linux/fs/ntfs3/frecord.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *
   4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
   5 *
   6 */
   7
   8#include <linux/fiemap.h>
   9#include <linux/fs.h>
  10#include <linux/vmalloc.h>
  11
  12#include "debug.h"
  13#include "ntfs.h"
  14#include "ntfs_fs.h"
  15#ifdef CONFIG_NTFS3_LZX_XPRESS
  16#include "lib/lib.h"
  17#endif
  18
  19static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
  20                                   CLST ino, struct rb_node *ins)
  21{
  22        struct rb_node **p = &tree->rb_node;
  23        struct rb_node *pr = NULL;
  24
  25        while (*p) {
  26                struct mft_inode *mi;
  27
  28                pr = *p;
  29                mi = rb_entry(pr, struct mft_inode, node);
  30                if (mi->rno > ino)
  31                        p = &pr->rb_left;
  32                else if (mi->rno < ino)
  33                        p = &pr->rb_right;
  34                else
  35                        return mi;
  36        }
  37
  38        if (!ins)
  39                return NULL;
  40
  41        rb_link_node(ins, pr, p);
  42        rb_insert_color(ins, tree);
  43        return rb_entry(ins, struct mft_inode, node);
  44}
  45
  46/*
  47 * ni_find_mi - Find mft_inode by record number.
  48 */
  49static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
  50{
  51        return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
  52}
  53
  54/*
  55 * ni_add_mi - Add new mft_inode into ntfs_inode.
  56 */
  57static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
  58{
  59        ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
  60}
  61
  62/*
  63 * ni_remove_mi - Remove mft_inode from ntfs_inode.
  64 */
  65void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
  66{
  67        rb_erase(&mi->node, &ni->mi_tree);
  68}
  69
  70/*
  71 * ni_std - Return: Pointer into std_info from primary record.
  72 */
  73struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
  74{
  75        const struct ATTRIB *attr;
  76
  77        attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
  78        return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO))
  79                    : NULL;
  80}
  81
  82/*
  83 * ni_std5
  84 *
  85 * Return: Pointer into std_info from primary record.
  86 */
  87struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
  88{
  89        const struct ATTRIB *attr;
  90
  91        attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
  92
  93        return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5))
  94                    : NULL;
  95}
  96
  97/*
  98 * ni_clear - Clear resources allocated by ntfs_inode.
  99 */
 100void ni_clear(struct ntfs_inode *ni)
 101{
 102        struct rb_node *node;
 103
 104        if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec))
 105                ni_delete_all(ni);
 106
 107        al_destroy(ni);
 108
 109        for (node = rb_first(&ni->mi_tree); node;) {
 110                struct rb_node *next = rb_next(node);
 111                struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
 112
 113                rb_erase(node, &ni->mi_tree);
 114                mi_put(mi);
 115                node = next;
 116        }
 117
 118        /* Bad inode always has mode == S_IFREG. */
 119        if (ni->ni_flags & NI_FLAG_DIR)
 120                indx_clear(&ni->dir);
 121        else {
 122                run_close(&ni->file.run);
 123#ifdef CONFIG_NTFS3_LZX_XPRESS
 124                if (ni->file.offs_page) {
 125                        /* On-demand allocated page for offsets. */
 126                        put_page(ni->file.offs_page);
 127                        ni->file.offs_page = NULL;
 128                }
 129#endif
 130        }
 131
 132        mi_clear(&ni->mi);
 133}
 134
 135/*
 136 * ni_load_mi_ex - Find mft_inode by record number.
 137 */
 138int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
 139{
 140        int err;
 141        struct mft_inode *r;
 142
 143        r = ni_find_mi(ni, rno);
 144        if (r)
 145                goto out;
 146
 147        err = mi_get(ni->mi.sbi, rno, &r);
 148        if (err)
 149                return err;
 150
 151        ni_add_mi(ni, r);
 152
 153out:
 154        if (mi)
 155                *mi = r;
 156        return 0;
 157}
 158
 159/*
 160 * ni_load_mi - Load mft_inode corresponded list_entry.
 161 */
 162int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
 163               struct mft_inode **mi)
 164{
 165        CLST rno;
 166
 167        if (!le) {
 168                *mi = &ni->mi;
 169                return 0;
 170        }
 171
 172        rno = ino_get(&le->ref);
 173        if (rno == ni->mi.rno) {
 174                *mi = &ni->mi;
 175                return 0;
 176        }
 177        return ni_load_mi_ex(ni, rno, mi);
 178}
 179
 180/*
 181 * ni_find_attr
 182 *
 183 * Return: Attribute and record this attribute belongs to.
 184 */
 185struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
 186                            struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
 187                            const __le16 *name, u8 name_len, const CLST *vcn,
 188                            struct mft_inode **mi)
 189{
 190        struct ATTR_LIST_ENTRY *le;
 191        struct mft_inode *m;
 192
 193        if (!ni->attr_list.size ||
 194            (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
 195                if (le_o)
 196                        *le_o = NULL;
 197                if (mi)
 198                        *mi = &ni->mi;
 199
 200                /* Look for required attribute in primary record. */
 201                return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
 202        }
 203
 204        /* First look for list entry of required type. */
 205        le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
 206        if (!le)
 207                return NULL;
 208
 209        if (le_o)
 210                *le_o = le;
 211
 212        /* Load record that contains this attribute. */
 213        if (ni_load_mi(ni, le, &m))
 214                return NULL;
 215
 216        /* Look for required attribute. */
 217        attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
 218
 219        if (!attr)
 220                goto out;
 221
 222        if (!attr->non_res) {
 223                if (vcn && *vcn)
 224                        goto out;
 225        } else if (!vcn) {
 226                if (attr->nres.svcn)
 227                        goto out;
 228        } else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
 229                   *vcn > le64_to_cpu(attr->nres.evcn)) {
 230                goto out;
 231        }
 232
 233        if (mi)
 234                *mi = m;
 235        return attr;
 236
 237out:
 238        ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
 239        return NULL;
 240}
 241
 242/*
 243 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
 244 */
 245struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
 246                               struct ATTR_LIST_ENTRY **le,
 247                               struct mft_inode **mi)
 248{
 249        struct mft_inode *mi2;
 250        struct ATTR_LIST_ENTRY *le2;
 251
 252        /* Do we have an attribute list? */
 253        if (!ni->attr_list.size) {
 254                *le = NULL;
 255                if (mi)
 256                        *mi = &ni->mi;
 257                /* Enum attributes in primary record. */
 258                return mi_enum_attr(&ni->mi, attr);
 259        }
 260
 261        /* Get next list entry. */
 262        le2 = *le = al_enumerate(ni, attr ? *le : NULL);
 263        if (!le2)
 264                return NULL;
 265
 266        /* Load record that contains the required attribute. */
 267        if (ni_load_mi(ni, le2, &mi2))
 268                return NULL;
 269
 270        if (mi)
 271                *mi = mi2;
 272
 273        /* Find attribute in loaded record. */
 274        return rec_find_attr_le(mi2, le2);
 275}
 276
 277/*
 278 * ni_load_attr - Load attribute that contains given VCN.
 279 */
 280struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
 281                            const __le16 *name, u8 name_len, CLST vcn,
 282                            struct mft_inode **pmi)
 283{
 284        struct ATTR_LIST_ENTRY *le;
 285        struct ATTRIB *attr;
 286        struct mft_inode *mi;
 287        struct ATTR_LIST_ENTRY *next;
 288
 289        if (!ni->attr_list.size) {
 290                if (pmi)
 291                        *pmi = &ni->mi;
 292                return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
 293        }
 294
 295        le = al_find_ex(ni, NULL, type, name, name_len, NULL);
 296        if (!le)
 297                return NULL;
 298
 299        /*
 300         * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
 301         * So to find the ATTRIB segment that contains 'vcn' we should
 302         * enumerate some entries.
 303         */
 304        if (vcn) {
 305                for (;; le = next) {
 306                        next = al_find_ex(ni, le, type, name, name_len, NULL);
 307                        if (!next || le64_to_cpu(next->vcn) > vcn)
 308                                break;
 309                }
 310        }
 311
 312        if (ni_load_mi(ni, le, &mi))
 313                return NULL;
 314
 315        if (pmi)
 316                *pmi = mi;
 317
 318        attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
 319        if (!attr)
 320                return NULL;
 321
 322        if (!attr->non_res)
 323                return attr;
 324
 325        if (le64_to_cpu(attr->nres.svcn) <= vcn &&
 326            vcn <= le64_to_cpu(attr->nres.evcn))
 327                return attr;
 328
 329        return NULL;
 330}
 331
 332/*
 333 * ni_load_all_mi - Load all subrecords.
 334 */
 335int ni_load_all_mi(struct ntfs_inode *ni)
 336{
 337        int err;
 338        struct ATTR_LIST_ENTRY *le;
 339
 340        if (!ni->attr_list.size)
 341                return 0;
 342
 343        le = NULL;
 344
 345        while ((le = al_enumerate(ni, le))) {
 346                CLST rno = ino_get(&le->ref);
 347
 348                if (rno == ni->mi.rno)
 349                        continue;
 350
 351                err = ni_load_mi_ex(ni, rno, NULL);
 352                if (err)
 353                        return err;
 354        }
 355
 356        return 0;
 357}
 358
 359/*
 360 * ni_add_subrecord - Allocate + format + attach a new subrecord.
 361 */
 362bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
 363{
 364        struct mft_inode *m;
 365
 366        m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
 367        if (!m)
 368                return false;
 369
 370        if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
 371                mi_put(m);
 372                return false;
 373        }
 374
 375        mi_get_ref(&ni->mi, &m->mrec->parent_ref);
 376
 377        ni_add_mi(ni, m);
 378        *mi = m;
 379        return true;
 380}
 381
 382/*
 383 * ni_remove_attr - Remove all attributes for the given type/name/id.
 384 */
 385int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
 386                   const __le16 *name, size_t name_len, bool base_only,
 387                   const __le16 *id)
 388{
 389        int err;
 390        struct ATTRIB *attr;
 391        struct ATTR_LIST_ENTRY *le;
 392        struct mft_inode *mi;
 393        u32 type_in;
 394        int diff;
 395
 396        if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
 397                attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
 398                if (!attr)
 399                        return -ENOENT;
 400
 401                mi_remove_attr(ni, &ni->mi, attr);
 402                return 0;
 403        }
 404
 405        type_in = le32_to_cpu(type);
 406        le = NULL;
 407
 408        for (;;) {
 409                le = al_enumerate(ni, le);
 410                if (!le)
 411                        return 0;
 412
 413next_le2:
 414                diff = le32_to_cpu(le->type) - type_in;
 415                if (diff < 0)
 416                        continue;
 417
 418                if (diff > 0)
 419                        return 0;
 420
 421                if (le->name_len != name_len)
 422                        continue;
 423
 424                if (name_len &&
 425                    memcmp(le_name(le), name, name_len * sizeof(short)))
 426                        continue;
 427
 428                if (id && le->id != *id)
 429                        continue;
 430                err = ni_load_mi(ni, le, &mi);
 431                if (err)
 432                        return err;
 433
 434                al_remove_le(ni, le);
 435
 436                attr = mi_find_attr(mi, NULL, type, name, name_len, id);
 437                if (!attr)
 438                        return -ENOENT;
 439
 440                mi_remove_attr(ni, mi, attr);
 441
 442                if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
 443                        return 0;
 444                goto next_le2;
 445        }
 446}
 447
 448/*
 449 * ni_ins_new_attr - Insert the attribute into record.
 450 *
 451 * Return: Not full constructed attribute or NULL if not possible to create.
