linux/fs/ocfs2/aops.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/slab.h>
   8#include <linux/highmem.h>
   9#include <linux/pagemap.h>
  10#include <asm/byteorder.h>
  11#include <linux/swap.h>
  12#include <linux/mpage.h>
  13#include <linux/quotaops.h>
  14#include <linux/blkdev.h>
  15#include <linux/uio.h>
  16#include <linux/mm.h>
  17
  18#include <cluster/masklog.h>
  19
  20#include "ocfs2.h"
  21
  22#include "alloc.h"
  23#include "aops.h"
  24#include "dlmglue.h"
  25#include "extent_map.h"
  26#include "file.h"
  27#include "inode.h"
  28#include "journal.h"
  29#include "suballoc.h"
  30#include "super.h"
  31#include "symlink.h"
  32#include "refcounttree.h"
  33#include "ocfs2_trace.h"
  34
  35#include "buffer_head_io.h"
  36#include "dir.h"
  37#include "namei.h"
  38#include "sysfile.h"
  39
  40static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  41                                   struct buffer_head *bh_result, int create)
  42{
  43        int err = -EIO;
  44        int status;
  45        struct ocfs2_dinode *fe = NULL;
  46        struct buffer_head *bh = NULL;
  47        struct buffer_head *buffer_cache_bh = NULL;
  48        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  49        void *kaddr;
  50
  51        trace_ocfs2_symlink_get_block(
  52                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
  53                        (unsigned long long)iblock, bh_result, create);
  54
  55        BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  56
  57        if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  58                mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  59                     (unsigned long long)iblock);
  60                goto bail;
  61        }
  62
  63        status = ocfs2_read_inode_block(inode, &bh);
  64        if (status < 0) {
  65                mlog_errno(status);
  66                goto bail;
  67        }
  68        fe = (struct ocfs2_dinode *) bh->b_data;
  69
  70        if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  71                                                    le32_to_cpu(fe->i_clusters))) {
  72                err = -ENOMEM;
  73                mlog(ML_ERROR, "block offset is outside the allocated size: "
  74                     "%llu\n", (unsigned long long)iblock);
  75                goto bail;
  76        }
  77
  78        /* We don't use the page cache to create symlink data, so if
  79         * need be, copy it over from the buffer cache. */
  80        if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  81                u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  82                            iblock;
  83                buffer_cache_bh = sb_getblk(osb->sb, blkno);
  84                if (!buffer_cache_bh) {
  85                        err = -ENOMEM;
  86                        mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  87                        goto bail;
  88                }
  89
  90                /* we haven't locked out transactions, so a commit
  91                 * could've happened. Since we've got a reference on
  92                 * the bh, even if it commits while we're doing the
  93                 * copy, the data is still good. */
  94                if (buffer_jbd(buffer_cache_bh)
  95                    && ocfs2_inode_is_new(inode)) {
  96                        kaddr = kmap_atomic(bh_result->b_page);
  97                        if (!kaddr) {
  98                                mlog(ML_ERROR, "couldn't kmap!\n");
  99                                goto bail;
 100                        }
 101                        memcpy(kaddr + (bh_result->b_size * iblock),
 102                               buffer_cache_bh->b_data,
 103                               bh_result->b_size);
 104                        kunmap_atomic(kaddr);
 105                        set_buffer_uptodate(bh_result);
 106                }
 107                brelse(buffer_cache_bh);
 108        }
 109
 110        map_bh(bh_result, inode->i_sb,
 111               le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 112
 113        err = 0;
 114
 115bail:
 116        brelse(bh);
 117
 118        return err;
 119}
 120
 121static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
 122                    struct buffer_head *bh_result, int create)
 123{
 124        int ret = 0;
 125        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 126
 127        down_read(&oi->ip_alloc_sem);
 128        ret = ocfs2_get_block(inode, iblock, bh_result, create);
 129        up_read(&oi->ip_alloc_sem);
 130
 131        return ret;
 132}
 133
 134int ocfs2_get_block(struct inode *inode, sector_t iblock,
 135                    struct buffer_head *bh_result, int create)
 136{
 137        int err = 0;
 138        unsigned int ext_flags;
 139        u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 140        u64 p_blkno, count, past_eof;
 141        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 142
 143        trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 144                              (unsigned long long)iblock, bh_result, create);
 145
 146        if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 147                mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 148                     inode, inode->i_ino);
 149
 150        if (S_ISLNK(inode->i_mode)) {
 151                /* this always does I/O for some reason. */
 152                err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 153                goto bail;
 154        }
 155
 156        err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 157                                          &ext_flags);
 158        if (err) {
 159                mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 160                     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 161                     (unsigned long long)p_blkno);
 162                goto bail;
 163        }
 164
 165        if (max_blocks < count)
 166                count = max_blocks;
 167
 168        /*
 169         * ocfs2 never allocates in this function - the only time we
 170         * need to use BH_New is when we're extending i_size on a file
 171         * system which doesn't support holes, in which case BH_New
 172         * allows __block_write_begin() to zero.
 173         *
 174         * If we see this on a sparse file system, then a truncate has
 175         * raced us and removed the cluster. In this case, we clear
 176         * the buffers dirty and uptodate bits and let the buffer code
 177         * ignore it as a hole.
 178         */
 179        if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 180                clear_buffer_dirty(bh_result);
 181                clear_buffer_uptodate(bh_result);
 182                goto bail;
 183        }
 184
 185        /* Treat the unwritten extent as a hole for zeroing purposes. */
 186        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 187                map_bh(bh_result, inode->i_sb, p_blkno);
 188
 189        bh_result->b_size = count << inode->i_blkbits;
 190
 191        if (!ocfs2_sparse_alloc(osb)) {
 192                if (p_blkno == 0) {
 193                        err = -EIO;
 194                        mlog(ML_ERROR,
 195                             "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 196                             (unsigned long long)iblock,
 197                             (unsigned long long)p_blkno,
 198                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
 199                        mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 200                        dump_stack();
 201                        goto bail;
 202                }
 203        }
 204
 205        past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 206
 207        trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 208                                  (unsigned long long)past_eof);
 209        if (create && (iblock >= past_eof))
 210                set_buffer_new(bh_result);
 211
 212bail:
 213        if (err < 0)
 214                err = -EIO;
 215
 216        return err;
 217}
 218
 219int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 220                           struct buffer_head *di_bh)
 221{
 222        void *kaddr;
 223        loff_t size;
 224        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 225
 226        if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 227                ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
 228                            (unsigned long long)OCFS2_I(inode)->ip_blkno);
 229                return -EROFS;
 230        }
 231
 232        size = i_size_read(inode);
 233
 234        if (size > PAGE_SIZE ||
 235            size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 236                ocfs2_error(inode->i_sb,
 237                            "Inode %llu has with inline data has bad size: %Lu\n",
 238                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
 239                            (unsigned long long)size);
 240                return -EROFS;
 241        }
 242
 243        kaddr = kmap_atomic(page);
 244        if (size)
 245                memcpy(kaddr, di->id2.i_data.id_data, size);
 246        /* Clear the remaining part of the page */
 247        memset(kaddr + size, 0, PAGE_SIZE - size);
 248        flush_dcache_page(page);
 249        kunmap_atomic(kaddr);
 250
 251        SetPageUptodate(page);
 252
 253        return 0;
 254}
 255
 256static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 257{
 258        int ret;
 259        struct buffer_head *di_bh = NULL;
 260
 261        BUG_ON(!PageLocked(page));
 262        BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 263
 264        ret = ocfs2_read_inode_block(inode, &di_bh);
 265        if (ret) {
 266                mlog_errno(ret);
 267                goto out;
 268        }
 269
 270        ret = ocfs2_read_inline_data(inode, page, di_bh);
 271out:
 272        unlock_page(page);
 273
 274        brelse(di_bh);
 275        return ret;
 276}
 277
 278static int ocfs2_readpage(struct file *file, struct page *page)
 279{
 280        struct inode *inode = page->mapping->host;
 281        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 282        loff_t start = (loff_t)page->index << PAGE_SHIFT;
 283        int ret, unlock = 1;
 284
 285        trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 286                             (page ? page->index : 0));
 287
 288        ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 289        if (ret != 0) {
 290                if (ret == AOP_TRUNCATED_PAGE)
 291                        unlock = 0;
 292                mlog_errno(ret);
 293                goto out;
 294        }
 295
 296        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 297                /*
 298                 * Unlock the page and cycle ip_alloc_sem so that we don't
 299                 * busyloop waiting for ip_alloc_sem to unlock
 300                 */
 301                ret = AOP_TRUNCATED_PAGE;
 302                unlock_page(page);
 303                unlock = 0;
 304                down_read(&oi->ip_alloc_sem);
 305                up_read(&oi->ip_alloc_sem);
 306                goto out_inode_unlock;
 307        }
 308
 309        /*
 310         * i_size might have just been updated as we grabed the meta lock.  We
 311         * might now be discovering a truncate that hit on another node.
 312         * block_read_full_page->get_block freaks out if it is asked to read
 313         * beyond the end of a file, so we check here.  Callers
 314         * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 315         * and notice that the page they just read isn't needed.
 316         *
 317         * XXX sys_readahead() seems to get that wrong?
