_mounted(dentry);
 757
 758        /* Someone else set d_mounted? */
 759        if (ret == -EBUSY)
 760                goto mountpoint;
 761
 762        /* The dentry is not available as a mountpoint? */
 763        mp = ERR_PTR(ret);
 764        if (ret)
 765                goto done;
 766
 767        /* Add the new mountpoint to the hash table */
 768        read_seqlock_excl(&mount_lock);
 769        new->m_dentry = dget(dentry);
 770        new->m_count = 1;
 771        hlist_add_head(&new->m_hash, mp_hash(dentry));
 772        INIT_HLIST_HEAD(&new->m_list);
 773        read_sequnlock_excl(&mount_lock);
 774
 775        mp = new;
 776        new = NULL;
 777done:
 778        kfree(new);
 779        return mp;
 780}
 781
 782/*
 783 * vfsmount lock must be held.  Additionally, the caller is responsible
 784 * for serializing calls for given disposal list.
 785 */
 786static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
 787{
 788        if (!--mp->m_count) {
 789                struct dentry *dentry = mp->m_dentry;
 790                BUG_ON(!hlist_empty(&mp->m_list));
 791                spin_lock(&dentry->d_lock);
 792                dentry->d_flags &= ~DCACHE_MOUNTED;
 793                spin_unlock(&dentry->d_lock);
 794                dput_to_list(dentry, list);
 795                hlist_del(&mp->m_hash);
 796                kfree(mp);
 797        }
 798}
 799
 800/* called with namespace_lock and vfsmount lock */
 801static void put_mountpoint(struct mountpoint *mp)
 802{
 803        __put_mountpoint(mp, &ex_mountpoints);
 804}
 805
 806static inline int check_mnt(struct mount *mnt)
 807{
 808        return mnt->mnt_ns == current->nsproxy->mnt_ns;
 809}
 810
 811/*
 812 * vfsmount lock must be held for write
 813 */
 814static void touch_mnt_namespace(struct mnt_namespace *ns)
 815{
 816        if (ns) {
 817                ns->event = ++event;
 818                wake_up_interruptible(&ns->poll);
 819        }
 820}
 821
 822/*
 823 * vfsmount lock must be held for write
 824 */
 825static void __touch_mnt_namespace(struct mnt_namespace *ns)
 826{
 827        if (ns && ns->event != event) {
 828                ns->event = event;
 829                wake_up_interruptible(&ns->poll);
 830        }
 831}
 832
 833/*
 834 * vfsmount lock must be held for write
 835 */
 836static struct mountpoint *unhash_mnt(struct mount *mnt)
 837{
 838        struct mountpoint *mp;
 839        mnt->mnt_parent = mnt;
 840        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 841        list_del_init(&mnt->mnt_child);
 842        hlist_del_init_rcu(&mnt->mnt_hash);
 843        hlist_del_init(&mnt->mnt_mp_list);
 844        mp = mnt->mnt_mp;
 845        mnt->mnt_mp = NULL;
 846        return mp;
 847}
 848
 849/*
 850 * vfsmount lock must be held for write
 851 */
 852static void umount_mnt(struct mount *mnt)
 853{
 854        put_mountpoint(unhash_mnt(mnt));
 855}
 856
 857/*
 858 * vfsmount lock must be held for write
 859 */
 860void mnt_set_mountpoint(struct mount *mnt,
 861                        struct mountpoint *mp,
 862                        struct mount *child_mnt)
 863{
 864        mp->m_count++;
 865        mnt_add_count(mnt, 1);  /* essentially, that's mntget */
 866        child_mnt->mnt_mountpoint = mp->m_dentry;
 867        child_mnt->mnt_parent = mnt;
 868        child_mnt->mnt_mp = mp;
 869        hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
 870}
 871
 872static void __attach_mnt(struct mount *mnt, struct mount *parent)
 873{
 874        hlist_add_head_rcu(&mnt->mnt_hash,
 875                           m_hash(&parent->mnt, mnt->mnt_mountpoint));
 876        list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 877}
 878
 879/*
 880 * vfsmount lock must be held for write
 881 */
 882static void attach_mnt(struct mount *mnt,
 883                        struct mount *parent,
 884                        struct mountpoint *mp)
 885{
 886        mnt_set_mountpoint(parent, mp, mnt);
 887        __attach_mnt(mnt, parent);
 888}
 889
 890void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
 891{
 892        struct mountpoint *old_mp = mnt->mnt_mp;
 893        struct mount *old_parent = mnt->mnt_parent;
 894
 895        list_del_init(&mnt->mnt_child);
 896        hlist_del_init(&mnt->mnt_mp_list);
 897        hlist_del_init_rcu(&mnt->mnt_hash);
 898
 899        attach_mnt(mnt, parent, mp);
 900
 901        put_mountpoint(old_mp);
 902        mnt_add_count(old_parent, -1);
 903}
 904
 905/*
 906 * vfsmount lock must be held for write
 907 */
 908static void commit_tree(struct mount *mnt)
 909{
 910        struct mount *parent = mnt->mnt_parent;
 911        struct mount *m;
 912        LIST_HEAD(head);
 913        struct mnt_namespace *n = parent->mnt_ns;
 914
 915        BUG_ON(parent == mnt);
 916
 917        list_add_tail(&head, &mnt->mnt_list);
 918        list_for_each_entry(m, &head, mnt_list)
 919                m->mnt_ns = n;
 920
 921        list_splice(&head, n->list.prev);
 922
 923        n->mounts += n->pending_mounts;
 924        n->pending_mounts = 0;
 925
 926        __attach_mnt(mnt, parent);
 927        touch_mnt_namespace(n);
 928}
 929
 930static struct mount *next_mnt(struct mount *p, struct mount *root)
 931{
 932        struct list_head *next = p->mnt_mounts.next;
 933        if (next == &p->mnt_mounts) {
 934                while (1) {
 935                        if (p == root)
 936                                return NULL;
 937                        next = p->mnt_child.next;
 938                        if (next != &p->mnt_parent->mnt_mounts)
 939                                break;
 940                        p = p->mnt_parent;
 941                }
 942        }
 943        return list_entry(next, struct mount, mnt_child);
 944}
 945
 946static struct mount *skip_mnt_tree(struct mount *p)
 947{
 948        struct list_head *prev = p->mnt_mounts.prev;
 949        while (prev != &p->mnt_mounts) {
 950                p = list_entry(prev, struct mount, mnt_child);
 951                prev = p->mnt_mounts.prev;
 952        }
 953        return p;
 954}
 955
 956/**
 957 * vfs_create_mount - Create a mount for a configured superblock
 958 * @fc: The configuration context with the superblock attached
 959 *
 960 * Create a mount to an already configured superblock.  If necessary, the
 961 * caller should invoke vfs_get_tree() before calling this.
 962 *
 963 * Note that this does not attach the mount to anything.
 964 */
 965struct vfsmount *vfs_create_mount(struct fs_context *fc)
 966{
 967        struct mount *mnt;
 968
 969        if (!fc->root)
 970                return ERR_PTR(-EINVAL);
 971
 972        mnt = alloc_vfsmnt(fc->source ?: "none");
 973        if (!mnt)
 974                return ERR_PTR(-ENOMEM);
 975
 976        if (fc->sb_flags & SB_KERNMOUNT)
 977                mnt->mnt.mnt_flags = MNT_INTERNAL;
 978
 979        atomic_inc(&fc->root->d_sb->s_active);
 980        mnt->mnt.mnt_sb         = fc->root->d_sb;
 981        mnt->mnt.mnt_root       = dget(fc->root);
 982        mnt->mnt_mountpoint     = mnt->mnt.mnt_root;
 983        mnt->mnt_parent         = mnt;
 984
 985        lock_mount_hash();
 986        list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
 987        unlock_mount_hash();
 988        return &mnt->mnt;
 989}
 990EXPORT_SYMBOL(vfs_create_mount);
 991
 992struct vfsmount *fc_mount(struct fs_context *fc)
 993{
 994        int err = vfs_get_tree(fc);
 995        if (!err) {
 996                up_write(&fc->root->d_sb->s_umount);
 997                return vfs_create_mount(fc);
 998        }
 999        return ERR_PTR(err);
1000}
1001EXPORT_SYMBOL(fc_mount);
1002
1003struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1004                                int flags, const char *name,
1005                                void *data)
1006{
1007        struct fs_context *fc;
1008        struct vfsmount *mnt;
1009        int ret = 0;
1010
1011        if (!type)
1012                return ERR_PTR(-EINVAL);
1013
1014        fc = fs_context_for_mount(type, flags);
1015        if (IS_ERR(fc))
1016                return ERR_CAST(fc);
1017
1018        if (name)
1019                ret = vfs_parse_fs_string(fc, "source",
1020                                          name, strlen(name));
1021        if (!ret)
1022                ret = parse_monolithic_mount_data(fc, data);
1023        if (!ret)
1024                mnt = fc_mount(fc);
1025        else
1026                mnt = ERR_PTR(ret);
1027
1028        put_fs_context(fc);
1029        return mnt;
1030}
1031EXPORT_SYMBOL_GPL(vfs_kern_mount);
1032
1033struct vfsmount *
1034vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1035             const char *name, void *data)
1036{
1037        /* Until it is worked out how to pass the user namespace
1038         * through from the parent mount to the submount don't support
1039         * unprivileged mounts with submounts.
1040         */
1041        if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1042                return ERR_PTR(-EPERM);
1043
1044        return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1045}
1046EXPORT_SYMBOL_GPL(vfs_submount);
1047
1048static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1049                                        int flag)
1050{
1051        struct super_block *sb = old->mnt.mnt_sb;
1052        struct mount *mnt;
1053        int err;
1054
1055        mnt = alloc_vfsmnt(old->mnt_devname);
1056        if (!mnt)
1057                return ERR_PTR(-ENOMEM);
1058
1059        if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1060                mnt->mnt_group_id = 0; /* not a peer of original */
1061        else
1062                mnt->mnt_group_id = old->mnt_group_id;
1063
1064        if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1065                err = mnt_alloc_group_id(mnt);
1066                if (err)
1067                        goto out_free;
1068        }
1069
1070        mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1071        mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1072
1073        atomic_inc(&sb->s_active);
1074        mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1075        if (mnt->mnt.mnt_userns != &init_user_ns)
1076                mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1077        mnt->mnt.mnt_sb = sb;
1078        mnt->mnt.mnt_root = dget(root);
1079        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1080        mnt->mnt_parent = mnt;
1081        lock_mount_hash();
1082        list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1083        unlock_mount_hash();
1084
1085        if ((flag & CL_SLAVE) ||
1086            ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1087                list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1088                mnt->mnt_master = old;
1089                CLEAR_MNT_SHARED(mnt);
1090        } else if (!(flag & CL_PRIVATE)) {
1091                if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1092                        list_add(&mnt->mnt_share, &old->mnt_share);
1093                if (IS_MNT_SLAVE(old))
1094                        list_add(&mnt->mnt_slave, &old->mnt_slave);
1095                mnt->mnt_master = old->mnt_master;
1096        } else {
1097                CLEAR_MNT_SHARED(mnt);
1098        }
1099        if (flag & CL_MAKE_SHARED)
1100                set_mnt_shared(mnt);
1101
1102        /* stick the duplicate mount on the same expiry list
1103         * as the original if that was on one */
1104        if (flag & CL_EXPIRE) {
1105                if (!list_empty(&old->mnt_expire))
1106                        list_add(&mnt->mnt_expire, &old->mnt_expire);
1107        }
1108
1109        return mnt;
1110
1111 out_free:
1112        mnt_free_id(mnt);
1113        free_vfsmnt(mnt);
1114        return ERR_PTR(err);
1115}
1116
1117static void cleanup_mnt(struct mount *mnt)
1118{
1119        struct hlist_node *p;
1120        struct mount *m;
1121        /*
1122         * The warning here probably indicates that somebody messed
1123         * up a mnt_want/drop_write() pair.  If this happens, the
1124         * filesystem was probably unable to make r/w->r/o transitions.
1125         * The locking used to deal with mnt_count decrement provides barriers,
1126         * so mnt_get_writers() below is safe.
1127         */
1128        WARN_ON(mnt_get_writers(mnt));
1129        if (unlikely(mnt->mnt_pins.first))
1130                mnt_pin_kill(mnt);
1131        hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1132                hlist_del(&m->mnt_umount);
1133                mntput(&m->mnt);
1134        }
1135        fsnotify_vfsmount_delete(&mnt->mnt);
1136        dput(mnt->mnt.mnt_root);
1137        deactivate_super(mnt->mnt.mnt_sb);
1138        mnt_free_id(mnt);
1139        call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1140}
1141
1142static void __cleanup_mnt(struct rcu_head *head)
1143{
1144        cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1145}
1146
1147static LLIST_HEAD(delayed_mntput_list);
1148static void delayed_mntput(struct work_struct *unused)
1149{
1150        struct llist_node *node = llist_del_all(&delayed_mntput_list);
1151        struct mount *m, *t;
1152
1153        llist_for_each_entry_safe(m, t, node, mnt_llist)
1154                cleanup_mnt(m);
1155}
1156static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1157
1158static void mntput_no_expire(struct mount *mnt)
1159{
1160        LIST_HEAD(list);
1161        int count;
1162
1163        rcu_read_lock();
1164        if (likely(READ_ONCE(mnt->mnt_ns))) {
1165                /*
1166                 * Since we don't do lock_mount_hash() here,
1167                 * ->mnt_ns can change under us.  However, if it's
1168                 * non-NULL, then there's a reference that won't
1169                 * be dropped until after an RCU delay done after
1170                 * turning ->mnt_ns NULL.  So if we observe it
1171                 * non-NULL under rcu_read_lock(), the reference
1172                 * we are dropping is not the final one.
1173                 */
1174                mnt_add_count(mnt, -1);
1175                rcu_read_unlock();
1176                return;
1177        }
1178        lock_mount_hash();
1179        /*
1180         * make sure that if __legitimize_mnt() has not seen us grab
1181         * mount_lock, we'll see their refcount increment here.