 452 */
 453static struct ATTRIB *
 454ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
 455                struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
 456                const __le16 *name, u8 name_len, u32 asize, u16 name_off,
 457                CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
 458{
 459        int err;
 460        struct ATTRIB *attr;
 461        bool le_added = false;
 462        struct MFT_REF ref;
 463
 464        mi_get_ref(mi, &ref);
 465
 466        if (type != ATTR_LIST && !le && ni->attr_list.size) {
 467                err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
 468                                &ref, &le);
 469                if (err) {
 470                        /* No memory or no space. */
 471                        return NULL;
 472                }
 473                le_added = true;
 474
 475                /*
 476                 * al_add_le -> attr_set_size (list) -> ni_expand_list
 477                 * which moves some attributes out of primary record
 478                 * this means that name may point into moved memory
 479                 * reinit 'name' from le.
 480                 */
 481                name = le->name;
 482        }
 483
 484        attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
 485        if (!attr) {
 486                if (le_added)
 487                        al_remove_le(ni, le);
 488                return NULL;
 489        }
 490
 491        if (type == ATTR_LIST) {
 492                /* Attr list is not in list entry array. */
 493                goto out;
 494        }
 495
 496        if (!le)
 497                goto out;
 498
 499        /* Update ATTRIB Id and record reference. */
 500        le->id = attr->id;
 501        ni->attr_list.dirty = true;
 502        le->ref = ref;
 503
 504out:
 505        if (ins_le)
 506                *ins_le = le;
 507        return attr;
 508}
 509
 510/*
 511 * ni_repack
 512 *
 513 * Random write access to sparsed or compressed file may result to
 514 * not optimized packed runs.
 515 * Here is the place to optimize it.
 516 */
 517static int ni_repack(struct ntfs_inode *ni)
 518{
 519        int err = 0;
 520        struct ntfs_sb_info *sbi = ni->mi.sbi;
 521        struct mft_inode *mi, *mi_p = NULL;
 522        struct ATTRIB *attr = NULL, *attr_p;
 523        struct ATTR_LIST_ENTRY *le = NULL, *le_p;
 524        CLST alloc = 0;
 525        u8 cluster_bits = sbi->cluster_bits;
 526        CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
 527        u32 roff, rs = sbi->record_size;
 528        struct runs_tree run;
 529
 530        run_init(&run);
 531
 532        while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
 533                if (!attr->non_res)
 534                        continue;
 535
 536                svcn = le64_to_cpu(attr->nres.svcn);
 537                if (svcn != le64_to_cpu(le->vcn)) {
 538                        err = -EINVAL;
 539                        break;
 540                }
 541
 542                if (!svcn) {
 543                        alloc = le64_to_cpu(attr->nres.alloc_size) >>
 544                                cluster_bits;
 545                        mi_p = NULL;
 546                } else if (svcn != evcn + 1) {
 547                        err = -EINVAL;
 548                        break;
 549                }
 550
 551                evcn = le64_to_cpu(attr->nres.evcn);
 552
 553                if (svcn > evcn + 1) {
 554                        err = -EINVAL;
 555                        break;
 556                }
 557
 558                if (!mi_p) {
 559                        /* Do not try if not enogh free space. */
 560                        if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
 561                                continue;
 562
 563                        /* Do not try if last attribute segment. */
 564                        if (evcn + 1 == alloc)
 565                                continue;
 566                        run_close(&run);
 567                }
 568
 569                roff = le16_to_cpu(attr->nres.run_off);
 570                err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
 571                                 Add2Ptr(attr, roff),
 572                                 le32_to_cpu(attr->size) - roff);
 573                if (err < 0)
 574                        break;
 575
 576                if (!mi_p) {
 577                        mi_p = mi;
 578                        attr_p = attr;
 579                        svcn_p = svcn;
 580                        evcn_p = evcn;
 581                        le_p = le;
 582                        err = 0;
 583                        continue;
 584                }
 585
 586                /*
 587                 * Run contains data from two records: mi_p and mi
 588                 * Try to pack in one.
 589                 */
 590                err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
 591                if (err)
 592                        break;
 593
 594                next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
 595
 596                if (next_svcn >= evcn + 1) {
 597                        /* We can remove this attribute segment. */
 598                        al_remove_le(ni, le);
 599                        mi_remove_attr(NULL, mi, attr);
 600                        le = le_p;
 601                        continue;
 602                }
 603
 604                attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
 605                mi->dirty = true;
 606                ni->attr_list.dirty = true;
 607
 608                if (evcn + 1 == alloc) {
 609                        err = mi_pack_runs(mi, attr, &run,
 610                                           evcn + 1 - next_svcn);
 611                        if (err)
 612                                break;
 613                        mi_p = NULL;
 614                } else {
 615                        mi_p = mi;
 616                        attr_p = attr;
 617                        svcn_p = next_svcn;
 618                        evcn_p = evcn;
 619                        le_p = le;
 620                        run_truncate_head(&run, next_svcn);
 621                }
 622        }
 623
 624        if (err) {
 625                ntfs_inode_warn(&ni->vfs_inode, "repack problem");
 626                ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
 627
 628                /* Pack loaded but not packed runs. */
 629                if (mi_p)
 630                        mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
 631        }
 632
 633        run_close(&run);
 634        return err;
 635}
 636
 637/*
 638 * ni_try_remove_attr_list
 639 *
 640 * Can we remove attribute list?
 641 * Check the case when primary record contains enough space for all attributes.
 642 */
 643static int ni_try_remove_attr_list(struct ntfs_inode *ni)
 644{
 645        int err = 0;
 646        struct ntfs_sb_info *sbi = ni->mi.sbi;
 647        struct ATTRIB *attr, *attr_list, *attr_ins;
 648        struct ATTR_LIST_ENTRY *le;
 649        struct mft_inode *mi;
 650        u32 asize, free;
 651        struct MFT_REF ref;
 652        __le16 id;
 653
 654        if (!ni->attr_list.dirty)
 655                return 0;
 656
 657        err = ni_repack(ni);
 658        if (err)
 659                return err;
 660
 661        attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
 662        if (!attr_list)
 663                return 0;
 664
 665        asize = le32_to_cpu(attr_list->size);
 666
 667        /* Free space in primary record without attribute list. */
 668        free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
 669        mi_get_ref(&ni->mi, &ref);
 670
 671        le = NULL;
 672        while ((le = al_enumerate(ni, le))) {
 673                if (!memcmp(&le->ref, &ref, sizeof(ref)))
 674                        continue;
 675
 676                if (le->vcn)
 677                        return 0;
 678
 679                mi = ni_find_mi(ni, ino_get(&le->ref));
 680                if (!mi)
 681                        return 0;
 682
 683                attr = mi_find_attr(mi, NULL, le->type, le_name(le),
 684                                    le->name_len, &le->id);
 685                if (!attr)
 686                        return 0;
 687
 688                asize = le32_to_cpu(attr->size);
 689                if (asize > free)
 690                        return 0;
 691
 692                free -= asize;
 693        }
 694
 695        /* It seems that attribute list can be removed from primary record. */
 696        mi_remove_attr(NULL, &ni->mi, attr_list);
 697
 698        /*
 699         * Repeat the cycle above and move all attributes to primary record.
 700         * It should be success!
 701         */
 702        le = NULL;
 703        while ((le = al_enumerate(ni, le))) {
 704                if (!memcmp(&le->ref, &ref, sizeof(ref)))
 705                        continue;
 706
 707                mi = ni_find_mi(ni, ino_get(&le->ref));
 708                if (!mi) {
 709                        /* Should never happened, 'cause already checked. */
 710                        goto bad;
 711                }
 712
 713                attr = mi_find_attr(mi, NULL, le->type, le_name(le),
 714                                    le->name_len, &le->id);
 715                if (!attr) {
 716                        /* Should never happened, 'cause already checked. */
 717                        goto bad;
 718                }
 719                asize = le32_to_cpu(attr->size);
 720
 721                /* Insert into primary record. */
 722                attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
 723                                          le->name_len, asize,
 724                                          le16_to_cpu(attr->name_off));
 725                if (!attr_ins) {
 726                        /*
 727                         * Internal error.
 728                         * Either no space in primary record (already checked).
 729                         * Either tried to insert another
 730                         * non indexed attribute (logic error).
 731                         */
 732                        goto bad;
 733                }
 734
 735                /* Copy all except id. */
 736                id = attr_ins->id;
 737                memcpy(attr_ins, attr, asize);
 738                attr_ins->id = id;
 739
 740                /* Remove from original record. */
 741                mi_remove_attr(NULL, mi, attr);
 742        }
 743
 744        run_deallocate(sbi, &ni->attr_list.run, true);
 745        run_close(&ni->attr_list.run);
 746        ni->attr_list.size = 0;
 747        kfree(ni->attr_list.le);
 748        ni->attr_list.le = NULL;
 749        ni->attr_list.dirty = false;
 750
 751        return 0;
 752bad:
 753        ntfs_inode_err(&ni->vfs_inode, "Internal error");
 754        make_bad_inode(&ni->vfs_inode);
 755        return -EINVAL;
 756}
 757
 758/*
 759 * ni_create_attr_list - Generates an attribute list for this primary record.
 760 */
 761int ni_create_attr_list(struct ntfs_inode *ni)
 762{
 763        struct ntfs_sb_info *sbi = ni->mi.sbi;
 764        int err;
 765        u32 lsize;
 766        struct ATTRIB *attr;
 767        struct ATTRIB *arr_move[7];
 768        struct ATTR_LIST_ENTRY *le, *le_b[7];
 769        struct MFT_REC *rec;
 770        bool is_mft;
 771        CLST rno = 0;
 772        struct mft_inode *mi;
 773        u32 free_b, nb, to_free, rs;
 774        u16 sz;
 775
 776        is_mft = ni->mi.rno == MFT_REC_MFT;
 777        rec = ni->mi.mrec;
 778        rs = sbi->record_size;
 779
 780        /*
 781         * Skip estimating exact memory requirement.
 782         * Looks like one record_size is always enough.
 783         */
 784        le = kmalloc(al_aligned(rs), GFP_NOFS);
 785        if (!le) {
 786                err = -ENOMEM;
 787                goto out;
 788        }
 789
 790        mi_get_ref(&ni->mi, &le->ref);
 791        ni->attr_list.le = le;
 792
 793        attr = NULL;
 794        nb = 0;
 795        free_b = 0;
 796        attr = NULL;
 797
 798        for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
 799                sz = le_size(attr->name_len);
 800                le->type = attr->type;
 801                le->size = cpu_to_le16(sz);
 802                le->name_len = attr->name_len;
 803                le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
 804                le->vcn = 0;
 805                if (le != ni->attr_list.le)
 806                        le->ref = ni->attr_list.le->ref;
 807                le->id = attr->id;
 808
 809                if (attr->name_len)
 810                        memcpy(le->name, attr_name(attr),
 811                               sizeof(short) * attr->name_len);
 812                else if (attr->type == ATTR_STD)
 813                        continue;
 814                else if (attr->type == ATTR_LIST)
 815                        continue;
 816                else if (is_mft && attr->type == ATTR_DATA)
 817                        continue;
 818
 819                if (!nb || nb < ARRAY_SIZE(arr_move)) {
 820                        le_b[nb] = le;
 821                        arr_move[nb++] = attr;
 822                        free_b += le32_to_cpu(attr->size);
 823                }
 824        }
 825
 826        lsize = PtrOffset(ni->attr_list.le, le);
 827        ni->attr_list.size = lsize;
 828
 829        to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
 830        if (to_free <= rs) {
 831                to_free = 0;
 832        } else {
 833                to_free -= rs;
 834
 835                if (to_free > free_b) {
 836                        err = -EINVAL;
 837                        goto out1;
 838                }
 839        }
 840
 841        /* Allocate child MFT. */
 842        err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
 843        if (err)
 844                goto out1;
 845
 846        /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
 847        while (to_free > 0) {
 848                struct ATTRIB *b = arr_move[--nb];
 849                u32 asize = le32_to_cpu(b->size);
 850                u16 name_off = le16_to_cpu(b->name_off);
 851
 852                attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
 853                                      b->name_len, asize, name_off);
 854                WARN_ON(!attr);
 855
 856                mi_get_ref(mi, &le_b[nb]->ref);
 857                le_b[nb]->id = attr->id;
 858
 859                /* Copy all except id. */
 860                memcpy(attr, b, asize);
 861                attr->id = le_b[nb]->id;
 862
 863                /* Remove from primary record. */
 864                WARN_ON(!mi_remove_attr(NULL, &ni->mi, b));
 865
 866                if (to_free <= asize)
 867                        break;
 868                to_free -= asize;
 869                WARN_ON(!nb);
 870        }
 871
 872        attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
 873                              lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
 874        WARN_ON(!attr);
 875
 876        attr->non_res = 0;
 877        attr->flags = 0;
 878        attr->res.data_size = cpu_to_le32(lsize);
 879        attr->res.data_off = SIZEOF_RESIDENT_LE;
 880        attr->res.flags = 0;
 881        attr->res.res = 0;
 882
 883        memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
 884
 885        ni->attr_list.dirty = false;
 886
 887        mark_inode_dirty(&ni->vfs_inode);
 888        goto out;
 889
 890out1:
 891        kfree(ni->attr_list.le);
 892        ni->attr_list.le = NULL;
 893        ni->attr_list.size = 0;
 894
 895out:
 896        return err;
 897}
 898
 899/*
 900 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
 901 */
 902static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
 903                           enum ATTR_TYPE type, const __le16 *name, u8 name_len,
 904                           u32 asize, CLST svcn, u16 name_off, bool force_ext,
 905                           struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
 906                           struct ATTR_LIST_ENTRY **ins_le)
 907{
 908        struct ATTRIB *attr;
 909        struct mft_inode *mi;
 910        CLST rno;
 911        u64 vbo;
 912        struct rb_node *node;
 913        int err;
 914        bool is_mft, is_mft_data;
 915        struct ntfs_sb_info *sbi = ni->mi.sbi;
 916
 917        is_mft = ni->mi.rno == MFT_REC_MFT;
 918        is_mft_data = is_mft && type == ATTR_DATA && !name_len;
 919
 920        if (asize > sbi->max_bytes_per_attr) {
 921                err = -EINVAL;
 922                goto out;
 923        }
 924
 925        /*
 926         * Standard information and attr_list cannot be made external.