 318         */
 319        if (start >= i_size_read(inode)) {
 320                zero_user(page, 0, PAGE_SIZE);
 321                SetPageUptodate(page);
 322                ret = 0;
 323                goto out_alloc;
 324        }
 325
 326        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 327                ret = ocfs2_readpage_inline(inode, page);
 328        else
 329                ret = block_read_full_page(page, ocfs2_get_block);
 330        unlock = 0;
 331
 332out_alloc:
 333        up_read(&oi->ip_alloc_sem);
 334out_inode_unlock:
 335        ocfs2_inode_unlock(inode, 0);
 336out:
 337        if (unlock)
 338                unlock_page(page);
 339        return ret;
 340}
 341
 342/*
 343 * This is used only for read-ahead. Failures or difficult to handle
 344 * situations are safe to ignore.
 345 *
 346 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 347 * are quite large (243 extents on 4k blocks), so most inodes don't
 348 * grow out to a tree. If need be, detecting boundary extents could
 349 * trivially be added in a future version of ocfs2_get_block().
 350 */
 351static void ocfs2_readahead(struct readahead_control *rac)
 352{
 353        int ret;
 354        struct inode *inode = rac->mapping->host;
 355        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 356
 357        /*
 358         * Use the nonblocking flag for the dlm code to avoid page
 359         * lock inversion, but don't bother with retrying.
 360         */
 361        ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 362        if (ret)
 363                return;
 364
 365        if (down_read_trylock(&oi->ip_alloc_sem) == 0)
 366                goto out_unlock;
 367
 368        /*
 369         * Don't bother with inline-data. There isn't anything
 370         * to read-ahead in that case anyway...
 371         */
 372        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 373                goto out_up;
 374
 375        /*
 376         * Check whether a remote node truncated this file - we just
 377         * drop out in that case as it's not worth handling here.
 378         */
 379        if (readahead_pos(rac) >= i_size_read(inode))
 380                goto out_up;
 381
 382        mpage_readahead(rac, ocfs2_get_block);
 383
 384out_up:
 385        up_read(&oi->ip_alloc_sem);
 386out_unlock:
 387        ocfs2_inode_unlock(inode, 0);
 388}
 389
 390/* Note: Because we don't support holes, our allocation has
 391 * already happened (allocation writes zeros to the file data)
 392 * so we don't have to worry about ordered writes in
 393 * ocfs2_writepage.
 394 *
 395 * ->writepage is called during the process of invalidating the page cache
 396 * during blocked lock processing.  It can't block on any cluster locks
 397 * to during block mapping.  It's relying on the fact that the block
 398 * mapping can't have disappeared under the dirty pages that it is
 399 * being asked to write back.
 400 */
 401static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 402{
 403        trace_ocfs2_writepage(
 404                (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 405                page->index);
 406
 407        return block_write_full_page(page, ocfs2_get_block, wbc);
 408}
 409
 410/* Taken from ext3. We don't necessarily need the full blown
 411 * functionality yet, but IMHO it's better to cut and paste the whole
 412 * thing so we can avoid introducing our own bugs (and easily pick up
 413 * their fixes when they happen) --Mark */
 414int walk_page_buffers(  handle_t *handle,
 415                        struct buffer_head *head,
 416                        unsigned from,
 417                        unsigned to,
 418                        int *partial,
 419                        int (*fn)(      handle_t *handle,
 420                                        struct buffer_head *bh))
 421{
 422        struct buffer_head *bh;
 423        unsigned block_start, block_end;
 424        unsigned blocksize = head->b_size;
 425        int err, ret = 0;
 426        struct buffer_head *next;
 427
 428        for (   bh = head, block_start = 0;
 429                ret == 0 && (bh != head || !block_start);
 430                block_start = block_end, bh = next)
 431        {
 432                next = bh->b_this_page;
 433                block_end = block_start + blocksize;
 434                if (block_end <= from || block_start >= to) {
 435                        if (partial && !buffer_uptodate(bh))
 436                                *partial = 1;
 437                        continue;
 438                }
 439                err = (*fn)(handle, bh);
 440                if (!ret)
 441                        ret = err;
 442        }
 443        return ret;
 444}
 445
 446static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 447{
 448        sector_t status;
 449        u64 p_blkno = 0;
 450        int err = 0;
 451        struct inode *inode = mapping->host;
 452
 453        trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 454                         (unsigned long long)block);
 455
 456        /*
 457         * The swap code (ab-)uses ->bmap to get a block mapping and then
 458         * bypasseѕ the file system for actual I/O.  We really can't allow
 459         * that on refcounted inodes, so we have to skip out here.  And yes,
 460         * 0 is the magic code for a bmap error..
 461         */
 462        if (ocfs2_is_refcount_inode(inode))
 463                return 0;
 464
 465        /* We don't need to lock journal system files, since they aren't
 466         * accessed concurrently from multiple nodes.
 467         */
 468        if (!INODE_JOURNAL(inode)) {
 469                err = ocfs2_inode_lock(inode, NULL, 0);
 470                if (err) {
 471                        if (err != -ENOENT)
 472                                mlog_errno(err);
 473                        goto bail;
 474                }
 475                down_read(&OCFS2_I(inode)->ip_alloc_sem);
 476        }
 477
 478        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 479                err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 480                                                  NULL);
 481
 482        if (!INODE_JOURNAL(inode)) {
 483                up_read(&OCFS2_I(inode)->ip_alloc_sem);
 484                ocfs2_inode_unlock(inode, 0);
 485        }
 486
 487        if (err) {
 488                mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 489                     (unsigned long long)block);
 490                mlog_errno(err);
 491                goto bail;
 492        }
 493
 494bail:
 495        status = err ? 0 : p_blkno;
 496
 497        return status;
 498}
 499
 500static int ocfs2_releasepage(struct page *page, gfp_t wait)
 501{
 502        if (!page_has_buffers(page))
 503                return 0;
 504        return try_to_free_buffers(page);
 505}
 506
 507static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 508                                            u32 cpos,
 509                                            unsigned int *start,
 510                                            unsigned int *end)
 511{
 512        unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
 513
 514        if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
 515                unsigned int cpp;
 516
 517                cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
 518
 519                cluster_start = cpos % cpp;
 520                cluster_start = cluster_start << osb->s_clustersize_bits;
 521
 522                cluster_end = cluster_start + osb->s_clustersize;
 523        }
 524
 525        BUG_ON(cluster_start > PAGE_SIZE);
 526        BUG_ON(cluster_end > PAGE_SIZE);
 527
 528        if (start)
 529                *start = cluster_start;
 530        if (end)
 531                *end = cluster_end;
 532}
 533
 534/*
 535 * 'from' and 'to' are the region in the page to avoid zeroing.
 536 *
 537 * If pagesize > clustersize, this function will avoid zeroing outside
 538 * of the cluster boundary.
 539 *
 540 * from == to == 0 is code for "zero the entire cluster region"
 541 */
 542static void ocfs2_clear_page_regions(struct page *page,
 543                                     struct ocfs2_super *osb, u32 cpos,
 544                                     unsigned from, unsigned to)
 545{
 546        void *kaddr;
 547        unsigned int cluster_start, cluster_end;
 548
 549        ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 550
 551        kaddr = kmap_atomic(page);
 552
 553        if (from || to) {
 554                if (from > cluster_start)
 555                        memset(kaddr + cluster_start, 0, from - cluster_start);
 556                if (to < cluster_end)
 557                        memset(kaddr + to, 0, cluster_end - to);
 558        } else {
 559                memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 560        }
 561
 562        kunmap_atomic(kaddr);
 563}
 564
 565/*
 566 * Nonsparse file systems fully allocate before we get to the write
 567 * code. This prevents ocfs2_write() from tagging the write as an
 568 * allocating one, which means ocfs2_map_page_blocks() might try to
 569 * read-in the blocks at the tail of our file. Avoid reading them by
 570 * testing i_size against each block offset.
 571 */
 572static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 573                                 unsigned int block_start)
 574{
 575        u64 offset = page_offset(page) + block_start;
 576
 577        if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 578                return 1;
 579
 580        if (i_size_read(inode) > offset)
 581                return 1;
 582
 583        return 0;
 584}
 585
 586/*
 587 * Some of this taken from __block_write_begin(). We already have our
 588 * mapping by now though, and the entire write will be allocating or
 589 * it won't, so not much need to use BH_New.
 590 *
 591 * This will also skip zeroing, which is handled externally.
 592 */
 593int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 594                          struct inode *inode, unsigned int from,
 595                          unsigned int to, int new)
 596{
 597        int ret = 0;
 598        struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 599        unsigned int block_end, block_start;
 600        unsigned int bsize = i_blocksize(inode);
 601
 602        if (!page_has_buffers(page))
 603                create_empty_buffers(page, bsize, 0);
 604
 605        head = page_buffers(page);
 606        for (bh = head, block_start = 0; bh != head || !block_start;
 607             bh = bh->b_this_page, block_start += bsize) {
 608                block_end = block_start + bsize;
 609
 610                clear_buffer_new(bh);
 611
 612                /*
 613                 * Ignore blocks outside of our i/o range -
 614                 * they may belong to unallocated clusters.
 615                 */
 616                if (block_start >= to || block_end <= from) {
 617                        if (PageUptodate(page))
 618                                set_buffer_uptodate(bh);
 619                        continue;
 620                }
 621
 622                /*
 623                 * For an allocating write with cluster size >= page
 624                 * size, we always write the entire page.