1182         */
1183        smp_mb();
1184        mnt_add_count(mnt, -1);
1185        count = mnt_get_count(mnt);
1186        if (count != 0) {
1187                WARN_ON(count < 0);
1188                rcu_read_unlock();
1189                unlock_mount_hash();
1190                return;
1191        }
1192        if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1193                rcu_read_unlock();
1194                unlock_mount_hash();
1195                return;
1196        }
1197        mnt->mnt.mnt_flags |= MNT_DOOMED;
1198        rcu_read_unlock();
1199
1200        list_del(&mnt->mnt_instance);
1201
1202        if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1203                struct mount *p, *tmp;
1204                list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1205                        __put_mountpoint(unhash_mnt(p), &list);
1206                        hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1207                }
1208        }
1209        unlock_mount_hash();
1210        shrink_dentry_list(&list);
1211
1212        if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1213                struct task_struct *task = current;
1214                if (likely(!(task->flags & PF_KTHREAD))) {
1215                        init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1216                        if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1217                                return;
1218                }
1219                if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1220                        schedule_delayed_work(&delayed_mntput_work, 1);
1221                return;
1222        }
1223        cleanup_mnt(mnt);
1224}
1225
1226void mntput(struct vfsmount *mnt)
1227{
1228        if (mnt) {
1229                struct mount *m = real_mount(mnt);
1230                /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1231                if (unlikely(m->mnt_expiry_mark))
1232                        m->mnt_expiry_mark = 0;
1233                mntput_no_expire(m);
1234        }
1235}
1236EXPORT_SYMBOL(mntput);
1237
1238struct vfsmount *mntget(struct vfsmount *mnt)
1239{
1240        if (mnt)
1241                mnt_add_count(real_mount(mnt), 1);
1242        return mnt;
1243}
1244EXPORT_SYMBOL(mntget);
1245
1246/**
1247 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1248 * @path: path to check
1249 *
1250 *  d_mountpoint() can only be used reliably to establish if a dentry is
1251 *  not mounted in any namespace and that common case is handled inline.
1252 *  d_mountpoint() isn't aware of the possibility there may be multiple
1253 *  mounts using a given dentry in a different namespace. This function
1254 *  checks if the passed in path is a mountpoint rather than the dentry
1255 *  alone.
1256 */
1257bool path_is_mountpoint(const struct path *path)
1258{
1259        unsigned seq;
1260        bool res;
1261
1262        if (!d_mountpoint(path->dentry))
1263                return false;
1264
1265        rcu_read_lock();
1266        do {
1267                seq = read_seqbegin(&mount_lock);
1268                res = __path_is_mountpoint(path);
1269        } while (read_seqretry(&mount_lock, seq));
1270        rcu_read_unlock();
1271
1272        return res;
1273}
1274EXPORT_SYMBOL(path_is_mountpoint);
1275
1276struct vfsmount *mnt_clone_internal(const struct path *path)
1277{
1278        struct mount *p;
1279        p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1280        if (IS_ERR(p))
1281                return ERR_CAST(p);
1282        p->mnt.mnt_flags |= MNT_INTERNAL;
1283        return &p->mnt;
1284}
1285
1286#ifdef CONFIG_PROC_FS
1287static struct mount *mnt_list_next(struct mnt_namespace *ns,
1288                                   struct list_head *p)
1289{
1290        struct mount *mnt, *ret = NULL;
1291
1292        lock_ns_list(ns);
1293        list_for_each_continue(p, &ns->list) {
1294                mnt = list_entry(p, typeof(*mnt), mnt_list);
1295                if (!mnt_is_cursor(mnt)) {
1296                        ret = mnt;
1297                        break;
1298                }
1299        }
1300        unlock_ns_list(ns);
1301
1302        return ret;
1303}
1304
1305/* iterator; we want it to have access to namespace_sem, thus here... */
1306static void *m_start(struct seq_file *m, loff_t *pos)
1307{
1308        struct proc_mounts *p = m->private;
1309        struct list_head *prev;
1310
1311        down_read(&namespace_sem);
1312        if (!*pos) {
1313                prev = &p->ns->list;
1314        } else {
1315                prev = &p->cursor.mnt_list;
1316
1317                /* Read after we'd reached the end? */
1318                if (list_empty(prev))
1319                        return NULL;
1320        }
1321
1322        return mnt_list_next(p->ns, prev);
1323}
1324
1325static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1326{
1327        struct proc_mounts *p = m->private;
1328        struct mount *mnt = v;
1329
1330        ++*pos;
1331        return mnt_list_next(p->ns, &mnt->mnt_list);
1332}
1333
1334static void m_stop(struct seq_file *m, void *v)
1335{
1336        struct proc_mounts *p = m->private;
1337        struct mount *mnt = v;
1338
1339        lock_ns_list(p->ns);
1340        if (mnt)
1341                list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1342        else
1343                list_del_init(&p->cursor.mnt_list);
1344        unlock_ns_list(p->ns);
1345        up_read(&namespace_sem);
1346}
1347
1348static int m_show(struct seq_file *m, void *v)
1349{
1350        struct proc_mounts *p = m->private;
1351        struct mount *r = v;
1352        return p->show(m, &r->mnt);
1353}
1354
1355const struct seq_operations mounts_op = {
1356        .start  = m_start,
1357        .next   = m_next,
1358        .stop   = m_stop,
1359        .show   = m_show,
1360};
1361
1362void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1363{
1364        down_read(&namespace_sem);
1365        lock_ns_list(ns);
1366        list_del(&cursor->mnt_list);
1367        unlock_ns_list(ns);
1368        up_read(&namespace_sem);
1369}
1370#endif  /* CONFIG_PROC_FS */
1371
1372/**
1373 * may_umount_tree - check if a mount tree is busy
1374 * @m: root of mount tree
1375 *
1376 * This is called to check if a tree of mounts has any
1377 * open files, pwds, chroots or sub mounts that are
1378 * busy.
1379 */
1380int may_umount_tree(struct vfsmount *m)
1381{
1382        struct mount *mnt = real_mount(m);
1383        int actual_refs = 0;
1384        int minimum_refs = 0;
1385        struct mount *p;
1386        BUG_ON(!m);
1387
1388        /* write lock needed for mnt_get_count */
1389        lock_mount_hash();
1390        for (p = mnt; p; p = next_mnt(p, mnt)) {
1391                actual_refs += mnt_get_count(p);
1392                minimum_refs += 2;
1393        }
1394        unlock_mount_hash();
1395
1396        if (actual_refs > minimum_refs)
1397                return 0;
1398
1399        return 1;
1400}
1401
1402EXPORT_SYMBOL(may_umount_tree);
1403
1404/**
1405 * may_umount - check if a mount point is busy
1406 * @mnt: root of mount
1407 *
1408 * This is called to check if a mount point has any
1409 * open files, pwds, chroots or sub mounts. If the
1410 * mount has sub mounts this will return busy
1411 * regardless of whether the sub mounts are busy.
1412 *
1413 * Doesn't take quota and stuff into account. IOW, in some cases it will
1414 * give false negatives. The main reason why it's here is that we need
1415 * a non-destructive way to look for easily umountable filesystems.
1416 */
1417int may_umount(struct vfsmount *mnt)
1418{
1419        int ret = 1;
1420        down_read(&namespace_sem);
1421        lock_mount_hash();
1422        if (propagate_mount_busy(real_mount(mnt), 2))
1423                ret = 0;
1424        unlock_mount_hash();
1425        up_read(&namespace_sem);
1426        return ret;
1427}
1428
1429EXPORT_SYMBOL(may_umount);
1430
1431static void namespace_unlock(void)
1432{
1433        struct hlist_head head;
1434        struct hlist_node *p;
1435        struct mount *m;
1436        LIST_HEAD(list);
1437
1438        hlist_move_list(&unmounted, &head);
1439        list_splice_init(&ex_mountpoints, &list);
1440
1441        up_write(&namespace_sem);
1442
1443        shrink_dentry_list(&list);
1444
1445        if (likely(hlist_empty(&head)))
1446                return;
1447
1448        synchronize_rcu_expedited();
1449
1450        hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1451                hlist_del(&m->mnt_umount);
1452                mntput(&m->mnt);
1453        }
1454}
1455
1456static inline void namespace_lock(void)
1457{
1458        down_write(&namespace_sem);
1459}
1460
1461enum umount_tree_flags {
1462        UMOUNT_SYNC = 1,
1463        UMOUNT_PROPAGATE = 2,
1464        UMOUNT_CONNECTED = 4,
1465};
1466
1467static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1468{
1469        /* Leaving mounts connected is only valid for lazy umounts */
1470        if (how & UMOUNT_SYNC)
1471                return true;
1472
1473        /* A mount without a parent has nothing to be connected to */
1474        if (!mnt_has_parent(mnt))
1475                return true;
1476
1477        /* Because the reference counting rules change when mounts are
1478         * unmounted and connected, umounted mounts may not be
1479         * connected to mounted mounts.
1480         */
1481        if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1482                return true;
1483
1484        /* Has it been requested that the mount remain connected? */
1485        if (how & UMOUNT_CONNECTED)
1486                return false;
1487
1488        /* Is the mount locked such that it needs to remain connected? */
1489        if (IS_MNT_LOCKED(mnt))
1490                return false;
1491
1492        /* By default disconnect the mount */
1493        return true;
1494}
1495
1496/*
1497 * mount_lock must be held
1498 * namespace_sem must be held for write
1499 */
1500static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1501{
1502        LIST_HEAD(tmp_list);
1503        struct mount *p;
1504
1505        if (how & UMOUNT_PROPAGATE)
1506                propagate_mount_unlock(mnt);
1507
1508        /* Gather the mounts to umount */
1509        for (p = mnt; p; p = next_mnt(p, mnt)) {
1510                p->mnt.mnt_flags |= MNT_UMOUNT;
1511                list_move(&p->mnt_list, &tmp_list);
1512        }
1513
1514        /* Hide the mounts from mnt_mounts */
1515        list_for_each_entry(p, &tmp_list, mnt_list) {
1516                list_del_init(&p->mnt_child);
1517        }
1518
1519        /* Add propogated mounts to the tmp_list */
1520        if (how & UMOUNT_PROPAGATE)
1521                propagate_umount(&tmp_list);
1522
1523        while (!list_empty(&tmp_list)) {
1524                struct mnt_namespace *ns;
1525                bool disconnect;
1526                p = list_first_entry(&tmp_list, struct mount, mnt_list);
1527                list_del_init(&p->mnt_expire);
1528                list_del_init(&p->mnt_list);
1529                ns = p->mnt_ns;
1530                if (ns) {
1531                        ns->mounts--;
1532                        __touch_mnt_namespace(ns);
1533                }
1534                p->mnt_ns = NULL;
1535                if (how & UMOUNT_SYNC)
1536                        p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1537
1538                disconnect = disconnect_mount(p, how);
1539                if (mnt_has_parent(p)) {
1540                        mnt_add_count(p->mnt_parent, -1);
1541                        if (!disconnect) {
1542                                /* Don't forget about p */
1543                                list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1544                        } else {
1545                                umount_mnt(p);
1546                        }
1547                }
1548                change_mnt_propagation(p, MS_PRIVATE);
1549                if (disconnect)
1550                        hlist_add_head(&p->mnt_umount, &unmounted);
1551        }
1552}
1553
1554static void shrink_submounts(struct mount *mnt);
1555
1556static int do_umount_root(struct super_block *sb)
1557{
1558        int ret = 0;
1559
1560        down_write(&sb->s_umount);
1561        if (!sb_rdonly(sb)) {
1562                struct fs_context *fc;
1563
1564                fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1565                                                SB_RDONLY);
1566                if (IS_ERR(fc)) {
1567                        ret = PTR_ERR(fc);
1568                } else {
1569                        ret = parse_monolithic_mount_data(fc, NULL);
1570                        if (!ret)
1571                                ret = reconfigure_super(fc);
1572                        put_fs_context(fc);
1573                }
1574        }
1575        up_write(&sb->s_umount);
1576        return ret;
1577}
1578
1579static int do_umount(struct mount *mnt, int flags)
1580{
1581        struct super_block *sb = mnt->mnt.mnt_sb;
1582        int retval;
1583
1584        retval = security_sb_umount(&mnt->mnt, flags);
1585        if (retval)
1586                return retval;
1587
1588        /*
1589         * Allow userspace to request a mountpoint be expired rather than
1590         * unmounting unconditionally. Unmount only happens if:
1591         *  (1) the mark is already set (the mark is cleared by mntput())
1592         *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1593         */
1594        if (flags & MNT_EXPIRE) {
1595                if (&mnt->mnt == current->fs->root.mnt ||
1596                    flags & (MNT_FORCE | MNT_DETACH))
1597                        return -EINVAL;
1598
1599                /*
1600                 * probably don't strictly need the lock here if we examined
1601                 * all race cases, but it's a slowpath.
1602                 */
1603                lock_mount_hash();
1604                if (mnt_get_count(mnt) != 2) {
1605                        unlock_mount_hash();
1606                        return -EBUSY;
1607                }
1608                unlock_mount_hash();
1609
1610                if (!xchg(&mnt->mnt_expiry_mark, 1))
1611                        return -EAGAIN;
1612        }
1613
1614        /*
1615         * If we may have to abort operations to get out of this
1616         * mount, and they will themselves hold resources we must
1617         * allow the fs to do things. In the Unix tradition of
1618         * 'Gee thats tricky lets do it in userspace' the umount_begin
1619         * might fail to complete on the first run through as other tasks
1620         * must return, and the like. Thats for the mount program to worry
1621         * about for the moment.
1622         */
1623
1624        if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1625                sb->s_op->umount_begin(sb);
1626        }
1627
1628        /*
1629         * No sense to grab the lock for this test, but test itself looks
1630         * somewhat bogus. Suggestions for better replacement?
1631         * Ho-hum... In principle, we might treat that as umount + switch
1632         * to rootfs. GC would eventually take care of the old vfsmount.
1633         * Actually it makes sense, especially if rootfs would contain a
1634         * /reboot - static binary that would close all descriptors and
1635         * call reboot(9). Then init(8) could umount root and exec /reboot.
1636         */
1637        if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1638                /*
1639                 * Special case for "unmounting" root ...
1640                 * we just try to remount it readonly.
1641                 */
1642                if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1643                        return -EPERM;
1644                return do_umount_root(sb);
1645        }
1646
1647        namespace_lock();
1648        lock_mount_hash();
1649
1650        /* Recheck MNT_LOCKED with the locks held */
1651        retval = -EINVAL;
1652        if (mnt->mnt.mnt_flags & MNT_LOCKED)
1653                goto out;
1654
1655        event++;
1656        if (flags & MNT_DETACH) {
1657                if (!list_empty(&mnt->mnt_list))
1658                        umount_tree(mnt, UMOUNT_PROPAGATE);
1659                retval = 0;
1660        } else {
1661                shrink_submounts(mnt);
1662                retval = -EBUSY;
1663                if (!propagate_mount_busy(mnt, 2)) {
1664                        if (!list_empty(&mnt->mnt_list))
1665                                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1666                        retval = 0;
1667                }
1668        }
1669out:
1670        unlock_mount_hash();
1671        namespace_unlock();
1672        return retval;
1673}
1674
1675/*
1676 * __detach_mounts - lazily unmount all mounts on the specified dentry
1677 *
1678 * During unlink, rmdir, and d_drop it is possible to loose the path
1679 * to an existing mountpoint, and wind up leaking the mount.
1680 * detach_mounts allows lazily unmounting those mounts instead of
1681 * leaking them.