 927         * The Log File cannot have any external attributes.
 928         */
 929        if (type == ATTR_STD || type == ATTR_LIST ||
 930            ni->mi.rno == MFT_REC_LOG) {
 931                err = -EINVAL;
 932                goto out;
 933        }
 934
 935        /* Create attribute list if it is not already existed. */
 936        if (!ni->attr_list.size) {
 937                err = ni_create_attr_list(ni);
 938                if (err)
 939                        goto out;
 940        }
 941
 942        vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
 943
 944        if (force_ext)
 945                goto insert_ext;
 946
 947        /* Load all subrecords into memory. */
 948        err = ni_load_all_mi(ni);
 949        if (err)
 950                goto out;
 951
 952        /* Check each of loaded subrecord. */
 953        for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
 954                mi = rb_entry(node, struct mft_inode, node);
 955
 956                if (is_mft_data &&
 957                    (mi_enum_attr(mi, NULL) ||
 958                     vbo <= ((u64)mi->rno << sbi->record_bits))) {
 959                        /* We can't accept this record 'cause MFT's bootstrapping. */
 960                        continue;
 961                }
 962                if (is_mft &&
 963                    mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
 964                        /*
 965                         * This child record already has a ATTR_DATA.
 966                         * So it can't accept any other records.
 967                         */
 968                        continue;
 969                }
 970
 971                if ((type != ATTR_NAME || name_len) &&
 972                    mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
 973                        /* Only indexed attributes can share same record. */
 974                        continue;
 975                }
 976
 977                /*
 978                 * Do not try to insert this attribute
 979                 * if there is no room in record.
 980                 */
 981                if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
 982                        continue;
 983
 984                /* Try to insert attribute into this subrecord. */
 985                attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
 986                                       name_off, svcn, ins_le);
 987                if (!attr)
 988                        continue;
 989
 990                if (ins_attr)
 991                        *ins_attr = attr;
 992                if (ins_mi)
 993                        *ins_mi = mi;
 994                return 0;
 995        }
 996
 997insert_ext:
 998        /* We have to allocate a new child subrecord. */
 999        err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1000        if (err)
1001                goto out;
1002
1003        if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1004                err = -EINVAL;
1005                goto out1;
1006        }
1007
1008        attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1009                               name_off, svcn, ins_le);
1010        if (!attr)
1011                goto out2;
1012
1013        if (ins_attr)
1014                *ins_attr = attr;
1015        if (ins_mi)
1016                *ins_mi = mi;
1017
1018        return 0;
1019
1020out2:
1021        ni_remove_mi(ni, mi);
1022        mi_put(mi);
1023        err = -EINVAL;
1024
1025out1:
1026        ntfs_mark_rec_free(sbi, rno);
1027
1028out:
1029        return err;
1030}
1031
1032/*
1033 * ni_insert_attr - Insert an attribute into the file.
1034 *
1035 * If the primary record has room, it will just insert the attribute.
1036 * If not, it may make the attribute external.
1037 * For $MFT::Data it may make room for the attribute by
1038 * making other attributes external.
1039 *
1040 * NOTE:
1041 * The ATTR_LIST and ATTR_STD cannot be made external.
1042 * This function does not fill new attribute full.
1043 * It only fills 'size'/'type'/'id'/'name_len' fields.
1044 */
1045static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1046                          const __le16 *name, u8 name_len, u32 asize,
1047                          u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1048                          struct mft_inode **ins_mi,
1049                          struct ATTR_LIST_ENTRY **ins_le)
1050{
1051        struct ntfs_sb_info *sbi = ni->mi.sbi;
1052        int err;
1053        struct ATTRIB *attr, *eattr;
1054        struct MFT_REC *rec;
1055        bool is_mft;
1056        struct ATTR_LIST_ENTRY *le;
1057        u32 list_reserve, max_free, free, used, t32;
1058        __le16 id;
1059        u16 t16;
1060
1061        is_mft = ni->mi.rno == MFT_REC_MFT;
1062        rec = ni->mi.mrec;
1063
1064        list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1065        used = le32_to_cpu(rec->used);
1066        free = sbi->record_size - used;
1067
1068        if (is_mft && type != ATTR_LIST) {
1069                /* Reserve space for the ATTRIB list. */
1070                if (free < list_reserve)
1071                        free = 0;
1072                else
1073                        free -= list_reserve;
1074        }
1075
1076        if (asize <= free) {
1077                attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1078                                       asize, name_off, svcn, ins_le);
1079                if (attr) {
1080                        if (ins_attr)
1081                                *ins_attr = attr;
1082                        if (ins_mi)
1083                                *ins_mi = &ni->mi;
1084                        err = 0;
1085                        goto out;
1086                }
1087        }
1088
1089        if (!is_mft || type != ATTR_DATA || svcn) {
1090                /* This ATTRIB will be external. */
1091                err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1092                                      svcn, name_off, false, ins_attr, ins_mi,
1093                                      ins_le);
1094                goto out;
1095        }
1096
1097        /*
1098         * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1099         *
1100         * The first chunk of the $MFT::Data ATTRIB must be the base record.
1101         * Evict as many other attributes as possible.
1102         */
1103        max_free = free;
1104
1105        /* Estimate the result of moving all possible attributes away. */
1106        attr = NULL;
1107
1108        while ((attr = mi_enum_attr(&ni->mi, attr))) {
1109                if (attr->type == ATTR_STD)
1110                        continue;
1111                if (attr->type == ATTR_LIST)
1112                        continue;
1113                max_free += le32_to_cpu(attr->size);
1114        }
1115
1116        if (max_free < asize + list_reserve) {
1117                /* Impossible to insert this attribute into primary record. */
1118                err = -EINVAL;
1119                goto out;
1120        }
1121
1122        /* Start real attribute moving. */
1123        attr = NULL;
1124
1125        for (;;) {
1126                attr = mi_enum_attr(&ni->mi, attr);
1127                if (!attr) {
1128                        /* We should never be here 'cause we have already check this case. */
1129                        err = -EINVAL;
1130                        goto out;
1131                }
1132
1133                /* Skip attributes that MUST be primary record. */
1134                if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1135                        continue;
1136
1137                le = NULL;
1138                if (ni->attr_list.size) {
1139                        le = al_find_le(ni, NULL, attr);
1140                        if (!le) {
1141                                /* Really this is a serious bug. */
1142                                err = -EINVAL;
1143                                goto out;
1144                        }
1145                }
1146
1147                t32 = le32_to_cpu(attr->size);
1148                t16 = le16_to_cpu(attr->name_off);
1149                err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1150                                      attr->name_len, t32, attr_svcn(attr), t16,
1151                                      false, &eattr, NULL, NULL);
1152                if (err)
1153                        return err;
1154
1155                id = eattr->id;
1156                memcpy(eattr, attr, t32);
1157                eattr->id = id;
1158
1159                /* Remove from primary record. */
1160                mi_remove_attr(NULL, &ni->mi, attr);
1161
1162                /* attr now points to next attribute. */
1163                if (attr->type == ATTR_END)
1164                        goto out;
1165        }
1166        while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1167                ;
1168
1169        attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1170                               name_off, svcn, ins_le);
1171        if (!attr) {
1172                err = -EINVAL;
1173                goto out;
1174        }
1175
1176        if (ins_attr)
1177                *ins_attr = attr;
1178        if (ins_mi)
1179                *ins_mi = &ni->mi;
1180
1181out:
1182        return err;
1183}
1184
1185/* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
1186static int ni_expand_mft_list(struct ntfs_inode *ni)
1187{
1188        int err = 0;
1189        struct runs_tree *run = &ni->file.run;
1190        u32 asize, run_size, done = 0;
1191        struct ATTRIB *attr;
1192        struct rb_node *node;
1193        CLST mft_min, mft_new, svcn, evcn, plen;
1194        struct mft_inode *mi, *mi_min, *mi_new;
1195        struct ntfs_sb_info *sbi = ni->mi.sbi;
1196
1197        /* Find the nearest MFT. */
1198        mft_min = 0;
1199        mft_new = 0;
1200        mi_min = NULL;
1201
1202        for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1203                mi = rb_entry(node, struct mft_inode, node);
1204
1205                attr = mi_enum_attr(mi, NULL);
1206
1207                if (!attr) {
1208                        mft_min = mi->rno;
1209                        mi_min = mi;
1210                        break;
1211                }
1212        }
1213
1214        if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1215                mft_new = 0;
1216                /* Really this is not critical. */
1217        } else if (mft_min > mft_new) {
1218                mft_min = mft_new;
1219                mi_min = mi_new;
1220        } else {
1221                ntfs_mark_rec_free(sbi, mft_new);
1222                mft_new = 0;
1223                ni_remove_mi(ni, mi_new);
1224        }
1225
1226        attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1227        if (!attr) {
1228                err = -EINVAL;
1229                goto out;
1230        }
1231
1232        asize = le32_to_cpu(attr->size);
1233
1234        evcn = le64_to_cpu(attr->nres.evcn);
1235        svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1236        if (evcn + 1 >= svcn) {
1237                err = -EINVAL;
1238                goto out;
1239        }
1240
1241        /*
1242         * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1243         *
1244         * Update first part of ATTR_DATA in 'primary MFT.
1245         */
1246        err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1247                       asize - SIZEOF_NONRESIDENT, &plen);
1248        if (err < 0)
1249                goto out;
1250
1251        run_size = ALIGN(err, 8);
1252        err = 0;
1253
1254        if (plen < svcn) {
1255                err = -EINVAL;
1256                goto out;
1257        }
1258
1259        attr->nres.evcn = cpu_to_le64(svcn - 1);
1260        attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1261        /* 'done' - How many bytes of primary MFT becomes free. */
1262        done = asize - run_size - SIZEOF_NONRESIDENT;
1263        le32_sub_cpu(&ni->mi.mrec->used, done);
1264
1265        /* Estimate the size of second part: run_buf=NULL. */
1266        err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1267                       &plen);
1268        if (err < 0)
1269                goto out;
1270
1271        run_size = ALIGN(err, 8);
1272        err = 0;
1273
1274        if (plen < evcn + 1 - svcn) {
1275                err = -EINVAL;
1276                goto out;
1277        }
1278
1279        /*
1280         * This function may implicitly call expand attr_list.