 625                 */
 626                if (new)
 627                        set_buffer_new(bh);
 628
 629                if (!buffer_mapped(bh)) {
 630                        map_bh(bh, inode->i_sb, *p_blkno);
 631                        clean_bdev_bh_alias(bh);
 632                }
 633
 634                if (PageUptodate(page)) {
 635                        set_buffer_uptodate(bh);
 636                } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 637                           !buffer_new(bh) &&
 638                           ocfs2_should_read_blk(inode, page, block_start) &&
 639                           (block_start < from || block_end > to)) {
 640                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
 641                        *wait_bh++=bh;
 642                }
 643
 644                *p_blkno = *p_blkno + 1;
 645        }
 646
 647        /*
 648         * If we issued read requests - let them complete.
 649         */
 650        while(wait_bh > wait) {
 651                wait_on_buffer(*--wait_bh);
 652                if (!buffer_uptodate(*wait_bh))
 653                        ret = -EIO;
 654        }
 655
 656        if (ret == 0 || !new)
 657                return ret;
 658
 659        /*
 660         * If we get -EIO above, zero out any newly allocated blocks
 661         * to avoid exposing stale data.
 662         */
 663        bh = head;
 664        block_start = 0;
 665        do {
 666                block_end = block_start + bsize;
 667                if (block_end <= from)
 668                        goto next_bh;
 669                if (block_start >= to)
 670                        break;
 671
 672                zero_user(page, block_start, bh->b_size);
 673                set_buffer_uptodate(bh);
 674                mark_buffer_dirty(bh);
 675
 676next_bh:
 677                block_start = block_end;
 678                bh = bh->b_this_page;
 679        } while (bh != head);
 680
 681        return ret;
 682}
 683
 684#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 685#define OCFS2_MAX_CTXT_PAGES    1
 686#else
 687#define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
 688#endif
 689
 690#define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 691
 692struct ocfs2_unwritten_extent {
 693        struct list_head        ue_node;
 694        struct list_head        ue_ip_node;
 695        u32                     ue_cpos;
 696        u32                     ue_phys;
 697};
 698
 699/*
 700 * Describe the state of a single cluster to be written to.
 701 */
 702struct ocfs2_write_cluster_desc {
 703        u32             c_cpos;
 704        u32             c_phys;
 705        /*
 706         * Give this a unique field because c_phys eventually gets
 707         * filled.
 708         */
 709        unsigned        c_new;
 710        unsigned        c_clear_unwritten;
 711        unsigned        c_needs_zero;
 712};
 713
 714struct ocfs2_write_ctxt {
 715        /* Logical cluster position / len of write */
 716        u32                             w_cpos;
 717        u32                             w_clen;
 718
 719        /* First cluster allocated in a nonsparse extend */
 720        u32                             w_first_new_cpos;
 721
 722        /* Type of caller. Must be one of buffer, mmap, direct.  */
 723        ocfs2_write_type_t              w_type;
 724
 725        struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 726
 727        /*
 728         * This is true if page_size > cluster_size.
 729         *
 730         * It triggers a set of special cases during write which might
 731         * have to deal with allocating writes to partial pages.
 732         */
 733        unsigned int                    w_large_pages;
 734
 735        /*
 736         * Pages involved in this write.
 737         *
 738         * w_target_page is the page being written to by the user.
 739         *
 740         * w_pages is an array of pages which always contains
 741         * w_target_page, and in the case of an allocating write with
 742         * page_size < cluster size, it will contain zero'd and mapped
 743         * pages adjacent to w_target_page which need to be written
 744         * out in so that future reads from that region will get
 745         * zero's.
 746         */
 747        unsigned int                    w_num_pages;
 748        struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
 749        struct page                     *w_target_page;
 750
 751        /*
 752         * w_target_locked is used for page_mkwrite path indicating no unlocking
 753         * against w_target_page in ocfs2_write_end_nolock.
 754         */
 755        unsigned int                    w_target_locked:1;
 756
 757        /*
 758         * ocfs2_write_end() uses this to know what the real range to
 759         * write in the target should be.
 760         */
 761        unsigned int                    w_target_from;
 762        unsigned int                    w_target_to;
 763
 764        /*
 765         * We could use journal_current_handle() but this is cleaner,
 766         * IMHO -Mark
 767         */
 768        handle_t                        *w_handle;
 769
 770        struct buffer_head              *w_di_bh;
 771
 772        struct ocfs2_cached_dealloc_ctxt w_dealloc;
 773
 774        struct list_head                w_unwritten_list;
 775        unsigned int                    w_unwritten_count;
 776};
 777
 778void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 779{
 780        int i;
 781
 782        for(i = 0; i < num_pages; i++) {
 783                if (pages[i]) {
 784                        unlock_page(pages[i]);
 785                        mark_page_accessed(pages[i]);
 786                        put_page(pages[i]);
 787                }
 788        }
 789}
 790
 791static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
 792{
 793        int i;
 794
 795        /*
 796         * w_target_locked is only set to true in the page_mkwrite() case.
 797         * The intent is to allow us to lock the target page from write_begin()
 798         * to write_end(). The caller must hold a ref on w_target_page.
 799         */
 800        if (wc->w_target_locked) {
 801                BUG_ON(!wc->w_target_page);
 802                for (i = 0; i < wc->w_num_pages; i++) {
 803                        if (wc->w_target_page == wc->w_pages[i]) {
 804                                wc->w_pages[i] = NULL;
 805                                break;
 806                        }
 807                }
 808                mark_page_accessed(wc->w_target_page);
 809                put_page(wc->w_target_page);
 810        }
 811        ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 812}
 813
 814static void ocfs2_free_unwritten_list(struct inode *inode,
 815                                 struct list_head *head)
 816{
 817        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 818        struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
 819
 820        list_for_each_entry_safe(ue, tmp, head, ue_node) {
 821                list_del(&ue->ue_node);
 822                spin_lock(&oi->ip_lock);
 823                list_del(&ue->ue_ip_node);
 824                spin_unlock(&oi->ip_lock);
 825                kfree(ue);
 826        }
 827}
 828
 829static void ocfs2_free_write_ctxt(struct inode *inode,
 830                                  struct ocfs2_write_ctxt *wc)
 831{
 832        ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
 833        ocfs2_unlock_pages(wc);
 834        brelse(wc->w_di_bh);
 835        kfree(wc);
 836}
 837
 838static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 839                                  struct ocfs2_super *osb, loff_t pos,
 840                                  unsigned len, ocfs2_write_type_t type,
 841                                  struct buffer_head *di_bh)
 842{
 843        u32 cend;
 844        struct ocfs2_write_ctxt *wc;
 845
 846        wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 847        if (!wc)
 848                return -ENOMEM;
 849
 850        wc->w_cpos = pos >> osb->s_clustersize_bits;
 851        wc->w_first_new_cpos = UINT_MAX;
 852        cend = (pos + len - 1) >> osb->s_clustersize_bits;
 853        wc->w_clen = cend - wc->w_cpos + 1;
 854        get_bh(di_bh);
 855        wc->w_di_bh = di_bh;
 856        wc->w_type = type;
 857
 858        if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
 859                wc->w_large_pages = 1;
 860        else
 861                wc->w_large_pages = 0;
 862
 863        ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 864        INIT_LIST_HEAD(&wc->w_unwritten_list);
 865
 866        *wcp = wc;
 867
 868        return 0;
 869}
 870
 871/*
 872 * If a page has any new buffers, zero them out here, and mark them uptodate
 873 * and dirty so they'll be written out (in order to prevent uninitialised
 874 * block data from leaking). And clear the new bit.
 875 */
 876static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 877{
 878        unsigned int block_start, block_end;
 879        struct buffer_head *head, *bh;
 880
 881        BUG_ON(!PageLocked(page));
 882        if (!page_has_buffers(page))
 883                return;
 884
 885        bh = head = page_buffers(page);
 886        block_start = 0;
 887        do {
 888                block_end = block_start + bh->b_size;
 889
 890                if (buffer_new(bh)) {
 891                        if (block_end > from && block_start < to) {
 892                                if (!PageUptodate(page)) {
 893                                        unsigned start, end;
 894
 895                                        start = max(from, block_start);
 896                                        end = min(to, block_end);
 897
 898                                        zero_user_segment(page, start, end);
 899                                        set_buffer_uptodate(bh);
 900                                }
 901
 902                                clear_buffer_new(bh);
 903                                mark_buffer_dirty(bh);
 904                        }
 905                }
 906
 907                block_start = block_end;
 908                bh = bh->b_this_page;
 909        } while (bh != head);
 910}
 911
 912/*
 913 * Only called when we have a failure during allocating write to write
 914 * zero's to the newly allocated region.
 915 */
 916static void ocfs2_write_failure(struct inode *inode,
 917                                struct ocfs2_write_ctxt *wc,
 918                                loff_t user_pos, unsigned user_len)
 919{
 920        int i;
 921        unsigned from = user_pos & (PAGE_SIZE - 1),
 922                to = user_pos + user_len;
 923        struct page *tmppage;
 924
 925        if (wc->w_target_page)
 926                ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 927
 928        for(i = 0; i < wc->w_num_pages; i++) {
 929                tmppage = wc->w_pages[i];
 930
 931                if (tmppage && page_has_buffers(tmppage)) {
 932                        if (ocfs2_should_order_data(inode))
 933                                ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
 934                                                           user_pos, user_len);
 935
 936                        block_commit_write(tmppage, from, to);
 937                }
 938        }
 939}
 940
 941static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
 942                                        struct ocfs2_write_ctxt *wc,
 943                                        struct page *page, u32 cpos,
 944                                        loff_t user_pos, unsigned user_len,
 945                                        int new)
 946{
 947        int ret;
 948        unsigned int map_from = 0, map_to = 0;
 949        unsigned int cluster_start, cluster_end;
 950        unsigned int user_data_from = 0, user_data_to = 0;
 951
 952        ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
 953                                        &cluster_start, &cluster_end);
 954
 955        /* treat the write as new if the a hole/lseek spanned across
 956         * the page boundary.
