linux/fs/proc/task_mmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/pagewalk.h>
   3#include <linux/vmacache.h>
   4#include <linux/hugetlb.h>
   5#include <linux/huge_mm.h>
   6#include <linux/mount.h>
   7#include <linux/seq_file.h>
   8#include <linux/highmem.h>
   9#include <linux/ptrace.h>
  10#include <linux/slab.h>
  11#include <linux/pagemap.h>
  12#include <linux/mempolicy.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
  15#include <linux/sched/mm.h>
  16#include <linux/swapops.h>
  17#include <linux/mmu_notifier.h>
  18#include <linux/page_idle.h>
  19#include <linux/shmem_fs.h>
  20#include <linux/uaccess.h>
  21#include <linux/pkeys.h>
  22
  23#include <asm/elf.h>
  24#include <asm/tlb.h>
  25#include <asm/tlbflush.h>
  26#include "internal.h"
  27
  28#define SEQ_PUT_DEC(str, val) \
  29                seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
  30void task_mem(struct seq_file *m, struct mm_struct *mm)
  31{
  32        unsigned long text, lib, swap, anon, file, shmem;
  33        unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  34
  35        anon = get_mm_counter(mm, MM_ANONPAGES);
  36        file = get_mm_counter(mm, MM_FILEPAGES);
  37        shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  38
  39        /*
  40         * Note: to minimize their overhead, mm maintains hiwater_vm and
  41         * hiwater_rss only when about to *lower* total_vm or rss.  Any
  42         * collector of these hiwater stats must therefore get total_vm
  43         * and rss too, which will usually be the higher.  Barriers? not
  44         * worth the effort, such snapshots can always be inconsistent.
  45         */
  46        hiwater_vm = total_vm = mm->total_vm;
  47        if (hiwater_vm < mm->hiwater_vm)
  48                hiwater_vm = mm->hiwater_vm;
  49        hiwater_rss = total_rss = anon + file + shmem;
  50        if (hiwater_rss < mm->hiwater_rss)
  51                hiwater_rss = mm->hiwater_rss;
  52
  53        /* split executable areas between text and lib */
  54        text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
  55        text = min(text, mm->exec_vm << PAGE_SHIFT);
  56        lib = (mm->exec_vm << PAGE_SHIFT) - text;
  57
  58        swap = get_mm_counter(mm, MM_SWAPENTS);
  59        SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
  60        SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
  61        SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
  62        SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
  63        SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
  64        SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
  65        SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
  66        SEQ_PUT_DEC(" kB\nRssFile:\t", file);
  67        SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
  68        SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
  69        SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
  70        seq_put_decimal_ull_width(m,
  71                    " kB\nVmExe:\t", text >> 10, 8);
  72        seq_put_decimal_ull_width(m,
  73                    " kB\nVmLib:\t", lib >> 10, 8);
  74        seq_put_decimal_ull_width(m,
  75                    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
  76        SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
  77        seq_puts(m, " kB\n");
  78        hugetlb_report_usage(m, mm);
  79}
  80#undef SEQ_PUT_DEC
  81
  82unsigned long task_vsize(struct mm_struct *mm)
  83{
  84        return PAGE_SIZE * mm->total_vm;
  85}
  86
  87unsigned long task_statm(struct mm_struct *mm,
  88                         unsigned long *shared, unsigned long *text,
  89                         unsigned long *data, unsigned long *resident)
  90{
  91        *shared = get_mm_counter(mm, MM_FILEPAGES) +
  92                        get_mm_counter(mm, MM_SHMEMPAGES);
  93        *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  94                                                                >> PAGE_SHIFT;
  95        *data = mm->data_vm + mm->stack_vm;
  96        *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  97        return mm->total_vm;
  98}
  99
 100#ifdef CONFIG_NUMA
 101/*
 102 * Save get_task_policy() for show_numa_map().
 103 */
 104static void hold_task_mempolicy(struct proc_maps_private *priv)
 105{
 106        struct task_struct *task = priv->task;
 107
 108        task_lock(task);
 109        priv->task_mempolicy = get_task_policy(task);
 110        mpol_get(priv->task_mempolicy);
 111        task_unlock(task);
 112}
 113static void release_task_mempolicy(struct proc_maps_private *priv)
 114{
 115        mpol_put(priv->task_mempolicy);
 116}
 117#else
 118static void hold_task_mempolicy(struct proc_maps_private *priv)
 119{
 120}
 121static void release_task_mempolicy(struct proc_maps_private *priv)
 122{
 123}
 124#endif
 125
 126static void *m_start(struct seq_file *m, loff_t *ppos)
 127{
 128        struct proc_maps_private *priv = m->private;
 129        unsigned long last_addr = *ppos;
 130        struct mm_struct *mm;
 131        struct vm_area_struct *vma;
 132
 133        /* See m_next(). Zero at the start or after lseek. */
 134        if (last_addr == -1UL)
 135                return NULL;
 136
 137        priv->task = get_proc_task(priv->inode);
 138        if (!priv->task)
 139                return ERR_PTR(-ESRCH);
 140
 141        mm = priv->mm;
 142        if (!mm || !mmget_not_zero(mm)) {
 143                put_task_struct(priv->task);
 144                priv->task = NULL;
 145                return NULL;
 146        }
 147
 148        if (mmap_read_lock_killable(mm)) {
 149                mmput(mm);
 150                put_task_struct(priv->task);
 151                priv->task = NULL;
 152                return ERR_PTR(-EINTR);
 153        }
 154
 155        hold_task_mempolicy(priv);
 156        priv->tail_vma = get_gate_vma(mm);
 157
 158        vma = find_vma(mm, last_addr);
 159        if (vma)
 160                return vma;
 161
 162        return priv->tail_vma;
 163}
 164
 165static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
 166{
 167        struct proc_maps_private *priv = m->private;
 168        struct vm_area_struct *next, *vma = v;
 169
 170        if (vma == priv->tail_vma)
 171                next = NULL;
 172        else if (vma->vm_next)
 173                next = vma->vm_next;
 174        else
 175                next = priv->tail_vma;
 176
 177        *ppos = next ? next->vm_start : -1UL;
 178
 179        return next;
 180}
 181
 182static void m_stop(struct seq_file *m, void *v)
 183{
 184        struct proc_maps_private *priv = m->private;
 185        struct mm_struct *mm = priv->mm;
 186
 187        if (!priv->task)
 188                return;
 189
 190        release_task_mempolicy(priv);
 191        mmap_read_unlock(mm);
 192        mmput(mm);
 193        put_task_struct(priv->task);
 194        priv->task = NULL;
 195}
 196
 197static int proc_maps_open(struct inode *inode, struct file *file,
 198                        const struct seq_operations *ops, int psize)
 199{
 200        struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
 201
 202        if (!priv)
 203                return -ENOMEM;
 204
 205        priv->inode = inode;
 206        priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
 207        if (IS_ERR(priv->mm)) {
 208                int err = PTR_ERR(priv->mm);
 209
 210                seq_release_private(inode, file);
 211                return err;
 212        }
 213
 214        return 0;
 215}
 216
 217static int proc_map_release(struct inode *inode, struct file *file)
 218{
 219        struct seq_file *seq = file->private_data;
 220        struct proc_maps_private *priv = seq->private;
 221
 222        if (priv->mm)
 223                mmdrop(priv->mm);
 224
 225        return seq_release_private(inode, file);
 226}
 227
 228static int do_maps_open(struct inode *inode, struct file *file,
 229                        const struct seq_operations *ops)
 230{
 231        return proc_maps_open(inode, file, ops,
 232                                sizeof(struct proc_maps_private));
 233}
 234
 235/*
 236 * Indicate if the VMA is a stack for the given task; for
 237 * /proc/PID/maps that is the stack of the main task.
 238 */
 239static int is_stack(struct vm_area_struct *vma)
 240{
 241        /*
 242         * We make no effort to guess what a given thread considers to be
 243         * its "stack".  It's not even well-defined for programs written
 244         * languages like Go.