1281         * Insert second part of ATTR_DATA in 'mi_min'.
1282         */
1283        attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1284                               SIZEOF_NONRESIDENT + run_size,
1285                               SIZEOF_NONRESIDENT, svcn, NULL);
1286        if (!attr) {
1287                err = -EINVAL;
1288                goto out;
1289        }
1290
1291        attr->non_res = 1;
1292        attr->name_off = SIZEOF_NONRESIDENT_LE;
1293        attr->flags = 0;
1294
1295        run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1296                 run_size, &plen);
1297
1298        attr->nres.svcn = cpu_to_le64(svcn);
1299        attr->nres.evcn = cpu_to_le64(evcn);
1300        attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1301
1302out:
1303        if (mft_new) {
1304                ntfs_mark_rec_free(sbi, mft_new);
1305                ni_remove_mi(ni, mi_new);
1306        }
1307
1308        return !err && !done ? -EOPNOTSUPP : err;
1309}
1310
1311/*
1312 * ni_expand_list - Move all possible attributes out of primary record.
1313 */
1314int ni_expand_list(struct ntfs_inode *ni)
1315{
1316        int err = 0;
1317        u32 asize, done = 0;
1318        struct ATTRIB *attr, *ins_attr;
1319        struct ATTR_LIST_ENTRY *le;
1320        bool is_mft = ni->mi.rno == MFT_REC_MFT;
1321        struct MFT_REF ref;
1322
1323        mi_get_ref(&ni->mi, &ref);
1324        le = NULL;
1325
1326        while ((le = al_enumerate(ni, le))) {
1327                if (le->type == ATTR_STD)
1328                        continue;
1329
1330                if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1331                        continue;
1332
1333                if (is_mft && le->type == ATTR_DATA)
1334                        continue;
1335
1336                /* Find attribute in primary record. */
1337                attr = rec_find_attr_le(&ni->mi, le);
1338                if (!attr) {
1339                        err = -EINVAL;
1340                        goto out;
1341                }
1342
1343                asize = le32_to_cpu(attr->size);
1344
1345                /* Always insert into new record to avoid collisions (deep recursive). */
1346                err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1347                                      attr->name_len, asize, attr_svcn(attr),
1348                                      le16_to_cpu(attr->name_off), true,
1349                                      &ins_attr, NULL, NULL);
1350
1351                if (err)
1352                        goto out;
1353
1354                memcpy(ins_attr, attr, asize);
1355                ins_attr->id = le->id;
1356                /* Remove from primary record. */
1357                mi_remove_attr(NULL, &ni->mi, attr);
1358
1359                done += asize;
1360                goto out;
1361        }
1362
1363        if (!is_mft) {
1364                err = -EFBIG; /* Attr list is too big(?) */
1365                goto out;
1366        }
1367
1368        /* Split MFT data as much as possible. */
1369        err = ni_expand_mft_list(ni);
1370        if (err)
1371                goto out;
1372
1373out:
1374        return !err && !done ? -EOPNOTSUPP : err;
1375}
1376
1377/*
1378 * ni_insert_nonresident - Insert new nonresident attribute.
1379 */
1380int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1381                          const __le16 *name, u8 name_len,
1382                          const struct runs_tree *run, CLST svcn, CLST len,
1383                          __le16 flags, struct ATTRIB **new_attr,
1384                          struct mft_inode **mi)
1385{
1386        int err;
1387        CLST plen;
1388        struct ATTRIB *attr;
1389        bool is_ext =
1390                (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn;
1391        u32 name_size = ALIGN(name_len * sizeof(short), 8);
1392        u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1393        u32 run_off = name_off + name_size;
1394        u32 run_size, asize;
1395        struct ntfs_sb_info *sbi = ni->mi.sbi;
1396
1397        err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1398                       &plen);
1399        if (err < 0)
1400                goto out;
1401
1402        run_size = ALIGN(err, 8);
1403
1404        if (plen < len) {
1405                err = -EINVAL;
1406                goto out;
1407        }
1408
1409        asize = run_off + run_size;
1410
1411        if (asize > sbi->max_bytes_per_attr) {
1412                err = -EINVAL;
1413                goto out;
1414        }
1415
1416        err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1417                             &attr, mi, NULL);
1418
1419        if (err)
1420                goto out;
1421
1422        attr->non_res = 1;
1423        attr->name_off = cpu_to_le16(name_off);
1424        attr->flags = flags;
1425
1426        run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1427
1428        attr->nres.svcn = cpu_to_le64(svcn);
1429        attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1430
1431        err = 0;
1432        if (new_attr)
1433                *new_attr = attr;
1434
1435        *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1436
1437        attr->nres.alloc_size =
1438                svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1439        attr->nres.data_size = attr->nres.alloc_size;
1440        attr->nres.valid_size = attr->nres.alloc_size;
1441
1442        if (is_ext) {
1443                if (flags & ATTR_FLAG_COMPRESSED)
1444                        attr->nres.c_unit = COMPRESSION_UNIT;
1445                attr->nres.total_size = attr->nres.alloc_size;
1446        }
1447
1448out:
1449        return err;
1450}
1451
1452/*
1453 * ni_insert_resident - Inserts new resident attribute.
1454 */
1455int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1456                       enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1457                       struct ATTRIB **new_attr, struct mft_inode **mi,
1458                       struct ATTR_LIST_ENTRY **le)
1459{
1460        int err;
1461        u32 name_size = ALIGN(name_len * sizeof(short), 8);
1462        u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1463        struct ATTRIB *attr;
1464
1465        err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1466                             0, &attr, mi, le);
1467        if (err)
1468                return err;
1469
1470        attr->non_res = 0;
1471        attr->flags = 0;
1472
1473        attr->res.data_size = cpu_to_le32(data_size);
1474        attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1475        if (type == ATTR_NAME) {
1476                attr->res.flags = RESIDENT_FLAG_INDEXED;
1477
1478                /* is_attr_indexed(attr)) == true */
1479                le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1480                ni->mi.dirty = true;
1481        }
1482        attr->res.res = 0;
1483
1484        if (new_attr)
1485                *new_attr = attr;
1486
1487        return 0;
1488}
1489
1490/*
1491 * ni_remove_attr_le - Remove attribute from record.
1492 */
1493void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1494                       struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1495{
1496        mi_remove_attr(ni, mi, attr);
1497
1498        if (le)
1499                al_remove_le(ni, le);
1500}
1501
1502/*
1503 * ni_delete_all - Remove all attributes and frees allocates space.
1504 *
1505 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1506 */
1507int ni_delete_all(struct ntfs_inode *ni)
1508{
1509        int err;
1510        struct ATTR_LIST_ENTRY *le = NULL;
1511        struct ATTRIB *attr = NULL;
1512        struct rb_node *node;
1513        u16 roff;
1514        u32 asize;
1515        CLST svcn, evcn;
1516        struct ntfs_sb_info *sbi = ni->mi.sbi;
1517        bool nt3 = is_ntfs3(sbi);
1518        struct MFT_REF ref;
1519
1520        while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1521                if (!nt3 || attr->name_len) {
1522                        ;
1523                } else if (attr->type == ATTR_REPARSE) {
1524                        mi_get_ref(&ni->mi, &ref);
1525                        ntfs_remove_reparse(sbi, 0, &ref);
1526                } else if (attr->type == ATTR_ID && !attr->non_res &&
1527                           le32_to_cpu(attr->res.data_size) >=
1528                                   sizeof(struct GUID)) {
1529                        ntfs_objid_remove(sbi, resident_data(attr));
1530                }
1531
1532                if (!attr->non_res)
1533                        continue;
1534
1535                svcn = le64_to_cpu(attr->nres.svcn);
1536                evcn = le64_to_cpu(attr->nres.evcn);
1537
1538                if (evcn + 1 <= svcn)
1539                        continue;
1540
1541                asize = le32_to_cpu(attr->size);
1542                roff = le16_to_cpu(attr->nres.run_off);
1543
1544                /* run==1 means unpack and deallocate. */
1545                run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1546                              Add2Ptr(attr, roff), asize - roff);
1547        }
1548
1549        if (ni->attr_list.size) {
1550                run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1551                al_destroy(ni);
1552        }
1553
1554        /* Free all subrecords. */
1555        for (node = rb_first(&ni->mi_tree); node;) {
1556                struct rb_node *next = rb_next(node);
1557                struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1558
1559                clear_rec_inuse(mi->mrec);
1560                mi->dirty = true;
1561                mi_write(mi, 0);
1562
1563                ntfs_mark_rec_free(sbi, mi->rno);
1564                ni_remove_mi(ni, mi);
1565                mi_put(mi);
1566                node = next;
1567        }
1568
1569        /* Free base record. */
1570        clear_rec_inuse(ni->mi.mrec);
1571        ni->mi.dirty = true;
1572        err = mi_write(&ni->mi, 0);
1573
1574        ntfs_mark_rec_free(sbi, ni->mi.rno);
1575
1576        return err;
1577}
1578
1579/* ni_fname_name
1580 *
1581 * Return: File name attribute by its value.
1582 */
1583struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1584                                     const struct cpu_str *uni,
1585                                     const struct MFT_REF *home_dir,
1586                                     struct mft_inode **mi,
1587                                     struct ATTR_LIST_ENTRY **le)
1588{
1589        struct ATTRIB *attr = NULL;
1590        struct ATTR_FILE_NAME *fname;
1591
1592        *le = NULL;
1593
1594        /* Enumerate all names. */
1595next:
1596        attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1597        if (!attr)
1598                return NULL;
1599
1600        fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1601        if (!fname)
1602                goto next;
1603
1604        if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1605                goto next;
1606
1607        if (!uni)
1608                goto next;
1609
1610        if (uni->len != fname->name_len)
1611                goto next;
1612
1613        if (ntfs_cmp_names_cpu(uni, (struct le_str *)&fname->name_len, NULL,
1614                               false))
1615                goto next;
1616
1617        return fname;
1618}
1619
1620/*
1621 * ni_fname_type
1622 *
1623 * Return: File name attribute with given type.
1624 */
1625struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1626                                     struct mft_inode **mi,
1627                                     struct ATTR_LIST_ENTRY **le)
1628{
1629        struct ATTRIB *attr = NULL;
1630        struct ATTR_FILE_NAME *fname;
1631
1632        *le = NULL;
1633
1634        if (name_type == FILE_NAME_POSIX)
1635                return NULL;
1636
1637        /* Enumerate all names. */
1638        for (;;) {
1639                attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1640                if (!attr)
1641                        return NULL;
1642
1643                fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1644                if (fname && name_type == fname->type)
1645                        return fname;
1646        }
1647}
1648
1649/*
1650 * ni_new_attr_flags
1651 *
1652 * Process compressed/sparsed in special way.
1653 * NOTE: You need to set ni->std_fa = new_fa
1654 * after this function to keep internal structures in consistency.