 957         */
 958        new = new | ((i_size_read(inode) <= page_offset(page)) &&
 959                        (page_offset(page) <= user_pos));
 960
 961        if (page == wc->w_target_page) {
 962                map_from = user_pos & (PAGE_SIZE - 1);
 963                map_to = map_from + user_len;
 964
 965                if (new)
 966                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 967                                                    cluster_start, cluster_end,
 968                                                    new);
 969                else
 970                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 971                                                    map_from, map_to, new);
 972                if (ret) {
 973                        mlog_errno(ret);
 974                        goto out;
 975                }
 976
 977                user_data_from = map_from;
 978                user_data_to = map_to;
 979                if (new) {
 980                        map_from = cluster_start;
 981                        map_to = cluster_end;
 982                }
 983        } else {
 984                /*
 985                 * If we haven't allocated the new page yet, we
 986                 * shouldn't be writing it out without copying user
 987                 * data. This is likely a math error from the caller.
 988                 */
 989                BUG_ON(!new);
 990
 991                map_from = cluster_start;
 992                map_to = cluster_end;
 993
 994                ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 995                                            cluster_start, cluster_end, new);
 996                if (ret) {
 997                        mlog_errno(ret);
 998                        goto out;
 999                }
1000        }
1001
1002        /*
1003         * Parts of newly allocated pages need to be zero'd.
1004         *
1005         * Above, we have also rewritten 'to' and 'from' - as far as
1006         * the rest of the function is concerned, the entire cluster
1007         * range inside of a page needs to be written.
1008         *
1009         * We can skip this if the page is up to date - it's already
1010         * been zero'd from being read in as a hole.
1011         */
1012        if (new && !PageUptodate(page))
1013                ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1014                                         cpos, user_data_from, user_data_to);
1015
1016        flush_dcache_page(page);
1017
1018out:
1019        return ret;
1020}
1021
1022/*
1023 * This function will only grab one clusters worth of pages.
1024 */
1025static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1026                                      struct ocfs2_write_ctxt *wc,
1027                                      u32 cpos, loff_t user_pos,
1028                                      unsigned user_len, int new,
1029                                      struct page *mmap_page)
1030{
1031        int ret = 0, i;
1032        unsigned long start, target_index, end_index, index;
1033        struct inode *inode = mapping->host;
1034        loff_t last_byte;
1035
1036        target_index = user_pos >> PAGE_SHIFT;
1037
1038        /*
1039         * Figure out how many pages we'll be manipulating here. For
1040         * non allocating write, we just change the one
1041         * page. Otherwise, we'll need a whole clusters worth.  If we're
1042         * writing past i_size, we only need enough pages to cover the
1043         * last page of the write.
1044         */
1045        if (new) {
1046                wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1047                start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1048                /*
1049                 * We need the index *past* the last page we could possibly
1050                 * touch.  This is the page past the end of the write or
1051                 * i_size, whichever is greater.
1052                 */
1053                last_byte = max(user_pos + user_len, i_size_read(inode));
1054                BUG_ON(last_byte < 1);
1055                end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1056                if ((start + wc->w_num_pages) > end_index)
1057                        wc->w_num_pages = end_index - start;
1058        } else {
1059                wc->w_num_pages = 1;
1060                start = target_index;
1061        }
1062        end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1063
1064        for(i = 0; i < wc->w_num_pages; i++) {
1065                index = start + i;
1066
1067                if (index >= target_index && index <= end_index &&
1068                    wc->w_type == OCFS2_WRITE_MMAP) {
1069                        /*
1070                         * ocfs2_pagemkwrite() is a little different
1071                         * and wants us to directly use the page
1072                         * passed in.
1073                         */
1074                        lock_page(mmap_page);
1075
1076                        /* Exit and let the caller retry */
1077                        if (mmap_page->mapping != mapping) {
1078                                WARN_ON(mmap_page->mapping);
1079                                unlock_page(mmap_page);
1080                                ret = -EAGAIN;
1081                                goto out;
1082                        }
1083
1084                        get_page(mmap_page);
1085                        wc->w_pages[i] = mmap_page;
1086                        wc->w_target_locked = true;
1087                } else if (index >= target_index && index <= end_index &&
1088                           wc->w_type == OCFS2_WRITE_DIRECT) {
1089                        /* Direct write has no mapping page. */
1090                        wc->w_pages[i] = NULL;
1091                        continue;
1092                } else {
1093                        wc->w_pages[i] = find_or_create_page(mapping, index,
1094                                                             GFP_NOFS);
1095                        if (!wc->w_pages[i]) {
1096                                ret = -ENOMEM;
1097                                mlog_errno(ret);
1098                                goto out;
1099                        }
1100                }
1101                wait_for_stable_page(wc->w_pages[i]);
1102
1103                if (index == target_index)
1104                        wc->w_target_page = wc->w_pages[i];
1105        }
1106out:
1107        if (ret)
1108                wc->w_target_locked = false;
1109        return ret;
1110}
1111
1112/*
1113 * Prepare a single cluster for write one cluster into the file.
1114 */
1115static int ocfs2_write_cluster(struct address_space *mapping,
1116                               u32 *phys, unsigned int new,
1117                               unsigned int clear_unwritten,
1118                               unsigned int should_zero,
1119                               struct ocfs2_alloc_context *data_ac,
1120                               struct ocfs2_alloc_context *meta_ac,
1121                               struct ocfs2_write_ctxt *wc, u32 cpos,
1122                               loff_t user_pos, unsigned user_len)
1123{
1124        int ret, i;
1125        u64 p_blkno;
1126        struct inode *inode = mapping->host;
1127        struct ocfs2_extent_tree et;
1128        int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1129
1130        if (new) {
1131                u32 tmp_pos;
1132
1133                /*
1134                 * This is safe to call with the page locks - it won't take
1135                 * any additional semaphores or cluster locks.
1136                 */
1137                tmp_pos = cpos;
1138                ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1139                                           &tmp_pos, 1, !clear_unwritten,
1140                                           wc->w_di_bh, wc->w_handle,
1141                                           data_ac, meta_ac, NULL);
1142                /*
1143                 * This shouldn't happen because we must have already
1144                 * calculated the correct meta data allocation required. The
1145                 * internal tree allocation code should know how to increase
1146                 * transaction credits itself.
1147                 *
1148                 * If need be, we could handle -EAGAIN for a
1149                 * RESTART_TRANS here.
1150                 */
1151                mlog_bug_on_msg(ret == -EAGAIN,
1152                                "Inode %llu: EAGAIN return during allocation.\n",
1153                                (unsigned long long)OCFS2_I(inode)->ip_blkno);
1154                if (ret < 0) {
1155                        mlog_errno(ret);
1156                        goto out;
1157                }
1158        } else if (clear_unwritten) {
1159                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1160                                              wc->w_di_bh);
1161                ret = ocfs2_mark_extent_written(inode, &et,
1162                                                wc->w_handle, cpos, 1, *phys,
1163                                                meta_ac, &wc->w_dealloc);
1164                if (ret < 0) {
1165                        mlog_errno(ret);
1166                        goto out;
1167                }
1168        }
1169
1170        /*
1171         * The only reason this should fail is due to an inability to
1172         * find the extent added.
1173         */
1174        ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1175        if (ret < 0) {
1176                mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1177                            "at logical cluster %u",
1178                            (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1179                goto out;
1180        }
1181
1182        BUG_ON(*phys == 0);
1183
1184        p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1185        if (!should_zero)
1186                p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1187
1188        for(i = 0; i < wc->w_num_pages; i++) {
1189                int tmpret;
1190
1191                /* This is the direct io target page. */
1192                if (wc->w_pages[i] == NULL) {
1193                        p_blkno++;
1194                        continue;
1195                }
1196
1197                tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1198                                                      wc->w_pages[i], cpos,
1199                                                      user_pos, user_len,
1200                                                      should_zero);
1201                if (tmpret) {
1202                        mlog_errno(tmpret);
1203                        if (ret == 0)
1204                                ret = tmpret;
1205                }
1206        }
1207
1208        /*
1209         * We only have cleanup to do in case of allocating write.
1210         */
1211        if (ret && new)
1212                ocfs2_write_failure(inode, wc, user_pos, user_len);
1213
1214out:
1215
1216        return ret;
1217}
1218
1219static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1220                                       struct ocfs2_alloc_context *data_ac,
1221                                       struct ocfs2_alloc_context *meta_ac,
1222                                       struct ocfs2_write_ctxt *wc,
1223                                       loff_t pos, unsigned len)
1224{
1225        int ret, i;
1226        loff_t cluster_off;
1227        unsigned int local_len = len;
1228        struct ocfs2_write_cluster_desc *desc;
1229        struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1230
1231        for (i = 0; i < wc->w_clen; i++) {
1232                desc = &wc->w_desc[i];
1233
1234                /*
1235                 * We have to make sure that the total write passed in
1236                 * doesn't extend past a single cluster.