 245         */
 246        return vma->vm_start <= vma->vm_mm->start_stack &&
 247                vma->vm_end >= vma->vm_mm->start_stack;
 248}
 249
 250static void show_vma_header_prefix(struct seq_file *m,
 251                                   unsigned long start, unsigned long end,
 252                                   vm_flags_t flags, unsigned long long pgoff,
 253                                   dev_t dev, unsigned long ino)
 254{
 255        seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
 256        seq_put_hex_ll(m, NULL, start, 8);
 257        seq_put_hex_ll(m, "-", end, 8);
 258        seq_putc(m, ' ');
 259        seq_putc(m, flags & VM_READ ? 'r' : '-');
 260        seq_putc(m, flags & VM_WRITE ? 'w' : '-');
 261        seq_putc(m, flags & VM_EXEC ? 'x' : '-');
 262        seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
 263        seq_put_hex_ll(m, " ", pgoff, 8);
 264        seq_put_hex_ll(m, " ", MAJOR(dev), 2);
 265        seq_put_hex_ll(m, ":", MINOR(dev), 2);
 266        seq_put_decimal_ull(m, " ", ino);
 267        seq_putc(m, ' ');
 268}
 269
 270static void
 271show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
 272{
 273        struct mm_struct *mm = vma->vm_mm;
 274        struct file *file = vma->vm_file;
 275        vm_flags_t flags = vma->vm_flags;
 276        unsigned long ino = 0;
 277        unsigned long long pgoff = 0;
 278        unsigned long start, end;
 279        dev_t dev = 0;
 280        const char *name = NULL;
 281
 282        if (file) {
 283                struct inode *inode = file_inode(vma->vm_file);
 284                dev = inode->i_sb->s_dev;
 285                ino = inode->i_ino;
 286                pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
 287        }
 288
 289        start = vma->vm_start;
 290        end = vma->vm_end;
 291        show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
 292
 293        /*
 294         * Print the dentry name for named mappings, and a
 295         * special [heap] marker for the heap:
 296         */
 297        if (file) {
 298                seq_pad(m, ' ');
 299                seq_file_path(m, file, "\n");
 300                goto done;
 301        }
 302
 303        if (vma->vm_ops && vma->vm_ops->name) {
 304                name = vma->vm_ops->name(vma);
 305                if (name)
 306                        goto done;
 307        }
 308
 309        name = arch_vma_name(vma);
 310        if (!name) {
 311                if (!mm) {
 312                        name = "[vdso]";
 313                        goto done;
 314                }
 315
 316                if (vma->vm_start <= mm->brk &&
 317                    vma->vm_end >= mm->start_brk) {
 318                        name = "[heap]";
 319                        goto done;
 320                }
 321
 322                if (is_stack(vma))
 323                        name = "[stack]";
 324        }
 325
 326done:
 327        if (name) {
 328                seq_pad(m, ' ');
 329                seq_puts(m, name);
 330        }
 331        seq_putc(m, '\n');
 332}
 333
 334static int show_map(struct seq_file *m, void *v)
 335{
 336        show_map_vma(m, v);
 337        return 0;
 338}
 339
 340static const struct seq_operations proc_pid_maps_op = {
 341        .start  = m_start,
 342        .next   = m_next,
 343        .stop   = m_stop,
 344        .show   = show_map
 345};
 346
 347static int pid_maps_open(struct inode *inode, struct file *file)
 348{
 349        return do_maps_open(inode, file, &proc_pid_maps_op);
 350}
 351
 352const struct file_operations proc_pid_maps_operations = {
 353        .open           = pid_maps_open,
 354        .read           = seq_read,
 355        .llseek         = seq_lseek,
 356        .release        = proc_map_release,
 357};
 358
 359/*
 360 * Proportional Set Size(PSS): my share of RSS.
 361 *
 362 * PSS of a process is the count of pages it has in memory, where each
 363 * page is divided by the number of processes sharing it.  So if a
 364 * process has 1000 pages all to itself, and 1000 shared with one other
 365 * process, its PSS will be 1500.
 366 *
 367 * To keep (accumulated) division errors low, we adopt a 64bit
 368 * fixed-point pss counter to minimize division errors. So (pss >>
 369 * PSS_SHIFT) would be the real byte count.
 370 *
 371 * A shift of 12 before division means (assuming 4K page size):
 372 *      - 1M 3-user-pages add up to 8KB errors;
 373 *      - supports mapcount up to 2^24, or 16M;
 374 *      - supports PSS up to 2^52 bytes, or 4PB.
 375 */
 376#define PSS_SHIFT 12
 377
 378#ifdef CONFIG_PROC_PAGE_MONITOR
 379struct mem_size_stats {
 380        unsigned long resident;
 381        unsigned long shared_clean;
 382        unsigned long shared_dirty;
 383        unsigned long private_clean;
 384        unsigned long private_dirty;
 385        unsigned long referenced;
 386        unsigned long anonymous;
 387        unsigned long lazyfree;
 388        unsigned long anonymous_thp;
 389        unsigned long shmem_thp;
 390        unsigned long file_thp;
 391        unsigned long swap;
 392        unsigned long shared_hugetlb;
 393        unsigned long private_hugetlb;
 394        u64 pss;
 395        u64 pss_anon;
 396        u64 pss_file;
 397        u64 pss_shmem;
 398        u64 pss_locked;
 399        u64 swap_pss;
 400        bool check_shmem_swap;
 401};
 402
 403static void smaps_page_accumulate(struct mem_size_stats *mss,
 404                struct page *page, unsigned long size, unsigned long pss,
 405                bool dirty, bool locked, bool private)
 406{
 407        mss->pss += pss;
 408
 409        if (PageAnon(page))
 410                mss->pss_anon += pss;
 411        else if (PageSwapBacked(page))
 412                mss->pss_shmem += pss;
 413        else
 414                mss->pss_file += pss;
 415
 416        if (locked)
 417                mss->pss_locked += pss;
 418
 419        if (dirty || PageDirty(page)) {
 420                if (private)
 421                        mss->private_dirty += size;
 422                else
 423                        mss->shared_dirty += size;
 424        } else {
 425                if (private)
 426                        mss->private_clean += size;
 427                else
 428                        mss->shared_clean += size;
 429        }
 430}
 431
 432static void smaps_account(struct mem_size_stats *mss, struct page *page,
 433                bool compound, bool young, bool dirty, bool locked)
 434{
 435        int i, nr = compound ? compound_nr(page) : 1;
 436        unsigned long size = nr * PAGE_SIZE;
 437
 438        /*
 439         * First accumulate quantities that depend only on |size| and the type
 440         * of the compound page.
 441         */
 442        if (PageAnon(page)) {
 443                mss->anonymous += size;
 444                if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
 445                        mss->lazyfree += size;
 446        }
 447
 448        mss->resident += size;
 449        /* Accumulate the size in pages that have been accessed. */
 450        if (young || page_is_young(page) || PageReferenced(page))
 451                mss->referenced += size;
 452
 453        /*
 454         * Then accumulate quantities that may depend on sharing, or that may
 455         * differ page-by-page.
 456         *
 457         * page_count(page) == 1 guarantees the page is mapped exactly once.
 458         * If any subpage of the compound page mapped with PTE it would elevate
 459         * page_count().