1655 */
1656int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1657{
1658        struct ATTRIB *attr;
1659        struct mft_inode *mi;
1660        __le16 new_aflags;
1661        u32 new_asize;
1662
1663        attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1664        if (!attr)
1665                return -EINVAL;
1666
1667        new_aflags = attr->flags;
1668
1669        if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1670                new_aflags |= ATTR_FLAG_SPARSED;
1671        else
1672                new_aflags &= ~ATTR_FLAG_SPARSED;
1673
1674        if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1675                new_aflags |= ATTR_FLAG_COMPRESSED;
1676        else
1677                new_aflags &= ~ATTR_FLAG_COMPRESSED;
1678
1679        if (new_aflags == attr->flags)
1680                return 0;
1681
1682        if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1683            (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1684                ntfs_inode_warn(&ni->vfs_inode,
1685                                "file can't be sparsed and compressed");
1686                return -EOPNOTSUPP;
1687        }
1688
1689        if (!attr->non_res)
1690                goto out;
1691
1692        if (attr->nres.data_size) {
1693                ntfs_inode_warn(
1694                        &ni->vfs_inode,
1695                        "one can change sparsed/compressed only for empty files");
1696                return -EOPNOTSUPP;
1697        }
1698
1699        /* Resize nonresident empty attribute in-place only. */
1700        new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED))
1701                            ? (SIZEOF_NONRESIDENT_EX + 8)
1702                            : (SIZEOF_NONRESIDENT + 8);
1703
1704        if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1705                return -EOPNOTSUPP;
1706
1707        if (new_aflags & ATTR_FLAG_SPARSED) {
1708                attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1709                /* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1710                attr->nres.c_unit = 0;
1711                ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1712        } else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1713                attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1714                /* The only allowed: 16 clusters per frame. */
1715                attr->nres.c_unit = NTFS_LZNT_CUNIT;
1716                ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1717        } else {
1718                attr->name_off = SIZEOF_NONRESIDENT_LE;
1719                /* Normal files. */
1720                attr->nres.c_unit = 0;
1721                ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1722        }
1723        attr->nres.run_off = attr->name_off;
1724out:
1725        attr->flags = new_aflags;
1726        mi->dirty = true;
1727
1728        return 0;
1729}
1730
1731/*
1732 * ni_parse_reparse
1733 *
1734 * buffer - memory for reparse buffer header
1735 */
1736enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1737                                   struct REPARSE_DATA_BUFFER *buffer)
1738{
1739        const struct REPARSE_DATA_BUFFER *rp = NULL;
1740        u8 bits;
1741        u16 len;
1742        typeof(rp->CompressReparseBuffer) *cmpr;
1743
1744        /* Try to estimate reparse point. */
1745        if (!attr->non_res) {
1746                rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1747        } else if (le64_to_cpu(attr->nres.data_size) >=
1748                   sizeof(struct REPARSE_DATA_BUFFER)) {
1749                struct runs_tree run;
1750
1751                run_init(&run);
1752
1753                if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1754                    !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1755                                      sizeof(struct REPARSE_DATA_BUFFER),
1756                                      NULL)) {
1757                        rp = buffer;
1758                }
1759
1760                run_close(&run);
1761        }
1762
1763        if (!rp)
1764                return REPARSE_NONE;
1765
1766        len = le16_to_cpu(rp->ReparseDataLength);
1767        switch (rp->ReparseTag) {
1768        case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1769                break; /* Symbolic link. */
1770        case IO_REPARSE_TAG_MOUNT_POINT:
1771                break; /* Mount points and junctions. */
1772        case IO_REPARSE_TAG_SYMLINK:
1773                break;
1774        case IO_REPARSE_TAG_COMPRESS:
1775                /*
1776                 * WOF - Windows Overlay Filter - Used to compress files with
1777                 * LZX/Xpress.
1778                 *
1779                 * Unlike native NTFS file compression, the Windows
1780                 * Overlay Filter supports only read operations. This means
1781                 * that it doesn't need to sector-align each compressed chunk,
1782                 * so the compressed data can be packed more tightly together.
1783                 * If you open the file for writing, the WOF just decompresses
1784                 * the entire file, turning it back into a plain file.
1785                 *
1786                 * Ntfs3 driver decompresses the entire file only on write or
1787                 * change size requests.
1788                 */
1789
1790                cmpr = &rp->CompressReparseBuffer;
1791                if (len < sizeof(*cmpr) ||
1792                    cmpr->WofVersion != WOF_CURRENT_VERSION ||
1793                    cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1794                    cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1795                        return REPARSE_NONE;
1796                }
1797
1798                switch (cmpr->CompressionFormat) {
1799                case WOF_COMPRESSION_XPRESS4K:
1800                        bits = 0xc; // 4k
1801                        break;
1802                case WOF_COMPRESSION_XPRESS8K:
1803                        bits = 0xd; // 8k
1804                        break;
1805                case WOF_COMPRESSION_XPRESS16K:
1806                        bits = 0xe; // 16k
1807                        break;
1808                case WOF_COMPRESSION_LZX32K:
1809                        bits = 0xf; // 32k
1810                        break;
1811                default:
1812                        bits = 0x10; // 64k
1813                        break;
1814                }
1815                ni_set_ext_compress_bits(ni, bits);
1816                return REPARSE_COMPRESSED;
1817
1818        case IO_REPARSE_TAG_DEDUP:
1819                ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1820                return REPARSE_DEDUPLICATED;
1821
1822        default:
1823                if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1824                        break;
1825
1826                return REPARSE_NONE;
1827        }
1828
1829        if (buffer != rp)
1830                memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1831
1832        /* Looks like normal symlink. */
1833        return REPARSE_LINK;
1834}
1835
1836/*
1837 * ni_fiemap - Helper for file_fiemap().
1838 *
1839 * Assumed ni_lock.
1840 * TODO: Less aggressive locks.
1841 */
1842int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1843              __u64 vbo, __u64 len)
1844{
1845        int err = 0;
1846        struct ntfs_sb_info *sbi = ni->mi.sbi;
1847        u8 cluster_bits = sbi->cluster_bits;
1848        struct runs_tree *run;
1849        struct rw_semaphore *run_lock;
1850        struct ATTRIB *attr;
1851        CLST vcn = vbo >> cluster_bits;
1852        CLST lcn, clen;
1853        u64 valid = ni->i_valid;
1854        u64 lbo, bytes;
1855        u64 end, alloc_size;
1856        size_t idx = -1;
1857        u32 flags;
1858        bool ok;
1859
1860        if (S_ISDIR(ni->vfs_inode.i_mode)) {
1861                run = &ni->dir.alloc_run;
1862                attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1863                                    ARRAY_SIZE(I30_NAME), NULL, NULL);
1864                run_lock = &ni->dir.run_lock;
1865        } else {
1866                run = &ni->file.run;
1867                attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1868                                    NULL);
1869                if (!attr) {
1870                        err = -EINVAL;
1871                        goto out;
1872                }
1873                if (is_attr_compressed(attr)) {
1874                        /* Unfortunately cp -r incorrectly treats compressed clusters. */
1875                        err = -EOPNOTSUPP;
1876                        ntfs_inode_warn(
1877                                &ni->vfs_inode,
1878                                "fiemap is not supported for compressed file (cp -r)");
1879                        goto out;
1880                }
1881                run_lock = &ni->file.run_lock;
1882        }
1883
1884        if (!attr || !attr->non_res) {
1885                err = fiemap_fill_next_extent(
1886                        fieinfo, 0, 0,
1887                        attr ? le32_to_cpu(attr->res.data_size) : 0,
1888                        FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1889                                FIEMAP_EXTENT_MERGED);
1890                goto out;
1891        }
1892
1893        end = vbo + len;
1894        alloc_size = le64_to_cpu(attr->nres.alloc_size);
1895        if (end > alloc_size)
1896                end = alloc_size;
1897
1898        down_read(run_lock);
1899
1900        while (vbo < end) {
1901                if (idx == -1) {
1902                        ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1903                } else {
1904                        CLST vcn_next = vcn;
1905
1906                        ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
1907                             vcn == vcn_next;
1908                        if (!ok)
1909                                vcn = vcn_next;
1910                }
1911
1912                if (!ok) {
1913                        up_read(run_lock);
1914                        down_write(run_lock);
1915
1916                        err = attr_load_runs_vcn(ni, attr->type,
1917                                                 attr_name(attr),
1918                                                 attr->name_len, run, vcn);
1919
1920                        up_write(run_lock);
1921                        down_read(run_lock);
1922
1923                        if (err)
1924                                break;
1925
1926                        ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1927
1928                        if (!ok) {
1929                                err = -EINVAL;
1930                                break;
1931                        }
1932                }
1933
1934                if (!clen) {
1935                        err = -EINVAL; // ?
1936                        break;
1937                }
1938
1939                if (lcn == SPARSE_LCN) {
1940                        vcn += clen;
1941                        vbo = (u64)vcn << cluster_bits;
1942                        continue;
1943                }
1944
1945                flags = FIEMAP_EXTENT_MERGED;
1946                if (S_ISDIR(ni->vfs_inode.i_mode)) {
1947                        ;
1948                } else if (is_attr_compressed(attr)) {
1949                        CLST clst_data;
1950
1951                        err = attr_is_frame_compressed(
1952                                ni, attr, vcn >> attr->nres.c_unit, &clst_data);
1953                        if (err)
1954                                break;
1955                        if (clst_data < NTFS_LZNT_CLUSTERS)
1956                                flags |= FIEMAP_EXTENT_ENCODED;
1957                } else if (is_attr_encrypted(attr)) {
1958                        flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1959                }
1960
1961                vbo = (u64)vcn << cluster_bits;
1962                bytes = (u64)clen << cluster_bits;
1963                lbo = (u64)lcn << cluster_bits;
1964
1965                vcn += clen;
1966
1967                if (vbo + bytes >= end) {
1968                        bytes = end - vbo;
1969                        flags |= FIEMAP_EXTENT_LAST;
1970                }
1971
1972                if (vbo + bytes <= valid) {
1973                        ;
1974                } else if (vbo >= valid) {
1975                        flags |= FIEMAP_EXTENT_UNWRITTEN;
1976                } else {
1977                        /* vbo < valid && valid < vbo + bytes */
1978                        u64 dlen = valid - vbo;
1979
1980                        err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
1981                                                      flags);
1982                        if (err < 0)
1983                                break;
1984                        if (err == 1) {
1985                                err = 0;
1986                                break;
1987                        }
1988
1989                        vbo = valid;
1990                        bytes -= dlen;
1991                        if (!bytes)
1992                                continue;
1993
1994                        lbo += dlen;
1995                        flags |= FIEMAP_EXTENT_UNWRITTEN;
1996                }
1997
1998                err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
1999                if (err < 0)
2000                        break;
2001                if (err == 1) {
2002                        err = 0;
2003                        break;
2004                }
2005
2006                vbo += bytes;
2007        }
2008
2009        up_read(run_lock);
2010
2011out:
2012        return err;
2013}
2014
2015/*
2016 * ni_readpage_cmpr
2017 *
2018 * When decompressing, we typically obtain more than one page per reference.
2019 * We inject the additional pages into the page cache.
2020 */
2021int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2022{
2023        int err;
2024        struct ntfs_sb_info *sbi = ni->mi.sbi;
2025        struct address_space *mapping = page->mapping;
2026        pgoff_t index = page->index;
2027        u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2028        struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2029        u8 frame_bits;
2030        CLST frame;
2031        u32 i, idx, frame_size, pages_per_frame;
2032        gfp_t gfp_mask;
2033        struct page *pg;
2034
2035        if (vbo >= ni->vfs_inode.i_size) {
2036                SetPageUptodate(page);
2037                err = 0;
2038                goto out;
2039        }
2040
2041        if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2042                /* Xpress or LZX. */
2043                frame_bits = ni_ext_compress_bits(ni);
2044        } else {
2045                /* LZNT compression. */
2046                frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2047        }
2048        frame_size = 1u << frame_bits;
2049        frame = vbo >> frame_bits;
2050        frame_vbo = (u64)frame << frame_bits;
2051        idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2052
2053        pages_per_frame = frame_size >> PAGE_SHIFT;
2054        pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2055        if (!pages) {
2056                err = -ENOMEM;
2057                goto out;
2058        }
2059
2060        pages[idx] = page;
2061        index = frame_vbo >> PAGE_SHIFT;
2062        gfp_mask = mapping_gfp_mask(mapping);
2063
2064        for (i = 0; i < pages_per_frame; i++, index++) {
2065                if (i == idx)
2066                        continue;
2067
2068                pg = find_or_create_page(mapping, index, gfp_mask);
2069                if (!pg) {
2070                        err = -ENOMEM;
2071                        goto out1;
2072                }
2073                pages[i] = pg;
2074        }
2075
2076        err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2077
2078out1:
2079        if (err)
2080                SetPageError(page);
2081
2082        for (i = 0; i < pages_per_frame; i++) {
2083                pg = pages[i];
2084                if (i == idx)
2085                        continue;
2086                unlock_page(pg);
2087                put_page(pg);
2088        }
2089
2090out:
2091        /* At this point, err contains 0 or -EIO depending on the "critical" page. */
2092        kfree(pages);
2093        unlock_page(page);
2094
2095        return err;
2096}
2097
2098#ifdef CONFIG_NTFS3_LZX_XPRESS
2099/*
2100 * ni_decompress_file - Decompress LZX/Xpress compressed file.