1237                 */
1238                local_len = len;
1239                cluster_off = pos & (osb->s_clustersize - 1);
1240                if ((cluster_off + local_len) > osb->s_clustersize)
1241                        local_len = osb->s_clustersize - cluster_off;
1242
1243                ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1244                                          desc->c_new,
1245                                          desc->c_clear_unwritten,
1246                                          desc->c_needs_zero,
1247                                          data_ac, meta_ac,
1248                                          wc, desc->c_cpos, pos, local_len);
1249                if (ret) {
1250                        mlog_errno(ret);
1251                        goto out;
1252                }
1253
1254                len -= local_len;
1255                pos += local_len;
1256        }
1257
1258        ret = 0;
1259out:
1260        return ret;
1261}
1262
1263/*
1264 * ocfs2_write_end() wants to know which parts of the target page it
1265 * should complete the write on. It's easiest to compute them ahead of
1266 * time when a more complete view of the write is available.
1267 */
1268static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1269                                        struct ocfs2_write_ctxt *wc,
1270                                        loff_t pos, unsigned len, int alloc)
1271{
1272        struct ocfs2_write_cluster_desc *desc;
1273
1274        wc->w_target_from = pos & (PAGE_SIZE - 1);
1275        wc->w_target_to = wc->w_target_from + len;
1276
1277        if (alloc == 0)
1278                return;
1279
1280        /*
1281         * Allocating write - we may have different boundaries based
1282         * on page size and cluster size.
1283         *
1284         * NOTE: We can no longer compute one value from the other as
1285         * the actual write length and user provided length may be
1286         * different.
1287         */
1288
1289        if (wc->w_large_pages) {
1290                /*
1291                 * We only care about the 1st and last cluster within
1292                 * our range and whether they should be zero'd or not. Either
1293                 * value may be extended out to the start/end of a
1294                 * newly allocated cluster.
1295                 */
1296                desc = &wc->w_desc[0];
1297                if (desc->c_needs_zero)
1298                        ocfs2_figure_cluster_boundaries(osb,
1299                                                        desc->c_cpos,
1300                                                        &wc->w_target_from,
1301                                                        NULL);
1302
1303                desc = &wc->w_desc[wc->w_clen - 1];
1304                if (desc->c_needs_zero)
1305                        ocfs2_figure_cluster_boundaries(osb,
1306                                                        desc->c_cpos,
1307                                                        NULL,
1308                                                        &wc->w_target_to);
1309        } else {
1310                wc->w_target_from = 0;
1311                wc->w_target_to = PAGE_SIZE;
1312        }
1313}
1314
1315/*
1316 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1317 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1318 * by the direct io procedure.
1319 * If this is a new extent that allocated by direct io, we should mark it in
1320 * the ip_unwritten_list.
1321 */
1322static int ocfs2_unwritten_check(struct inode *inode,
1323                                 struct ocfs2_write_ctxt *wc,
1324                                 struct ocfs2_write_cluster_desc *desc)
1325{
1326        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1327        struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1328        int ret = 0;
1329
1330        if (!desc->c_needs_zero)
1331                return 0;
1332
1333retry:
1334        spin_lock(&oi->ip_lock);
1335        /* Needs not to zero no metter buffer or direct. The one who is zero
1336         * the cluster is doing zero. And he will clear unwritten after all
1337         * cluster io finished. */
1338        list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1339                if (desc->c_cpos == ue->ue_cpos) {
1340                        BUG_ON(desc->c_new);
1341                        desc->c_needs_zero = 0;
1342                        desc->c_clear_unwritten = 0;
1343                        goto unlock;
1344                }
1345        }
1346
1347        if (wc->w_type != OCFS2_WRITE_DIRECT)
1348                goto unlock;
1349
1350        if (new == NULL) {
1351                spin_unlock(&oi->ip_lock);
1352                new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1353                             GFP_NOFS);
1354                if (new == NULL) {
1355                        ret = -ENOMEM;
1356                        goto out;
1357                }
1358                goto retry;
1359        }
1360        /* This direct write will doing zero. */
1361        new->ue_cpos = desc->c_cpos;
1362        new->ue_phys = desc->c_phys;
1363        desc->c_clear_unwritten = 0;
1364        list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1365        list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1366        wc->w_unwritten_count++;
1367        new = NULL;
1368unlock:
1369        spin_unlock(&oi->ip_lock);
1370out:
1371        kfree(new);
1372        return ret;
1373}
1374
1375/*
1376 * Populate each single-cluster write descriptor in the write context
1377 * with information about the i/o to be done.
1378 *
1379 * Returns the number of clusters that will have to be allocated, as
1380 * well as a worst case estimate of the number of extent records that
1381 * would have to be created during a write to an unwritten region.
1382 */
1383static int ocfs2_populate_write_desc(struct inode *inode,
1384                                     struct ocfs2_write_ctxt *wc,
1385                                     unsigned int *clusters_to_alloc,
1386                                     unsigned int *extents_to_split)
1387{
1388        int ret;
1389        struct ocfs2_write_cluster_desc *desc;
1390        unsigned int num_clusters = 0;
1391        unsigned int ext_flags = 0;
1392        u32 phys = 0;
1393        int i;
1394
1395        *clusters_to_alloc = 0;
1396        *extents_to_split = 0;
1397
1398        for (i = 0; i < wc->w_clen; i++) {
1399                desc = &wc->w_desc[i];
1400                desc->c_cpos = wc->w_cpos + i;
1401
1402                if (num_clusters == 0) {
1403                        /*
1404                         * Need to look up the next extent record.
1405                         */
1406                        ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1407                                                 &num_clusters, &ext_flags);
1408                        if (ret) {
1409                                mlog_errno(ret);
1410                                goto out;
1411                        }
1412
1413                        /* We should already CoW the refcountd extent. */
1414                        BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1415
1416                        /*
1417                         * Assume worst case - that we're writing in
1418                         * the middle of the extent.
1419                         *
1420                         * We can assume that the write proceeds from
1421                         * left to right, in which case the extent
1422                         * insert code is smart enough to coalesce the
1423                         * next splits into the previous records created.
1424                         */
1425                        if (ext_flags & OCFS2_EXT_UNWRITTEN)
1426                                *extents_to_split = *extents_to_split + 2;
1427                } else if (phys) {
1428                        /*
1429                         * Only increment phys if it doesn't describe
1430                         * a hole.
1431                         */
1432                        phys++;
1433                }
1434
1435                /*
1436                 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1437                 * file that got extended.  w_first_new_cpos tells us
1438                 * where the newly allocated clusters are so we can
1439                 * zero them.
1440                 */
1441                if (desc->c_cpos >= wc->w_first_new_cpos) {
1442                        BUG_ON(phys == 0);
1443                        desc->c_needs_zero = 1;
1444                }
1445
1446                desc->c_phys = phys;
1447                if (phys == 0) {
1448                        desc->c_new = 1;
1449                        desc->c_needs_zero = 1;
1450                        desc->c_clear_unwritten = 1;
1451                        *clusters_to_alloc = *clusters_to_alloc + 1;
1452                }
1453
1454                if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1455                        desc->c_clear_unwritten = 1;
1456                        desc->c_needs_zero = 1;
1457                }
1458
1459                ret = ocfs2_unwritten_check(inode, wc, desc);
1460                if (ret) {
1461                        mlog_errno(ret);
1462                        goto out;
1463                }
1464
1465                num_clusters--;
1466        }
1467
1468        ret = 0;
1469out:
1470        return ret;
1471}
1472
1473static int ocfs2_write_begin_inline(struct address_space *mapping,
1474                                    struct inode *inode,
1475                                    struct ocfs2_write_ctxt *wc)
1476{
1477        int ret;
1478        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1479        struct page *page;
1480        handle_t *handle;
1481        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1482
1483        handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1484        if (IS_ERR(handle)) {
1485                ret = PTR_ERR(handle);
1486                mlog_errno(ret);
1487                goto out;
1488        }
1489
1490        page = find_or_create_page(mapping, 0, GFP_NOFS);
1491        if (!page) {
1492                ocfs2_commit_trans(osb, handle);
1493                ret = -ENOMEM;
1494                mlog_errno(ret);
1495                goto out;
1496        }
1497        /*
1498         * If we don't set w_num_pages then this page won't get unlocked
1499         * and freed on cleanup of the write context.
1500         */
1501        wc->w_pages[0] = wc->w_target_page = page;
1502        wc->w_num_pages = 1;
1503
1504        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1505                                      OCFS2_JOURNAL_ACCESS_WRITE);
1506        if (ret) {
1507                ocfs2_commit_trans(osb, handle);
1508
1509                mlog_errno(ret);
1510                goto out;
1511        }
1512
1513        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1514                ocfs2_set_inode_data_inline(inode, di);
1515
1516        if (!PageUptodate(page)) {
1517                ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1518                if (ret) {
1519                        ocfs2_commit_trans(osb, handle);
1520
1521                        goto out;
1522                }
1523        }
1524
1525        wc->w_handle = handle;
1526out:
1527        return ret;
1528}
1529
1530int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1531{
1532        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1533
1534        if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1535                return 1;
1536        return 0;
1537}
1538
1539static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1540                                          struct inode *inode, loff_t pos,
1541                                          unsigned len, struct page *mmap_page,
1542                                          struct ocfs2_write_ctxt *wc)
1543{
1544        int ret, written = 0;
1545        loff_t end = pos + len;
1546        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1547        struct ocfs2_dinode *di = NULL;
1548
1549        trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1550                                             len, (unsigned long long)pos,
1551                                             oi->ip_dyn_features);
1552
1553        /*
1554         * Handle inodes which already have inline data 1st.