 460         */
 461        if (page_count(page) == 1) {
 462                smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
 463                        locked, true);
 464                return;
 465        }
 466        for (i = 0; i < nr; i++, page++) {
 467                int mapcount = page_mapcount(page);
 468                unsigned long pss = PAGE_SIZE << PSS_SHIFT;
 469                if (mapcount >= 2)
 470                        pss /= mapcount;
 471                smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
 472                                      mapcount < 2);
 473        }
 474}
 475
 476#ifdef CONFIG_SHMEM
 477static int smaps_pte_hole(unsigned long addr, unsigned long end,
 478                          __always_unused int depth, struct mm_walk *walk)
 479{
 480        struct mem_size_stats *mss = walk->private;
 481
 482        mss->swap += shmem_partial_swap_usage(
 483                        walk->vma->vm_file->f_mapping, addr, end);
 484
 485        return 0;
 486}
 487#else
 488#define smaps_pte_hole          NULL
 489#endif /* CONFIG_SHMEM */
 490
 491static void smaps_pte_entry(pte_t *pte, unsigned long addr,
 492                struct mm_walk *walk)
 493{
 494        struct mem_size_stats *mss = walk->private;
 495        struct vm_area_struct *vma = walk->vma;
 496        bool locked = !!(vma->vm_flags & VM_LOCKED);
 497        struct page *page = NULL;
 498
 499        if (pte_present(*pte)) {
 500                page = vm_normal_page(vma, addr, *pte);
 501        } else if (is_swap_pte(*pte)) {
 502                swp_entry_t swpent = pte_to_swp_entry(*pte);
 503
 504                if (!non_swap_entry(swpent)) {
 505                        int mapcount;
 506
 507                        mss->swap += PAGE_SIZE;
 508                        mapcount = swp_swapcount(swpent);
 509                        if (mapcount >= 2) {
 510                                u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
 511
 512                                do_div(pss_delta, mapcount);
 513                                mss->swap_pss += pss_delta;
 514                        } else {
 515                                mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
 516                        }
 517                } else if (is_pfn_swap_entry(swpent))
 518                        page = pfn_swap_entry_to_page(swpent);
 519        } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
 520                                                        && pte_none(*pte))) {
 521                page = xa_load(&vma->vm_file->f_mapping->i_pages,
 522                                                linear_page_index(vma, addr));
 523                if (xa_is_value(page))
 524                        mss->swap += PAGE_SIZE;
 525                return;
 526        }
 527
 528        if (!page)
 529                return;
 530
 531        smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
 532}
 533
 534#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 535static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 536                struct mm_walk *walk)
 537{
 538        struct mem_size_stats *mss = walk->private;
 539        struct vm_area_struct *vma = walk->vma;
 540        bool locked = !!(vma->vm_flags & VM_LOCKED);
 541        struct page *page = NULL;
 542
 543        if (pmd_present(*pmd)) {
 544                /* FOLL_DUMP will return -EFAULT on huge zero page */
 545                page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
 546        } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
 547                swp_entry_t entry = pmd_to_swp_entry(*pmd);
 548
 549                if (is_migration_entry(entry))
 550                        page = pfn_swap_entry_to_page(entry);
 551        }
 552        if (IS_ERR_OR_NULL(page))
 553                return;
 554        if (PageAnon(page))
 555                mss->anonymous_thp += HPAGE_PMD_SIZE;
 556        else if (PageSwapBacked(page))
 557                mss->shmem_thp += HPAGE_PMD_SIZE;
 558        else if (is_zone_device_page(page))
 559                /* pass */;
 560        else
 561                mss->file_thp += HPAGE_PMD_SIZE;
 562        smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
 563}
 564#else
 565static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 566                struct mm_walk *walk)
 567{
 568}
 569#endif
 570
 571static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 572                           struct mm_walk *walk)
 573{
 574        struct vm_area_struct *vma = walk->vma;
 575        pte_t *pte;
 576        spinlock_t *ptl;
 577
 578        ptl = pmd_trans_huge_lock(pmd, vma);
 579        if (ptl) {
 580                smaps_pmd_entry(pmd, addr, walk);
 581                spin_unlock(ptl);
 582                goto out;
 583        }
 584
 585        if (pmd_trans_unstable(pmd))
 586                goto out;
 587        /*
 588         * The mmap_lock held all the way back in m_start() is what
 589         * keeps khugepaged out of here and from collapsing things
 590         * in here.
 591         */
 592        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 593        for (; addr != end; pte++, addr += PAGE_SIZE)
 594                smaps_pte_entry(pte, addr, walk);
 595        pte_unmap_unlock(pte - 1, ptl);
 596out:
 597        cond_resched();
 598        return 0;
 599}
 600
 601static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
 602{
 603        /*
 604         * Don't forget to update Documentation/ on changes.
 605         */
 606        static const char mnemonics[BITS_PER_LONG][2] = {
 607                /*
 608                 * In case if we meet a flag we don't know about.
 609                 */
 610                [0 ... (BITS_PER_LONG-1)] = "??",
 611
 612                [ilog2(VM_READ)]        = "rd",
 613                [ilog2(VM_WRITE)]       = "wr",
 614                [ilog2(VM_EXEC)]        = "ex",
 615                [ilog2(VM_SHARED)]      = "sh",
 616                [ilog2(VM_MAYREAD)]     = "mr",
 617                [ilog2(VM_MAYWRITE)]    = "mw",
 618                [ilog2(VM_MAYEXEC)]     = "me",
 619                [ilog2(VM_MAYSHARE)]    = "ms",
 620                [ilog2(VM_GROWSDOWN)]   = "gd",
 621                [ilog2(VM_PFNMAP)]      = "pf",
 622                [ilog2(VM_LOCKED)]      = "lo",
 623                [ilog2(VM_IO)]          = "io",
 624                [ilog2(VM_SEQ_READ)]    = "sr",
 625                [ilog2(VM_RAND_READ)]   = "rr",
 626                [ilog2(VM_DONTCOPY)]    = "dc",
 627                [ilog2(VM_DONTEXPAND)]  = "de",
 628                [ilog2(VM_ACCOUNT)]     = "ac",
 629                [ilog2(VM_NORESERVE)]   = "nr",
 630                [ilog2(VM_HUGETLB)]     = "ht",
 631                [ilog2(VM_SYNC)]        = "sf",
 632                [ilog2(VM_ARCH_1)]      = "ar",
 633                [ilog2(VM_WIPEONFORK)]  = "wf",
 634                [ilog2(VM_DONTDUMP)]    = "dd",
 635#ifdef CONFIG_ARM64_BTI
 636                [ilog2(VM_ARM64_BTI)]   = "bt",
 637#endif
 638#ifdef CONFIG_MEM_SOFT_DIRTY
 639                [ilog2(VM_SOFTDIRTY)]   = "sd",
 640#endif
 641                [ilog2(VM_MIXEDMAP)]    = "mm",
 642                [ilog2(VM_HUGEPAGE)]    = "hg",
 643                [ilog2(VM_NOHUGEPAGE)]  = "nh",
 644                [ilog2(VM_MERGEABLE)]   = "mg",
 645                [ilog2(VM_UFFD_MISSING)]= "um",
 646                [ilog2(VM_UFFD_WP)]     = "uw",
 647#ifdef CONFIG_ARM64_MTE
 648                [ilog2(VM_MTE)]         = "mt",
 649                [ilog2(VM_MTE_ALLOWED)] = "",
 650#endif
 651#ifdef CONFIG_ARCH_HAS_PKEYS
 652                /* These come out via ProtectionKey: */
 653                [ilog2(VM_PKEY_BIT0)]   = "",
 654                [ilog2(VM_PKEY_BIT1)]   = "",
 655                [ilog2(VM_PKEY_BIT2)]   = "",
 656                [ilog2(VM_PKEY_BIT3)]   = "",
 657#if VM_PKEY_BIT4
 658                [ilog2(VM_PKEY_BIT4)]   = "",
 659#endif
 660#endif /* CONFIG_ARCH_HAS_PKEYS */
 661#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
 662                [ilog2(VM_UFFD_MINOR)]  = "ui",
 663#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
 664        };
 665        size_t i;
 666
 667        seq_puts(m, "VmFlags: ");
 668        for (i = 0; i < BITS_PER_LONG; i++) {
 669                if (!mnemonics[i][0])
 670                        continue;
 671                if (vma->vm_flags & (1UL << i)) {
 672                        seq_putc(m, mnemonics[i][0]);
 673                        seq_putc(m, mnemonics[i][1]);
 674                        seq_putc(m, ' ');
 675                }
 676        }
 677        seq_putc(m, '\n');
 678}
 679
 680#ifdef CONFIG_HUGETLB_PAGE
 681static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
 682                                 unsigned long addr, unsigned long end,
 683                                 struct mm_walk *walk)
 684{
 685        struct mem_size_stats *mss = walk->private;
 686        struct vm_area_struct *vma = walk->vma;
 687        struct page *page = NULL;
 688
 689        if (pte_present(*pte)) {
 690                page = vm_normal_page(vma, addr, *pte);
 691        } else if (is_swap_pte(*pte)) {
 692                swp_entry_t swpent = pte_to_swp_entry(*pte);
 693
 694                if (is_pfn_swap_entry(swpent))
 695                        page = pfn_swap_entry_to_page(swpent);
 696        }
 697        if (page) {
 698                int mapcount = page_mapcount(page);
 699
 700                if (mapcount >= 2)
 701                        mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
 702                else
 703                        mss->private_hugetlb += huge_page_size(hstate_vma(vma));
 704        }
 705        return 0;
 706}
 707#else
 708#define smaps_hugetlb_range     NULL
 709#endif /* HUGETLB_PAGE */
 710
 711static const struct mm_walk_ops smaps_walk_ops = {
 712        .pmd_entry              = smaps_pte_range,
 713        .hugetlb_entry          = smaps_hugetlb_range,
 714};
 715
 716static const struct mm_walk_ops smaps_shmem_walk_ops = {
 717        .pmd_entry              = smaps_pte_range,
 718        .hugetlb_entry          = smaps_hugetlb_range,
 719        .pte_hole               = smaps_pte_hole,
 720};
 721
 722/*
 723 * Gather mem stats from @vma with the indicated beginning
 724 * address @start, and keep them in @mss.