2101 *
2102 * Remove ATTR_DATA::WofCompressedData.
2103 * Remove ATTR_REPARSE.
2104 */
2105int ni_decompress_file(struct ntfs_inode *ni)
2106{
2107        struct ntfs_sb_info *sbi = ni->mi.sbi;
2108        struct inode *inode = &ni->vfs_inode;
2109        loff_t i_size = inode->i_size;
2110        struct address_space *mapping = inode->i_mapping;
2111        gfp_t gfp_mask = mapping_gfp_mask(mapping);
2112        struct page **pages = NULL;
2113        struct ATTR_LIST_ENTRY *le;
2114        struct ATTRIB *attr;
2115        CLST vcn, cend, lcn, clen, end;
2116        pgoff_t index;
2117        u64 vbo;
2118        u8 frame_bits;
2119        u32 i, frame_size, pages_per_frame, bytes;
2120        struct mft_inode *mi;
2121        int err;
2122
2123        /* Clusters for decompressed data. */
2124        cend = bytes_to_cluster(sbi, i_size);
2125
2126        if (!i_size)
2127                goto remove_wof;
2128
2129        /* Check in advance. */
2130        if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2131                err = -ENOSPC;
2132                goto out;
2133        }
2134
2135        frame_bits = ni_ext_compress_bits(ni);
2136        frame_size = 1u << frame_bits;
2137        pages_per_frame = frame_size >> PAGE_SHIFT;
2138        pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2139        if (!pages) {
2140                err = -ENOMEM;
2141                goto out;
2142        }
2143
2144        /*
2145         * Step 1: Decompress data and copy to new allocated clusters.
2146         */
2147        index = 0;
2148        for (vbo = 0; vbo < i_size; vbo += bytes) {
2149                u32 nr_pages;
2150                bool new;
2151
2152                if (vbo + frame_size > i_size) {
2153                        bytes = i_size - vbo;
2154                        nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2155                } else {
2156                        nr_pages = pages_per_frame;
2157                        bytes = frame_size;
2158                }
2159
2160                end = bytes_to_cluster(sbi, vbo + bytes);
2161
2162                for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2163                        err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2164                                                  &clen, &new);
2165                        if (err)
2166                                goto out;
2167                }
2168
2169                for (i = 0; i < pages_per_frame; i++, index++) {
2170                        struct page *pg;
2171
2172                        pg = find_or_create_page(mapping, index, gfp_mask);
2173                        if (!pg) {
2174                                while (i--) {
2175                                        unlock_page(pages[i]);
2176                                        put_page(pages[i]);
2177                                }
2178                                err = -ENOMEM;
2179                                goto out;
2180                        }
2181                        pages[i] = pg;
2182                }
2183
2184                err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2185
2186                if (!err) {
2187                        down_read(&ni->file.run_lock);
2188                        err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2189                                             nr_pages, vbo, bytes,
2190                                             REQ_OP_WRITE);
2191                        up_read(&ni->file.run_lock);
2192                }
2193
2194                for (i = 0; i < pages_per_frame; i++) {
2195                        unlock_page(pages[i]);
2196                        put_page(pages[i]);
2197                }
2198
2199                if (err)
2200                        goto out;
2201
2202                cond_resched();
2203        }
2204
2205remove_wof:
2206        /*
2207         * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2208         * and ATTR_REPARSE.
2209         */
2210        attr = NULL;
2211        le = NULL;
2212        while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2213                CLST svcn, evcn;
2214                u32 asize, roff;
2215
2216                if (attr->type == ATTR_REPARSE) {
2217                        struct MFT_REF ref;
2218
2219                        mi_get_ref(&ni->mi, &ref);
2220                        ntfs_remove_reparse(sbi, 0, &ref);
2221                }
2222
2223                if (!attr->non_res)
2224                        continue;
2225
2226                if (attr->type != ATTR_REPARSE &&
2227                    (attr->type != ATTR_DATA ||
2228                     attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2229                     memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2230                        continue;
2231
2232                svcn = le64_to_cpu(attr->nres.svcn);
2233                evcn = le64_to_cpu(attr->nres.evcn);
2234
2235                if (evcn + 1 <= svcn)
2236                        continue;
2237
2238                asize = le32_to_cpu(attr->size);
2239                roff = le16_to_cpu(attr->nres.run_off);
2240
2241                /*run==1  Means unpack and deallocate. */
2242                run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2243                              Add2Ptr(attr, roff), asize - roff);
2244        }
2245
2246        /*
2247         * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2248         */
2249        err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2250                             false, NULL);
2251        if (err)
2252                goto out;
2253
2254        /*
2255         * Step 4: Remove ATTR_REPARSE.
2256         */
2257        err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2258        if (err)
2259                goto out;
2260
2261        /*
2262         * Step 5: Remove sparse flag from data attribute.
2263         */
2264        attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2265        if (!attr) {
2266                err = -EINVAL;
2267                goto out;
2268        }
2269
2270        if (attr->non_res && is_attr_sparsed(attr)) {
2271                /* Sparsed attribute header is 8 bytes bigger than normal. */
2272                struct MFT_REC *rec = mi->mrec;
2273                u32 used = le32_to_cpu(rec->used);
2274                u32 asize = le32_to_cpu(attr->size);
2275                u16 roff = le16_to_cpu(attr->nres.run_off);
2276                char *rbuf = Add2Ptr(attr, roff);
2277
2278                memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2279                attr->size = cpu_to_le32(asize - 8);
2280                attr->flags &= ~ATTR_FLAG_SPARSED;
2281                attr->nres.run_off = cpu_to_le16(roff - 8);
2282                attr->nres.c_unit = 0;
2283                rec->used = cpu_to_le32(used - 8);
2284                mi->dirty = true;
2285                ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2286                                FILE_ATTRIBUTE_REPARSE_POINT);
2287
2288                mark_inode_dirty(inode);
2289        }
2290
2291        /* Clear cached flag. */
2292        ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2293        if (ni->file.offs_page) {
2294                put_page(ni->file.offs_page);
2295                ni->file.offs_page = NULL;
2296        }
2297        mapping->a_ops = &ntfs_aops;
2298
2299out:
2300        kfree(pages);
2301        if (err) {
2302                make_bad_inode(inode);
2303                ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
2304        }
2305
2306        return err;
2307}
2308
2309/*
2310 * decompress_lzx_xpress - External compression LZX/Xpress.
2311 */
2312static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2313                                 size_t cmpr_size, void *unc, size_t unc_size,
2314                                 u32 frame_size)
2315{
2316        int err;
2317        void *ctx;
2318
2319        if (cmpr_size == unc_size) {
2320                /* Frame not compressed. */
2321                memcpy(unc, cmpr, unc_size);
2322                return 0;
2323        }
2324
2325        err = 0;
2326        if (frame_size == 0x8000) {
2327                mutex_lock(&sbi->compress.mtx_lzx);
2328                /* LZX: Frame compressed. */
2329                ctx = sbi->compress.lzx;
2330                if (!ctx) {
2331                        /* Lazy initialize LZX decompress context. */
2332                        ctx = lzx_allocate_decompressor();
2333                        if (!ctx) {
2334                                err = -ENOMEM;
2335                                goto out1;
2336                        }
2337
2338                        sbi->compress.lzx = ctx;
2339                }
2340
2341                if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2342                        /* Treat all errors as "invalid argument". */
2343                        err = -EINVAL;
2344                }
2345out1:
2346                mutex_unlock(&sbi->compress.mtx_lzx);
2347        } else {
2348                /* XPRESS: Frame compressed. */
2349                mutex_lock(&sbi->compress.mtx_xpress);
2350                ctx = sbi->compress.xpress;
2351                if (!ctx) {
2352                        /* Lazy initialize Xpress decompress context. */
2353                        ctx = xpress_allocate_decompressor();
2354                        if (!ctx) {
2355                                err = -ENOMEM;
2356                                goto out2;
2357                        }
2358
2359                        sbi->compress.xpress = ctx;
2360                }
2361
2362                if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2363                        /* Treat all errors as "invalid argument". */
2364                        err = -EINVAL;
2365                }
2366out2:
2367                mutex_unlock(&sbi->compress.mtx_xpress);
2368        }
2369        return err;
2370}
2371#endif
2372
2373/*
2374 * ni_read_frame
2375 *
2376 * Pages - Array of locked pages.
2377 */
2378int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2379                  u32 pages_per_frame)
2380{
2381        int err;
2382        struct ntfs_sb_info *sbi = ni->mi.sbi;
2383        u8 cluster_bits = sbi->cluster_bits;
2384        char *frame_ondisk = NULL;
2385        char *frame_mem = NULL;
2386        struct page **pages_disk = NULL;
2387        struct ATTR_LIST_ENTRY *le = NULL;
2388        struct runs_tree *run = &ni->file.run;
2389        u64 valid_size = ni->i_valid;
2390        u64 vbo_disk;
2391        size_t unc_size;
2392        u32 frame_size, i, npages_disk, ondisk_size;
2393        struct page *pg;
2394        struct ATTRIB *attr;
2395        CLST frame, clst_data;
2396
2397        /*
2398         * To simplify decompress algorithm do vmap for source
2399         * and target pages.