1555         */
1556        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1557                if (mmap_page == NULL &&
1558                    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1559                        goto do_inline_write;
1560
1561                /*
1562                 * The write won't fit - we have to give this inode an
1563                 * inline extent list now.
1564                 */
1565                ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1566                if (ret)
1567                        mlog_errno(ret);
1568                goto out;
1569        }
1570
1571        /*
1572         * Check whether the inode can accept inline data.
1573         */
1574        if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1575                return 0;
1576
1577        /*
1578         * Check whether the write can fit.
1579         */
1580        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1581        if (mmap_page ||
1582            end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1583                return 0;
1584
1585do_inline_write:
1586        ret = ocfs2_write_begin_inline(mapping, inode, wc);
1587        if (ret) {
1588                mlog_errno(ret);
1589                goto out;
1590        }
1591
1592        /*
1593         * This signals to the caller that the data can be written
1594         * inline.
1595         */
1596        written = 1;
1597out:
1598        return written ? written : ret;
1599}
1600
1601/*
1602 * This function only does anything for file systems which can't
1603 * handle sparse files.
1604 *
1605 * What we want to do here is fill in any hole between the current end
1606 * of allocation and the end of our write. That way the rest of the
1607 * write path can treat it as an non-allocating write, which has no
1608 * special case code for sparse/nonsparse files.
1609 */
1610static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1611                                        struct buffer_head *di_bh,
1612                                        loff_t pos, unsigned len,
1613                                        struct ocfs2_write_ctxt *wc)
1614{
1615        int ret;
1616        loff_t newsize = pos + len;
1617
1618        BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1619
1620        if (newsize <= i_size_read(inode))
1621                return 0;
1622
1623        ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1624        if (ret)
1625                mlog_errno(ret);
1626
1627        /* There is no wc if this is call from direct. */
1628        if (wc)
1629                wc->w_first_new_cpos =
1630                        ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1631
1632        return ret;
1633}
1634
1635static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1636                           loff_t pos)
1637{
1638        int ret = 0;
1639
1640        BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1641        if (pos > i_size_read(inode))
1642                ret = ocfs2_zero_extend(inode, di_bh, pos);
1643
1644        return ret;
1645}
1646
1647int ocfs2_write_begin_nolock(struct address_space *mapping,
1648                             loff_t pos, unsigned len, ocfs2_write_type_t type,
1649                             struct page **pagep, void **fsdata,
1650                             struct buffer_head *di_bh, struct page *mmap_page)
1651{
1652        int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1653        unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1654        struct ocfs2_write_ctxt *wc;
1655        struct inode *inode = mapping->host;
1656        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1657        struct ocfs2_dinode *di;
1658        struct ocfs2_alloc_context *data_ac = NULL;
1659        struct ocfs2_alloc_context *meta_ac = NULL;
1660        handle_t *handle;
1661        struct ocfs2_extent_tree et;
1662        int try_free = 1, ret1;
1663
1664try_again:
1665        ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1666        if (ret) {
1667                mlog_errno(ret);
1668                return ret;
1669        }
1670
1671        if (ocfs2_supports_inline_data(osb)) {
1672                ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1673                                                     mmap_page, wc);
1674                if (ret == 1) {
1675                        ret = 0;
1676                        goto success;
1677                }
1678                if (ret < 0) {
1679                        mlog_errno(ret);
1680                        goto out;
1681                }
1682        }
1683
1684        /* Direct io change i_size late, should not zero tail here. */
1685        if (type != OCFS2_WRITE_DIRECT) {
1686                if (ocfs2_sparse_alloc(osb))
1687                        ret = ocfs2_zero_tail(inode, di_bh, pos);
1688                else
1689                        ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1690                                                           len, wc);
1691                if (ret) {
1692                        mlog_errno(ret);
1693                        goto out;
1694                }
1695        }
1696
1697        ret = ocfs2_check_range_for_refcount(inode, pos, len);
1698        if (ret < 0) {
1699                mlog_errno(ret);
1700                goto out;
1701        } else if (ret == 1) {
1702                clusters_need = wc->w_clen;
1703                ret = ocfs2_refcount_cow(inode, di_bh,
1704                                         wc->w_cpos, wc->w_clen, UINT_MAX);
1705                if (ret) {
1706                        mlog_errno(ret);
1707                        goto out;
1708                }
1709        }
1710
1711        ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1712                                        &extents_to_split);
1713        if (ret) {
1714                mlog_errno(ret);
1715                goto out;
1716        }
1717        clusters_need += clusters_to_alloc;
1718
1719        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1720
1721        trace_ocfs2_write_begin_nolock(
1722                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
1723                        (long long)i_size_read(inode),
1724                        le32_to_cpu(di->i_clusters),
1725                        pos, len, type, mmap_page,
1726                        clusters_to_alloc, extents_to_split);
1727
1728        /*
1729         * We set w_target_from, w_target_to here so that
1730         * ocfs2_write_end() knows which range in the target page to
1731         * write out. An allocation requires that we write the entire
1732         * cluster range.
1733         */
1734        if (clusters_to_alloc || extents_to_split) {
1735                /*
1736                 * XXX: We are stretching the limits of
1737                 * ocfs2_lock_allocators(). It greatly over-estimates
1738                 * the work to be done.
1739                 */
1740                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1741                                              wc->w_di_bh);
1742                ret = ocfs2_lock_allocators(inode, &et,
1743                                            clusters_to_alloc, extents_to_split,
1744                                            &data_ac, &meta_ac);
1745                if (ret) {
1746                        mlog_errno(ret);
1747                        goto out;
1748                }
1749
1750                if (data_ac)
1751                        data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1752
1753                credits = ocfs2_calc_extend_credits(inode->i_sb,
1754                                                    &di->id2.i_list);
1755        } else if (type == OCFS2_WRITE_DIRECT)
1756                /* direct write needs not to start trans if no extents alloc. */
1757                goto success;
1758
1759        /*
1760         * We have to zero sparse allocated clusters, unwritten extent clusters,
1761         * and non-sparse clusters we just extended.  For non-sparse writes,
1762         * we know zeros will only be needed in the first and/or last cluster.
1763         */
1764        if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1765                           wc->w_desc[wc->w_clen - 1].c_needs_zero))
1766                cluster_of_pages = 1;
1767        else
1768                cluster_of_pages = 0;
1769
1770        ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1771
1772        handle = ocfs2_start_trans(osb, credits);
1773        if (IS_ERR(handle)) {
1774                ret = PTR_ERR(handle);
1775                mlog_errno(ret);
1776                goto out;
1777        }
1778
1779        wc->w_handle = handle;
1780
1781        if (clusters_to_alloc) {
1782                ret = dquot_alloc_space_nodirty(inode,
1783                        ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1784                if (ret)
1785                        goto out_commit;
1786        }
1787
1788        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1789                                      OCFS2_JOURNAL_ACCESS_WRITE);
1790        if (ret) {
1791                mlog_errno(ret);
1792                goto out_quota;
1793        }
1794
1795        /*
1796         * Fill our page array first. That way we've grabbed enough so
1797         * that we can zero and flush if we error after adding the
1798         * extent.
1799         */
1800        ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1801                                         cluster_of_pages, mmap_page);
1802        if (ret && ret != -EAGAIN) {
1803                mlog_errno(ret);
1804                goto out_quota;
1805        }
1806
1807        /*
1808         * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1809         * the target page. In this case, we exit with no error and no target
1810         * page. This will trigger the caller, page_mkwrite(), to re-try
1811         * the operation.
1812         */
1813        if (ret == -EAGAIN) {
1814                BUG_ON(wc->w_target_page);
1815                ret = 0;
1816                goto out_quota;
1817        }
1818
1819        ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1820                                          len);
1821        if (ret) {
1822                mlog_errno(ret);
1823                goto out_quota;
1824        }
1825
1826        if (data_ac)
1827                ocfs2_free_alloc_context(data_ac);
1828        if (meta_ac)
1829                ocfs2_free_alloc_context(meta_ac);
1830
1831success:
1832        if (pagep)
1833                *pagep = wc->w_target_page;
1834        *fsdata = wc;
1835        return 0;
1836out_quota:
1837        if (clusters_to_alloc)
1838                dquot_free_space(inode,
1839                          ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1840out_commit:
1841        ocfs2_commit_trans(osb, handle);
1842
1843out:
1844        /*
1845         * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1846         * even in case of error here like ENOSPC and ENOMEM. So, we need
1847         * to unlock the target page manually to prevent deadlocks when
1848         * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1849         * to VM code.
1850         */
1851        if (wc->w_target_locked)
1852                unlock_page(mmap_page);
1853
1854        ocfs2_free_write_ctxt(inode, wc);
1855
1856        if (data_ac) {
1857                ocfs2_free_alloc_context(data_ac);
1858                data_ac = NULL;
1859        }
1860        if (meta_ac) {
1861                ocfs2_free_alloc_context(meta_ac);
1862                meta_ac = NULL;
1863        }
1864
1865        if (ret == -ENOSPC && try_free) {
1866                /*
1867                 * Try to free some truncate log so that we can have enough
1868                 * clusters to allocate.
