linux/fs/reiserfs/reiserfs.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for
   4 * licensing and copyright details
   5 */
   6
   7#include <linux/reiserfs_fs.h>
   8
   9#include <linux/slab.h>
  10#include <linux/interrupt.h>
  11#include <linux/sched.h>
  12#include <linux/bug.h>
  13#include <linux/workqueue.h>
  14#include <asm/unaligned.h>
  15#include <linux/bitops.h>
  16#include <linux/proc_fs.h>
  17#include <linux/buffer_head.h>
  18
  19/* the 32 bit compat definitions with int argument */
  20#define REISERFS_IOC32_UNPACK           _IOW(0xCD, 1, int)
  21#define REISERFS_IOC32_GETVERSION       FS_IOC32_GETVERSION
  22#define REISERFS_IOC32_SETVERSION       FS_IOC32_SETVERSION
  23
  24struct reiserfs_journal_list;
  25
  26/* bitmasks for i_flags field in reiserfs-specific part of inode */
  27typedef enum {
  28        /*
  29         * this says what format of key do all items (but stat data) of
  30         * an object have.  If this is set, that format is 3.6 otherwise - 3.5
  31         */
  32        i_item_key_version_mask = 0x0001,
  33
  34        /*
  35         * If this is unset, object has 3.5 stat data, otherwise,
  36         * it has 3.6 stat data with 64bit size, 32bit nlink etc.
  37         */
  38        i_stat_data_version_mask = 0x0002,
  39
  40        /* file might need tail packing on close */
  41        i_pack_on_close_mask = 0x0004,
  42
  43        /* don't pack tail of file */
  44        i_nopack_mask = 0x0008,
  45
  46        /*
  47         * If either of these are set, "safe link" was created for this
  48         * file during truncate or unlink. Safe link is used to avoid
  49         * leakage of disk space on crash with some files open, but unlinked.
  50         */
  51        i_link_saved_unlink_mask = 0x0010,
  52        i_link_saved_truncate_mask = 0x0020,
  53
  54        i_has_xattr_dir = 0x0040,
  55        i_data_log = 0x0080,
  56} reiserfs_inode_flags;
  57
  58struct reiserfs_inode_info {
  59        __u32 i_key[4];         /* key is still 4 32 bit integers */
  60
  61        /*
  62         * transient inode flags that are never stored on disk. Bitmasks
  63         * for this field are defined above.
  64         */
  65        __u32 i_flags;
  66
  67        /* offset of first byte stored in direct item. */
  68        __u32 i_first_direct_byte;
  69
  70        /* copy of persistent inode flags read from sd_attrs. */
  71        __u32 i_attrs;
  72
  73        /* first unused block of a sequence of unused blocks */
  74        int i_prealloc_block;
  75        int i_prealloc_count;   /* length of that sequence */
  76
  77        /* per-transaction list of inodes which  have preallocated blocks */
  78        struct list_head i_prealloc_list;
  79
  80        /*
  81         * new_packing_locality is created; new blocks for the contents
  82         * of this directory should be displaced
  83         */
  84        unsigned new_packing_locality:1;
  85
  86        /*
  87         * we use these for fsync or O_SYNC to decide which transaction
  88         * needs to be committed in order for this inode to be properly
  89         * flushed
  90         */
  91        unsigned int i_trans_id;
  92
  93        struct reiserfs_journal_list *i_jl;
  94        atomic_t openers;
  95        struct mutex tailpack;
  96#ifdef CONFIG_REISERFS_FS_XATTR
  97        struct rw_semaphore i_xattr_sem;
  98#endif
  99#ifdef CONFIG_QUOTA
 100        struct dquot *i_dquot[MAXQUOTAS];
 101#endif
 102
 103        struct inode vfs_inode;
 104};
 105
 106typedef enum {
 107        reiserfs_attrs_cleared = 0x00000001,
 108} reiserfs_super_block_flags;
 109
 110/*
 111 * struct reiserfs_super_block accessors/mutators since this is a disk
 112 * structure, it will always be in little endian format.