 725 *
 726 * Use vm_start of @vma as the beginning address if @start is 0.
 727 */
 728static void smap_gather_stats(struct vm_area_struct *vma,
 729                struct mem_size_stats *mss, unsigned long start)
 730{
 731        const struct mm_walk_ops *ops = &smaps_walk_ops;
 732
 733        /* Invalid start */
 734        if (start >= vma->vm_end)
 735                return;
 736
 737#ifdef CONFIG_SHMEM
 738        /* In case of smaps_rollup, reset the value from previous vma */
 739        mss->check_shmem_swap = false;
 740        if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
 741                /*
 742                 * For shared or readonly shmem mappings we know that all
 743                 * swapped out pages belong to the shmem object, and we can
 744                 * obtain the swap value much more efficiently. For private
 745                 * writable mappings, we might have COW pages that are
 746                 * not affected by the parent swapped out pages of the shmem
 747                 * object, so we have to distinguish them during the page walk.
 748                 * Unless we know that the shmem object (or the part mapped by
 749                 * our VMA) has no swapped out pages at all.
 750                 */
 751                unsigned long shmem_swapped = shmem_swap_usage(vma);
 752
 753                if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
 754                                        !(vma->vm_flags & VM_WRITE))) {
 755                        mss->swap += shmem_swapped;
 756                } else {
 757                        mss->check_shmem_swap = true;
 758                        ops = &smaps_shmem_walk_ops;
 759                }
 760        }
 761#endif
 762        /* mmap_lock is held in m_start */
 763        if (!start)
 764                walk_page_vma(vma, ops, mss);
 765        else
 766                walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
 767}
 768
 769#define SEQ_PUT_DEC(str, val) \
 770                seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
 771
 772/* Show the contents common for smaps and smaps_rollup */
 773static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
 774        bool rollup_mode)
 775{
 776        SEQ_PUT_DEC("Rss:            ", mss->resident);
 777        SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
 778        if (rollup_mode) {
 779                /*
 780                 * These are meaningful only for smaps_rollup, otherwise two of
 781                 * them are zero, and the other one is the same as Pss.
 782                 */
 783                SEQ_PUT_DEC(" kB\nPss_Anon:       ",
 784                        mss->pss_anon >> PSS_SHIFT);
 785                SEQ_PUT_DEC(" kB\nPss_File:       ",
 786                        mss->pss_file >> PSS_SHIFT);
 787                SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
 788                        mss->pss_shmem >> PSS_SHIFT);
 789        }
 790        SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
 791        SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
 792        SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
 793        SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
 794        SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
 795        SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
 796        SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
 797        SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
 798        SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
 799        SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
 800        SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
 801        seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
 802                                  mss->private_hugetlb >> 10, 7);
 803        SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
 804        SEQ_PUT_DEC(" kB\nSwapPss:        ",
 805                                        mss->swap_pss >> PSS_SHIFT);
 806        SEQ_PUT_DEC(" kB\nLocked:         ",
 807                                        mss->pss_locked >> PSS_SHIFT);
 808        seq_puts(m, " kB\n");
 809}
 810
 811static int show_smap(struct seq_file *m, void *v)
 812{
 813        struct vm_area_struct *vma = v;
 814        struct mem_size_stats mss;
 815
 816        memset(&mss, 0, sizeof(mss));
 817
 818        smap_gather_stats(vma, &mss, 0);
 819
 820        show_map_vma(m, vma);
 821
 822        SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
 823        SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
 824        SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
 825        seq_puts(m, " kB\n");
 826
 827        __show_smap(m, &mss, false);
 828
 829        seq_printf(m, "THPeligible:    %d\n",
 830                   transparent_hugepage_active(vma));
 831
 832        if (arch_pkeys_enabled())
 833                seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
 834        show_smap_vma_flags(m, vma);
 835
 836        return 0;
 837}
 838
 839static int show_smaps_rollup(struct seq_file *m, void *v)
 840{
 841        struct proc_maps_private *priv = m->private;
 842        struct mem_size_stats mss;
 843        struct mm_struct *mm;
 844        struct vm_area_struct *vma;
 845        unsigned long last_vma_end = 0;
 846        int ret = 0;
 847
 848        priv->task = get_proc_task(priv->inode);
 849        if (!priv->task)
 850                return -ESRCH;
 851
 852        mm = priv->mm;
 853        if (!mm || !mmget_not_zero(mm)) {
 854                ret = -ESRCH;
 855                goto out_put_task;
 856        }
 857
 858        memset(&mss, 0, sizeof(mss));
 859
 860        ret = mmap_read_lock_killable(mm);
 861        if (ret)
 862                goto out_put_mm;
 863
 864        hold_task_mempolicy(priv);
 865
 866        for (vma = priv->mm->mmap; vma;) {
 867                smap_gather_stats(vma, &mss, 0);
 868                last_vma_end = vma->vm_end;
 869
 870                /*
 871                 * Release mmap_lock temporarily if someone wants to
 872                 * access it for write request.
 873                 */
 874                if (mmap_lock_is_contended(mm)) {
 875                        mmap_read_unlock(mm);
 876                        ret = mmap_read_lock_killable(mm);
 877                        if (ret) {
 878                                release_task_mempolicy(priv);
 879                                goto out_put_mm;
 880                        }
 881
 882                        /*
 883                         * After dropping the lock, there are four cases to
 884                         * consider. See the following example for explanation.
 885                         *
 886                         *   +------+------+-----------+
 887                         *   | VMA1 | VMA2 | VMA3      |
 888                         *   +------+------+-----------+
 889                         *   |      |      |           |
 890                         *  4k     8k     16k         400k
 891                         *
 892                         * Suppose we drop the lock after reading VMA2 due to
 893                         * contention, then we get:
 894                         *
 895                         *      last_vma_end = 16k
 896                         *
 897                         * 1) VMA2 is freed, but VMA3 exists:
 898                         *
 899                         *    find_vma(mm, 16k - 1) will return VMA3.
 900                         *    In this case, just continue from VMA3.
 901                         *
 902                         * 2) VMA2 still exists:
 903                         *
 904                         *    find_vma(mm, 16k - 1) will return VMA2.
 905                         *    Iterate the loop like the original one.
 906                         *
 907                         * 3) No more VMAs can be found:
 908                         *
 909                         *    find_vma(mm, 16k - 1) will return NULL.
 910                         *    No more things to do, just break.
 911                         *
 912                         * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
 913                         *
 914                         *    find_vma(mm, 16k - 1) will return VMA' whose range
 915                         *    contains last_vma_end.
 916                         *    Iterate VMA' from last_vma_end.