1869                 */
1870                try_free = 0;
1871
1872                ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1873                if (ret1 == 1)
1874                        goto try_again;
1875
1876                if (ret1 < 0)
1877                        mlog_errno(ret1);
1878        }
1879
1880        return ret;
1881}
1882
1883static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1884                             loff_t pos, unsigned len, unsigned flags,
1885                             struct page **pagep, void **fsdata)
1886{
1887        int ret;
1888        struct buffer_head *di_bh = NULL;
1889        struct inode *inode = mapping->host;
1890
1891        ret = ocfs2_inode_lock(inode, &di_bh, 1);
1892        if (ret) {
1893                mlog_errno(ret);
1894                return ret;
1895        }
1896
1897        /*
1898         * Take alloc sem here to prevent concurrent lookups. That way
1899         * the mapping, zeroing and tree manipulation within
1900         * ocfs2_write() will be safe against ->readpage(). This
1901         * should also serve to lock out allocation from a shared
1902         * writeable region.
1903         */
1904        down_write(&OCFS2_I(inode)->ip_alloc_sem);
1905
1906        ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1907                                       pagep, fsdata, di_bh, NULL);
1908        if (ret) {
1909                mlog_errno(ret);
1910                goto out_fail;
1911        }
1912
1913        brelse(di_bh);
1914
1915        return 0;
1916
1917out_fail:
1918        up_write(&OCFS2_I(inode)->ip_alloc_sem);
1919
1920        brelse(di_bh);
1921        ocfs2_inode_unlock(inode, 1);
1922
1923        return ret;
1924}
1925
1926static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1927                                   unsigned len, unsigned *copied,
1928                                   struct ocfs2_dinode *di,
1929                                   struct ocfs2_write_ctxt *wc)
1930{
1931        void *kaddr;
1932
1933        if (unlikely(*copied < len)) {
1934                if (!PageUptodate(wc->w_target_page)) {
1935                        *copied = 0;
1936                        return;
1937                }
1938        }
1939
1940        kaddr = kmap_atomic(wc->w_target_page);
1941        memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1942        kunmap_atomic(kaddr);
1943
1944        trace_ocfs2_write_end_inline(
1945             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1946             (unsigned long long)pos, *copied,
1947             le16_to_cpu(di->id2.i_data.id_count),
1948             le16_to_cpu(di->i_dyn_features));
1949}
1950
1951int ocfs2_write_end_nolock(struct address_space *mapping,
1952                           loff_t pos, unsigned len, unsigned copied, void *fsdata)
1953{
1954        int i, ret;
1955        unsigned from, to, start = pos & (PAGE_SIZE - 1);
1956        struct inode *inode = mapping->host;
1957        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1958        struct ocfs2_write_ctxt *wc = fsdata;
1959        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1960        handle_t *handle = wc->w_handle;
1961        struct page *tmppage;
1962
1963        BUG_ON(!list_empty(&wc->w_unwritten_list));
1964
1965        if (handle) {
1966                ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1967                                wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1968                if (ret) {
1969                        copied = ret;
1970                        mlog_errno(ret);
1971                        goto out;
1972                }
1973        }
1974
1975        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1976                ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1977                goto out_write_size;
1978        }
1979
1980        if (unlikely(copied < len) && wc->w_target_page) {
1981                if (!PageUptodate(wc->w_target_page))
1982                        copied = 0;
1983
1984                ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1985                                       start+len);
1986        }
1987        if (wc->w_target_page)
1988                flush_dcache_page(wc->w_target_page);
1989
1990        for(i = 0; i < wc->w_num_pages; i++) {
1991                tmppage = wc->w_pages[i];
1992
1993                /* This is the direct io target page. */
1994                if (tmppage == NULL)
1995                        continue;
1996
1997                if (tmppage == wc->w_target_page) {
1998                        from = wc->w_target_from;
1999                        to = wc->w_target_to;
2000
2001                        BUG_ON(from > PAGE_SIZE ||
2002                               to > PAGE_SIZE ||
2003                               to < from);
2004                } else {
2005                        /*
2006                         * Pages adjacent to the target (if any) imply
2007                         * a hole-filling write in which case we want
2008                         * to flush their entire range.
2009                         */
2010                        from = 0;
2011                        to = PAGE_SIZE;
2012                }
2013
2014                if (page_has_buffers(tmppage)) {
2015                        if (handle && ocfs2_should_order_data(inode)) {
2016                                loff_t start_byte =
2017                                        ((loff_t)tmppage->index << PAGE_SHIFT) +
2018                                        from;
2019                                loff_t length = to - from;
2020                                ocfs2_jbd2_inode_add_write(handle, inode,
2021                                                           start_byte, length);
2022                        }
2023                        block_commit_write(tmppage, from, to);
2024                }
2025        }
2026
2027out_write_size:
2028        /* Direct io do not update i_size here. */
2029        if (wc->w_type != OCFS2_WRITE_DIRECT) {
2030                pos += copied;
2031                if (pos > i_size_read(inode)) {
2032                        i_size_write(inode, pos);
2033                        mark_inode_dirty(inode);
2034                }
2035                inode->i_blocks = ocfs2_inode_sector_count(inode);
2036                di->i_size = cpu_to_le64((u64)i_size_read(inode));
2037                inode->i_mtime = inode->i_ctime = current_time(inode);
2038                di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2039                di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2040                if (handle)
2041                        ocfs2_update_inode_fsync_trans(handle, inode, 1);
2042        }
2043        if (handle)
2044                ocfs2_journal_dirty(handle, wc->w_di_bh);
2045
2046out:
2047        /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2048         * lock, or it will cause a deadlock since journal commit threads holds
2049         * this lock and will ask for the page lock when flushing the data.
2050         * put it here to preserve the unlock order.
2051         */
2052        ocfs2_unlock_pages(wc);
2053
2054        if (handle)
2055                ocfs2_commit_trans(osb, handle);
2056
2057        ocfs2_run_deallocs(osb, &wc->w_dealloc);
2058
2059        brelse(wc->w_di_bh);
2060        kfree(wc);
2061
2062        return copied;
2063}
2064
2065static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2066                           loff_t pos, unsigned len, unsigned copied,
2067                           struct page *page, void *fsdata)
2068{
2069        int ret;
2070        struct inode *inode = mapping->host;
2071
2072        ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2073
2074        up_write(&OCFS2_I(inode)->ip_alloc_sem);
2075        ocfs2_inode_unlock(inode, 1);
2076
2077        return ret;
2078}
2079
2080struct ocfs2_dio_write_ctxt {
2081        struct list_head        dw_zero_list;
2082        unsigned                dw_zero_count;
2083        int                     dw_orphaned;
2084        pid_t                   dw_writer_pid;
2085};
2086
2087static struct ocfs2_dio_write_ctxt *
2088ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2089{
2090        struct ocfs2_dio_write_ctxt *dwc = NULL;
2091
2092        if (bh->b_private)
2093                return bh->b_private;
2094
2095        dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2096        if (dwc == NULL)
2097                return NULL;
2098        INIT_LIST_HEAD(&dwc->dw_zero_list);
2099        dwc->dw_zero_count = 0;
2100        dwc->dw_orphaned = 0;
2101        dwc->dw_writer_pid = task_pid_nr(current);
2102        bh->b_private = dwc;
2103        *alloc = 1;
2104
2105        return dwc;
2106}
2107
2108static void ocfs2_dio_free_write_ctx(struct inode *inode,
2109                                     struct ocfs2_dio_write_ctxt *dwc)
2110{
2111        ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2112        kfree(dwc);
2113}
2114
2115/*
2116 * TODO: Make this into a generic get_blocks function.
2117 *
2118 * From do_direct_io in direct-io.c:
2119 *  "So what we do is to permit the ->get_blocks function to populate
2120 *   bh.b_size with the size of IO which is permitted at this offset and
2121 *   this i_blkbits."
2122 *
2123 * This function is called directly from get_more_blocks in direct-io.c.
2124 *
2125 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2126 *                                      fs_count, map_bh, dio->rw == WRITE);
2127 */
2128static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2129                               struct buffer_head *bh_result, int create)
2130{
2131        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2132        struct ocfs2_inode_info *oi = OCFS2_I(inode);
2133        struct ocfs2_write_ctxt *wc;
2134        struct ocfs2_write_cluster_desc *desc = NULL;
2135        struct ocfs2_dio_write_ctxt *dwc = NULL;
2136        struct buffer_head *di_bh = NULL;
2137        u64 p_blkno;
2138        unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2139        loff_t pos = iblock << i_blkbits;
2140        sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2141        unsigned len, total_len = bh_result->b_size;
2142        int ret = 0, first_get_block = 0;
2143
2144        len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2145        len = min(total_len, len);
2146
2147        /*
2148         * bh_result->b_size is count in get_more_blocks according to write
2149         * "pos" and "end", we need map twice to return different buffer state:
2150         * 1. area in file size, not set NEW;
2151         * 2. area out file size, set  NEW.
2152         *
2153         *                 iblock    endblk
2154         * |--------|---------|---------|---------
2155         * |<-------area in file------->|
2156         */
2157
2158        if ((iblock <= endblk) &&
2159            ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2160                len = (endblk - iblock + 1) << i_blkbits;
2161
2162        mlog(0, "get block of %lu at %llu:%u req %u\n",
2163                        inode->i_ino, pos, len, total_len);
2164
2165        /*
2166         * Because we need to change file size in ocfs2_dio_end_io_write(), or
2167         * we may need to add it to orphan dir. So can not fall to fast path
2168         * while file size will be changed.