 113 */
 114#define sb_block_count(sbp)         (le32_to_cpu((sbp)->s_v1.s_block_count))
 115#define set_sb_block_count(sbp,v)   ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
 116#define sb_free_blocks(sbp)         (le32_to_cpu((sbp)->s_v1.s_free_blocks))
 117#define set_sb_free_blocks(sbp,v)   ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
 118#define sb_root_block(sbp)          (le32_to_cpu((sbp)->s_v1.s_root_block))
 119#define set_sb_root_block(sbp,v)    ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
 120
 121#define sb_jp_journal_1st_block(sbp)  \
 122              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block))
 123#define set_sb_jp_journal_1st_block(sbp,v) \
 124              ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v))
 125#define sb_jp_journal_dev(sbp) \
 126              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev))
 127#define set_sb_jp_journal_dev(sbp,v) \
 128              ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v))
 129#define sb_jp_journal_size(sbp) \
 130              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size))
 131#define set_sb_jp_journal_size(sbp,v) \
 132              ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v))
 133#define sb_jp_journal_trans_max(sbp) \
 134              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max))
 135#define set_sb_jp_journal_trans_max(sbp,v) \
 136              ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v))
 137#define sb_jp_journal_magic(sbp) \
 138              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic))
 139#define set_sb_jp_journal_magic(sbp,v) \
 140              ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v))
 141#define sb_jp_journal_max_batch(sbp) \
 142              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch))
 143#define set_sb_jp_journal_max_batch(sbp,v) \
 144              ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v))
 145#define sb_jp_jourmal_max_commit_age(sbp) \
 146              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age))
 147#define set_sb_jp_journal_max_commit_age(sbp,v) \
 148              ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v))
 149
 150#define sb_blocksize(sbp)          (le16_to_cpu((sbp)->s_v1.s_blocksize))
 151#define set_sb_blocksize(sbp,v)    ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
 152#define sb_oid_maxsize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
 153#define set_sb_oid_maxsize(sbp,v)  ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
 154#define sb_oid_cursize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
 155#define set_sb_oid_cursize(sbp,v)  ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
 156#define sb_umount_state(sbp)       (le16_to_cpu((sbp)->s_v1.s_umount_state))
 157#define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
 158#define sb_fs_state(sbp)           (le16_to_cpu((sbp)->s_v1.s_fs_state))
 159#define set_sb_fs_state(sbp,v)     ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
 160#define sb_hash_function_code(sbp) \
 161              (le32_to_cpu((sbp)->s_v1.s_hash_function_code))
 162#define set_sb_hash_function_code(sbp,v) \
 163              ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v))
 164#define sb_tree_height(sbp)        (le16_to_cpu((sbp)->s_v1.s_tree_height))
 165#define set_sb_tree_height(sbp,v)  ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
 166#define sb_bmap_nr(sbp)            (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
 167#define set_sb_bmap_nr(sbp,v)      ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
 168#define sb_version(sbp)            (le16_to_cpu((sbp)->s_v1.s_version))
 169#define set_sb_version(sbp,v)      ((sbp)->s_v1.s_version = cpu_to_le16(v))
 170
 171#define sb_mnt_count(sbp)          (le16_to_cpu((sbp)->s_mnt_count))
 172#define set_sb_mnt_count(sbp, v)   ((sbp)->s_mnt_count = cpu_to_le16(v))
 173
 174#define sb_reserved_for_journal(sbp) \
 175              (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal))
 176#define set_sb_reserved_for_journal(sbp,v) \
 177              ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v))
 178
 179/* LOGGING -- */
 180
 181/*
 182 * These all interelate for performance.
 183 *
 184 * If the journal block count is smaller than n transactions, you lose speed.
 185 * I don't know what n is yet, I'm guessing 8-16.
 186 *
 187 * typical transaction size depends on the application, how often fsync is
 188 * called, and how many metadata blocks you dirty in a 30 second period.
 189 * The more small files (<16k) you use, the larger your transactions will
 190 * be.
 191 *
 192 * If your journal fills faster than dirty buffers get flushed to disk, it
 193 * must flush them before allowing the journal to wrap, which slows things
 194 * down.  If you need high speed meta data updates, the journal should be
 195 * big enough to prevent wrapping before dirty meta blocks get to disk.
 196 *
 197 * If the batch max is smaller than the transaction max, you'll waste space
 198 * at the end of the journal because journal_end sets the next transaction
 199 * to start at 0 if the next transaction has any chance of wrapping.
 200 *
 201 * The large the batch max age, the better the speed, and the more meta
 202 * data changes you'll lose after a crash.
 203 */
 204
 205/* don't mess with these for a while */
 206/* we have a node size define somewhere in reiserfs_fs.h. -Hans */
 207#define JOURNAL_BLOCK_SIZE  4096        /* BUG gotta get rid of this */
 208#define JOURNAL_MAX_CNODE   1500        /* max cnodes to allocate. */
 209#define JOURNAL_HASH_SIZE 8192
 210
 211/* number of copies of the bitmaps to have floating.  Must be >= 2 */
 212#define JOURNAL_NUM_BITMAPS 5
 213
 214/*
 215 * One of these for every block in every transaction
 216 * Each one is in two hash tables.  First, a hash of the current transaction,
 217 * and after journal_end, a hash of all the in memory transactions.
 218 * next and prev are used by the current transaction (journal_hash).
 219 * hnext and hprev are used by journal_list_hash.  If a block is in more
 220 * than one transaction, the journal_list_hash links it in multiple times.
 221 * This allows flush_journal_list to remove just the cnode belonging to a
 222 * given transaction.