1682 *
1683 * The caller may hold dentry->d_inode->i_mutex.
1684 */
1685void __detach_mounts(struct dentry *dentry)
1686{
1687        struct mountpoint *mp;
1688        struct mount *mnt;
1689
1690        namespace_lock();
1691        lock_mount_hash();
1692        mp = lookup_mountpoint(dentry);
1693        if (!mp)
1694                goto out_unlock;
1695
1696        event++;
1697        while (!hlist_empty(&mp->m_list)) {
1698                mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1699                if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1700                        umount_mnt(mnt);
1701                        hlist_add_head(&mnt->mnt_umount, &unmounted);
1702                }
1703                else umount_tree(mnt, UMOUNT_CONNECTED);
1704        }
1705        put_mountpoint(mp);
1706out_unlock:
1707        unlock_mount_hash();
1708        namespace_unlock();
1709}
1710
1711/*
1712 * Is the caller allowed to modify his namespace?
1713 */
1714static inline bool may_mount(void)
1715{
1716        return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1717}
1718
1719static void warn_mandlock(void)
1720{
1721        pr_warn_once("=======================================================\n"
1722                     "WARNING: The mand mount option has been deprecated and\n"
1723                     "         and is ignored by this kernel. Remove the mand\n"
1724                     "         option from the mount to silence this warning.\n"
1725                     "=======================================================\n");
1726}
1727
1728static int can_umount(const struct path *path, int flags)
1729{
1730        struct mount *mnt = real_mount(path->mnt);
1731
1732        if (!may_mount())
1733                return -EPERM;
1734        if (path->dentry != path->mnt->mnt_root)
1735                return -EINVAL;
1736        if (!check_mnt(mnt))
1737                return -EINVAL;
1738        if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1739                return -EINVAL;
1740        if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1741                return -EPERM;
1742        return 0;
1743}
1744
1745// caller is responsible for flags being sane
1746int path_umount(struct path *path, int flags)
1747{
1748        struct mount *mnt = real_mount(path->mnt);
1749        int ret;
1750
1751        ret = can_umount(path, flags);
1752        if (!ret)
1753                ret = do_umount(mnt, flags);
1754
1755        /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1756        dput(path->dentry);
1757        mntput_no_expire(mnt);
1758        return ret;
1759}
1760
1761static int ksys_umount(char __user *name, int flags)
1762{
1763        int lookup_flags = LOOKUP_MOUNTPOINT;
1764        struct path path;
1765        int ret;
1766
1767        // basic validity checks done first
1768        if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1769                return -EINVAL;
1770
1771        if (!(flags & UMOUNT_NOFOLLOW))
1772                lookup_flags |= LOOKUP_FOLLOW;
1773        ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1774        if (ret)
1775                return ret;
1776        return path_umount(&path, flags);
1777}
1778
1779SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1780{
1781        return ksys_umount(name, flags);
1782}
1783
1784#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1785
1786/*
1787 *      The 2.0 compatible umount. No flags.
1788 */
1789SYSCALL_DEFINE1(oldumount, char __user *, name)
1790{
1791        return ksys_umount(name, 0);
1792}
1793
1794#endif
1795
1796static bool is_mnt_ns_file(struct dentry *dentry)
1797{
1798        /* Is this a proxy for a mount namespace? */
1799        return dentry->d_op == &ns_dentry_operations &&
1800               dentry->d_fsdata == &mntns_operations;
1801}
1802
1803static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1804{
1805        return container_of(ns, struct mnt_namespace, ns);
1806}
1807
1808struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1809{
1810        return &mnt->ns;
1811}
1812
1813static bool mnt_ns_loop(struct dentry *dentry)
1814{
1815        /* Could bind mounting the mount namespace inode cause a
1816         * mount namespace loop?
1817         */
1818        struct mnt_namespace *mnt_ns;
1819        if (!is_mnt_ns_file(dentry))
1820                return false;
1821
1822        mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1823        return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1824}
1825
1826struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1827                                        int flag)
1828{
1829        struct mount *res, *p, *q, *r, *parent;
1830
1831        if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1832                return ERR_PTR(-EINVAL);
1833
1834        if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1835                return ERR_PTR(-EINVAL);
1836
1837        res = q = clone_mnt(mnt, dentry, flag);
1838        if (IS_ERR(q))
1839                return q;
1840
1841        q->mnt_mountpoint = mnt->mnt_mountpoint;
1842
1843        p = mnt;
1844        list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1845                struct mount *s;
1846                if (!is_subdir(r->mnt_mountpoint, dentry))
1847                        continue;
1848
1849                for (s = r; s; s = next_mnt(s, r)) {
1850                        if (!(flag & CL_COPY_UNBINDABLE) &&
1851                            IS_MNT_UNBINDABLE(s)) {
1852                                if (s->mnt.mnt_flags & MNT_LOCKED) {
1853                                        /* Both unbindable and locked. */
1854                                        q = ERR_PTR(-EPERM);
1855                                        goto out;
1856                                } else {
1857                                        s = skip_mnt_tree(s);
1858                                        continue;
1859                                }
1860                        }
1861                        if (!(flag & CL_COPY_MNT_NS_FILE) &&
1862                            is_mnt_ns_file(s->mnt.mnt_root)) {
1863                                s = skip_mnt_tree(s);
1864                                continue;
1865                        }
1866                        while (p != s->mnt_parent) {
1867                                p = p->mnt_parent;
1868                                q = q->mnt_parent;
1869                        }
1870                        p = s;
1871                        parent = q;
1872                        q = clone_mnt(p, p->mnt.mnt_root, flag);
1873                        if (IS_ERR(q))
1874                                goto out;
1875                        lock_mount_hash();
1876                        list_add_tail(&q->mnt_list, &res->mnt_list);
1877                        attach_mnt(q, parent, p->mnt_mp);
1878                        unlock_mount_hash();
1879                }
1880        }
1881        return res;
1882out:
1883        if (res) {
1884                lock_mount_hash();
1885                umount_tree(res, UMOUNT_SYNC);
1886                unlock_mount_hash();
1887        }
1888        return q;
1889}
1890
1891/* Caller should check returned pointer for errors */
1892
1893struct vfsmount *collect_mounts(const struct path *path)
1894{
1895        struct mount *tree;
1896        namespace_lock();
1897        if (!check_mnt(real_mount(path->mnt)))
1898                tree = ERR_PTR(-EINVAL);
1899        else
1900                tree = copy_tree(real_mount(path->mnt), path->dentry,
1901                                 CL_COPY_ALL | CL_PRIVATE);
1902        namespace_unlock();
1903        if (IS_ERR(tree))
1904                return ERR_CAST(tree);
1905        return &tree->mnt;
1906}
1907
1908static void free_mnt_ns(struct mnt_namespace *);
1909static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1910
1911void dissolve_on_fput(struct vfsmount *mnt)
1912{
1913        struct mnt_namespace *ns;
1914        namespace_lock();
1915        lock_mount_hash();
1916        ns = real_mount(mnt)->mnt_ns;
1917        if (ns) {
1918                if (is_anon_ns(ns))
1919                        umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1920                else
1921                        ns = NULL;
1922        }
1923        unlock_mount_hash();
1924        namespace_unlock();
1925        if (ns)
1926                free_mnt_ns(ns);
1927}
1928
1929void drop_collected_mounts(struct vfsmount *mnt)
1930{
1931        namespace_lock();
1932        lock_mount_hash();
1933        umount_tree(real_mount(mnt), 0);
1934        unlock_mount_hash();
1935        namespace_unlock();
1936}
1937
1938static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1939{
1940        struct mount *child;
1941
1942        list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1943                if (!is_subdir(child->mnt_mountpoint, dentry))
1944                        continue;
1945
1946                if (child->mnt.mnt_flags & MNT_LOCKED)
1947                        return true;
1948        }
1949        return false;
1950}
1951
1952/**
1953 * clone_private_mount - create a private clone of a path
1954 * @path: path to clone
1955 *
1956 * This creates a new vfsmount, which will be the clone of @path.  The new mount
1957 * will not be attached anywhere in the namespace and will be private (i.e.
1958 * changes to the originating mount won't be propagated into this).
1959 *
1960 * Release with mntput().
1961 */
1962struct vfsmount *clone_private_mount(const struct path *path)
1963{
1964        struct mount *old_mnt = real_mount(path->mnt);
1965        struct mount *new_mnt;
1966
1967        down_read(&namespace_sem);
1968        if (IS_MNT_UNBINDABLE(old_mnt))
1969                goto invalid;
1970
1971        if (!check_mnt(old_mnt))
1972                goto invalid;
1973
1974        if (has_locked_children(old_mnt, path->dentry))
1975                goto invalid;
1976
1977        new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1978        up_read(&namespace_sem);
1979
1980        if (IS_ERR(new_mnt))
1981                return ERR_CAST(new_mnt);
1982
1983        /* Longterm mount to be removed by kern_unmount*() */
1984        new_mnt->mnt_ns = MNT_NS_INTERNAL;
1985
1986        return &new_mnt->mnt;
1987
1988invalid:
1989        up_read(&namespace_sem);
1990        return ERR_PTR(-EINVAL);
1991}
1992EXPORT_SYMBOL_GPL(clone_private_mount);
1993
1994int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1995                   struct vfsmount *root)
1996{
1997        struct mount *mnt;
1998        int res = f(root, arg);
1999        if (res)
2000                return res;
2001        list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2002                res = f(&mnt->mnt, arg);
2003                if (res)
2004                        return res;
2005        }
2006        return 0;
2007}
2008
2009static void lock_mnt_tree(struct mount *mnt)
2010{
2011        struct mount *p;
2012
2013        for (p = mnt; p; p = next_mnt(p, mnt)) {
2014                int flags = p->mnt.mnt_flags;
2015                /* Don't allow unprivileged users to change mount flags */
2016                flags |= MNT_LOCK_ATIME;
2017
2018                if (flags & MNT_READONLY)
2019                        flags |= MNT_LOCK_READONLY;
2020
2021                if (flags & MNT_NODEV)
2022                        flags |= MNT_LOCK_NODEV;
2023
2024                if (flags & MNT_NOSUID)
2025                        flags |= MNT_LOCK_NOSUID;
2026
2027                if (flags & MNT_NOEXEC)
2028                        flags |= MNT_LOCK_NOEXEC;
2029                /* Don't allow unprivileged users to reveal what is under a mount */
2030                if (list_empty(&p->mnt_expire))
2031                        flags |= MNT_LOCKED;
2032                p->mnt.mnt_flags = flags;
2033        }
2034}
2035
2036static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2037{
2038        struct mount *p;
2039
2040        for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2041                if (p->mnt_group_id && !IS_MNT_SHARED(p))
2042                        mnt_release_group_id(p);
2043        }
2044}
2045
2046static int invent_group_ids(struct mount *mnt, bool recurse)
2047{
2048        struct mount *p;
2049
2050        for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2051                if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2052                        int err = mnt_alloc_group_id(p);
2053                        if (err) {
2054                                cleanup_group_ids(mnt, p);
2055                                return err;
2056                        }
2057                }
2058        }
2059
2060        return 0;
2061}
2062
2063int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2064{
2065        unsigned int max = READ_ONCE(sysctl_mount_max);
2066        unsigned int mounts = 0, old, pending, sum;
2067        struct mount *p;
2068
2069        for (p = mnt; p; p = next_mnt(p, mnt))
2070                mounts++;
2071
2072        old = ns->mounts;
2073        pending = ns->pending_mounts;
2074        sum = old + pending;
2075        if ((old > sum) ||
2076            (pending > sum) ||
2077            (max < sum) ||
2078            (mounts > (max - sum)))
2079                return -ENOSPC;
2080
2081        ns->pending_mounts = pending + mounts;
2082        return 0;
2083}
2084
2085/*
2086 *  @source_mnt : mount tree to be attached
2087 *  @nd         : place the mount tree @source_mnt is attached
2088 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2089 *                 store the parent mount and mountpoint dentry.
2090 *                 (done when source_mnt is moved)
2091 *
2092 *  NOTE: in the table below explains the semantics when a source mount
2093 *  of a given type is attached to a destination mount of a given type.
2094 * ---------------------------------------------------------------------------
2095 * |         BIND MOUNT OPERATION                                            |
2096 * |**************************************************************************
2097 * | source-->| shared        |       private  |       slave    | unbindable |
2098 * | dest     |               |                |                |            |
2099 * |   |      |               |                |                |            |
2100 * |   v      |               |                |                |            |
2101 * |**************************************************************************
2102 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2103 * |          |               |                |                |            |
2104 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2105 * ***************************************************************************
2106 * A bind operation clones the source mount and mounts the clone on the
2107 * destination mount.
2108 *
2109 * (++)  the cloned mount is propagated to all the mounts in the propagation
2110 *       tree of the destination mount and the cloned mount is added to
2111 *       the peer group of the source mount.
2112 * (+)   the cloned mount is created under the destination mount and is marked
2113 *       as shared. The cloned mount is added to the peer group of the source
2114 *       mount.
2115 * (+++) the mount is propagated to all the mounts in the propagation tree
2116 *       of the destination mount and the cloned mount is made slave
2117 *       of the same master as that of the source mount. The cloned mount
2118 *       is marked as 'shared and slave'.
2119 * (*)   the cloned mount is made a slave of the same master as that of the
2120 *       source mount.
2121 *
2122 * ---------------------------------------------------------------------------
2123 * |                    MOVE MOUNT OPERATION                                 |
2124 * |**************************************************************************
2125 * | source-->| shared        |       private  |       slave    | unbindable |
2126 * | dest     |               |                |                |            |
2127 * |   |      |               |                |                |            |
2128 * |   v      |               |                |                |            |
2129 * |**************************************************************************
2130 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2131 * |          |               |                |                |            |
2132 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2133 * ***************************************************************************
2134 *
2135 * (+)  the mount is moved to the destination. And is then propagated to
2136 *      all the mounts in the propagation tree of the destination mount.
2137 * (+*)  the mount is moved to the destination.
2138 * (+++)  the mount is moved to the destination and is then propagated to
2139 *      all the mounts belonging to the destination mount's propagation tree.
2140 *      the mount is marked as 'shared and slave'.
2141 * (*)  the mount continues to be a slave at the new location.
2142 *
2143 * if the source mount is a tree, the operations explained above is
2144 * applied to each mount in the tree.
2145 * Must be called without spinlocks held, since this function can sleep
2146 * in allocations.
2147 */
2148static int attach_recursive_mnt(struct mount *source_mnt,
2149                        struct mount *dest_mnt,
2150                        struct mountpoint *dest_mp,
2151                        bool moving)
2152{
2153        struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2154        HLIST_HEAD(tree_list);
2155        struct mnt_namespace *ns = dest_mnt->mnt_ns;
2156        struct mountpoint *smp;
2157        struct mount *child, *p;
2158        struct hlist_node *n;
2159        int err;
2160
2161        /* Preallocate a mountpoint in case the new mounts need
2162         * to be tucked under other mounts.