 917                         */
 918                        vma = find_vma(mm, last_vma_end - 1);
 919                        /* Case 3 above */
 920                        if (!vma)
 921                                break;
 922
 923                        /* Case 1 above */
 924                        if (vma->vm_start >= last_vma_end)
 925                                continue;
 926
 927                        /* Case 4 above */
 928                        if (vma->vm_end > last_vma_end)
 929                                smap_gather_stats(vma, &mss, last_vma_end);
 930                }
 931                /* Case 2 above */
 932                vma = vma->vm_next;
 933        }
 934
 935        show_vma_header_prefix(m, priv->mm->mmap->vm_start,
 936                               last_vma_end, 0, 0, 0, 0);
 937        seq_pad(m, ' ');
 938        seq_puts(m, "[rollup]\n");
 939
 940        __show_smap(m, &mss, true);
 941
 942        release_task_mempolicy(priv);
 943        mmap_read_unlock(mm);
 944
 945out_put_mm:
 946        mmput(mm);
 947out_put_task:
 948        put_task_struct(priv->task);
 949        priv->task = NULL;
 950
 951        return ret;
 952}
 953#undef SEQ_PUT_DEC
 954
 955static const struct seq_operations proc_pid_smaps_op = {
 956        .start  = m_start,
 957        .next   = m_next,
 958        .stop   = m_stop,
 959        .show   = show_smap
 960};
 961
 962static int pid_smaps_open(struct inode *inode, struct file *file)
 963{
 964        return do_maps_open(inode, file, &proc_pid_smaps_op);
 965}
 966
 967static int smaps_rollup_open(struct inode *inode, struct file *file)
 968{
 969        int ret;
 970        struct proc_maps_private *priv;
 971
 972        priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
 973        if (!priv)
 974                return -ENOMEM;
 975
 976        ret = single_open(file, show_smaps_rollup, priv);
 977        if (ret)
 978                goto out_free;
 979
 980        priv->inode = inode;
 981        priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
 982        if (IS_ERR(priv->mm)) {
 983                ret = PTR_ERR(priv->mm);
 984
 985                single_release(inode, file);
 986                goto out_free;
 987        }
 988
 989        return 0;
 990
 991out_free:
 992        kfree(priv);
 993        return ret;
 994}
 995
 996static int smaps_rollup_release(struct inode *inode, struct file *file)
 997{
 998        struct seq_file *seq = file->private_data;
 999        struct proc_maps_private *priv = seq->private;
1000
1001        if (priv->mm)
1002                mmdrop(priv->mm);
1003
1004        kfree(priv);
1005        return single_release(inode, file);
1006}
1007
1008const struct file_operations proc_pid_smaps_operations = {
1009        .open           = pid_smaps_open,
1010        .read           = seq_read,
1011        .llseek         = seq_lseek,
1012        .release        = proc_map_release,
1013};
1014
1015const struct file_operations proc_pid_smaps_rollup_operations = {
1016        .open           = smaps_rollup_open,
1017        .read           = seq_read,
1018        .llseek         = seq_lseek,
1019        .release        = smaps_rollup_release,
1020};
1021
1022enum clear_refs_types {
1023        CLEAR_REFS_ALL = 1,
1024        CLEAR_REFS_ANON,
1025        CLEAR_REFS_MAPPED,
1026        CLEAR_REFS_SOFT_DIRTY,
1027        CLEAR_REFS_MM_HIWATER_RSS,
1028        CLEAR_REFS_LAST,
1029};
1030
1031struct clear_refs_private {
1032        enum clear_refs_types type;
1033};
1034
1035#ifdef CONFIG_MEM_SOFT_DIRTY
1036
1037static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1038{
1039        struct page *page;
1040
1041        if (!pte_write(pte))
1042                return false;
1043        if (!is_cow_mapping(vma->vm_flags))
1044                return false;
1045        if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1046                return false;
1047        page = vm_normal_page(vma, addr, pte);
1048        if (!page)
1049                return false;
1050        return page_maybe_dma_pinned(page);
1051}
1052
1053static inline void clear_soft_dirty(struct vm_area_struct *vma,
1054                unsigned long addr, pte_t *pte)
1055{
1056        /*
1057         * The soft-dirty tracker uses #PF-s to catch writes
1058         * to pages, so write-protect the pte as well. See the
1059         * Documentation/admin-guide/mm/soft-dirty.rst for full description
1060         * of how soft-dirty works.
1061         */
1062        pte_t ptent = *pte;
1063
1064        if (pte_present(ptent)) {
1065                pte_t old_pte;
1066
1067                if (pte_is_pinned(vma, addr, ptent))
1068                        return;
1069                old_pte = ptep_modify_prot_start(vma, addr, pte);
1070                ptent = pte_wrprotect(old_pte);
1071                ptent = pte_clear_soft_dirty(ptent);
1072                ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1073        } else if (is_swap_pte(ptent)) {
1074                ptent = pte_swp_clear_soft_dirty(ptent);
1075                set_pte_at(vma->vm_mm, addr, pte, ptent);
1076        }
1077}
1078#else
1079static inline void clear_soft_dirty(struct vm_area_struct *vma,
1080                unsigned long addr, pte_t *pte)
1081{
1082}
1083#endif
1084
1085#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1086static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1087                unsigned long addr, pmd_t *pmdp)
1088{
1089        pmd_t old, pmd = *pmdp;
1090
1091        if (pmd_present(pmd)) {
1092                /* See comment in change_huge_pmd() */
1093                old = pmdp_invalidate(vma, addr, pmdp);
1094                if (pmd_dirty(old))
1095                        pmd = pmd_mkdirty(pmd);
1096                if (pmd_young(old))
1097                        pmd = pmd_mkyoung(pmd);
1098
1099                pmd = pmd_wrprotect(pmd);
1100                pmd = pmd_clear_soft_dirty(pmd);
1101
1102                set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1103        } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1104                pmd = pmd_swp_clear_soft_dirty(pmd);
1105                set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1106        }
1107}
1108#else
1109static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1110                unsigned long addr, pmd_t *pmdp)
1111{
1112}
1113#endif
1114
1115static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1116                                unsigned long end, struct mm_walk *walk)
1117{
1118        struct clear_refs_private *cp = walk->private;
1119        struct vm_area_struct *vma = walk->vma;
1120        pte_t *pte, ptent;
1121        spinlock_t *ptl;
1122        struct page *page;
1123
1124        ptl = pmd_trans_huge_lock(pmd, vma);
1125        if (ptl) {
1126                if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1127                        clear_soft_dirty_pmd(vma, addr, pmd);
1128                        goto out;
1129                }
1130
1131                if (!pmd_present(*pmd))
1132                        goto out;
1133
1134                page = pmd_page(*pmd);
1135
1136                /* Clear accessed and referenced bits. */
1137                pmdp_test_and_clear_young(vma, addr, pmd);
1138                test_and_clear_page_young(page);
1139                ClearPageReferenced(page);
1140out:
1141                spin_unlock(ptl);
1142                return 0;
1143        }
1144
1145        if (pmd_trans_unstable(pmd))
1146                return 0;
1147
1148        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1149        for (; addr != end; pte++, addr += PAGE_SIZE) {
1150                ptent = *pte;
1151
1152                if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1153                        clear_soft_dirty(vma, addr, pte);
1154                        continue;
1155                }
1156
1157                if (!pte_present(ptent))
1158                        continue;
1159
1160                page = vm_normal_page(vma, addr, ptent);
1161                if (!page)
1162                        continue;
1163
1164                /* Clear accessed and referenced bits. */
1165                ptep_test_and_clear_young(vma, addr, pte);
1166                test_and_clear_page_young(page);
1167                ClearPageReferenced(page);
1168        }
1169        pte_unmap_unlock(pte - 1, ptl);
1170        cond_resched();
1171        return 0;
1172}
1173
1174static int clear_refs_test_walk(unsigned long start, unsigned long end,
1175                                struct mm_walk *walk)
1176{
1177        struct clear_refs_private *cp = walk->private;
1178        struct vm_area_struct *vma = walk->vma;
1179
1180        if (vma->vm_flags & VM_PFNMAP)
1181                return 1;
1182
1183        /*
1184         * Writing 1 to /proc/pid/clear_refs affects all pages.
1185         * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1186         * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1187         * Writing 4 to /proc/pid/clear_refs affects all pages.