 223 */
 224struct reiserfs_journal_cnode {
 225        struct buffer_head *bh; /* real buffer head */
 226        struct super_block *sb; /* dev of real buffer head */
 227
 228        /* block number of real buffer head, == 0 when buffer on disk */
 229        __u32 blocknr;
 230
 231        unsigned long state;
 232
 233        /* journal list this cnode lives in */
 234        struct reiserfs_journal_list *jlist;
 235
 236        struct reiserfs_journal_cnode *next;    /* next in transaction list */
 237        struct reiserfs_journal_cnode *prev;    /* prev in transaction list */
 238        struct reiserfs_journal_cnode *hprev;   /* prev in hash list */
 239        struct reiserfs_journal_cnode *hnext;   /* next in hash list */
 240};
 241
 242struct reiserfs_bitmap_node {
 243        int id;
 244        char *data;
 245        struct list_head list;
 246};
 247
 248struct reiserfs_list_bitmap {
 249        struct reiserfs_journal_list *journal_list;
 250        struct reiserfs_bitmap_node **bitmaps;
 251};
 252
 253/*
 254 * one of these for each transaction.  The most important part here is the
 255 * j_realblock.  this list of cnodes is used to hash all the blocks in all
 256 * the commits, to mark all the real buffer heads dirty once all the commits
 257 * hit the disk, and to make sure every real block in a transaction is on
 258 * disk before allowing the log area to be overwritten
 259 */
 260struct reiserfs_journal_list {
 261        unsigned long j_start;
 262        unsigned long j_state;
 263        unsigned long j_len;
 264        atomic_t j_nonzerolen;
 265        atomic_t j_commit_left;
 266
 267        /* all commits older than this on disk */
 268        atomic_t j_older_commits_done;
 269
 270        struct mutex j_commit_mutex;
 271        unsigned int j_trans_id;
 272        time64_t j_timestamp; /* write-only but useful for crash dump analysis */
 273        struct reiserfs_list_bitmap *j_list_bitmap;
 274        struct buffer_head *j_commit_bh;        /* commit buffer head */
 275        struct reiserfs_journal_cnode *j_realblock;
 276        struct reiserfs_journal_cnode *j_freedlist;     /* list of buffers that were freed during this trans.  free each of these on flush */
 277        /* time ordered list of all active transactions */
 278        struct list_head j_list;
 279
 280        /*
 281         * time ordered list of all transactions we haven't tried
 282         * to flush yet
 283         */
 284        struct list_head j_working_list;
 285
 286        /* list of tail conversion targets in need of flush before commit */
 287        struct list_head j_tail_bh_list;
 288
 289        /* list of data=ordered buffers in need of flush before commit */
 290        struct list_head j_bh_list;
 291        int j_refcount;
 292};
 293
 294struct reiserfs_journal {
 295        struct buffer_head **j_ap_blocks;       /* journal blocks on disk */
 296        /* newest journal block */
 297        struct reiserfs_journal_cnode *j_last;
 298
 299        /* oldest journal block.  start here for traverse */
 300        struct reiserfs_journal_cnode *j_first;
 301
 302        struct block_device *j_dev_bd;
 303        fmode_t j_dev_mode;
 304
 305        /* first block on s_dev of reserved area journal */
 306        int j_1st_reserved_block;
 307
 308        unsigned long j_state;
 309        unsigned int j_trans_id;
 310        unsigned long j_mount_id;
 311
 312        /* start of current waiting commit (index into j_ap_blocks) */
 313        unsigned long j_start;
 314        unsigned long j_len;    /* length of current waiting commit */
 315
 316        /* number of buffers requested by journal_begin() */
 317        unsigned long j_len_alloc;
 318
 319        atomic_t j_wcount;      /* count of writers for current commit */
 320
 321        /* batch count. allows turning X transactions into 1 */
 322        unsigned long j_bcount;
 323
 324        /* first unflushed transactions offset */
 325        unsigned long j_first_unflushed_offset;
 326
 327        /* last fully flushed journal timestamp */
 328        unsigned j_last_flush_trans_id;
 329
 330        struct buffer_head *j_header_bh;
 331
 332        time64_t j_trans_start_time;    /* time this transaction started */
 333        struct mutex j_mutex;
 334        struct mutex j_flush_mutex;
 335
 336        /* wait for current transaction to finish before starting new one */
 337        wait_queue_head_t j_join_wait;
 338
 339        atomic_t j_jlock;               /* lock for j_join_wait */
 340        int j_list_bitmap_index;        /* number of next list bitmap to use */
 341
 342        /* no more journal begins allowed. MUST sleep on j_join_wait */
 343        int j_must_wait;
 344
 345        /* next journal_end will flush all journal list */
 346        int j_next_full_flush;
 347
 348        /* next journal_end will flush all async commits */
 349        int j_next_async_flush;
 350
 351        int j_cnode_used;       /* number of cnodes on the used list */
 352        int j_cnode_free;       /* number of cnodes on the free list */
 353
 354        /* max number of blocks in a transaction.  */
 355        unsigned int j_trans_max;
 356
 357        /* max number of blocks to batch into a trans */
 358        unsigned int j_max_batch;
 359
 360        /* in seconds, how old can an async commit be */
 361        unsigned int j_max_commit_age;
 362
 363        /* in seconds, how old can a transaction be */
 364        unsigned int j_max_trans_age;
 365
 366        /* the default for the max commit age */
 367        unsigned int j_default_max_commit_age;
 368
 369        struct reiserfs_journal_cnode *j_cnode_free_list;
 370
 371        /* orig pointer returned from vmalloc */
 372        struct reiserfs_journal_cnode *j_cnode_free_orig;
 373
 374        struct reiserfs_journal_list *j_current_jl;
 375        int j_free_bitmap_nodes;
 376        int j_used_bitmap_nodes;
 377
 378        int j_num_lists;        /* total number of active transactions */
 379        int j_num_work_lists;   /* number that need attention from kreiserfsd */
 380