2163         */
2164        smp = get_mountpoint(source_mnt->mnt.mnt_root);
2165        if (IS_ERR(smp))
2166                return PTR_ERR(smp);
2167
2168        /* Is there space to add these mounts to the mount namespace? */
2169        if (!moving) {
2170                err = count_mounts(ns, source_mnt);
2171                if (err)
2172                        goto out;
2173        }
2174
2175        if (IS_MNT_SHARED(dest_mnt)) {
2176                err = invent_group_ids(source_mnt, true);
2177                if (err)
2178                        goto out;
2179                err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2180                lock_mount_hash();
2181                if (err)
2182                        goto out_cleanup_ids;
2183                for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2184                        set_mnt_shared(p);
2185        } else {
2186                lock_mount_hash();
2187        }
2188        if (moving) {
2189                unhash_mnt(source_mnt);
2190                attach_mnt(source_mnt, dest_mnt, dest_mp);
2191                touch_mnt_namespace(source_mnt->mnt_ns);
2192        } else {
2193                if (source_mnt->mnt_ns) {
2194                        /* move from anon - the caller will destroy */
2195                        list_del_init(&source_mnt->mnt_ns->list);
2196                }
2197                mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2198                commit_tree(source_mnt);
2199        }
2200
2201        hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2202                struct mount *q;
2203                hlist_del_init(&child->mnt_hash);
2204                q = __lookup_mnt(&child->mnt_parent->mnt,
2205                                 child->mnt_mountpoint);
2206                if (q)
2207                        mnt_change_mountpoint(child, smp, q);
2208                /* Notice when we are propagating across user namespaces */
2209                if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2210                        lock_mnt_tree(child);
2211                child->mnt.mnt_flags &= ~MNT_LOCKED;
2212                commit_tree(child);
2213        }
2214        put_mountpoint(smp);
2215        unlock_mount_hash();
2216
2217        return 0;
2218
2219 out_cleanup_ids:
2220        while (!hlist_empty(&tree_list)) {
2221                child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2222                child->mnt_parent->mnt_ns->pending_mounts = 0;
2223                umount_tree(child, UMOUNT_SYNC);
2224        }
2225        unlock_mount_hash();
2226        cleanup_group_ids(source_mnt, NULL);
2227 out:
2228        ns->pending_mounts = 0;
2229
2230        read_seqlock_excl(&mount_lock);
2231        put_mountpoint(smp);
2232        read_sequnlock_excl(&mount_lock);
2233
2234        return err;
2235}
2236
2237static struct mountpoint *lock_mount(struct path *path)
2238{
2239        struct vfsmount *mnt;
2240        struct dentry *dentry = path->dentry;
2241retry:
2242        inode_lock(dentry->d_inode);
2243        if (unlikely(cant_mount(dentry))) {
2244                inode_unlock(dentry->d_inode);
2245                return ERR_PTR(-ENOENT);
2246        }
2247        namespace_lock();
2248        mnt = lookup_mnt(path);
2249        if (likely(!mnt)) {
2250                struct mountpoint *mp = get_mountpoint(dentry);
2251                if (IS_ERR(mp)) {
2252                        namespace_unlock();
2253                        inode_unlock(dentry->d_inode);
2254                        return mp;
2255                }
2256                return mp;
2257        }
2258        namespace_unlock();
2259        inode_unlock(path->dentry->d_inode);
2260        path_put(path);
2261        path->mnt = mnt;
2262        dentry = path->dentry = dget(mnt->mnt_root);
2263        goto retry;
2264}
2265
2266static void unlock_mount(struct mountpoint *where)
2267{
2268        struct dentry *dentry = where->m_dentry;
2269
2270        read_seqlock_excl(&mount_lock);
2271        put_mountpoint(where);
2272        read_sequnlock_excl(&mount_lock);
2273
2274        namespace_unlock();
2275        inode_unlock(dentry->d_inode);
2276}
2277
2278static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2279{
2280        if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2281                return -EINVAL;
2282
2283        if (d_is_dir(mp->m_dentry) !=
2284              d_is_dir(mnt->mnt.mnt_root))
2285                return -ENOTDIR;
2286
2287        return attach_recursive_mnt(mnt, p, mp, false);
2288}
2289
2290/*
2291 * Sanity check the flags to change_mnt_propagation.
2292 */
2293
2294static int flags_to_propagation_type(int ms_flags)
2295{
2296        int type = ms_flags & ~(MS_REC | MS_SILENT);
2297
2298        /* Fail if any non-propagation flags are set */
2299        if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2300                return 0;
2301        /* Only one propagation flag should be set */
2302        if (!is_power_of_2(type))
2303                return 0;
2304        return type;
2305}
2306
2307/*
2308 * recursively change the type of the mountpoint.
2309 */
2310static int do_change_type(struct path *path, int ms_flags)
2311{
2312        struct mount *m;
2313        struct mount *mnt = real_mount(path->mnt);
2314        int recurse = ms_flags & MS_REC;
2315        int type;
2316        int err = 0;
2317
2318        if (path->dentry != path->mnt->mnt_root)
2319                return -EINVAL;
2320
2321        type = flags_to_propagation_type(ms_flags);
2322        if (!type)
2323                return -EINVAL;
2324
2325        namespace_lock();
2326        if (type == MS_SHARED) {
2327                err = invent_group_ids(mnt, recurse);
2328                if (err)
2329                        goto out_unlock;
2330        }
2331
2332        lock_mount_hash();
2333        for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2334                change_mnt_propagation(m, type);
2335        unlock_mount_hash();
2336
2337 out_unlock:
2338        namespace_unlock();
2339        return err;
2340}
2341
2342static struct mount *__do_loopback(struct path *old_path, int recurse)
2343{
2344        struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2345
2346        if (IS_MNT_UNBINDABLE(old))
2347                return mnt;
2348
2349        if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2350                return mnt;
2351
2352        if (!recurse && has_locked_children(old, old_path->dentry))
2353                return mnt;
2354
2355        if (recurse)
2356                mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2357        else
2358                mnt = clone_mnt(old, old_path->dentry, 0);
2359
2360        if (!IS_ERR(mnt))
2361                mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2362
2363        return mnt;
2364}
2365
2366/*
2367 * do loopback mount.
2368 */
2369static int do_loopback(struct path *path, const char *old_name,
2370                                int recurse)
2371{
2372        struct path old_path;
2373        struct mount *mnt = NULL, *parent;
2374        struct mountpoint *mp;
2375        int err;
2376        if (!old_name || !*old_name)
2377                return -EINVAL;
2378        err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2379        if (err)
2380                return err;
2381
2382        err = -EINVAL;
2383        if (mnt_ns_loop(old_path.dentry))
2384                goto out;
2385
2386        mp = lock_mount(path);
2387        if (IS_ERR(mp)) {
2388                err = PTR_ERR(mp);
2389                goto out;
2390        }
2391
2392        parent = real_mount(path->mnt);
2393        if (!check_mnt(parent))
2394                goto out2;
2395
2396        mnt = __do_loopback(&old_path, recurse);
2397        if (IS_ERR(mnt)) {
2398                err = PTR_ERR(mnt);
2399                goto out2;
2400        }
2401
2402        err = graft_tree(mnt, parent, mp);
2403        if (err) {
2404                lock_mount_hash();
2405                umount_tree(mnt, UMOUNT_SYNC);
2406                unlock_mount_hash();
2407        }
2408out2:
2409        unlock_mount(mp);
2410out:
2411        path_put(&old_path);
2412        return err;
2413}
2414
2415static struct file *open_detached_copy(struct path *path, bool recursive)
2416{
2417        struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2418        struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2419        struct mount *mnt, *p;
2420        struct file *file;
2421
2422        if (IS_ERR(ns))
2423                return ERR_CAST(ns);
2424
2425        namespace_lock();
2426        mnt = __do_loopback(path, recursive);
2427        if (IS_ERR(mnt)) {
2428                namespace_unlock();
2429                free_mnt_ns(ns);
2430                return ERR_CAST(mnt);
2431        }
2432
2433        lock_mount_hash();
2434        for (p = mnt; p; p = next_mnt(p, mnt)) {
2435                p->mnt_ns = ns;
2436                ns->mounts++;
2437        }
2438        ns->root = mnt;
2439        list_add_tail(&ns->list, &mnt->mnt_list);
2440        mntget(&mnt->mnt);
2441        unlock_mount_hash();
2442        namespace_unlock();
2443
2444        mntput(path->mnt);
2445        path->mnt = &mnt->mnt;
2446        file = dentry_open(path, O_PATH, current_cred());
2447        if (IS_ERR(file))
2448                dissolve_on_fput(path->mnt);
2449        else
2450                file->f_mode |= FMODE_NEED_UNMOUNT;
2451        return file;
2452}
2453
2454SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2455{
2456        struct file *file;
2457        struct path path;
2458        int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2459        bool detached = flags & OPEN_TREE_CLONE;
2460        int error;
2461        int fd;
2462
2463        BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2464
2465        if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2466                      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2467                      OPEN_TREE_CLOEXEC))
2468                return -EINVAL;
2469
2470        if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2471                return -EINVAL;
2472
2473        if (flags & AT_NO_AUTOMOUNT)
2474                lookup_flags &= ~LOOKUP_AUTOMOUNT;
2475        if (flags & AT_SYMLINK_NOFOLLOW)
2476                lookup_flags &= ~LOOKUP_FOLLOW;
2477        if (flags & AT_EMPTY_PATH)
2478                lookup_flags |= LOOKUP_EMPTY;
2479
2480        if (detached && !may_mount())
2481                return -EPERM;
2482
2483        fd = get_unused_fd_flags(flags & O_CLOEXEC);
2484        if (fd < 0)
2485                return fd;
2486
2487        error = user_path_at(dfd, filename, lookup_flags, &path);
2488        if (unlikely(error)) {
2489                file = ERR_PTR(error);
2490        } else {
2491                if (detached)
2492                        file = open_detached_copy(&path, flags & AT_RECURSIVE);
2493                else
2494                        file = dentry_open(&path, O_PATH, current_cred());
2495                path_put(&path);
2496        }
2497        if (IS_ERR(file)) {
2498                put_unused_fd(fd);
2499                return PTR_ERR(file);
2500        }
2501        fd_install(fd, file);
2502        return fd;
2503}
2504
2505/*
2506 * Don't allow locked mount flags to be cleared.
2507 *
2508 * No locks need to be held here while testing the various MNT_LOCK
2509 * flags because those flags can never be cleared once they are set.
2510 */
2511static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2512{
2513        unsigned int fl = mnt->mnt.mnt_flags;
2514
2515        if ((fl & MNT_LOCK_READONLY) &&
2516            !(mnt_flags & MNT_READONLY))
2517                return false;
2518
2519        if ((fl & MNT_LOCK_NODEV) &&
2520            !(mnt_flags & MNT_NODEV))
2521                return false;
2522
2523        if ((fl & MNT_LOCK_NOSUID) &&
2524            !(mnt_flags & MNT_NOSUID))
2525                return false;
2526
2527        if ((fl & MNT_LOCK_NOEXEC) &&
2528            !(mnt_flags & MNT_NOEXEC))
2529                return false;
2530
2531        if ((fl & MNT_LOCK_ATIME) &&
2532            ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2533                return false;
2534
2535        return true;
2536}
2537
2538static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2539{
2540        bool readonly_request = (mnt_flags & MNT_READONLY);
2541
2542        if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2543                return 0;
2544
2545        if (readonly_request)
2546                return mnt_make_readonly(mnt);
2547
2548        mnt->mnt.mnt_flags &= ~MNT_READONLY;
2549        return 0;
2550}
2551
2552static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2553{
2554        mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2555        mnt->mnt.mnt_flags = mnt_flags;
2556        touch_mnt_namespace(mnt->mnt_ns);
2557}
2558
2559static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2560{
2561        struct super_block *sb = mnt->mnt_sb;
2562
2563        if (!__mnt_is_readonly(mnt) &&
2564           (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2565                char *buf = (char *)__get_free_page(GFP_KERNEL);
2566                char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2567                struct tm tm;
2568
2569                time64_to_tm(sb->s_time_max, 0, &tm);
2570
2571                pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2572                        sb->s_type->name,
2573                        is_mounted(mnt) ? "remounted" : "mounted",
2574                        mntpath,
2575                        tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2576
2577                free_page((unsigned long)buf);
2578        }
2579}
2580
2581/*
2582 * Handle reconfiguration of the mountpoint only without alteration of the
2583 * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2584 * to mount(2).
2585 */
2586static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2587{
2588        struct super_block *sb = path->mnt->mnt_sb;
2589        struct mount *mnt = real_mount(path->mnt);
2590        int ret;
2591
2592        if (!check_mnt(mnt))
2593                return -EINVAL;
2594
2595        if (path->dentry != mnt->mnt.mnt_root)
2596                return -EINVAL;
2597
2598        if (!can_change_locked_flags(mnt, mnt_flags))
2599                return -EPERM;
2600
2601        /*
2602         * We're only checking whether the superblock is read-only not
2603         * changing it, so only take down_read(&sb->s_umount).
2604         */
2605        down_read(&sb->s_umount);
2606        lock_mount_hash();
2607        ret = change_mount_ro_state(mnt, mnt_flags);
2608        if (ret == 0)
2609                set_mount_attributes(mnt, mnt_flags);
2610        unlock_mount_hash();
2611        up_read(&sb->s_umount);
2612
2613        mnt_warn_timestamp_expiry(path, &mnt->mnt);
2614
2615        return ret;
2616}
2617
2618/*
2619 * change filesystem flags. dir should be a physical root of filesystem.
2620 * If you've mounted a non-root directory somewhere and want to do remount
2621 * on it - tough luck.
2622 */
2623static int do_remount(struct path *path, int ms_flags, int sb_flags,
2624                      int mnt_flags, void *data)
2625{
2626        int err;
2627        struct super_block *sb = path->mnt->mnt_sb;
2628        struct mount *mnt = real_mount(path->mnt);
2629        struct fs_context *fc;
2630
2631        if (!check_mnt(mnt))
2632                return -EINVAL;
2633
2634        if (path->dentry != path->mnt->mnt_root)
2635                return -EINVAL;
2636
2637        if (!can_change_locked_flags(mnt, mnt_flags))
2638                return -EPERM;
2639
2640        fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2641        if (IS_ERR(fc))
2642                return PTR_ERR(fc);
2643
2644        fc->oldapi = true;
2645        err = parse_monolithic_mount_data(fc, data);
2646        if (!err) {
2647                down_write(&sb->s_umount);
2648                err = -EPERM;
2649                if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2650                        err = reconfigure_super(fc);
2651                        if (!err) {
2652                                lock_mount_hash();
2653                                set_mount_attributes(mnt, mnt_flags);
2654                                unlock_mount_hash();
2655                        }
2656                }
2657                up_write(&sb->s_umount);
2658        }
2659
2660        mnt_warn_timestamp_expiry(path, &mnt->mnt);
2661
2662        put_fs_context(fc);
2663        return err;
2664}
2665
2666static inline int tree_contains_unbindable(struct mount *mnt)
2667{
2668        struct mount *p;
2669        for (p = mnt; p; p = next_mnt(p, mnt)) {
2670                if (IS_MNT_UNBINDABLE(p))
2671                        return 1;
2672        }
2673        return 0;
2674}
2675
2676/*
2677 * Check that there aren't references to earlier/same mount namespaces in the
2678 * specified subtree.  Such references can act as pins for mount namespaces
2679 * that aren't checked by the mount-cycle checking code, thereby allowing
2680 * cycles to be made.