1188         */
1189        if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1190                return 1;
1191        if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1192                return 1;
1193        return 0;
1194}
1195
1196static const struct mm_walk_ops clear_refs_walk_ops = {
1197        .pmd_entry              = clear_refs_pte_range,
1198        .test_walk              = clear_refs_test_walk,
1199};
1200
1201static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1202                                size_t count, loff_t *ppos)
1203{
1204        struct task_struct *task;
1205        char buffer[PROC_NUMBUF];
1206        struct mm_struct *mm;
1207        struct vm_area_struct *vma;
1208        enum clear_refs_types type;
1209        int itype;
1210        int rv;
1211
1212        memset(buffer, 0, sizeof(buffer));
1213        if (count > sizeof(buffer) - 1)
1214                count = sizeof(buffer) - 1;
1215        if (copy_from_user(buffer, buf, count))
1216                return -EFAULT;
1217        rv = kstrtoint(strstrip(buffer), 10, &itype);
1218        if (rv < 0)
1219                return rv;
1220        type = (enum clear_refs_types)itype;
1221        if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1222                return -EINVAL;
1223
1224        task = get_proc_task(file_inode(file));
1225        if (!task)
1226                return -ESRCH;
1227        mm = get_task_mm(task);
1228        if (mm) {
1229                struct mmu_notifier_range range;
1230                struct clear_refs_private cp = {
1231                        .type = type,
1232                };
1233
1234                if (mmap_write_lock_killable(mm)) {
1235                        count = -EINTR;
1236                        goto out_mm;
1237                }
1238                if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1239                        /*
1240                         * Writing 5 to /proc/pid/clear_refs resets the peak
1241                         * resident set size to this mm's current rss value.
1242                         */
1243                        reset_mm_hiwater_rss(mm);
1244                        goto out_unlock;
1245                }
1246
1247                if (type == CLEAR_REFS_SOFT_DIRTY) {
1248                        for (vma = mm->mmap; vma; vma = vma->vm_next) {
1249                                if (!(vma->vm_flags & VM_SOFTDIRTY))
1250                                        continue;
1251                                vma->vm_flags &= ~VM_SOFTDIRTY;
1252                                vma_set_page_prot(vma);
1253                        }
1254
1255                        inc_tlb_flush_pending(mm);
1256                        mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1257                                                0, NULL, mm, 0, -1UL);
1258                        mmu_notifier_invalidate_range_start(&range);
1259                }
1260                walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1261                                &cp);
1262                if (type == CLEAR_REFS_SOFT_DIRTY) {
1263                        mmu_notifier_invalidate_range_end(&range);
1264                        flush_tlb_mm(mm);
1265                        dec_tlb_flush_pending(mm);
1266                }
1267out_unlock:
1268                mmap_write_unlock(mm);
1269out_mm:
1270                mmput(mm);
1271        }
1272        put_task_struct(task);
1273
1274        return count;
1275}
1276
1277const struct file_operations proc_clear_refs_operations = {
1278        .write          = clear_refs_write,
1279        .llseek         = noop_llseek,
1280};
1281
1282typedef struct {
1283        u64 pme;
1284} pagemap_entry_t;
1285
1286struct pagemapread {
1287        int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1288        pagemap_entry_t *buffer;
1289        bool show_pfn;
1290};
1291
1292#define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1293#define PAGEMAP_WALK_MASK       (PMD_MASK)
1294
1295#define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1296#define PM_PFRAME_BITS          55
1297#define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1298#define PM_SOFT_DIRTY           BIT_ULL(55)
1299#define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1300#define PM_UFFD_WP              BIT_ULL(57)
1301#define PM_FILE                 BIT_ULL(61)
1302#define PM_SWAP                 BIT_ULL(62)
1303#define PM_PRESENT              BIT_ULL(63)
1304
1305#define PM_END_OF_BUFFER    1
1306
1307static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1308{
1309        return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1310}
1311
1312static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1313                          struct pagemapread *pm)
1314{
1315        pm->buffer[pm->pos++] = *pme;
1316        if (pm->pos >= pm->len)
1317                return PM_END_OF_BUFFER;
1318        return 0;
1319}
1320
1321static int pagemap_pte_hole(unsigned long start, unsigned long end,
1322                            __always_unused int depth, struct mm_walk *walk)
1323{
1324        struct pagemapread *pm = walk->private;
1325        unsigned long addr = start;
1326        int err = 0;
1327
1328        while (addr < end) {
1329                struct vm_area_struct *vma = find_vma(walk->mm, addr);
1330                pagemap_entry_t pme = make_pme(0, 0);
1331                /* End of address space hole, which we mark as non-present. */
1332                unsigned long hole_end;
1333
1334                if (vma)
1335                        hole_end = min(end, vma->vm_start);
1336                else
1337                        hole_end = end;
1338
1339                for (; addr < hole_end; addr += PAGE_SIZE) {
1340                        err = add_to_pagemap(addr, &pme, pm);
1341                        if (err)
1342                                goto out;
1343                }
1344
1345                if (!vma)
1346                        break;
1347
1348                /* Addresses in the VMA. */
1349                if (vma->vm_flags & VM_SOFTDIRTY)
1350                        pme = make_pme(0, PM_SOFT_DIRTY);
1351                for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1352                        err = add_to_pagemap(addr, &pme, pm);
1353                        if (err)
1354                                goto out;
1355                }
1356        }
1357out:
1358        return err;
1359}
1360
1361static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1362                struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1363{
1364        u64 frame = 0, flags = 0;
1365        struct page *page = NULL;
1366
1367        if (pte_present(pte)) {
1368                if (pm->show_pfn)
1369                        frame = pte_pfn(pte);
1370                flags |= PM_PRESENT;
1371                page = vm_normal_page(vma, addr, pte);
1372                if (pte_soft_dirty(pte))
1373                        flags |= PM_SOFT_DIRTY;
1374                if (pte_uffd_wp(pte))
1375                        flags |= PM_UFFD_WP;
1376        } else if (is_swap_pte(pte)) {
1377                swp_entry_t entry;
1378                if (pte_swp_soft_dirty(pte))
1379                        flags |= PM_SOFT_DIRTY;
1380                if (pte_swp_uffd_wp(pte))
1381                        flags |= PM_UFFD_WP;
1382                entry = pte_to_swp_entry(pte);
1383                if (pm->show_pfn)
1384                        frame = swp_type(entry) |
1385                                (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1386                flags |= PM_SWAP;
1387                if (is_pfn_swap_entry(entry))
1388                        page = pfn_swap_entry_to_page(entry);
1389        }
1390
1391        if (page && !PageAnon(page))
1392                flags |= PM_FILE;
1393        if (page && page_mapcount(page) == 1)
1394                flags |= PM_MMAP_EXCLUSIVE;
1395        if (vma->vm_flags & VM_SOFTDIRTY)
1396                flags |= PM_SOFT_DIRTY;
1397
1398        return make_pme(frame, flags);
1399}
1400
1401static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1402                             struct mm_walk *walk)
1403{
1404        struct vm_area_struct *vma = walk->vma;
1405        struct pagemapread *pm = walk->private;
1406        spinlock_t *ptl;
1407        pte_t *pte, *orig_pte;
1408        int err = 0;
1409
1410#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1411        ptl = pmd_trans_huge_lock(pmdp, vma);
1412        if (ptl) {
1413                u64 flags = 0, frame = 0;
1414                pmd_t pmd = *pmdp;
1415                struct page *page = NULL;
1416
1417                if (vma->vm_flags & VM_SOFTDIRTY)
1418                        flags |= PM_SOFT_DIRTY;
1419
1420                if (pmd_present(pmd)) {
1421                        page = pmd_page(pmd);
1422
1423                        flags |= PM_PRESENT;
1424                        if (pmd_soft_dirty(pmd))
1425                                flags |= PM_SOFT_DIRTY;
1426                        if (pmd_uffd_wp(pmd))
1427                                flags |= PM_UFFD_WP;
1428                        if (pm->show_pfn)
1429                                frame = pmd_pfn(pmd) +
1430                                        ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1431                }
1432#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1433                else if (is_swap_pmd(pmd)) {
1434                        swp_entry_t entry = pmd_to_swp_entry(pmd);
1435                        unsigned long offset;
1436
1437                        if (pm->show_pfn) {
1438                                offset = swp_offset(entry) +
1439                                        ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1440                                frame = swp_type(entry) |
1441                                        (offset << MAX_SWAPFILES_SHIFT);
1442                        }
1443                        flags |= PM_SWAP;
1444                        if (pmd_swp_soft_dirty(pmd))
1445                                flags |= PM_SOFT_DIRTY;
1446                        if (pmd_swp_uffd_wp(pmd))
1447                                flags |= PM_UFFD_WP;
1448                        VM_BUG_ON(!is_pmd_migration_entry(pmd));
1449                        page = pfn_swap_entry_to_page(entry);
1450                }
1451#endif
1452
1453                if (page && page_mapcount(page) == 1)
1454                        flags |= PM_MMAP_EXCLUSIVE;
1455
1456                for (; addr != end; addr += PAGE_SIZE) {
1457                        pagemap_entry_t pme = make_pme(frame, flags);
1458
1459                        err = add_to_pagemap(addr, &pme, pm);
1460                        if (err)
1461                                break;
1462                        if (pm->show_pfn) {
1463                                if (flags & PM_PRESENT)
1464                                        frame++;
1465                                else if (flags & PM_SWAP)
1466                                        frame += (1 << MAX_SWAPFILES_SHIFT);
1467                        }
1468                }
1469                spin_unlock(ptl);
1470                return err;
1471        }
1472
1473        if (pmd_trans_unstable(pmdp))
1474                return 0;
1475#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1476
1477        /*
1478         * We can assume that @vma always points to a valid one and @end never
1479         * goes beyond vma->vm_end.