 381        /* debugging to make sure things are flushed in order */
 382        unsigned int j_last_flush_id;
 383
 384        /* debugging to make sure things are committed in order */
 385        unsigned int j_last_commit_id;
 386
 387        struct list_head j_bitmap_nodes;
 388        struct list_head j_dirty_buffers;
 389        spinlock_t j_dirty_buffers_lock;        /* protects j_dirty_buffers */
 390
 391        /* list of all active transactions */
 392        struct list_head j_journal_list;
 393
 394        /* lists that haven't been touched by writeback attempts */
 395        struct list_head j_working_list;
 396
 397        /* hash table for real buffer heads in current trans */
 398        struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE];
 399
 400        /* hash table for all the real buffer heads in all the transactions */
 401        struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE];
 402
 403        /* array of bitmaps to record the deleted blocks */
 404        struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS];
 405
 406        /* list of inodes which have preallocated blocks */
 407        struct list_head j_prealloc_list;
 408        int j_persistent_trans;
 409        unsigned long j_max_trans_size;
 410        unsigned long j_max_batch_size;
 411
 412        int j_errno;
 413
 414        /* when flushing ordered buffers, throttle new ordered writers */
 415        struct delayed_work j_work;
 416        struct super_block *j_work_sb;
 417        atomic_t j_async_throttle;
 418};
 419
 420enum journal_state_bits {
 421        J_WRITERS_BLOCKED = 1,  /* set when new writers not allowed */
 422        J_WRITERS_QUEUED,    /* set when log is full due to too many writers */
 423        J_ABORTED,           /* set when log is aborted */
 424};
 425
 426/* ick.  magic string to find desc blocks in the journal */
 427#define JOURNAL_DESC_MAGIC "ReIsErLB"
 428
 429typedef __u32(*hashf_t) (const signed char *, int);
 430
 431struct reiserfs_bitmap_info {
 432        __u32 free_count;
 433};
 434
 435struct proc_dir_entry;
 436
 437#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
 438typedef unsigned long int stat_cnt_t;
 439typedef struct reiserfs_proc_info_data {
 440        spinlock_t lock;
 441        int exiting;
 442        int max_hash_collisions;
 443
 444        stat_cnt_t breads;
 445        stat_cnt_t bread_miss;
 446        stat_cnt_t search_by_key;
 447        stat_cnt_t search_by_key_fs_changed;
 448        stat_cnt_t search_by_key_restarted;
 449
 450        stat_cnt_t insert_item_restarted;
 451        stat_cnt_t paste_into_item_restarted;
 452        stat_cnt_t cut_from_item_restarted;
 453        stat_cnt_t delete_solid_item_restarted;
 454        stat_cnt_t delete_item_restarted;
 455
 456        stat_cnt_t leaked_oid;
 457        stat_cnt_t leaves_removable;
 458
 459        /*
 460         * balances per level.
 461         * Use explicit 5 as MAX_HEIGHT is not visible yet.
 462         */
 463        stat_cnt_t balance_at[5];       /* XXX */
 464        /* sbk == search_by_key */
 465        stat_cnt_t sbk_read_at[5];      /* XXX */
 466        stat_cnt_t sbk_fs_changed[5];
 467        stat_cnt_t sbk_restarted[5];
 468        stat_cnt_t items_at[5]; /* XXX */
 469        stat_cnt_t free_at[5];  /* XXX */
 470        stat_cnt_t can_node_be_removed[5];      /* XXX */
 471        long int lnum[5];       /* XXX */
 472        long int rnum[5];       /* XXX */
 473        long int lbytes[5];     /* XXX */
 474        long int rbytes[5];     /* XXX */
 475        stat_cnt_t get_neighbors[5];
 476        stat_cnt_t get_neighbors_restart[5];
 477        stat_cnt_t need_l_neighbor[5];
 478        stat_cnt_t need_r_neighbor[5];
 479
 480        stat_cnt_t free_block;
 481        struct __scan_bitmap_stats {
 482                stat_cnt_t call;
 483                stat_cnt_t wait;
 484                stat_cnt_t bmap;
 485                stat_cnt_t retry;
 486                stat_cnt_t in_journal_hint;
 487                stat_cnt_t in_journal_nohint;
 488                stat_cnt_t stolen;
 489        } scan_bitmap;
 490        struct __journal_stats {
 491                stat_cnt_t in_journal;
 492                stat_cnt_t in_journal_bitmap;
 493                stat_cnt_t in_journal_reusable;
 494                stat_cnt_t lock_journal;
 495                stat_cnt_t lock_journal_wait;
 496                stat_cnt_t journal_being;
 497                stat_cnt_t journal_relock_writers;
 498                stat_cnt_t journal_relock_wcount;
 499                stat_cnt_t mark_dirty;
 500                stat_cnt_t mark_dirty_already;
 501                stat_cnt_t mark_dirty_notjournal;
 502                stat_cnt_t restore_prepared;
 503                stat_cnt_t prepare;
 504                stat_cnt_t prepare_retry;
 505        } journal;
 506} reiserfs_proc_info_data_t;
 507#else
 508typedef struct reiserfs_proc_info_data {
 509} reiserfs_proc_info_data_t;
 510#endif
 511
 512/* Number of quota types we support */
 513#define REISERFS_MAXQUOTAS 2
 514
 515/* reiserfs union of in-core super block data */
 516struct reiserfs_sb_info {
 517        /* Buffer containing the super block */
 518        struct buffer_head *s_sbh;
 519
 520        /* Pointer to the on-disk super block in the buffer */
 521        struct reiserfs_super_block *s_rs;
 522        struct reiserfs_bitmap_info *s_ap_bitmap;
 523
 524        /* pointer to journal information */
 525        struct reiserfs_journal *s_journal;
 526
 527        unsigned short s_mount_state;   /* reiserfs state (valid, invalid) */
 528
 529        /* Serialize writers access, replace the old bkl */
 530        struct mutex lock;
 531
 532        /* Owner of the lock (can be recursive) */
 533        struct task_struct *lock_owner;
 534
 535        /* Depth of the lock, start from -1 like the bkl */
 536        int lock_depth;
 537
 538        struct workqueue_struct *commit_wq;
 539
 540        /* Comment? -Hans */
 541        void (*end_io_handler) (struct buffer_head *, int);
 542
 543        /*
 544         * pointer to function which is used to sort names in directory.