2681 */
2682static bool check_for_nsfs_mounts(struct mount *subtree)
2683{
2684        struct mount *p;
2685        bool ret = false;
2686
2687        lock_mount_hash();
2688        for (p = subtree; p; p = next_mnt(p, subtree))
2689                if (mnt_ns_loop(p->mnt.mnt_root))
2690                        goto out;
2691
2692        ret = true;
2693out:
2694        unlock_mount_hash();
2695        return ret;
2696}
2697
2698static int do_set_group(struct path *from_path, struct path *to_path)
2699{
2700        struct mount *from, *to;
2701        int err;
2702
2703        from = real_mount(from_path->mnt);
2704        to = real_mount(to_path->mnt);
2705
2706        namespace_lock();
2707
2708        err = -EINVAL;
2709        /* To and From must be mounted */
2710        if (!is_mounted(&from->mnt))
2711                goto out;
2712        if (!is_mounted(&to->mnt))
2713                goto out;
2714
2715        err = -EPERM;
2716        /* We should be allowed to modify mount namespaces of both mounts */
2717        if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2718                goto out;
2719        if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2720                goto out;
2721
2722        err = -EINVAL;
2723        /* To and From paths should be mount roots */
2724        if (from_path->dentry != from_path->mnt->mnt_root)
2725                goto out;
2726        if (to_path->dentry != to_path->mnt->mnt_root)
2727                goto out;
2728
2729        /* Setting sharing groups is only allowed across same superblock */
2730        if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2731                goto out;
2732
2733        /* From mount root should be wider than To mount root */
2734        if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2735                goto out;
2736
2737        /* From mount should not have locked children in place of To's root */
2738        if (has_locked_children(from, to->mnt.mnt_root))
2739                goto out;
2740
2741        /* Setting sharing groups is only allowed on private mounts */
2742        if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2743                goto out;
2744
2745        /* From should not be private */
2746        if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2747                goto out;
2748
2749        if (IS_MNT_SLAVE(from)) {
2750                struct mount *m = from->mnt_master;
2751
2752                list_add(&to->mnt_slave, &m->mnt_slave_list);
2753                to->mnt_master = m;
2754        }
2755
2756        if (IS_MNT_SHARED(from)) {
2757                to->mnt_group_id = from->mnt_group_id;
2758                list_add(&to->mnt_share, &from->mnt_share);
2759                lock_mount_hash();
2760                set_mnt_shared(to);
2761                unlock_mount_hash();
2762        }
2763
2764        err = 0;
2765out:
2766        namespace_unlock();
2767        return err;
2768}
2769
2770static int do_move_mount(struct path *old_path, struct path *new_path)
2771{
2772        struct mnt_namespace *ns;
2773        struct mount *p;
2774        struct mount *old;
2775        struct mount *parent;
2776        struct mountpoint *mp, *old_mp;
2777        int err;
2778        bool attached;
2779
2780        mp = lock_mount(new_path);
2781        if (IS_ERR(mp))
2782                return PTR_ERR(mp);
2783
2784        old = real_mount(old_path->mnt);
2785        p = real_mount(new_path->mnt);
2786        parent = old->mnt_parent;
2787        attached = mnt_has_parent(old);
2788        old_mp = old->mnt_mp;
2789        ns = old->mnt_ns;
2790
2791        err = -EINVAL;
2792        /* The mountpoint must be in our namespace. */
2793        if (!check_mnt(p))
2794                goto out;
2795
2796        /* The thing moved must be mounted... */
2797        if (!is_mounted(&old->mnt))
2798                goto out;
2799
2800        /* ... and either ours or the root of anon namespace */
2801        if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2802                goto out;
2803
2804        if (old->mnt.mnt_flags & MNT_LOCKED)
2805                goto out;
2806
2807        if (old_path->dentry != old_path->mnt->mnt_root)
2808                goto out;
2809
2810        if (d_is_dir(new_path->dentry) !=
2811            d_is_dir(old_path->dentry))
2812                goto out;
2813        /*
2814         * Don't move a mount residing in a shared parent.
2815         */
2816        if (attached && IS_MNT_SHARED(parent))
2817                goto out;
2818        /*
2819         * Don't move a mount tree containing unbindable mounts to a destination
2820         * mount which is shared.
2821         */
2822        if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2823                goto out;
2824        err = -ELOOP;
2825        if (!check_for_nsfs_mounts(old))
2826                goto out;
2827        for (; mnt_has_parent(p); p = p->mnt_parent)
2828                if (p == old)
2829                        goto out;
2830
2831        err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2832                                   attached);
2833        if (err)
2834                goto out;
2835
2836        /* if the mount is moved, it should no longer be expire
2837         * automatically */
2838        list_del_init(&old->mnt_expire);
2839        if (attached)
2840                put_mountpoint(old_mp);
2841out:
2842        unlock_mount(mp);
2843        if (!err) {
2844                if (attached)
2845                        mntput_no_expire(parent);
2846                else
2847                        free_mnt_ns(ns);
2848        }
2849        return err;
2850}
2851
2852static int do_move_mount_old(struct path *path, const char *old_name)
2853{
2854        struct path old_path;
2855        int err;
2856
2857        if (!old_name || !*old_name)
2858                return -EINVAL;
2859
2860        err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2861        if (err)
2862                return err;
2863
2864        err = do_move_mount(&old_path, path);
2865        path_put(&old_path);
2866        return err;
2867}
2868
2869/*
2870 * add a mount into a namespace's mount tree
2871 */
2872static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2873                        struct path *path, int mnt_flags)
2874{
2875        struct mount *parent = real_mount(path->mnt);
2876
2877        mnt_flags &= ~MNT_INTERNAL_FLAGS;
2878
2879        if (unlikely(!check_mnt(parent))) {
2880                /* that's acceptable only for automounts done in private ns */
2881                if (!(mnt_flags & MNT_SHRINKABLE))
2882                        return -EINVAL;
2883                /* ... and for those we'd better have mountpoint still alive */
2884                if (!parent->mnt_ns)
2885                        return -EINVAL;
2886        }
2887
2888        /* Refuse the same filesystem on the same mount point */
2889        if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2890            path->mnt->mnt_root == path->dentry)
2891                return -EBUSY;
2892
2893        if (d_is_symlink(newmnt->mnt.mnt_root))
2894                return -EINVAL;
2895
2896        newmnt->mnt.mnt_flags = mnt_flags;
2897        return graft_tree(newmnt, parent, mp);
2898}
2899
2900static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2901
2902/*
2903 * Create a new mount using a superblock configuration and request it
2904 * be added to the namespace tree.
2905 */
2906static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2907                           unsigned int mnt_flags)
2908{
2909        struct vfsmount *mnt;
2910        struct mountpoint *mp;
2911        struct super_block *sb = fc->root->d_sb;
2912        int error;
2913
2914        error = security_sb_kern_mount(sb);
2915        if (!error && mount_too_revealing(sb, &mnt_flags))
2916                error = -EPERM;
2917
2918        if (unlikely(error)) {
2919                fc_drop_locked(fc);
2920                return error;
2921        }
2922
2923        up_write(&sb->s_umount);
2924
2925        mnt = vfs_create_mount(fc);
2926        if (IS_ERR(mnt))
2927                return PTR_ERR(mnt);
2928
2929        mnt_warn_timestamp_expiry(mountpoint, mnt);
2930
2931        mp = lock_mount(mountpoint);
2932        if (IS_ERR(mp)) {
2933                mntput(mnt);
2934                return PTR_ERR(mp);
2935        }
2936        error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2937        unlock_mount(mp);
2938        if (error < 0)
2939                mntput(mnt);
2940        return error;
2941}
2942
2943/*
2944 * create a new mount for userspace and request it to be added into the
2945 * namespace's tree
2946 */
2947static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2948                        int mnt_flags, const char *name, void *data)
2949{
2950        struct file_system_type *type;
2951        struct fs_context *fc;
2952        const char *subtype = NULL;
2953        int err = 0;
2954
2955        if (!fstype)
2956                return -EINVAL;
2957
2958        type = get_fs_type(fstype);
2959        if (!type)
2960                return -ENODEV;
2961
2962        if (type->fs_flags & FS_HAS_SUBTYPE) {
2963                subtype = strchr(fstype, '.');
2964                if (subtype) {
2965                        subtype++;
2966                        if (!*subtype) {
2967                                put_filesystem(type);
2968                                return -EINVAL;
2969                        }
2970                }
2971        }
2972
2973        fc = fs_context_for_mount(type, sb_flags);
2974        put_filesystem(type);
2975        if (IS_ERR(fc))
2976                return PTR_ERR(fc);
2977
2978        if (subtype)
2979                err = vfs_parse_fs_string(fc, "subtype",
2980                                          subtype, strlen(subtype));
2981        if (!err && name)
2982                err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2983        if (!err)
2984                err = parse_monolithic_mount_data(fc, data);
2985        if (!err && !mount_capable(fc))
2986                err = -EPERM;
2987        if (!err)
2988                err = vfs_get_tree(fc);
2989        if (!err)
2990                err = do_new_mount_fc(fc, path, mnt_flags);
2991
2992        put_fs_context(fc);
2993        return err;
2994}
2995
2996int finish_automount(struct vfsmount *m, struct path *path)
2997{
2998        struct dentry *dentry = path->dentry;
2999        struct mountpoint *mp;
3000        struct mount *mnt;
3001        int err;
3002
3003        if (!m)
3004                return 0;
3005        if (IS_ERR(m))
3006                return PTR_ERR(m);
3007
3008        mnt = real_mount(m);
3009        /* The new mount record should have at least 2 refs to prevent it being
3010         * expired before we get a chance to add it
3011         */
3012        BUG_ON(mnt_get_count(mnt) < 2);
3013
3014        if (m->mnt_sb == path->mnt->mnt_sb &&
3015            m->mnt_root == dentry) {
3016                err = -ELOOP;
3017                goto discard;
3018        }
3019
3020        /*
3021         * we don't want to use lock_mount() - in this case finding something
3022         * that overmounts our mountpoint to be means "quitely drop what we've
3023         * got", not "try to mount it on top".
3024         */
3025        inode_lock(dentry->d_inode);
3026        namespace_lock();
3027        if (unlikely(cant_mount(dentry))) {
3028                err = -ENOENT;
3029                goto discard_locked;
3030        }
3031        rcu_read_lock();
3032        if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3033                rcu_read_unlock();
3034                err = 0;
3035                goto discard_locked;
3036        }
3037        rcu_read_unlock();
3038        mp = get_mountpoint(dentry);
3039        if (IS_ERR(mp)) {
3040                err = PTR_ERR(mp);
3041                goto discard_locked;
3042        }
3043
3044        err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3045        unlock_mount(mp);
3046        if (unlikely(err))
3047                goto discard;
3048        mntput(m);
3049        return 0;
3050
3051discard_locked:
3052        namespace_unlock();
3053        inode_unlock(dentry->d_inode);
3054discard:
3055        /* remove m from any expiration list it may be on */
3056        if (!list_empty(&mnt->mnt_expire)) {
3057                namespace_lock();
3058                list_del_init(&mnt->mnt_expire);
3059                namespace_unlock();
3060        }
3061        mntput(m);
3062        mntput(m);
3063        return err;
3064}
3065
3066/**
3067 * mnt_set_expiry - Put a mount on an expiration list
3068 * @mnt: The mount to list.
3069 * @expiry_list: The list to add the mount to.
3070 */
3071void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3072{
3073        namespace_lock();
3074
3075        list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3076
3077        namespace_unlock();
3078}
3079EXPORT_SYMBOL(mnt_set_expiry);
3080
3081/*
3082 * process a list of expirable mountpoints with the intent of discarding any
3083 * mountpoints that aren't in use and haven't been touched since last we came
3084 * here
3085 */
3086void mark_mounts_for_expiry(struct list_head *mounts)
3087{
3088        struct mount *mnt, *next;
3089        LIST_HEAD(graveyard);
3090
3091        if (list_empty(mounts))
3092                return;
3093
3094        namespace_lock();
3095        lock_mount_hash();
3096
3097        /* extract from the expiration list every vfsmount that matches the
3098         * following criteria:
3099         * - only referenced by its parent vfsmount
3100         * - still marked for expiry (marked on the last call here; marks are
3101         *   cleared by mntput())
3102         */
3103        list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3104                if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3105                        propagate_mount_busy(mnt, 1))
3106                        continue;
3107                list_move(&mnt->mnt_expire, &graveyard);
3108        }
3109        while (!list_empty(&graveyard)) {
3110                mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3111                touch_mnt_namespace(mnt->mnt_ns);
3112                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3113        }
3114        unlock_mount_hash();
3115        namespace_unlock();
3116}
3117
3118EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3119
3120/*
3121 * Ripoff of 'select_parent()'
3122 *
3123 * search the list of submounts for a given mountpoint, and move any
3124 * shrinkable submounts to the 'graveyard' list.
3125 */
3126static int select_submounts(struct mount *parent, struct list_head *graveyard)
3127{
3128        struct mount *this_parent = parent;
3129        struct list_head *next;
3130        int found = 0;
3131
3132repeat:
3133        next = this_parent->mnt_mounts.next;
3134resume:
3135        while (next != &this_parent->mnt_mounts) {
3136                struct list_head *tmp = next;
3137                struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3138
3139                next = tmp->next;
3140                if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3141                        continue;
3142                /*
3143                 * Descend a level if the d_mounts list is non-empty.