1480         */
1481        orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1482        for (; addr < end; pte++, addr += PAGE_SIZE) {
1483                pagemap_entry_t pme;
1484
1485                pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1486                err = add_to_pagemap(addr, &pme, pm);
1487                if (err)
1488                        break;
1489        }
1490        pte_unmap_unlock(orig_pte, ptl);
1491
1492        cond_resched();
1493
1494        return err;
1495}
1496
1497#ifdef CONFIG_HUGETLB_PAGE
1498/* This function walks within one hugetlb entry in the single call */
1499static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1500                                 unsigned long addr, unsigned long end,
1501                                 struct mm_walk *walk)
1502{
1503        struct pagemapread *pm = walk->private;
1504        struct vm_area_struct *vma = walk->vma;
1505        u64 flags = 0, frame = 0;
1506        int err = 0;
1507        pte_t pte;
1508
1509        if (vma->vm_flags & VM_SOFTDIRTY)
1510                flags |= PM_SOFT_DIRTY;
1511
1512        pte = huge_ptep_get(ptep);
1513        if (pte_present(pte)) {
1514                struct page *page = pte_page(pte);
1515
1516                if (!PageAnon(page))
1517                        flags |= PM_FILE;
1518
1519                if (page_mapcount(page) == 1)
1520                        flags |= PM_MMAP_EXCLUSIVE;
1521
1522                flags |= PM_PRESENT;
1523                if (pm->show_pfn)
1524                        frame = pte_pfn(pte) +
1525                                ((addr & ~hmask) >> PAGE_SHIFT);
1526        }
1527
1528        for (; addr != end; addr += PAGE_SIZE) {
1529                pagemap_entry_t pme = make_pme(frame, flags);
1530
1531                err = add_to_pagemap(addr, &pme, pm);
1532                if (err)
1533                        return err;
1534                if (pm->show_pfn && (flags & PM_PRESENT))
1535                        frame++;
1536        }
1537
1538        cond_resched();
1539
1540        return err;
1541}
1542#else
1543#define pagemap_hugetlb_range   NULL
1544#endif /* HUGETLB_PAGE */
1545
1546static const struct mm_walk_ops pagemap_ops = {
1547        .pmd_entry      = pagemap_pmd_range,
1548        .pte_hole       = pagemap_pte_hole,
1549        .hugetlb_entry  = pagemap_hugetlb_range,
1550};
1551
1552/*
1553 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1554 *
1555 * For each page in the address space, this file contains one 64-bit entry
1556 * consisting of the following:
1557 *
1558 * Bits 0-54  page frame number (PFN) if present
1559 * Bits 0-4   swap type if swapped
1560 * Bits 5-54  swap offset if swapped
1561 * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1562 * Bit  56    page exclusively mapped
1563 * Bits 57-60 zero
1564 * Bit  61    page is file-page or shared-anon
1565 * Bit  62    page swapped
1566 * Bit  63    page present
1567 *
1568 * If the page is not present but in swap, then the PFN contains an
1569 * encoding of the swap file number and the page's offset into the
1570 * swap. Unmapped pages return a null PFN. This allows determining
1571 * precisely which pages are mapped (or in swap) and comparing mapped
1572 * pages between processes.
1573 *
1574 * Efficient users of this interface will use /proc/pid/maps to
1575 * determine which areas of memory are actually mapped and llseek to
1576 * skip over unmapped regions.
1577 */
1578static ssize_t pagemap_read(struct file *file, char __user *buf,
1579                            size_t count, loff_t *ppos)
1580{
1581        struct mm_struct *mm = file->private_data;
1582        struct pagemapread pm;
1583        unsigned long src;
1584        unsigned long svpfn;
1585        unsigned long start_vaddr;
1586        unsigned long end_vaddr;
1587        int ret = 0, copied = 0;
1588
1589        if (!mm || !mmget_not_zero(mm))
1590                goto out;
1591
1592        ret = -EINVAL;
1593        /* file position must be aligned */
1594        if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1595                goto out_mm;
1596
1597        ret = 0;
1598        if (!count)
1599                goto out_mm;
1600
1601        /* do not disclose physical addresses: attack vector */
1602        pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1603
1604        pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1605        pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1606        ret = -ENOMEM;
1607        if (!pm.buffer)
1608                goto out_mm;
1609
1610        src = *ppos;
1611        svpfn = src / PM_ENTRY_BYTES;
1612        end_vaddr = mm->task_size;
1613
1614        /* watch out for wraparound */
1615        start_vaddr = end_vaddr;
1616        if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1617                start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1618
1619        /* Ensure the address is inside the task */
1620        if (start_vaddr > mm->task_size)
1621                start_vaddr = end_vaddr;
1622
1623        /*
1624         * The odds are that this will stop walking way
1625         * before end_vaddr, because the length of the
1626         * user buffer is tracked in "pm", and the walk
1627         * will stop when we hit the end of the buffer.