 545         * Set on mount
 546         */
 547        hashf_t s_hash_function;
 548
 549        /* reiserfs's mount options are set here */
 550        unsigned long s_mount_opt;
 551
 552        /* This is a structure that describes block allocator options */
 553        struct {
 554                /* Bitfield for enable/disable kind of options */
 555                unsigned long bits;
 556
 557                /*
 558                 * size started from which we consider file
 559                 * to be a large one (in blocks)
 560                 */
 561                unsigned long large_file_size;
 562
 563                int border;     /* percentage of disk, border takes */
 564
 565                /*
 566                 * Minimal file size (in blocks) starting
 567                 * from which we do preallocations
 568                 */
 569                int preallocmin;
 570
 571                /*
 572                 * Number of blocks we try to prealloc when file
 573                 * reaches preallocmin size (in blocks) or prealloc_list
 574                 is empty.
 575                 */
 576                int preallocsize;
 577        } s_alloc_options;
 578
 579        /* Comment? -Hans */
 580        wait_queue_head_t s_wait;
 581        /* increased by one every time the  tree gets re-balanced */
 582        atomic_t s_generation_counter;
 583
 584        /* File system properties. Currently holds on-disk FS format */
 585        unsigned long s_properties;
 586
 587        /* session statistics */
 588        int s_disk_reads;
 589        int s_disk_writes;
 590        int s_fix_nodes;
 591        int s_do_balance;
 592        int s_unneeded_left_neighbor;
 593        int s_good_search_by_key_reada;
 594        int s_bmaps;
 595        int s_bmaps_without_search;
 596        int s_direct2indirect;
 597        int s_indirect2direct;
 598
 599        /*
 600         * set up when it's ok for reiserfs_read_inode2() to read from
 601         * disk inode with nlink==0. Currently this is only used during
 602         * finish_unfinished() processing at mount time
 603         */
 604        int s_is_unlinked_ok;
 605
 606        reiserfs_proc_info_data_t s_proc_info_data;
 607        struct proc_dir_entry *procdir;
 608
 609        /* amount of blocks reserved for further allocations */
 610        int reserved_blocks;
 611
 612
 613        /* this lock on now only used to protect reserved_blocks variable */
 614        spinlock_t bitmap_lock;
 615        struct dentry *priv_root;       /* root of /.reiserfs_priv */
 616        struct dentry *xattr_root;      /* root of /.reiserfs_priv/xattrs */
 617        int j_errno;
 618
 619        int work_queued;              /* non-zero delayed work is queued */
 620        struct delayed_work old_work; /* old transactions flush delayed work */
 621        spinlock_t old_work_lock;     /* protects old_work and work_queued */
 622
 623#ifdef CONFIG_QUOTA
 624        char *s_qf_names[REISERFS_MAXQUOTAS];
 625        int s_jquota_fmt;
 626#endif
 627        char *s_jdev;           /* Stored jdev for mount option showing */
 628#ifdef CONFIG_REISERFS_CHECK
 629
 630        /*
 631         * Detects whether more than one copy of tb exists per superblock
 632         * as a means of checking whether do_balance is executing
 633         * concurrently against another tree reader/writer on a same
 634         * mount point.
 635         */
 636        struct tree_balance *cur_tb;
 637#endif
 638};
 639
 640/* Definitions of reiserfs on-disk properties: */
 641#define REISERFS_3_5 0
 642#define REISERFS_3_6 1
 643#define REISERFS_OLD_FORMAT 2
 644
 645/* Mount options */
 646enum reiserfs_mount_options {
 647        /* large tails will be created in a session */
 648        REISERFS_LARGETAIL,
 649        /*
 650         * small (for files less than block size) tails will
 651         * be created in a session
 652         */
 653        REISERFS_SMALLTAIL,
 654
 655        /* replay journal and return 0. Use by fsck */
 656        REPLAYONLY,
 657
 658        /*
 659         * -o conv: causes conversion of old format super block to the
 660         * new format. If not specified - old partition will be dealt
 661         * with in a manner of 3.5.x
 662         */
 663        REISERFS_CONVERT,
 664
 665        /*
 666         * -o hash={tea, rupasov, r5, detect} is meant for properly mounting
 667         * reiserfs disks from 3.5.19 or earlier.  99% of the time, this
 668         * option is not required.  If the normal autodection code can't
 669         * determine which hash to use (because both hashes had the same
 670         * value for a file) use this option to force a specific hash.