3144                 */
3145                if (!list_empty(&mnt->mnt_mounts)) {
3146                        this_parent = mnt;
3147                        goto repeat;
3148                }
3149
3150                if (!propagate_mount_busy(mnt, 1)) {
3151                        list_move_tail(&mnt->mnt_expire, graveyard);
3152                        found++;
3153                }
3154        }
3155        /*
3156         * All done at this level ... ascend and resume the search
3157         */
3158        if (this_parent != parent) {
3159                next = this_parent->mnt_child.next;
3160                this_parent = this_parent->mnt_parent;
3161                goto resume;
3162        }
3163        return found;
3164}
3165
3166/*
3167 * process a list of expirable mountpoints with the intent of discarding any
3168 * submounts of a specific parent mountpoint
3169 *
3170 * mount_lock must be held for write
3171 */
3172static void shrink_submounts(struct mount *mnt)
3173{
3174        LIST_HEAD(graveyard);
3175        struct mount *m;
3176
3177        /* extract submounts of 'mountpoint' from the expiration list */
3178        while (select_submounts(mnt, &graveyard)) {
3179                while (!list_empty(&graveyard)) {
3180                        m = list_first_entry(&graveyard, struct mount,
3181                                                mnt_expire);
3182                        touch_mnt_namespace(m->mnt_ns);
3183                        umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3184                }
3185        }
3186}
3187
3188static void *copy_mount_options(const void __user * data)
3189{
3190        char *copy;
3191        unsigned left, offset;
3192
3193        if (!data)
3194                return NULL;
3195
3196        copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3197        if (!copy)
3198                return ERR_PTR(-ENOMEM);
3199
3200        left = copy_from_user(copy, data, PAGE_SIZE);
3201
3202        /*
3203         * Not all architectures have an exact copy_from_user(). Resort to
3204         * byte at a time.
3205         */
3206        offset = PAGE_SIZE - left;
3207        while (left) {
3208                char c;
3209                if (get_user(c, (const char __user *)data + offset))
3210                        break;
3211                copy[offset] = c;
3212                left--;
3213                offset++;
3214        }
3215
3216        if (left == PAGE_SIZE) {
3217                kfree(copy);
3218                return ERR_PTR(-EFAULT);
3219        }
3220
3221        return copy;
3222}
3223
3224static char *copy_mount_string(const void __user *data)
3225{
3226        return data ? strndup_user(data, PATH_MAX) : NULL;
3227}
3228
3229/*
3230 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3231 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3232 *
3233 * data is a (void *) that can point to any structure up to
3234 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3235 * information (or be NULL).
3236 *
3237 * Pre-0.97 versions of mount() didn't have a flags word.
3238 * When the flags word was introduced its top half was required
3239 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3240 * Therefore, if this magic number is present, it carries no information
3241 * and must be discarded.
3242 */
3243int path_mount(const char *dev_name, struct path *path,
3244                const char *type_page, unsigned long flags, void *data_page)
3245{
3246        unsigned int mnt_flags = 0, sb_flags;
3247        int ret;
3248
3249        /* Discard magic */
3250        if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3251                flags &= ~MS_MGC_MSK;
3252
3253        /* Basic sanity checks */
3254        if (data_page)
3255                ((char *)data_page)[PAGE_SIZE - 1] = 0;
3256
3257        if (flags & MS_NOUSER)
3258                return -EINVAL;
3259
3260        ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3261        if (ret)
3262                return ret;
3263        if (!may_mount())
3264                return -EPERM;
3265        if (flags & SB_MANDLOCK)
3266                warn_mandlock();
3267
3268        /* Default to relatime unless overriden */
3269        if (!(flags & MS_NOATIME))
3270                mnt_flags |= MNT_RELATIME;
3271
3272        /* Separate the per-mountpoint flags */
3273        if (flags & MS_NOSUID)
3274                mnt_flags |= MNT_NOSUID;
3275        if (flags & MS_NODEV)
3276                mnt_flags |= MNT_NODEV;
3277        if (flags & MS_NOEXEC)
3278                mnt_flags |= MNT_NOEXEC;
3279        if (flags & MS_NOATIME)
3280                mnt_flags |= MNT_NOATIME;
3281        if (flags & MS_NODIRATIME)
3282                mnt_flags |= MNT_NODIRATIME;
3283        if (flags & MS_STRICTATIME)
3284                mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3285        if (flags & MS_RDONLY)
3286                mnt_flags |= MNT_READONLY;
3287        if (flags & MS_NOSYMFOLLOW)
3288                mnt_flags |= MNT_NOSYMFOLLOW;
3289
3290        /* The default atime for remount is preservation */
3291        if ((flags & MS_REMOUNT) &&
3292            ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3293                       MS_STRICTATIME)) == 0)) {
3294                mnt_flags &= ~MNT_ATIME_MASK;
3295                mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3296        }
3297
3298        sb_flags = flags & (SB_RDONLY |
3299                            SB_SYNCHRONOUS |
3300                            SB_MANDLOCK |
3301                            SB_DIRSYNC |
3302                            SB_SILENT |
3303                            SB_POSIXACL |
3304                            SB_LAZYTIME |
3305                            SB_I_VERSION);
3306
3307        if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3308                return do_reconfigure_mnt(path, mnt_flags);
3309        if (flags & MS_REMOUNT)
3310                return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3311        if (flags & MS_BIND)
3312                return do_loopback(path, dev_name, flags & MS_REC);
3313        if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3314                return do_change_type(path, flags);
3315        if (flags & MS_MOVE)
3316                return do_move_mount_old(path, dev_name);
3317
3318        return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3319                            data_page);
3320}
3321
3322long do_mount(const char *dev_name, const char __user *dir_name,
3323                const char *type_page, unsigned long flags, void *data_page)
3324{
3325        struct path path;
3326        int ret;
3327
3328        ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3329        if (ret)
3330                return ret;
3331        ret = path_mount(dev_name, &path, type_page, flags, data_page);
3332        path_put(&path);
3333        return ret;
3334}
3335
3336static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3337{
3338        return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3339}
3340
3341static void dec_mnt_namespaces(struct ucounts *ucounts)
3342{
3343        dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3344}
3345
3346static void free_mnt_ns(struct mnt_namespace *ns)
3347{
3348        if (!is_anon_ns(ns))
3349                ns_free_inum(&ns->ns);
3350        dec_mnt_namespaces(ns->ucounts);
3351        put_user_ns(ns->user_ns);
3352        kfree(ns);
3353}
3354
3355/*
3356 * Assign a sequence number so we can detect when we attempt to bind
3357 * mount a reference to an older mount namespace into the current
3358 * mount namespace, preventing reference counting loops.  A 64bit
3359 * number incrementing at 10Ghz will take 12,427 years to wrap which
3360 * is effectively never, so we can ignore the possibility.
3361 */
3362static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3363
3364static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3365{
3366        struct mnt_namespace *new_ns;
3367        struct ucounts *ucounts;
3368        int ret;
3369
3370        ucounts = inc_mnt_namespaces(user_ns);
3371        if (!ucounts)
3372                return ERR_PTR(-ENOSPC);
3373
3374        new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3375        if (!new_ns) {
3376                dec_mnt_namespaces(ucounts);
3377                return ERR_PTR(-ENOMEM);
3378        }
3379        if (!anon) {
3380                ret = ns_alloc_inum(&new_ns->ns);
3381                if (ret) {
3382                        kfree(new_ns);
3383                        dec_mnt_namespaces(ucounts);
3384                        return ERR_PTR(ret);
3385                }
3386        }
3387        new_ns->ns.ops = &mntns_operations;
3388        if (!anon)
3389                new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3390        refcount_set(&new_ns->ns.count, 1);
3391        INIT_LIST_HEAD(&new_ns->list);
3392        init_waitqueue_head(&new_ns->poll);
3393        spin_lock_init(&new_ns->ns_lock);
3394        new_ns->user_ns = get_user_ns(user_ns);
3395        new_ns->ucounts = ucounts;
3396        return new_ns;
3397}
3398
3399__latent_entropy
3400struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3401                struct user_namespace *user_ns, struct fs_struct *new_fs)
3402{
3403        struct mnt_namespace *new_ns;
3404        struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3405        struct mount *p, *q;
3406        struct mount *old;
3407        struct mount *new;
3408        int copy_flags;
3409
3410        BUG_ON(!ns);
3411
3412        if (likely(!(flags & CLONE_NEWNS))) {
3413                get_mnt_ns(ns);
3414                return ns;
3415        }
3416
3417        old = ns->root;
3418
3419        new_ns = alloc_mnt_ns(user_ns, false);
3420        if (IS_ERR(new_ns))
3421                return new_ns;
3422
3423        namespace_lock();
3424        /* First pass: copy the tree topology */
3425        copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3426        if (user_ns != ns->user_ns)
3427                copy_flags |= CL_SHARED_TO_SLAVE;
3428        new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3429        if (IS_ERR(new)) {
3430                namespace_unlock();
3431                free_mnt_ns(new_ns);
3432                return ERR_CAST(new);
3433        }
3434        if (user_ns != ns->user_ns) {
3435                lock_mount_hash();
3436                lock_mnt_tree(new);
3437                unlock_mount_hash();
3438        }
3439        new_ns->root = new;
3440        list_add_tail(&new_ns->list, &new->mnt_list);
3441
3442        /*
3443         * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3444         * as belonging to new namespace.  We have already acquired a private
3445         * fs_struct, so tsk->fs->lock is not needed.
3446         */
3447        p = old;
3448        q = new;
3449        while (p) {
3450                q->mnt_ns = new_ns;
3451                new_ns->mounts++;
3452                if (new_fs) {
3453                        if (&p->mnt == new_fs->root.mnt) {
3454                                new_fs->root.mnt = mntget(&q->mnt);
3455                                rootmnt = &p->mnt;
3456                        }
3457                        if (&p->mnt == new_fs->pwd.mnt) {
3458                                new_fs->pwd.mnt = mntget(&q->mnt);
3459                                pwdmnt = &p->mnt;
3460                        }
3461                }
3462                p = next_mnt(p, old);
3463                q = next_mnt(q, new);
3464                if (!q)
3465                        break;
3466                while (p->mnt.mnt_root != q->mnt.mnt_root)
3467                        p = next_mnt(p, old);
3468        }
3469        namespace_unlock();
3470
3471        if (rootmnt)
3472                mntput(rootmnt);
3473        if (pwdmnt)
3474                mntput(pwdmnt);
3475
3476        return new_ns;
3477}
3478
3479struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3480{
3481        struct mount *mnt = real_mount(m);
3482        struct mnt_namespace *ns;
3483        struct super_block *s;
3484        struct path path;
3485        int err;
3486
3487        ns = alloc_mnt_ns(&init_user_ns, true);
3488        if (IS_ERR(ns)) {
3489                mntput(m);
3490                return ERR_CAST(ns);
3491        }
3492        mnt->mnt_ns = ns;
3493        ns->root = mnt;
3494        ns->mounts++;
3495        list_add(&mnt->mnt_list, &ns->list);
3496
3497        err = vfs_path_lookup(m->mnt_root, m,
3498                        name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3499
3500        put_mnt_ns(ns);
3501
3502        if (err)
3503                return ERR_PTR(err);
3504
3505        /* trade a vfsmount reference for active sb one */
3506        s = path.mnt->mnt_sb;
3507        atomic_inc(&s->s_active);
3508        mntput(path.mnt);
3509        /* lock the sucker */
3510        down_write(&s->s_umount);
3511        /* ... and return the root of (sub)tree on it */
3512        return path.dentry;
3513}
3514EXPORT_SYMBOL(mount_subtree);
3515
3516SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3517                char __user *, type, unsigned long, flags, void __user *, data)
3518{
3519        int ret;
3520        char *kernel_type;
3521        char *kernel_dev;
3522        void *options;
3523
3524        kernel_type = copy_mount_string(type);
3525        ret = PTR_ERR(kernel_type);
3526        if (IS_ERR(kernel_type))
3527                goto out_type;
3528
3529        kernel_dev = copy_mount_string(dev_name);
3530        ret = PTR_ERR(kernel_dev);
3531        if (IS_ERR(kernel_dev))
3532                goto out_dev;
3533
3534        options = copy_mount_options(data);
3535        ret = PTR_ERR(options);
3536        if (IS_ERR(options))
3537                goto out_data;
3538
3539        ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3540
3541        kfree(options);
3542out_data:
3543        kfree(kernel_dev);
3544out_dev:
3545        kfree(kernel_type);
3546out_type:
3547        return ret;
3548}
3549
3550#define FSMOUNT_VALID_FLAGS                                                    \
3551        (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3552         MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3553         MOUNT_ATTR_NOSYMFOLLOW)
3554
3555#define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3556
3557#define MOUNT_SETATTR_PROPAGATION_FLAGS \
3558        (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3559
3560static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3561{
3562        unsigned int mnt_flags = 0;
3563
3564        if (attr_flags & MOUNT_ATTR_RDONLY)
3565                mnt_flags |= MNT_READONLY;
3566        if (attr_flags & MOUNT_ATTR_NOSUID)
3567                mnt_flags |= MNT_NOSUID;
3568        if (attr_flags & MOUNT_ATTR_NODEV)
3569                mnt_flags |= MNT_NODEV;
3570        if (attr_flags & MOUNT_ATTR_NOEXEC)
3571                mnt_flags |= MNT_NOEXEC;
3572        if (attr_flags & MOUNT_ATTR_NODIRATIME)
3573                mnt_flags |= MNT_NODIRATIME;
3574        if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3575                mnt_flags |= MNT_NOSYMFOLLOW;
3576
3577        return mnt_flags;
3578}
3579
3580/*
3581 * Create a kernel mount representation for a new, prepared superblock
3582 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3583 */
3584SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3585                unsigned int, attr_flags)
3586{
3587        struct mnt_namespace *ns;
3588        struct fs_context *fc;
3589        struct file *file;
3590        struct path newmount;
3591        struct mount *mnt;
3592        struct fd f;
3593        unsigned int mnt_flags = 0;
3594        long ret;
3595
3596        if (!may_mount())
3597                return -EPERM;
3598
3599        if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3600                return -EINVAL;
3601
3602        if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3603                return -EINVAL;
3604
3605        mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3606
3607        switch (attr_flags & MOUNT_ATTR__ATIME) {
3608        case MOUNT_ATTR_STRICTATIME:
3609                break;
3610        case MOUNT_ATTR_NOATIME:
3611                mnt_flags |= MNT_NOATIME;
3612                break;
3613        case MOUNT_ATTR_RELATIME:
3614                mnt_flags |= MNT_RELATIME;
3615                break;
3616        default:
3617                return -EINVAL;
3618        }
3619
3620        f = fdget(fs_fd);
3621        if (!f.file)
3622                return -EBADF;
3623
3624        ret = -EINVAL;
3625        if (f.file->f_op != &fscontext_fops)
3626                goto err_fsfd;
3627
3628        fc = f.file->private_data;
3629
3630        ret = mutex_lock_interruptible(&fc->uapi_mutex);
3631        if (ret < 0)
3632                goto err_fsfd;
3633
3634        /* There must be a valid superblock or we can't mount it */
3635        ret = -EINVAL;
3636        if (!fc->root)
3637                goto err_unlock;
3638
3639        ret = -EPERM;
3640        if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3641                pr_warn("VFS: Mount too revealing\n");
3642                goto err_unlock;
3643        }
3644
3645        ret = -EBUSY;
3646        if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3647                goto err_unlock;
3648
3649        if (fc->sb_flags & SB_MANDLOCK)
3650                warn_mandlock();
3651
3652        newmount.mnt = vfs_create_mount(fc);
3653        if (IS_ERR(newmount.mnt)) {
3654                ret = PTR_ERR(newmount.mnt);
3655                goto err_unlock;
3656        }
3657        newmount.dentry = dget(fc->root);
3658        newmount.mnt->mnt_flags = mnt_flags;
3659
3660        /* We've done the mount bit - now move the file context into more or
3661         * less the same state as if we'd done an fspick().  We don't want to
3662         * do any memory allocation or anything like that at this point as we
3663         * don't want to have to handle any errors incurred.