2400         */
2401        for (i = 0; i < pages_per_frame; i++)
2402                kmap(pages[i]);
2403
2404        frame_size = pages_per_frame << PAGE_SHIFT;
2405        frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2406        if (!frame_mem) {
2407                err = -ENOMEM;
2408                goto out;
2409        }
2410
2411        attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2412        if (!attr) {
2413                err = -ENOENT;
2414                goto out1;
2415        }
2416
2417        if (!attr->non_res) {
2418                u32 data_size = le32_to_cpu(attr->res.data_size);
2419
2420                memset(frame_mem, 0, frame_size);
2421                if (frame_vbo < data_size) {
2422                        ondisk_size = data_size - frame_vbo;
2423                        memcpy(frame_mem, resident_data(attr) + frame_vbo,
2424                               min(ondisk_size, frame_size));
2425                }
2426                err = 0;
2427                goto out1;
2428        }
2429
2430        if (frame_vbo >= valid_size) {
2431                memset(frame_mem, 0, frame_size);
2432                err = 0;
2433                goto out1;
2434        }
2435
2436        if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2437#ifndef CONFIG_NTFS3_LZX_XPRESS
2438                err = -EOPNOTSUPP;
2439                goto out1;
2440#else
2441                u32 frame_bits = ni_ext_compress_bits(ni);
2442                u64 frame64 = frame_vbo >> frame_bits;
2443                u64 frames, vbo_data;
2444
2445                if (frame_size != (1u << frame_bits)) {
2446                        err = -EINVAL;
2447                        goto out1;
2448                }
2449                switch (frame_size) {
2450                case 0x1000:
2451                case 0x2000:
2452                case 0x4000:
2453                case 0x8000:
2454                        break;
2455                default:
2456                        /* Unknown compression. */
2457                        err = -EOPNOTSUPP;
2458                        goto out1;
2459                }
2460
2461                attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2462                                    ARRAY_SIZE(WOF_NAME), NULL, NULL);
2463                if (!attr) {
2464                        ntfs_inode_err(
2465                                &ni->vfs_inode,
2466                                "external compressed file should contains data attribute \"WofCompressedData\"");
2467                        err = -EINVAL;
2468                        goto out1;
2469                }
2470
2471                if (!attr->non_res) {
2472                        run = NULL;
2473                } else {
2474                        run = run_alloc();
2475                        if (!run) {
2476                                err = -ENOMEM;
2477                                goto out1;
2478                        }
2479                }
2480
2481                frames = (ni->vfs_inode.i_size - 1) >> frame_bits;
2482
2483                err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2484                                          frame_bits, &ondisk_size, &vbo_data);
2485                if (err)
2486                        goto out2;
2487
2488                if (frame64 == frames) {
2489                        unc_size = 1 + ((ni->vfs_inode.i_size - 1) &
2490                                        (frame_size - 1));
2491                        ondisk_size = attr_size(attr) - vbo_data;
2492                } else {
2493                        unc_size = frame_size;
2494                }
2495
2496                if (ondisk_size > frame_size) {
2497                        err = -EINVAL;
2498                        goto out2;
2499                }
2500
2501                if (!attr->non_res) {
2502                        if (vbo_data + ondisk_size >
2503                            le32_to_cpu(attr->res.data_size)) {
2504                                err = -EINVAL;
2505                                goto out1;
2506                        }
2507
2508                        err = decompress_lzx_xpress(
2509                                sbi, Add2Ptr(resident_data(attr), vbo_data),
2510                                ondisk_size, frame_mem, unc_size, frame_size);
2511                        goto out1;
2512                }
2513                vbo_disk = vbo_data;
2514                /* Load all runs to read [vbo_disk-vbo_to). */
2515                err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2516                                           ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2517                                           vbo_data + ondisk_size);
2518                if (err)
2519                        goto out2;
2520                npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2521                               PAGE_SIZE - 1) >>
2522                              PAGE_SHIFT;
2523#endif
2524        } else if (is_attr_compressed(attr)) {
2525                /* LZNT compression. */
2526                if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2527                        err = -EOPNOTSUPP;
2528                        goto out1;
2529                }
2530
2531                if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2532                        err = -EOPNOTSUPP;
2533                        goto out1;
2534                }
2535
2536                down_write(&ni->file.run_lock);
2537                run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2538                frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2539                err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2540                up_write(&ni->file.run_lock);
2541                if (err)
2542                        goto out1;
2543
2544                if (!clst_data) {
2545                        memset(frame_mem, 0, frame_size);
2546                        goto out1;
2547                }
2548
2549                frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2550                ondisk_size = clst_data << cluster_bits;
2551
2552                if (clst_data >= NTFS_LZNT_CLUSTERS) {
2553                        /* Frame is not compressed. */
2554                        down_read(&ni->file.run_lock);
2555                        err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2556                                             frame_vbo, ondisk_size,
2557                                             REQ_OP_READ);
2558                        up_read(&ni->file.run_lock);
2559                        goto out1;
2560                }
2561                vbo_disk = frame_vbo;
2562                npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2563        } else {
2564                __builtin_unreachable();
2565                err = -EINVAL;
2566                goto out1;
2567        }
2568
2569        pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2570        if (!pages_disk) {
2571                err = -ENOMEM;
2572                goto out2;
2573        }
2574
2575        for (i = 0; i < npages_disk; i++) {
2576                pg = alloc_page(GFP_KERNEL);
2577                if (!pg) {
2578                        err = -ENOMEM;
2579                        goto out3;
2580                }
2581                pages_disk[i] = pg;
2582                lock_page(pg);
2583                kmap(pg);
2584        }
2585
2586        /* Read 'ondisk_size' bytes from disk. */
2587        down_read(&ni->file.run_lock);
2588        err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2589                             ondisk_size, REQ_OP_READ);
2590        up_read(&ni->file.run_lock);
2591        if (err)
2592                goto out3;
2593
2594        /*
2595         * To simplify decompress algorithm do vmap for source and target pages.
2596         */
2597        frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2598        if (!frame_ondisk) {
2599                err = -ENOMEM;
2600                goto out3;
2601        }
2602
2603        /* Decompress: Frame_ondisk -> frame_mem. */
2604#ifdef CONFIG_NTFS3_LZX_XPRESS
2605        if (run != &ni->file.run) {
2606                /* LZX or XPRESS */
2607                err = decompress_lzx_xpress(
2608                        sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2609                        ondisk_size, frame_mem, unc_size, frame_size);
2610        } else
2611#endif
2612        {
2613                /* LZNT - Native NTFS compression. */
2614                unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2615                                           frame_size);
2616                if ((ssize_t)unc_size < 0)
2617                        err = unc_size;
2618                else if (!unc_size || unc_size > frame_size)
2619                        err = -EINVAL;
2620        }
2621        if (!err && valid_size < frame_vbo + frame_size) {
2622                size_t ok = valid_size - frame_vbo;
2623
2624                memset(frame_mem + ok, 0, frame_size - ok);
2625        }
2626
2627        vunmap(frame_ondisk);
2628
2629out3:
2630        for (i = 0; i < npages_disk; i++) {
2631                pg = pages_disk[i];
2632                if (pg) {
2633                        kunmap(pg);
2634                        unlock_page(pg);
2635                        put_page(pg);
2636                }
2637        }
2638        kfree(pages_disk);
2639
2640out2:
2641#ifdef CONFIG_NTFS3_LZX_XPRESS
2642        if (run != &ni->file.run)
2643                run_free(run);
2644#endif
2645out1:
2646        vunmap(frame_mem);
2647out:
2648        for (i = 0; i < pages_per_frame; i++) {
2649                pg = pages[i];
2650                kunmap(pg);
2651                ClearPageError(pg);
2652                SetPageUptodate(pg);
2653        }
2654
2655        return err;
2656}
2657
2658/*
2659 * ni_write_frame
2660 *
2661 * Pages - Array of locked pages.
2662 */
2663int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2664                   u32 pages_per_frame)
2665{
2666        int err;
2667        struct ntfs_sb_info *sbi = ni->mi.sbi;
2668        u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2669        u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2670        u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2671        CLST frame = frame_vbo >> frame_bits;
2672        char *frame_ondisk = NULL;
2673        struct page **pages_disk = NULL;
2674        struct ATTR_LIST_ENTRY *le = NULL;
2675        char *frame_mem;
2676        struct ATTRIB *attr;
2677        struct mft_inode *mi;
2678        u32 i;
2679        struct page *pg;
2680        size_t compr_size, ondisk_size;
2681        struct lznt *lznt;
2682
2683        attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2684        if (!attr) {
2685                err = -ENOENT;
2686                goto out;
2687        }
2688
2689        if (WARN_ON(!is_attr_compressed(attr))) {
2690                err = -EINVAL;
2691                goto out;
2692        }
2693
2694        if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2695                err = -EOPNOTSUPP;
2696                goto out;
2697        }
2698
2699        if (!attr->non_res) {
2700                down_write(&ni->file.run_lock);
2701                err = attr_make_nonresident(ni, attr, le, mi,
2702                                            le32_to_cpu(attr->res.data_size),
2703                                            &ni->file.run, &attr, pages[0]);
2704                up_write(&ni->file.run_lock);
2705                if (err)
2706                        goto out;
2707        }
2708
2709        if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2710                err = -EOPNOTSUPP;
2711                goto out;
2712        }
2713
2714        pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2715        if (!pages_disk) {
2716                err = -ENOMEM;
2717                goto out;
2718        }
2719
2720        for (i = 0; i < pages_per_frame; i++) {
2721                pg = alloc_page(GFP_KERNEL);
2722                if (!pg) {
2723                        err = -ENOMEM;
2724                        goto out1;
2725                }
2726                pages_disk[i] = pg;
2727                lock_page(pg);
2728                kmap(pg);
2729        }
2730
2731        /* To simplify compress algorithm do vmap for source and target pages. */
2732        frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2733        if (!frame_ondisk) {
2734                err = -ENOMEM;
2735                goto out1;
2736        }
2737
2738        for (i = 0; i < pages_per_frame; i++)
2739                kmap(pages[i]);
2740
2741        /* Map in-memory frame for read-only. */
2742        frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2743        if (!frame_mem) {
2744                err = -ENOMEM;
2745                goto out2;
2746        }
2747
2748        mutex_lock(&sbi->compress.mtx_lznt);
2749        lznt = NULL;
2750        if (!sbi->compress.lznt) {
2751                /*
2752                 * LZNT implements two levels of compression:
2753                 * 0 - Standard compression
2754                 * 1 - Best compression, requires a lot of cpu
2755                 * use mount option?
2756                 */
2757                lznt = get_lznt_ctx(0);
2758                if (!lznt) {
2759                        mutex_unlock(&sbi->compress.mtx_lznt);
2760                        err = -ENOMEM;
2761                        goto out3;
2762                }
2763
2764                sbi->compress.lznt = lznt;
2765                lznt = NULL;
2766        }
2767
2768        /* Compress: frame_mem -> frame_ondisk */
2769        compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2770                                   frame_size, sbi->compress.lznt);
2771        mutex_unlock(&sbi->compress.mtx_lznt);
2772        kfree(lznt);
2773
2774        if (compr_size + sbi->cluster_size > frame_size) {
2775                /* Frame is not compressed. */
2776                compr_size = frame_size;
2777                ondisk_size = frame_size;
2778        } else if (compr_size) {
2779                /* Frame is compressed. */
2780                ondisk_size = ntfs_up_cluster(sbi, compr_size);
2781                memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2782        } else {
2783                /* Frame is sparsed. */
2784                ondisk_size = 0;
2785        }
2786
2787        down_write(&ni->file.run_lock);
2788        run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2789        err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2790        up_write(&ni->file.run_lock);
2791        if (err)
2792                goto out2;
2793
2794        if (!ondisk_size)
2795                goto out2;
2796
2797        down_read(&ni->file.run_lock);
2798        err = ntfs_bio_pages(sbi, &ni->file.run,
2799                             ondisk_size < frame_size ? pages_disk : pages,
2800                             pages_per_frame, frame_vbo, ondisk_size,
2801                             REQ_OP_WRITE);
2802        up_read(&ni->file.run_lock);
2803
2804out3:
2805        vunmap(frame_mem);
2806
2807out2:
2808        for (i = 0; i < pages_per_frame; i++)
2809                kunmap(pages[i]);
2810
2811        vunmap(frame_ondisk);
2812out1:
2813        for (i = 0; i < pages_per_frame; i++) {
2814                pg = pages_disk[i];
2815                if (pg) {
2816                        kunmap(pg);
2817                        unlock_page(pg);
2818                        put_page(pg);
2819                }
2820        }
2821        kfree(pages_disk);
2822out:
2823        return err;
2824}
2825
2826/*
2827 * ni_remove_name - Removes name 'de' from MFT and from directory.
2828 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2829 */
2830int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2831                   struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2832{
2833        int err;
2834        struct ntfs_sb_info *sbi = ni->mi.sbi;
2835        struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2836        struct ATTR_FILE_NAME *fname;
2837        struct ATTR_LIST_ENTRY *le;
2838        struct mft_inode *mi;
2839        u16 de_key_size = le16_to_cpu(de->key_size);
2840        u8 name_type;
2841
2842        *undo_step = 0;
2843
2844        /* Find name in record. */
2845        mi_get_ref(&dir_ni->mi, &de_name->home);
2846
2847        fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len,
2848                              &de_name->home, &mi, &le);
2849        if (!fname)
2850                return -ENOENT;
2851
2852        memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2853        name_type = paired_name(fname->type);
2854
2855        /* Mark ntfs as dirty. It will be cleared at umount. */
2856        ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2857
2858        /* Step 1: Remove name from directory. */
2859        err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2860        if (err)
2861                return err;
2862
2863        /* Step 2: Remove name from MFT. */
2864        ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2865
2866        *undo_step = 2;
2867
2868        /* Get paired name. */
2869        fname = ni_fname_type(ni, name_type, &mi, &le);
2870        if (fname) {
2871                u16 de2_key_size = fname_full_size(fname);
2872
2873                *de2 = Add2Ptr(de, 1024);
2874                (*de2)->key_size = cpu_to_le16(de2_key_size);
2875
2876                memcpy(*de2 + 1, fname, de2_key_size);
2877
2878                /* Step 3: Remove paired name from directory. */
2879                err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2880                                        de2_key_size, sbi);
2881                if (err)
2882                        return err;
2883
2884                /* Step 4: Remove paired name from MFT. */
2885                ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2886
2887                *undo_step = 4;
2888        }
2889        return 0;
2890}
2891
2892/*
2893 * ni_remove_name_undo - Paired function for ni_remove_name.