 671         * It won't allow you to override the existing hash on the FS, so
 672         * if you have a tea hash disk, and mount with -o hash=rupasov,
 673         * the mount will fail.
 674         */
 675        FORCE_TEA_HASH,         /* try to force tea hash on mount */
 676        FORCE_RUPASOV_HASH,     /* try to force rupasov hash on mount */
 677        FORCE_R5_HASH,          /* try to force rupasov hash on mount */
 678        FORCE_HASH_DETECT,      /* try to detect hash function on mount */
 679
 680        REISERFS_DATA_LOG,
 681        REISERFS_DATA_ORDERED,
 682        REISERFS_DATA_WRITEBACK,
 683
 684        /*
 685         * used for testing experimental features, makes benchmarking new
 686         * features with and without more convenient, should never be used by
 687         * users in any code shipped to users (ideally)
 688         */
 689
 690        REISERFS_NO_BORDER,
 691        REISERFS_NO_UNHASHED_RELOCATION,
 692        REISERFS_HASHED_RELOCATION,
 693        REISERFS_ATTRS,
 694        REISERFS_XATTRS_USER,
 695        REISERFS_POSIXACL,
 696        REISERFS_EXPOSE_PRIVROOT,
 697        REISERFS_BARRIER_NONE,
 698        REISERFS_BARRIER_FLUSH,
 699
 700        /* Actions on error */
 701        REISERFS_ERROR_PANIC,
 702        REISERFS_ERROR_RO,
 703        REISERFS_ERROR_CONTINUE,
 704
 705        REISERFS_USRQUOTA,      /* User quota option specified */
 706        REISERFS_GRPQUOTA,      /* Group quota option specified */
 707
 708        REISERFS_TEST1,
 709        REISERFS_TEST2,
 710        REISERFS_TEST3,
 711        REISERFS_TEST4,
 712        REISERFS_UNSUPPORTED_OPT,
 713};
 714
 715#define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
 716#define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
 717#define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
 718#define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
 719#define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
 720#define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
 721#define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
 722#define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
 723
 724#define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
 725#define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
 726#define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
 727#define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
 728#define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
 729#define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
 730#define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
 731#define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
 732#define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
 733#define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
 734#define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
 735#define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
 736#define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
 737#define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
 738#define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
 739
 740#define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
 741#define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
 742
 743void reiserfs_file_buffer(struct buffer_head *bh, int list);
 744extern struct file_system_type reiserfs_fs_type;
 745int reiserfs_resize(struct super_block *, unsigned long);
 746
 747#define CARRY_ON                0
 748#define SCHEDULE_OCCURRED       1
 749
 750#define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
 751#define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
 752#define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
 753#define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
 754#define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
 755
 756#define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
 757
 758#define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
 759static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
 760                                                *journal)
 761{
 762        return test_bit(J_ABORTED, &journal->j_state);
 763}
 764
 765/*
 766 * Locking primitives. The write lock is a per superblock
 767 * special mutex that has properties close to the Big Kernel Lock
 768 * which was used in the previous locking scheme.
 769 */
 770void reiserfs_write_lock(struct super_block *s);
 771void reiserfs_write_unlock(struct super_block *s);
 772int __must_check reiserfs_write_unlock_nested(struct super_block *s);
 773void reiserfs_write_lock_nested(struct super_block *s, int depth);
 774
 775#ifdef CONFIG_REISERFS_CHECK
 776void reiserfs_lock_check_recursive(struct super_block *s);
 777#else
 778static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
 779#endif
 780
 781/*
 782 * Several mutexes depend on the write lock.
 783 * However sometimes we want to relax the write lock while we hold
 784 * these mutexes, according to the release/reacquire on schedule()
 785 * properties of the Bkl that were used.
 786 * Reiserfs performances and locking were based on this scheme.
 787 * Now that the write lock is a mutex and not the bkl anymore, doing so
 788 * may result in a deadlock:
 789 *
 790 * A acquire write_lock
 791 * A acquire j_commit_mutex
 792 * A release write_lock and wait for something
 793 * B acquire write_lock
 794 * B can't acquire j_commit_mutex and sleep
 795 * A can't acquire write lock anymore
 796 * deadlock
 797 *
 798 * What we do here is avoiding such deadlock by playing the same game
 799 * than the Bkl: if we can't acquire a mutex that depends on the write lock,
 800 * we release the write lock, wait a bit and then retry.
 801 *
 802 * The mutexes concerned by this hack are:
 803 * - The commit mutex of a journal list
 804 * - The flush mutex
 805 * - The journal lock
 806 * - The inode mutex
 807 */
 808static inline void reiserfs_mutex_lock_safe(struct mutex *m,
 809                                            struct super_block *s)
 810{
 811        int depth;
 812
 813        depth = reiserfs_write_unlock_nested(s);
 814        mutex_lock(m);
 815        reiserfs_write_lock_nested(s, depth);
 816}
 817
 818static inline void
 819reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
 820                                struct super_block *s)
 821{
 822        int depth;
 823
 824        depth = reiserfs_write_unlock_nested(s);
 825        mutex_lock_nested(m, subclass);
 826        reiserfs_write_lock_nested(s, depth);
 827}
 828
 829static inline void
 830reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
 831{
 832       int depth;
 833       depth = reiserfs_write_unlock_nested(s);
 834       down_read(sem);
 835       reiserfs_write_lock_nested(s, depth);
 836}
 837
 838/*
 839 * When we schedule, we usually want to also release the write lock,
 840 * according to the previous bkl based locking scheme of reiserfs.