3664         */
3665        vfs_clean_context(fc);
3666
3667        ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3668        if (IS_ERR(ns)) {
3669                ret = PTR_ERR(ns);
3670                goto err_path;
3671        }
3672        mnt = real_mount(newmount.mnt);
3673        mnt->mnt_ns = ns;
3674        ns->root = mnt;
3675        ns->mounts = 1;
3676        list_add(&mnt->mnt_list, &ns->list);
3677        mntget(newmount.mnt);
3678
3679        /* Attach to an apparent O_PATH fd with a note that we need to unmount
3680         * it, not just simply put it.
3681         */
3682        file = dentry_open(&newmount, O_PATH, fc->cred);
3683        if (IS_ERR(file)) {
3684                dissolve_on_fput(newmount.mnt);
3685                ret = PTR_ERR(file);
3686                goto err_path;
3687        }
3688        file->f_mode |= FMODE_NEED_UNMOUNT;
3689
3690        ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3691        if (ret >= 0)
3692                fd_install(ret, file);
3693        else
3694                fput(file);
3695
3696err_path:
3697        path_put(&newmount);
3698err_unlock:
3699        mutex_unlock(&fc->uapi_mutex);
3700err_fsfd:
3701        fdput(f);
3702        return ret;
3703}
3704
3705/*
3706 * Move a mount from one place to another.  In combination with
3707 * fsopen()/fsmount() this is used to install a new mount and in combination
3708 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3709 * a mount subtree.
3710 *
3711 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3712 */
3713SYSCALL_DEFINE5(move_mount,
3714                int, from_dfd, const char __user *, from_pathname,
3715                int, to_dfd, const char __user *, to_pathname,
3716                unsigned int, flags)
3717{
3718        struct path from_path, to_path;
3719        unsigned int lflags;
3720        int ret = 0;
3721
3722        if (!may_mount())
3723                return -EPERM;
3724
3725        if (flags & ~MOVE_MOUNT__MASK)
3726                return -EINVAL;
3727
3728        /* If someone gives a pathname, they aren't permitted to move
3729         * from an fd that requires unmount as we can't get at the flag
3730         * to clear it afterwards.
3731         */
3732        lflags = 0;
3733        if (flags & MOVE_MOUNT_F_SYMLINKS)      lflags |= LOOKUP_FOLLOW;
3734        if (flags & MOVE_MOUNT_F_AUTOMOUNTS)    lflags |= LOOKUP_AUTOMOUNT;
3735        if (flags & MOVE_MOUNT_F_EMPTY_PATH)    lflags |= LOOKUP_EMPTY;
3736
3737        ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3738        if (ret < 0)
3739                return ret;
3740
3741        lflags = 0;
3742        if (flags & MOVE_MOUNT_T_SYMLINKS)      lflags |= LOOKUP_FOLLOW;
3743        if (flags & MOVE_MOUNT_T_AUTOMOUNTS)    lflags |= LOOKUP_AUTOMOUNT;
3744        if (flags & MOVE_MOUNT_T_EMPTY_PATH)    lflags |= LOOKUP_EMPTY;
3745
3746        ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3747        if (ret < 0)
3748                goto out_from;
3749
3750        ret = security_move_mount(&from_path, &to_path);
3751        if (ret < 0)
3752                goto out_to;
3753
3754        if (flags & MOVE_MOUNT_SET_GROUP)
3755                ret = do_set_group(&from_path, &to_path);
3756        else
3757                ret = do_move_mount(&from_path, &to_path);
3758
3759out_to:
3760        path_put(&to_path);
3761out_from:
3762        path_put(&from_path);
3763        return ret;
3764}
3765
3766/*
3767 * Return true if path is reachable from root
3768 *
3769 * namespace_sem or mount_lock is held
3770 */
3771bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3772                         const struct path *root)
3773{
3774        while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3775                dentry = mnt->mnt_mountpoint;
3776                mnt = mnt->mnt_parent;
3777        }
3778        return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3779}
3780
3781bool path_is_under(const struct path *path1, const struct path *path2)
3782{
3783        bool res;
3784        read_seqlock_excl(&mount_lock);
3785        res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3786        read_sequnlock_excl(&mount_lock);
3787        return res;
3788}
3789EXPORT_SYMBOL(path_is_under);
3790
3791/*
3792 * pivot_root Semantics:
3793 * Moves the root file system of the current process to the directory put_old,
3794 * makes new_root as the new root file system of the current process, and sets
3795 * root/cwd of all processes which had them on the current root to new_root.
3796 *
3797 * Restrictions:
3798 * The new_root and put_old must be directories, and  must not be on the
3799 * same file  system as the current process root. The put_old  must  be
3800 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3801 * pointed to by put_old must yield the same directory as new_root. No other
3802 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3803 *
3804 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3805 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3806 * in this situation.
3807 *
3808 * Notes:
3809 *  - we don't move root/cwd if they are not at the root (reason: if something
3810 *    cared enough to change them, it's probably wrong to force them elsewhere)
3811 *  - it's okay to pick a root that isn't the root of a file system, e.g.
3812 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3813 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3814 *    first.
3815 */
3816SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3817                const char __user *, put_old)
3818{
3819        struct path new, old, root;
3820        struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3821        struct mountpoint *old_mp, *root_mp;
3822        int error;
3823
3824        if (!may_mount())
3825                return -EPERM;
3826
3827        error = user_path_at(AT_FDCWD, new_root,
3828                             LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3829        if (error)
3830                goto out0;
3831
3832        error = user_path_at(AT_FDCWD, put_old,
3833                             LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3834        if (error)
3835                goto out1;
3836
3837        error = security_sb_pivotroot(&old, &new);
3838        if (error)
3839                goto out2;
3840
3841        get_fs_root(current->fs, &root);
3842        old_mp = lock_mount(&old);
3843        error = PTR_ERR(old_mp);
3844        if (IS_ERR(old_mp))
3845                goto out3;
3846
3847        error = -EINVAL;
3848        new_mnt = real_mount(new.mnt);
3849        root_mnt = real_mount(root.mnt);
3850        old_mnt = real_mount(old.mnt);
3851        ex_parent = new_mnt->mnt_parent;
3852        root_parent = root_mnt->mnt_parent;
3853        if (IS_MNT_SHARED(old_mnt) ||
3854                IS_MNT_SHARED(ex_parent) ||
3855                IS_MNT_SHARED(root_parent))
3856                goto out4;
3857        if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3858                goto out4;
3859        if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3860                goto out4;
3861        error = -ENOENT;
3862        if (d_unlinked(new.dentry))
3863                goto out4;
3864        error = -EBUSY;
3865        if (new_mnt == root_mnt || old_mnt == root_mnt)
3866                goto out4; /* loop, on the same file system  */
3867        error = -EINVAL;
3868        if (root.mnt->mnt_root != root.dentry)
3869                goto out4; /* not a mountpoint */
3870        if (!mnt_has_parent(root_mnt))
3871                goto out4; /* not attached */
3872        if (new.mnt->mnt_root != new.dentry)
3873                goto out4; /* not a mountpoint */
3874        if (!mnt_has_parent(new_mnt))
3875                goto out4; /* not attached */
3876        /* make sure we can reach put_old from new_root */
3877        if (!is_path_reachable(old_mnt, old.dentry, &new))
3878                goto out4;
3879        /* make certain new is below the root */
3880        if (!is_path_reachable(new_mnt, new.dentry, &root))
3881                goto out4;
3882        lock_mount_hash();
3883        umount_mnt(new_mnt);
3884        root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3885        if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3886                new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3887                root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3888        }
3889        /* mount old root on put_old */
3890        attach_mnt(root_mnt, old_mnt, old_mp);
3891        /* mount new_root on / */
3892        attach_mnt(new_mnt, root_parent, root_mp);
3893        mnt_add_count(root_parent, -1);
3894        touch_mnt_namespace(current->nsproxy->mnt_ns);
3895        /* A moved mount should not expire automatically */
3896        list_del_init(&new_mnt->mnt_expire);
3897        put_mountpoint(root_mp);
3898        unlock_mount_hash();
3899        chroot_fs_refs(&root, &new);
3900        error = 0;
3901out4:
3902        unlock_mount(old_mp);
3903        if (!error)
3904                mntput_no_expire(ex_parent);
3905out3:
3906        path_put(&root);
3907out2:
3908        path_put(&old);
3909out1:
3910        path_put(&new);
3911out0:
3912        return error;
3913}
3914
3915static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3916{
3917        unsigned int flags = mnt->mnt.mnt_flags;
3918
3919        /*  flags to clear */
3920        flags &= ~kattr->attr_clr;
3921        /* flags to raise */
3922        flags |= kattr->attr_set;
3923
3924        return flags;
3925}
3926
3927static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3928{
3929        struct vfsmount *m = &mnt->mnt;
3930
3931        if (!kattr->mnt_userns)
3932                return 0;
3933
3934        /*
3935         * Once a mount has been idmapped we don't allow it to change its
3936         * mapping. It makes things simpler and callers can just create
3937         * another bind-mount they can idmap if they want to.
3938         */
3939        if (mnt_user_ns(m) != &init_user_ns)
3940                return -EPERM;
3941
3942        /* The underlying filesystem doesn't support idmapped mounts yet. */
3943        if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3944                return -EINVAL;
3945
3946        /* Don't yet support filesystem mountable in user namespaces. */
3947        if (m->mnt_sb->s_user_ns != &init_user_ns)
3948                return -EINVAL;
3949
3950        /* We're not controlling the superblock. */
3951        if (!capable(CAP_SYS_ADMIN))
3952                return -EPERM;
3953
3954        /* Mount has already been visible in the filesystem hierarchy. */
3955        if (!is_anon_ns(mnt->mnt_ns))
3956                return -EINVAL;
3957
3958        return 0;
3959}
3960
3961static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
3962                                           struct mount *mnt, int *err)
3963{
3964        struct mount *m = mnt, *last = NULL;
3965
3966        if (!is_mounted(&m->mnt)) {
3967                *err = -EINVAL;
3968                goto out;
3969        }
3970
3971        if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
3972                *err = -EINVAL;
3973                goto out;
3974        }
3975
3976        do {
3977                unsigned int flags;
3978
3979                flags = recalc_flags(kattr, m);
3980                if (!can_change_locked_flags(m, flags)) {
3981                        *err = -EPERM;
3982                        goto out;
3983                }
3984
3985                *err = can_idmap_mount(kattr, m);
3986                if (*err)
3987                        goto out;
3988
3989                last = m;
3990
3991                if ((kattr->attr_set & MNT_READONLY) &&
3992                    !(m->mnt.mnt_flags & MNT_READONLY)) {
3993                        *err = mnt_hold_writers(m);
3994                        if (*err)
3995                                goto out;
3996                }
3997        } while (kattr->recurse && (m = next_mnt(m, mnt)));
3998
3999out:
4000        return last;
4001}
4002
4003static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4004{
4005        struct user_namespace *mnt_userns;
4006
4007        if (!kattr->mnt_userns)
4008                return;
4009
4010        mnt_userns = get_user_ns(kattr->mnt_userns);
4011        /* Pairs with smp_load_acquire() in mnt_user_ns(). */
4012        smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
4013}
4014
4015static void mount_setattr_commit(struct mount_kattr *kattr,
4016                                 struct mount *mnt, struct mount *last,
4017                                 int err)
4018{
4019        struct mount *m = mnt;
4020
4021        do {
4022                if (!err) {
4023                        unsigned int flags;
4024
4025                        do_idmap_mount(kattr, m);
4026                        flags = recalc_flags(kattr, m);
4027                        WRITE_ONCE(m->mnt.mnt_flags, flags);
4028                }
4029
4030                /*
4031                 * We either set MNT_READONLY above so make it visible
4032                 * before ~MNT_WRITE_HOLD or we failed to recursively
4033                 * apply mount options.
4034                 */
4035                if ((kattr->attr_set & MNT_READONLY) &&
4036                    (m->mnt.mnt_flags & MNT_WRITE_HOLD))
4037                        mnt_unhold_writers(m);
4038
4039                if (!err && kattr->propagation)
4040                        change_mnt_propagation(m, kattr->propagation);
4041
4042                /*
4043                 * On failure, only cleanup until we found the first mount
4044                 * we failed to handle.
4045                 */
4046                if (err && m == last)
4047                        break;
4048        } while (kattr->recurse && (m = next_mnt(m, mnt)));
4049
4050        if (!err)
4051                touch_mnt_namespace(mnt->mnt_ns);
4052}
4053
4054static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4055{
4056        struct mount *mnt = real_mount(path->mnt), *last = NULL;
4057        int err = 0;
4058
4059        if (path->dentry != mnt->mnt.mnt_root)
4060                return -EINVAL;
4061
4062        if (kattr->propagation) {
4063                /*
4064                 * Only take namespace_lock() if we're actually changing
4065                 * propagation.
4066                 */
4067                namespace_lock();
4068                if (kattr->propagation == MS_SHARED) {
4069                        err = invent_group_ids(mnt, kattr->recurse);
4070                        if (err) {
4071                                namespace_unlock();
4072                                return err;
4073                        }
4074                }
4075        }
4076
4077        lock_mount_hash();
4078
4079        /*
4080         * Get the mount tree in a shape where we can change mount
4081         * properties without failure.
4082         */
4083        last = mount_setattr_prepare(kattr, mnt, &err);
4084        if (last) /* Commit all changes or revert to the old state. */
4085                mount_setattr_commit(kattr, mnt, last, err);
4086
4087        unlock_mount_hash();
4088
4089        if (kattr->propagation) {
4090                namespace_unlock();
4091                if (err)
4092                        cleanup_group_ids(mnt, NULL);
4093        }
4094
4095        return err;
4096}
4097
4098static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4099                                struct mount_kattr *kattr, unsigned int flags)
4100{
4101        int err = 0;
4102        struct ns_common *ns;
4103        struct user_namespace *mnt_userns;
4104        struct file *file;
4105
4106        if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4107                return 0;
4108
4109        /*
4110         * We currently do not support clearing an idmapped mount. If this ever
4111         * is a use-case we can revisit this but for now let's keep it simple
4112         * and not allow it.