1628         */
1629        ret = 0;
1630        while (count && (start_vaddr < end_vaddr)) {
1631                int len;
1632                unsigned long end;
1633
1634                pm.pos = 0;
1635                end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1636                /* overflow ? */
1637                if (end < start_vaddr || end > end_vaddr)
1638                        end = end_vaddr;
1639                ret = mmap_read_lock_killable(mm);
1640                if (ret)
1641                        goto out_free;
1642                ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1643                mmap_read_unlock(mm);
1644                start_vaddr = end;
1645
1646                len = min(count, PM_ENTRY_BYTES * pm.pos);
1647                if (copy_to_user(buf, pm.buffer, len)) {
1648                        ret = -EFAULT;
1649                        goto out_free;
1650                }
1651                copied += len;
1652                buf += len;
1653                count -= len;
1654        }
1655        *ppos += copied;
1656        if (!ret || ret == PM_END_OF_BUFFER)
1657                ret = copied;
1658
1659out_free:
1660        kfree(pm.buffer);
1661out_mm:
1662        mmput(mm);
1663out:
1664        return ret;
1665}
1666
1667static int pagemap_open(struct inode *inode, struct file *file)
1668{
1669        struct mm_struct *mm;
1670
1671        mm = proc_mem_open(inode, PTRACE_MODE_READ);
1672        if (IS_ERR(mm))
1673                return PTR_ERR(mm);
1674        file->private_data = mm;
1675        return 0;
1676}
1677
1678static int pagemap_release(struct inode *inode, struct file *file)
1679{
1680        struct mm_struct *mm = file->private_data;
1681
1682        if (mm)
1683                mmdrop(mm);
1684        return 0;
1685}
1686
1687const struct file_operations proc_pagemap_operations = {
1688        .llseek         = mem_lseek, /* borrow this */
1689        .read           = pagemap_read,
1690        .open           = pagemap_open,
1691        .release        = pagemap_release,
1692};
1693#endif /* CONFIG_PROC_PAGE_MONITOR */
1694
1695#ifdef CONFIG_NUMA
1696
1697struct numa_maps {
1698        unsigned long pages;
1699        unsigned long anon;
1700        unsigned long active;
1701        unsigned long writeback;
1702        unsigned long mapcount_max;
1703        unsigned long dirty;
1704        unsigned long swapcache;
1705        unsigned long node[MAX_NUMNODES];
1706};
1707
1708struct numa_maps_private {
1709        struct proc_maps_private proc_maps;
1710        struct numa_maps md;
1711};
1712
1713static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1714                        unsigned long nr_pages)
1715{
1716        int count = page_mapcount(page);
1717
1718        md->pages += nr_pages;
1719        if (pte_dirty || PageDirty(page))
1720                md->dirty += nr_pages;
1721
1722        if (PageSwapCache(page))
1723                md->swapcache += nr_pages;
1724
1725        if (PageActive(page) || PageUnevictable(page))
1726                md->active += nr_pages;
1727
1728        if (PageWriteback(page))
1729                md->writeback += nr_pages;
1730
1731        if (PageAnon(page))
1732                md->anon += nr_pages;
1733
1734        if (count > md->mapcount_max)
1735                md->mapcount_max = count;
1736
1737        md->node[page_to_nid(page)] += nr_pages;
1738}
1739
1740static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1741                unsigned long addr)
1742{
1743        struct page *page;
1744        int nid;
1745
1746        if (!pte_present(pte))
1747                return NULL;
1748
1749        page = vm_normal_page(vma, addr, pte);
1750        if (!page)
1751                return NULL;
1752
1753        if (PageReserved(page))
1754                return NULL;
1755
1756        nid = page_to_nid(page);
1757        if (!node_isset(nid, node_states[N_MEMORY]))
1758                return NULL;
1759
1760        return page;
1761}
1762
1763#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1764static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1765                                              struct vm_area_struct *vma,
1766                                              unsigned long addr)
1767{
1768        struct page *page;
1769        int nid;
1770
1771        if (!pmd_present(pmd))
1772                return NULL;
1773
1774        page = vm_normal_page_pmd(vma, addr, pmd);
1775        if (!page)
1776                return NULL;
1777
1778        if (PageReserved(page))
1779                return NULL;
1780
1781        nid = page_to_nid(page);
1782        if (!node_isset(nid, node_states[N_MEMORY]))
1783                return NULL;
1784
1785        return page;
1786}
1787#endif
1788
1789static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1790                unsigned long end, struct mm_walk *walk)
1791{
1792        struct numa_maps *md = walk->private;
1793        struct vm_area_struct *vma = walk->vma;
1794        spinlock_t *ptl;
1795        pte_t *orig_pte;
1796        pte_t *pte;
1797
1798#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1799        ptl = pmd_trans_huge_lock(pmd, vma);
1800        if (ptl) {
1801                struct page *page;
1802
1803                page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1804                if (page)
1805                        gather_stats(page, md, pmd_dirty(*pmd),
1806                                     HPAGE_PMD_SIZE/PAGE_SIZE);
1807                spin_unlock(ptl);
1808                return 0;
1809        }
1810
1811        if (pmd_trans_unstable(pmd))
1812                return 0;
1813#endif
1814        orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1815        do {
1816                struct page *page = can_gather_numa_stats(*pte, vma, addr);
1817                if (!page)
1818                        continue;
1819                gather_stats(page, md, pte_dirty(*pte), 1);
1820
1821        } while (pte++, addr += PAGE_SIZE, addr != end);
1822        pte_unmap_unlock(orig_pte, ptl);
1823        cond_resched();
1824        return 0;
1825}
1826#ifdef CONFIG_HUGETLB_PAGE
1827static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1828                unsigned long addr, unsigned long end, struct mm_walk *walk)
1829{
1830        pte_t huge_pte = huge_ptep_get(pte);
1831        struct numa_maps *md;
1832        struct page *page;
1833
1834        if (!pte_present(huge_pte))
1835                return 0;
1836
1837        page = pte_page(huge_pte);
1838        if (!page)
1839                return 0;
1840
1841        md = walk->private;
1842        gather_stats(page, md, pte_dirty(huge_pte), 1);
1843        return 0;
1844}
1845
1846#else
1847static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1848                unsigned long addr, unsigned long end, struct mm_walk *walk)
1849{
1850        return 0;
1851}
1852#endif
1853
1854static const struct mm_walk_ops show_numa_ops = {
1855        .hugetlb_entry = gather_hugetlb_stats,
1856        .pmd_entry = gather_pte_stats,
1857};
1858
1859/*
1860 * Display pages allocated per node and memory policy via /proc.
1861 */
1862static int show_numa_map(struct seq_file *m, void *v)
1863{
1864        struct numa_maps_private *numa_priv = m->private;
1865        struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1866        struct vm_area_struct *vma = v;
1867        struct numa_maps *md = &numa_priv->md;
1868        struct file *file = vma->vm_file;
1869        struct mm_struct *mm = vma->vm_mm;
1870        struct mempolicy *pol;
1871        char buffer[64];
1872        int nid;
1873
1874        if (!mm)
1875                return 0;
1876
1877        /* Ensure we start with an empty set of numa_maps statistics. */
1878        memset(md, 0, sizeof(*md));
1879
1880        pol = __get_vma_policy(vma, vma->vm_start);
1881        if (pol) {
1882                mpol_to_str(buffer, sizeof(buffer), pol);
1883                mpol_cond_put(pol);
1884        } else {
1885                mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1886        }
1887
1888        seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1889
1890        if (file) {
1891                seq_puts(m, " file=");
1892                seq_file_path(m, file, "\n\t= ");
1893        } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1894                seq_puts(m, " heap");
1895        } else if (is_stack(vma)) {
1896                seq_puts(m, " stack");
1897        }
1898
1899        if (is_vm_hugetlb_page(vma))
1900                seq_puts(m, " huge");
1901
1902        /* mmap_lock is held by m_start */
1903        walk_page_vma(vma, &show_numa_ops, md);
1904
1905        if (!md->pages)
1906                goto out;
1907
1908        if (md->anon)
1909                seq_printf(m, " anon=%lu", md->anon);
1910
1911        if (md->dirty)
1912                seq_printf(m, " dirty=%lu", md->dirty);
1913
1914        if (md->pages != md->anon && md->pages != md->dirty)
1915                seq_printf(m, " mapped=%lu", md->pages);
1916
1917        if (md->mapcount_max > 1)
1918                seq_printf(m, " mapmax=%lu", md->mapcount_max);
1919
1920        if (md->swapcache)
1921                seq_printf(m, " swapcache=%lu", md->swapcache);
1922
1923        if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1924                seq_printf(m, " active=%lu", md->active);
1925
1926        if (md->writeback)
1927                seq_printf(m, " writeback=%lu", md->writeback);
1928
1929        for_each_node_state(nid, N_MEMORY)
1930                if (md->node[nid])
1931                        seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1932
1933        seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1934out:
1935        seq_putc(m, '\n');
1936        return 0;
1937}
1938
1939static const struct seq_operations proc_pid_numa_maps_op = {
1940        .start  = m_start,
1941        .next   = m_next,
1942        .stop   = m_stop,
1943        .show   = show_numa_map,
1944};
1945
1946static int pid_numa_maps_open(struct inode *inode, struct file *file)
1947{
1948        return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1949                                sizeof(struct numa_maps_private));
1950}
1951
1952const struct file_operations proc_pid_numa_maps_operations = {
1953        .open           = pid_numa_maps_open,
1954        .read           = seq_read,
1955        .llseek         = seq_lseek,
1956        .release        = proc_map_release,
1957};
1958
1959#endif /* CONFIG_NUMA */
1960