 841 */
 842static inline void reiserfs_cond_resched(struct super_block *s)
 843{
 844        if (need_resched()) {
 845                int depth;
 846
 847                depth = reiserfs_write_unlock_nested(s);
 848                schedule();
 849                reiserfs_write_lock_nested(s, depth);
 850        }
 851}
 852
 853struct fid;
 854
 855/*
 856 * in reading the #defines, it may help to understand that they employ
 857 *  the following abbreviations:
 858 *
 859 *  B = Buffer
 860 *  I = Item header
 861 *  H = Height within the tree (should be changed to LEV)
 862 *  N = Number of the item in the node
 863 *  STAT = stat data
 864 *  DEH = Directory Entry Header
 865 *  EC = Entry Count
 866 *  E = Entry number
 867 *  UL = Unsigned Long
 868 *  BLKH = BLocK Header
 869 *  UNFM = UNForMatted node
 870 *  DC = Disk Child
 871 *  P = Path
 872 *
 873 *  These #defines are named by concatenating these abbreviations,
 874 *  where first comes the arguments, and last comes the return value,
 875 *  of the macro.
 876 */
 877
 878#define USE_INODE_GENERATION_COUNTER
 879
 880#define REISERFS_PREALLOCATE
 881#define DISPLACE_NEW_PACKING_LOCALITIES
 882#define PREALLOCATION_SIZE 9
 883
 884/* n must be power of 2 */
 885#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
 886
 887/*
 888 * to be ok for alpha and others we have to align structures to 8 byte
 889 * boundary.
 890 * FIXME: do not change 4 by anything else: there is code which relies on that
 891 */
 892#define ROUND_UP(x) _ROUND_UP(x,8LL)
 893
 894/*
 895 * debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
 896 * messages.
 897 */
 898#define REISERFS_DEBUG_CODE 5   /* extra messages to help find/debug errors */
 899
 900void __reiserfs_warning(struct super_block *s, const char *id,
 901                         const char *func, const char *fmt, ...);
 902#define reiserfs_warning(s, id, fmt, args...) \
 903         __reiserfs_warning(s, id, __func__, fmt, ##args)
 904/* assertions handling */
 905
 906/* always check a condition and panic if it's false. */
 907#define __RASSERT(cond, scond, format, args...)                 \
 908do {                                                                    \
 909        if (!(cond))                                                    \
 910                reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
 911                               __FILE__ ":%i:%s: " format "\n",         \
 912                               __LINE__, __func__ , ##args);            \
 913} while (0)
 914
 915#define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
 916
 917#if defined( CONFIG_REISERFS_CHECK )
 918#define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
 919#else
 920#define RFALSE( cond, format, args... ) do {;} while( 0 )
 921#endif
 922
 923#define CONSTF __attribute_const__
 924/*
 925 * Disk Data Structures
 926 */
 927
 928/***************************************************************************
 929 *                             SUPER BLOCK                                 *
 930 ***************************************************************************/
 931
 932/*
 933 * Structure of super block on disk, a version of which in RAM is often
 934 * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger
 935 * structure containing fields never written to disk.
 936 */
 937#define UNSET_HASH 0    /* Detect hash on disk */
 938#define TEA_HASH  1
 939#define YURA_HASH 2
 940#define R5_HASH   3
 941#define DEFAULT_HASH R5_HASH
 942
 943struct journal_params {
 944        /* where does journal start from on its * device */
 945        __le32 jp_journal_1st_block;
 946
 947        /* journal device st_rdev */
 948        __le32 jp_journal_dev;
 949
 950        /* size of the journal */
 951        __le32 jp_journal_size;
 952
 953        /* max number of blocks in a transaction. */
 954        __le32 jp_journal_trans_max;
 955
 956        /*
 957         * random value made on fs creation
 958         * (this was sb_journal_block_count)
 959         */
 960        __le32 jp_journal_magic;
 961
 962        /* max number of blocks to batch into a trans */
 963        __le32 jp_journal_max_batch;
 964
 965        /* in seconds, how old can an async  commit be */
 966        __le32 jp_journal_max_commit_age;
 967
 968        /* in seconds, how old can a transaction be */
 969        __le32 jp_journal_max_trans_age;
 970};
 971
 972/* this is the super from 3.5.X, where X >= 10 */
 973struct reiserfs_super_block_v1 {
 974        __le32 s_block_count;   /* blocks count         */
 975        __le32 s_free_blocks;   /* free blocks count    */
 976        __le32 s_root_block;    /* root block number    */
 977        struct journal_params s_journal;
 978        __le16 s_blocksize;     /* block size */
 979
 980        /* max size of object id array, see get_objectid() commentary  */
 981        __le16 s_oid_maxsize;
 982        __le16 s_oid_cursize;   /* current size of object id array */
 983
 984        /* this is set to 1 when filesystem was umounted, to 2 - when not */
 985        __le16 s_umount_state;
 986
 987        /*
 988         * reiserfs magic string indicates that file system is reiserfs:
 989         * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs"
 990         */
 991        char s_magic[10];
 992
 993        /*
 994         * it is set to used by fsck to mark which
 995         * phase of rebuilding is done
 996         */
 997        __le16 s_fs_state;
 998        /*
 999         * indicate, what hash function is being use
1000         * to sort names in a directory
1001         */
1002        __le32 s_hash_function_code;
1003        __le16 s_tree_height;   /* height of disk tree */
1004
1005        /*