2169         */
2170        if (pos + total_len <= i_size_read(inode)) {
2171
2172                /* This is the fast path for re-write. */
2173                ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2174                if (buffer_mapped(bh_result) &&
2175                    !buffer_new(bh_result) &&
2176                    ret == 0)
2177                        goto out;
2178
2179                /* Clear state set by ocfs2_get_block. */
2180                bh_result->b_state = 0;
2181        }
2182
2183        dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2184        if (unlikely(dwc == NULL)) {
2185                ret = -ENOMEM;
2186                mlog_errno(ret);
2187                goto out;
2188        }
2189
2190        if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2191            ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2192            !dwc->dw_orphaned) {
2193                /*
2194                 * when we are going to alloc extents beyond file size, add the
2195                 * inode to orphan dir, so we can recall those spaces when
2196                 * system crashed during write.
2197                 */
2198                ret = ocfs2_add_inode_to_orphan(osb, inode);
2199                if (ret < 0) {
2200                        mlog_errno(ret);
2201                        goto out;
2202                }
2203                dwc->dw_orphaned = 1;
2204        }
2205
2206        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2207        if (ret) {
2208                mlog_errno(ret);
2209                goto out;
2210        }
2211
2212        down_write(&oi->ip_alloc_sem);
2213
2214        if (first_get_block) {
2215                if (ocfs2_sparse_alloc(osb))
2216                        ret = ocfs2_zero_tail(inode, di_bh, pos);
2217                else
2218                        ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2219                                                           total_len, NULL);
2220                if (ret < 0) {
2221                        mlog_errno(ret);
2222                        goto unlock;
2223                }
2224        }
2225
2226        ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2227                                       OCFS2_WRITE_DIRECT, NULL,
2228                                       (void **)&wc, di_bh, NULL);
2229        if (ret) {
2230                mlog_errno(ret);
2231                goto unlock;
2232        }
2233
2234        desc = &wc->w_desc[0];
2235
2236        p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2237        BUG_ON(p_blkno == 0);
2238        p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2239
2240        map_bh(bh_result, inode->i_sb, p_blkno);
2241        bh_result->b_size = len;
2242        if (desc->c_needs_zero)
2243                set_buffer_new(bh_result);
2244
2245        if (iblock > endblk)
2246                set_buffer_new(bh_result);
2247
2248        /* May sleep in end_io. It should not happen in a irq context. So defer
2249         * it to dio work queue. */
2250        set_buffer_defer_completion(bh_result);
2251
2252        if (!list_empty(&wc->w_unwritten_list)) {
2253                struct ocfs2_unwritten_extent *ue = NULL;
2254
2255                ue = list_first_entry(&wc->w_unwritten_list,
2256                                      struct ocfs2_unwritten_extent,
2257                                      ue_node);
2258                BUG_ON(ue->ue_cpos != desc->c_cpos);
2259                /* The physical address may be 0, fill it. */
2260                ue->ue_phys = desc->c_phys;
2261
2262                list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2263                dwc->dw_zero_count += wc->w_unwritten_count;
2264        }
2265
2266        ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2267        BUG_ON(ret != len);
2268        ret = 0;
2269unlock:
2270        up_write(&oi->ip_alloc_sem);
2271        ocfs2_inode_unlock(inode, 1);
2272        brelse(di_bh);
2273out:
2274        if (ret < 0)
2275                ret = -EIO;
2276        return ret;
2277}
2278
2279static int ocfs2_dio_end_io_write(struct inode *inode,
2280                                  struct ocfs2_dio_write_ctxt *dwc,
2281                                  loff_t offset,
2282                                  ssize_t bytes)
2283{
2284        struct ocfs2_cached_dealloc_ctxt dealloc;
2285        struct ocfs2_extent_tree et;
2286        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2287        struct ocfs2_inode_info *oi = OCFS2_I(inode);
2288        struct ocfs2_unwritten_extent *ue = NULL;
2289        struct buffer_head *di_bh = NULL;
2290        struct ocfs2_dinode *di;
2291        struct ocfs2_alloc_context *data_ac = NULL;
2292        struct ocfs2_alloc_context *meta_ac = NULL;
2293        handle_t *handle = NULL;
2294        loff_t end = offset + bytes;
2295        int ret = 0, credits = 0;
2296
2297        ocfs2_init_dealloc_ctxt(&dealloc);
2298
2299        /* We do clear unwritten, delete orphan, change i_size here. If neither
2300         * of these happen, we can skip all this. */
2301        if (list_empty(&dwc->dw_zero_list) &&
2302            end <= i_size_read(inode) &&
2303            !dwc->dw_orphaned)
2304                goto out;
2305
2306        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2307        if (ret < 0) {
2308                mlog_errno(ret);
2309                goto out;
2310        }
2311
2312        down_write(&oi->ip_alloc_sem);
2313
2314        /* Delete orphan before acquire i_mutex. */
2315        if (dwc->dw_orphaned) {
2316                BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2317
2318                end = end > i_size_read(inode) ? end : 0;
2319
2320                ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2321                                !!end, end);
2322                if (ret < 0)
2323                        mlog_errno(ret);
2324        }
2325
2326        di = (struct ocfs2_dinode *)di_bh->b_data;
2327
2328        ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2329
2330        /* Attach dealloc with extent tree in case that we may reuse extents
2331         * which are already unlinked from current extent tree due to extent
2332         * rotation and merging.
2333         */
2334        et.et_dealloc = &dealloc;
2335
2336        ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2337                                    &data_ac, &meta_ac);
2338        if (ret) {
2339                mlog_errno(ret);
2340                goto unlock;
2341        }
2342
2343        credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2344
2345        handle = ocfs2_start_trans(osb, credits);
2346        if (IS_ERR(handle)) {
2347                ret = PTR_ERR(handle);
2348                mlog_errno(ret);
2349                goto unlock;
2350        }
2351        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2352                                      OCFS2_JOURNAL_ACCESS_WRITE);
2353        if (ret) {
2354                mlog_errno(ret);
2355                goto commit;
2356        }
2357
2358        list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2359                ret = ocfs2_mark_extent_written(inode, &et, handle,
2360                                                ue->ue_cpos, 1,
2361                                                ue->ue_phys,
2362                                                meta_ac, &dealloc);
2363                if (ret < 0) {
2364                        mlog_errno(ret);
2365                        break;
2366                }
2367        }
2368
2369        if (end > i_size_read(inode)) {
2370                ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2371                if (ret < 0)
2372                        mlog_errno(ret);
2373        }
2374commit:
2375        ocfs2_commit_trans(osb, handle);
2376unlock:
2377        up_write(&oi->ip_alloc_sem);
2378        ocfs2_inode_unlock(inode, 1);
2379        brelse(di_bh);
2380out:
2381        if (data_ac)
2382                ocfs2_free_alloc_context(data_ac);
2383        if (meta_ac)
2384                ocfs2_free_alloc_context(meta_ac);
2385        ocfs2_run_deallocs(osb, &dealloc);
2386        ocfs2_dio_free_write_ctx(inode, dwc);
2387
2388        return ret;
2389}
2390
2391/*
2392 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2393 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2394 * to protect io on one node from truncation on another.
2395 */
2396static int ocfs2_dio_end_io(struct kiocb *iocb,
2397                            loff_t offset,
2398                            ssize_t bytes,
2399                            void *private)
2400{
2401        struct inode *inode = file_inode(iocb->ki_filp);
2402        int level;
2403        int ret = 0;
2404
2405        /* this io's submitter should not have unlocked this before we could */
2406        BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2407
2408        if (bytes <= 0)
2409                mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2410                                 (long long)bytes);
2411        if (private) {
2412                if (bytes > 0)
2413                        ret = ocfs2_dio_end_io_write(inode, private, offset,
2414                                                     bytes);
2415                else
2416                        ocfs2_dio_free_write_ctx(inode, private);
2417        }
2418
2419        ocfs2_iocb_clear_rw_locked(iocb);
2420
2421        level = ocfs2_iocb_rw_locked_level(iocb);
2422        ocfs2_rw_unlock(inode, level);
2423        return ret;
2424}
2425
2426static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2427{
2428        struct file *file = iocb->ki_filp;
2429        struct inode *inode = file->f_mapping->host;
2430        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2431        get_block_t *get_block;
2432
2433        /*
2434         * Fallback to buffered I/O if we see an inode without
2435         * extents.
2436         */
2437        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2438                return 0;
2439
2440        /* Fallback to buffered I/O if we do not support append dio. */
2441        if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2442            !ocfs2_supports_append_dio(osb))
2443                return 0;
2444
2445        if (iov_iter_rw(iter) == READ)
2446                get_block = ocfs2_lock_get_block;
2447        else
2448                get_block = ocfs2_dio_wr_get_block;
2449
2450        return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2451                                    iter, get_block,
2452                                    ocfs2_dio_end_io, NULL, 0);
2453}
2454
2455const struct address_space_operations ocfs2_aops = {
2456        .set_page_dirty         = __set_page_dirty_buffers,
2457        .readpage               = ocfs2_readpage,
2458        .readahead              = ocfs2_readahead,
2459        .writepage              = ocfs2_writepage,
2460        .write_begin            = ocfs2_write_begin,
2461        .write_end              = ocfs2_write_end,
2462        .bmap                   = ocfs2_bmap,
2463        .direct_IO              = ocfs2_direct_IO,
2464        .invalidatepage         = block_invalidatepage,
2465        .releasepage            = ocfs2_releasepage,
2466        .migratepage            = buffer_migrate_page,
2467        .is_partially_uptodate  = block_is_partially_uptodate,
2468        .error_remove_page      = generic_error_remove_page,
2469};
2470