4113         */
4114        if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4115                return -EINVAL;
4116
4117        if (attr->userns_fd > INT_MAX)
4118                return -EINVAL;
4119
4120        file = fget(attr->userns_fd);
4121        if (!file)
4122                return -EBADF;
4123
4124        if (!proc_ns_file(file)) {
4125                err = -EINVAL;
4126                goto out_fput;
4127        }
4128
4129        ns = get_proc_ns(file_inode(file));
4130        if (ns->ops->type != CLONE_NEWUSER) {
4131                err = -EINVAL;
4132                goto out_fput;
4133        }
4134
4135        /*
4136         * The init_user_ns is used to indicate that a vfsmount is not idmapped.
4137         * This is simpler than just having to treat NULL as unmapped. Users
4138         * wanting to idmap a mount to init_user_ns can just use a namespace
4139         * with an identity mapping.
4140         */
4141        mnt_userns = container_of(ns, struct user_namespace, ns);
4142        if (mnt_userns == &init_user_ns) {
4143                err = -EPERM;
4144                goto out_fput;
4145        }
4146        kattr->mnt_userns = get_user_ns(mnt_userns);
4147
4148out_fput:
4149        fput(file);
4150        return err;
4151}
4152
4153static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4154                             struct mount_kattr *kattr, unsigned int flags)
4155{
4156        unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4157
4158        if (flags & AT_NO_AUTOMOUNT)
4159                lookup_flags &= ~LOOKUP_AUTOMOUNT;
4160        if (flags & AT_SYMLINK_NOFOLLOW)
4161                lookup_flags &= ~LOOKUP_FOLLOW;
4162        if (flags & AT_EMPTY_PATH)
4163                lookup_flags |= LOOKUP_EMPTY;
4164
4165        *kattr = (struct mount_kattr) {
4166                .lookup_flags   = lookup_flags,
4167                .recurse        = !!(flags & AT_RECURSIVE),
4168        };
4169
4170        if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4171                return -EINVAL;
4172        if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4173                return -EINVAL;
4174        kattr->propagation = attr->propagation;
4175
4176        if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4177                return -EINVAL;
4178
4179        kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4180        kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4181
4182        /*
4183         * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4184         * users wanting to transition to a different atime setting cannot
4185         * simply specify the atime setting in @attr_set, but must also
4186         * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4187         * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4188         * @attr_clr and that @attr_set can't have any atime bits set if
4189         * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4190         */
4191        if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4192                if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4193                        return -EINVAL;
4194
4195                /*
4196                 * Clear all previous time settings as they are mutually
4197                 * exclusive.
4198                 */
4199                kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4200                switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4201                case MOUNT_ATTR_RELATIME:
4202                        kattr->attr_set |= MNT_RELATIME;
4203                        break;
4204                case MOUNT_ATTR_NOATIME:
4205                        kattr->attr_set |= MNT_NOATIME;
4206                        break;
4207                case MOUNT_ATTR_STRICTATIME:
4208                        break;
4209                default:
4210                        return -EINVAL;
4211                }
4212        } else {
4213                if (attr->attr_set & MOUNT_ATTR__ATIME)
4214                        return -EINVAL;
4215        }
4216
4217        return build_mount_idmapped(attr, usize, kattr, flags);
4218}
4219
4220static void finish_mount_kattr(struct mount_kattr *kattr)
4221{
4222        put_user_ns(kattr->mnt_userns);
4223        kattr->mnt_userns = NULL;
4224}
4225
4226SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4227                unsigned int, flags, struct mount_attr __user *, uattr,
4228                size_t, usize)
4229{
4230        int err;
4231        struct path target;
4232        struct mount_attr attr;
4233        struct mount_kattr kattr;
4234
4235        BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4236
4237        if (flags & ~(AT_EMPTY_PATH |
4238                      AT_RECURSIVE |
4239                      AT_SYMLINK_NOFOLLOW |
4240                      AT_NO_AUTOMOUNT))
4241                return -EINVAL;
4242
4243        if (unlikely(usize > PAGE_SIZE))
4244                return -E2BIG;
4245        if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4246                return -EINVAL;
4247
4248        if (!may_mount())
4249                return -EPERM;
4250
4251        err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4252        if (err)
4253                return err;
4254
4255        /* Don't bother walking through the mounts if this is a nop. */
4256        if (attr.attr_set == 0 &&
4257            attr.attr_clr == 0 &&
4258            attr.propagation == 0)
4259                return 0;
4260
4261        err = build_mount_kattr(&attr, usize, &kattr, flags);
4262        if (err)
4263                return err;
4264
4265        err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4266        if (err)
4267                return err;
4268
4269        err = do_mount_setattr(&target, &kattr);
4270        finish_mount_kattr(&kattr);
4271        path_put(&target);
4272        return err;
4273}
4274
4275static void __init init_mount_tree(void)
4276{
4277        struct vfsmount *mnt;
4278        struct mount *m;
4279        struct mnt_namespace *ns;
4280        struct path root;
4281
4282        mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4283        if (IS_ERR(mnt))
4284                panic("Can't create rootfs");
4285
4286        ns = alloc_mnt_ns(&init_user_ns, false);
4287        if (IS_ERR(ns))
4288                panic("Can't allocate initial namespace");
4289        m = real_mount(mnt);
4290        m->mnt_ns = ns;
4291        ns->root = m;
4292        ns->mounts = 1;
4293        list_add(&m->mnt_list, &ns->list);
4294        init_task.nsproxy->mnt_ns = ns;
4295        get_mnt_ns(ns);
4296
4297        root.mnt = mnt;
4298        root.dentry = mnt->mnt_root;
4299        mnt->mnt_flags |= MNT_LOCKED;
4300
4301        set_fs_pwd(current->fs, &root);
4302        set_fs_root(current->fs, &root);
4303}
4304
4305void __init mnt_init(void)
4306{
4307        int err;
4308
4309        mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4310                        0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4311
4312        mount_hashtable = alloc_large_system_hash("Mount-cache",
4313                                sizeof(struct hlist_head),
4314                                mhash_entries, 19,
4315                                HASH_ZERO,
4316                                &m_hash_shift, &m_hash_mask, 0, 0);
4317        mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4318                                sizeof(struct hlist_head),
4319                                mphash_entries, 19,
4320                                HASH_ZERO,
4321                                &mp_hash_shift, &mp_hash_mask, 0, 0);
4322
4323        if (!mount_hashtable || !mountpoint_hashtable)
4324                panic("Failed to allocate mount hash table\n");
4325
4326        kernfs_init();
4327
4328        err = sysfs_init();
4329        if (err)
4330                printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4331                        __func__, err);
4332        fs_kobj = kobject_create_and_add("fs", NULL);
4333        if (!fs_kobj)
4334                printk(KERN_WARNING "%s: kobj create error\n", __func__);
4335        shmem_init();
4336        init_rootfs();
4337        init_mount_tree();
4338}
4339
4340void put_mnt_ns(struct mnt_namespace *ns)
4341{
4342        if (!refcount_dec_and_test(&ns->ns.count))
4343                return;
4344        drop_collected_mounts(&ns->root->mnt);
4345        free_mnt_ns(ns);
4346}
4347
4348struct vfsmount *kern_mount(struct file_system_type *type)
4349{
4350        struct vfsmount *mnt;
4351        mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4352        if (!IS_ERR(mnt)) {
4353                /*
4354                 * it is a longterm mount, don't release mnt until
4355                 * we unmount before file sys is unregistered
4356                */
4357                real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4358        }
4359        return mnt;
4360}
4361EXPORT_SYMBOL_GPL(kern_mount);
4362
4363void kern_unmount(struct vfsmount *mnt)
4364{
4365        /* release long term mount so mount point can be released */
4366        if (!IS_ERR_OR_NULL(mnt)) {
4367                real_mount(mnt)->mnt_ns = NULL;
4368                synchronize_rcu();      /* yecchhh... */
4369                mntput(mnt);
4370        }
4371}
4372EXPORT_SYMBOL(kern_unmount);
4373
4374void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4375{
4376        unsigned int i;
4377
4378        for (i = 0; i < num; i++)
4379                if (mnt[i])
4380                        real_mount(mnt[i])->mnt_ns = NULL;
4381        synchronize_rcu_expedited();
4382        for (i = 0; i < num; i++)
4383                mntput(mnt[i]);
4384}
4385EXPORT_SYMBOL(kern_unmount_array);
4386
4387bool our_mnt(struct vfsmount *mnt)
4388{
4389        return check_mnt(real_mount(mnt));
4390}
4391
4392bool current_chrooted(void)
4393{
4394        /* Does the current process have a non-standard root */
4395        struct path ns_root;
4396        struct path fs_root;
4397        bool chrooted;
4398
4399        /* Find the namespace root */
4400        ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4401        ns_root.dentry = ns_root.mnt->mnt_root;
4402        path_get(&ns_root);
4403        while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4404                ;
4405
4406        get_fs_root(current->fs, &fs_root);
4407
4408        chrooted = !path_equal(&fs_root, &ns_root);
4409
4410        path_put(&fs_root);
4411        path_put(&ns_root);
4412
4413        return chrooted;
4414}
4415
4416static bool mnt_already_visible(struct mnt_namespace *ns,
4417                                const struct super_block *sb,
4418                                int *new_mnt_flags)
4419{
4420        int new_flags = *new_mnt_flags;
4421        struct mount *mnt;
4422        bool visible = false;
4423
4424        down_read(&namespace_sem);
4425        lock_ns_list(ns);
4426        list_for_each_entry(mnt, &ns->list, mnt_list) {
4427                struct mount *child;
4428                int mnt_flags;
4429
4430                if (mnt_is_cursor(mnt))
4431                        continue;
4432
4433                if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4434                        continue;
4435
4436                /* This mount is not fully visible if it's root directory
4437                 * is not the root directory of the filesystem.
4438                 */
4439                if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4440                        continue;
4441
4442                /* A local view of the mount flags */
4443                mnt_flags = mnt->mnt.mnt_flags;
4444
4445                /* Don't miss readonly hidden in the superblock flags */
4446                if (sb_rdonly(mnt->mnt.mnt_sb))
4447                        mnt_flags |= MNT_LOCK_READONLY;
4448
4449                /* Verify the mount flags are equal to or more permissive
4450                 * than the proposed new mount.
4451                 */
4452                if ((mnt_flags & MNT_LOCK_READONLY) &&
4453                    !(new_flags & MNT_READONLY))
4454                        continue;
4455                if ((mnt_flags & MNT_LOCK_ATIME) &&
4456                    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4457                        continue;
4458
4459                /* This mount is not fully visible if there are any
4460                 * locked child mounts that cover anything except for
4461                 * empty directories.
4462                 */
4463                list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4464                        struct inode *inode = child->mnt_mountpoint->d_inode;
4465                        /* Only worry about locked mounts */
4466                        if (!(child->mnt.mnt_flags & MNT_LOCKED))
4467                                continue;
4468                        /* Is the directory permanetly empty? */
4469                        if (!is_empty_dir_inode(inode))
4470                                goto next;
4471                }
4472                /* Preserve the locked attributes */
4473                *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4474                                               MNT_LOCK_ATIME);
4475                visible = true;
4476                goto found;
4477        next:   ;
4478        }
4479found:
4480        unlock_ns_list(ns);
4481        up_read(&namespace_sem);
4482        return visible;
4483}
4484
4485static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4486{
4487        const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4488        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4489        unsigned long s_iflags;
4490
4491        if (ns->user_ns == &init_user_ns)
4492                return false;
4493
4494        /* Can this filesystem be too revealing? */
4495        s_iflags = sb->s_iflags;
4496        if (!(s_iflags & SB_I_USERNS_VISIBLE))
4497                return false;
4498
4499        if ((s_iflags & required_iflags) != required_iflags) {
4500                WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4501                          required_iflags);
4502                return true;
4503        }
4504
4505        return !mnt_already_visible(ns, sb, new_mnt_flags);
4506}
4507
4508bool mnt_may_suid(struct vfsmount *mnt)
4509{
4510        /*
4511         * Foreign mounts (accessed via fchdir or through /proc
4512         * symlinks) are always treated as if they are nosuid.  This
4513         * prevents namespaces from trusting potentially unsafe
4514         * suid/sgid bits, file caps, or security labels that originate
4515         * in other namespaces.
4516         */
4517        return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4518               current_in_userns(mnt->mnt_sb->s_user_ns);
4519}
4520
4521static struct ns_common *mntns_get(struct task_struct *task)
4522{
4523        struct ns_common *ns = NULL;
4524        struct nsproxy *nsproxy;
4525
4526        task_lock(task);
4527        nsproxy = task->nsproxy;
4528        if (nsproxy) {
4529                ns = &nsproxy->mnt_ns->ns;
4530                get_mnt_ns(to_mnt_ns(ns));
4531        }
4532        task_unlock(task);
4533
4534        return ns;
4535}
4536
4537static void mntns_put(struct ns_common *ns)
4538{
4539        put_mnt_ns(to_mnt_ns(ns));
4540}
4541
4542static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4543{
4544        struct nsproxy *nsproxy = nsset->nsproxy;
4545        struct fs_struct *fs = nsset->fs;
4546        struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4547        struct user_namespace *user_ns = nsset->cred->user_ns;
4548        struct path root;
4549        int err;
4550
4551        if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4552            !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4553            !ns_capable(user_ns, CAP_SYS_ADMIN))
4554                return -EPERM;
4555
4556        if (is_anon_ns(mnt_ns))
4557                return -EINVAL;
4558
4559        if (fs->users != 1)
4560                return -EINVAL;
4561
4562        get_mnt_ns(mnt_ns);
4563        old_mnt_ns = nsproxy->mnt_ns;
4564        nsproxy->mnt_ns = mnt_ns;
4565
4566        /* Find the root */
4567        err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4568                                "/", LOOKUP_DOWN, &root);
4569        if (err) {
4570                /* revert to old namespace */
4571                nsproxy->mnt_ns = old_mnt_ns;
4572                put_mnt_ns(mnt_ns);
4573                return err;
4574        }
4575
4576        put_mnt_ns(old_mnt_ns);
4577
4578        /* Update the pwd and root */
4579        set_fs_pwd(fs, &root);
4580        set_fs_root(fs, &root);
4581
4582        path_put(&root);
4583        return 0;
4584}
4585
4586static struct user_namespace *mntns_owner(struct ns_common *ns)
4587{
4588        return to_mnt_ns(ns)->user_ns;
4589}
4590
4591const struct proc_ns_operations mntns_operations = {
4592        .name           = "mnt",
4593        .type           = CLONE_NEWNS,
4594        .get            = mntns_get,
4595        .put            = mntns_put,
4596        .install        = mntns_install,
4597        .owner          = mntns_owner,
4598};
4599