2894 *
2895 * Return: True if ok
2896 */
2897bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2898                         struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2899{
2900        struct ntfs_sb_info *sbi = ni->mi.sbi;
2901        struct ATTRIB *attr;
2902        u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0;
2903
2904        switch (undo_step) {
2905        case 4:
2906                if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2907                                       &attr, NULL, NULL)) {
2908                        return false;
2909                }
2910                memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2911
2912                mi_get_ref(&ni->mi, &de2->ref);
2913                de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2914                                        sizeof(struct NTFS_DE));
2915                de2->flags = 0;
2916                de2->res = 0;
2917
2918                if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL,
2919                                      1)) {
2920                        return false;
2921                }
2922                fallthrough;
2923
2924        case 2:
2925                de_key_size = le16_to_cpu(de->key_size);
2926
2927                if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2928                                       &attr, NULL, NULL)) {
2929                        return false;
2930                }
2931
2932                memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
2933                mi_get_ref(&ni->mi, &de->ref);
2934
2935                if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
2936                        return false;
2937        }
2938
2939        return true;
2940}
2941
2942/*
2943 * ni_add_name - Add new name in MFT and in directory.
2944 */
2945int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2946                struct NTFS_DE *de)
2947{
2948        int err;
2949        struct ATTRIB *attr;
2950        struct ATTR_LIST_ENTRY *le;
2951        struct mft_inode *mi;
2952        struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2953        u16 de_key_size = le16_to_cpu(de->key_size);
2954
2955        mi_get_ref(&ni->mi, &de->ref);
2956        mi_get_ref(&dir_ni->mi, &de_name->home);
2957
2958        /* Insert new name in MFT. */
2959        err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
2960                                 &mi, &le);
2961        if (err)
2962                return err;
2963
2964        memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
2965
2966        /* Insert new name in directory. */
2967        err = indx_insert_entry(&dir_ni->dir, dir_ni, de, ni->mi.sbi, NULL, 0);
2968        if (err)
2969                ni_remove_attr_le(ni, attr, mi, le);
2970
2971        return err;
2972}
2973
2974/*
2975 * ni_rename - Remove one name and insert new name.
2976 */
2977int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
2978              struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
2979              bool *is_bad)
2980{
2981        int err;
2982        struct NTFS_DE *de2 = NULL;
2983        int undo = 0;
2984
2985        /*
2986         * There are two possible ways to rename:
2987         * 1) Add new name and remove old name.
2988         * 2) Remove old name and add new name.
2989         *
2990         * In most cases (not all!) adding new name in MFT and in directory can
2991         * allocate additional cluster(s).
2992         * Second way may result to bad inode if we can't add new name
2993         * and then can't restore (add) old name.
2994         */
2995
2996        /*
2997         * Way 1 - Add new + remove old.
2998         */
2999        err = ni_add_name(new_dir_ni, ni, new_de);
3000        if (!err) {
3001                err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3002                if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3003                        *is_bad = true;
3004        }
3005
3006        /*
3007         * Way 2 - Remove old + add new.
3008         */
3009        /*
3010         *      err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3011         *      if (!err) {
3012         *              err = ni_add_name(new_dir_ni, ni, new_de);
3013         *              if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3014         *                      *is_bad = true;
3015         *      }
3016         */
3017
3018        return err;
3019}
3020
3021/*
3022 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3023 */
3024bool ni_is_dirty(struct inode *inode)
3025{
3026        struct ntfs_inode *ni = ntfs_i(inode);
3027        struct rb_node *node;
3028
3029        if (ni->mi.dirty || ni->attr_list.dirty ||
3030            (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3031                return true;
3032
3033        for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3034                if (rb_entry(node, struct mft_inode, node)->dirty)
3035                        return true;
3036        }
3037
3038        return false;
3039}
3040
3041/*
3042 * ni_update_parent
3043 *
3044 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3045 */
3046static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3047                             int sync)
3048{
3049        struct ATTRIB *attr;
3050        struct mft_inode *mi;
3051        struct ATTR_LIST_ENTRY *le = NULL;
3052        struct ntfs_sb_info *sbi = ni->mi.sbi;
3053        struct super_block *sb = sbi->sb;
3054        bool re_dirty = false;
3055
3056        if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3057                dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3058                attr = NULL;
3059                dup->alloc_size = 0;
3060                dup->data_size = 0;
3061        } else {
3062                dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3063
3064                attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3065                                    &mi);
3066                if (!attr) {
3067                        dup->alloc_size = dup->data_size = 0;
3068                } else if (!attr->non_res) {
3069                        u32 data_size = le32_to_cpu(attr->res.data_size);
3070
3071                        dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3072                        dup->data_size = cpu_to_le64(data_size);
3073                } else {
3074                        u64 new_valid = ni->i_valid;
3075                        u64 data_size = le64_to_cpu(attr->nres.data_size);
3076                        __le64 valid_le;
3077
3078                        dup->alloc_size = is_attr_ext(attr)
3079                                                  ? attr->nres.total_size
3080                                                  : attr->nres.alloc_size;
3081                        dup->data_size = attr->nres.data_size;
3082
3083                        if (new_valid > data_size)
3084                                new_valid = data_size;
3085
3086                        valid_le = cpu_to_le64(new_valid);
3087                        if (valid_le != attr->nres.valid_size) {
3088                                attr->nres.valid_size = valid_le;
3089                                mi->dirty = true;
3090                        }
3091                }
3092        }
3093
3094        /* TODO: Fill reparse info. */
3095        dup->reparse = 0;
3096        dup->ea_size = 0;
3097
3098        if (ni->ni_flags & NI_FLAG_EA) {
3099                attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3100                                    NULL);
3101                if (attr) {
3102                        const struct EA_INFO *info;
3103
3104                        info = resident_data_ex(attr, sizeof(struct EA_INFO));
3105                        /* If ATTR_EA_INFO exists 'info' can't be NULL. */
3106                        if (info)
3107                                dup->ea_size = info->size_pack;
3108                }
3109        }
3110
3111        attr = NULL;
3112        le = NULL;
3113
3114        while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3115                                    &mi))) {
3116                struct inode *dir;
3117                struct ATTR_FILE_NAME *fname;
3118
3119                fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3120                if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3121                        continue;
3122
3123                /* ntfs_iget5 may sleep. */
3124                dir = ntfs_iget5(sb, &fname->home, NULL);
3125                if (IS_ERR(dir)) {
3126                        ntfs_inode_warn(
3127                                &ni->vfs_inode,
3128                                "failed to open parent directory r=%lx to update",
3129                                (long)ino_get(&fname->home));
3130                        continue;
3131                }
3132
3133                if (!is_bad_inode(dir)) {
3134                        struct ntfs_inode *dir_ni = ntfs_i(dir);
3135
3136                        if (!ni_trylock(dir_ni)) {
3137                                re_dirty = true;
3138                        } else {
3139                                indx_update_dup(dir_ni, sbi, fname, dup, sync);
3140                                ni_unlock(dir_ni);
3141                                memcpy(&fname->dup, dup, sizeof(fname->dup));
3142                                mi->dirty = true;
3143                        }
3144                }
3145                iput(dir);
3146        }
3147
3148        return re_dirty;
3149}
3150
3151/*
3152 * ni_write_inode - Write MFT base record and all subrecords to disk.
3153 */
3154int ni_write_inode(struct inode *inode, int sync, const char *hint)
3155{
3156        int err = 0, err2;
3157        struct ntfs_inode *ni = ntfs_i(inode);
3158        struct super_block *sb = inode->i_sb;
3159        struct ntfs_sb_info *sbi = sb->s_fs_info;
3160        bool re_dirty = false;
3161        struct ATTR_STD_INFO *std;
3162        struct rb_node *node, *next;
3163        struct NTFS_DUP_INFO dup;
3164
3165        if (is_bad_inode(inode) || sb_rdonly(sb))
3166                return 0;
3167
3168        if (!ni_trylock(ni)) {
3169                /* 'ni' is under modification, skip for now. */
3170                mark_inode_dirty_sync(inode);
3171                return 0;
3172        }
3173
3174        if (is_rec_inuse(ni->mi.mrec) &&
3175            !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3176                bool modified = false;
3177
3178                /* Update times in standard attribute. */
3179                std = ni_std(ni);
3180                if (!std) {
3181                        err = -EINVAL;
3182                        goto out;
3183                }
3184
3185                /* Update the access times if they have changed. */
3186                dup.m_time = kernel2nt(&inode->i_mtime);
3187                if (std->m_time != dup.m_time) {
3188                        std->m_time = dup.m_time;
3189                        modified = true;
3190                }
3191
3192                dup.c_time = kernel2nt(&inode->i_ctime);
3193                if (std->c_time != dup.c_time) {
3194                        std->c_time = dup.c_time;
3195                        modified = true;
3196                }
3197
3198                dup.a_time = kernel2nt(&inode->i_atime);
3199                if (std->a_time != dup.a_time) {
3200                        std->a_time = dup.a_time;
3201                        modified = true;
3202                }
3203
3204                dup.fa = ni->std_fa;
3205                if (std->fa != dup.fa) {
3206                        std->fa = dup.fa;
3207                        modified = true;
3208                }
3209
3210                if (modified)
3211                        ni->mi.dirty = true;
3212
3213                if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3214                    (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3215                    /* Avoid __wait_on_freeing_inode(inode). */
3216                    && (sb->s_flags & SB_ACTIVE)) {
3217                        dup.cr_time = std->cr_time;
3218                        /* Not critical if this function fail. */
3219                        re_dirty = ni_update_parent(ni, &dup, sync);
3220
3221                        if (re_dirty)
3222                                ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3223                        else
3224                                ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3225                }
3226
3227                /* Update attribute list. */
3228                if (ni->attr_list.size && ni->attr_list.dirty) {
3229                        if (inode->i_ino != MFT_REC_MFT || sync) {
3230                                err = ni_try_remove_attr_list(ni);
3231                                if (err)
3232                                        goto out;
3233                        }
3234
3235                        err = al_update(ni, sync);
3236                        if (err)
3237                                goto out;
3238                }
3239        }
3240
3241        for (node = rb_first(&ni->mi_tree); node; node = next) {
3242                struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3243                bool is_empty;
3244
3245                next = rb_next(node);
3246
3247                if (!mi->dirty)
3248                        continue;
3249
3250                is_empty = !mi_enum_attr(mi, NULL);
3251
3252                if (is_empty)
3253                        clear_rec_inuse(mi->mrec);
3254
3255                err2 = mi_write(mi, sync);
3256                if (!err && err2)
3257                        err = err2;
3258
3259                if (is_empty) {
3260                        ntfs_mark_rec_free(sbi, mi->rno);
3261                        rb_erase(node, &ni->mi_tree);
3262                        mi_put(mi);
3263                }
3264        }
3265
3266        if (ni->mi.dirty) {
3267                err2 = mi_write(&ni->mi, sync);
3268                if (!err && err2)
3269                        err = err2;
3270        }
3271out:
3272        ni_unlock(ni);
3273
3274        if (err) {
3275                ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err);
3276                ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3277                return err;
3278        }
3279
3280        if (re_dirty)
3281                mark_inode_dirty_sync(inode);
3282
3283        return 0;
3284}
3285