1006         * amount of bitmap blocks needed to address
1007         * each block of file system
1008         */
1009        __le16 s_bmap_nr;
1010
1011        /*
1012         * this field is only reliable on filesystem with non-standard journal
1013         */
1014        __le16 s_version;
1015
1016        /*
1017         * size in blocks of journal area on main device, we need to
1018         * keep after making fs with non-standard journal
1019         */
1020        __le16 s_reserved_for_journal;
1021} __attribute__ ((__packed__));
1022
1023#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
1024
1025/* this is the on disk super block */
1026struct reiserfs_super_block {
1027        struct reiserfs_super_block_v1 s_v1;
1028        __le32 s_inode_generation;
1029
1030        /* Right now used only by inode-attributes, if enabled */
1031        __le32 s_flags;
1032
1033        unsigned char s_uuid[16];       /* filesystem unique identifier */
1034        unsigned char s_label[16];      /* filesystem volume label */
1035        __le16 s_mnt_count;             /* Count of mounts since last fsck */
1036        __le16 s_max_mnt_count;         /* Maximum mounts before check */
1037        __le32 s_lastcheck;             /* Timestamp of last fsck */
1038        __le32 s_check_interval;        /* Interval between checks */
1039
1040        /*
1041         * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1()
1042         * so any additions must be updated there as well. */
1043        char s_unused[76];
1044} __attribute__ ((__packed__));
1045
1046#define SB_SIZE (sizeof(struct reiserfs_super_block))
1047
1048#define REISERFS_VERSION_1 0
1049#define REISERFS_VERSION_2 2
1050
1051/* on-disk super block fields converted to cpu form */
1052#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
1053#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
1054#define SB_BLOCKSIZE(s) \
1055        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
1056#define SB_BLOCK_COUNT(s) \
1057        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
1058#define SB_FREE_BLOCKS(s) \
1059        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
1060#define SB_REISERFS_MAGIC(s) \
1061        (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
1062#define SB_ROOT_BLOCK(s) \
1063        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
1064#define SB_TREE_HEIGHT(s) \
1065        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
1066#define SB_REISERFS_STATE(s) \
1067        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
1068#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
1069#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
1070
1071#define PUT_SB_BLOCK_COUNT(s, val) \
1072   do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
1073#define PUT_SB_FREE_BLOCKS(s, val) \
1074   do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
1075#define PUT_SB_ROOT_BLOCK(s, val) \
1076   do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
1077#define PUT_SB_TREE_HEIGHT(s, val) \
1078   do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
1079#define PUT_SB_REISERFS_STATE(s, val) \
1080   do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
1081#define PUT_SB_VERSION(s, val) \
1082   do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
1083#define PUT_SB_BMAP_NR(s, val) \
1084   do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
1085
1086#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
1087#define SB_ONDISK_JOURNAL_SIZE(s) \
1088         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
1089#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
1090         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
1091#define SB_ONDISK_JOURNAL_DEVICE(s) \
1092         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
1093#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
1094         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
1095
1096#define is_block_in_log_or_reserved_area(s, block) \
1097         block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
1098         && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
1099         ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
1100         SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
1101
1102int is_reiserfs_3_5(struct reiserfs_super_block *rs);
1103int is_reiserfs_3_6(struct reiserfs_super_block *rs);
1104int is_reiserfs_jr(struct reiserfs_super_block *rs);
1105
1106/*
1107 * ReiserFS leaves the first 64k unused, so that partition labels have
1108 * enough space.  If someone wants to write a fancy bootloader that
1109 * needs more than 64k, let us know, and this will be increased in size.
1110 * This number must be larger than the largest block size on any
1111 * platform, or code will break.  -Hans
1112 */
1113#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
1114#define REISERFS_FIRST_BLOCK unused_define
1115#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
1116
1117/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
1118#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
1119
1120/* reiserfs internal error code (used by search_by_key and fix_nodes)) */
1121#define CARRY_ON      0
1122#define REPEAT_SEARCH -1
1123#define IO_ERROR      -2
1124#define NO_DISK_SPACE -3
1125#define NO_BALANCING_NEEDED  (-4)
1126#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
1127#define QUOTA_EXCEEDED -6
1128
1129typedef __u32 b_blocknr_t;
1130typedef __le32 unp_t;
1131
1132struct unfm_nodeinfo {
1133        unp_t unfm_nodenum;
1134        unsigned short unfm_freespace;
1135};
1136
1137/* there are two formats of keys: 3.5 and 3.6 */
1138#define KEY_FORMAT_3_5 0
1139#define KEY_FORMAT_3_6 1
1140
1141/* there are two stat datas */
1142#define STAT_DATA_V1 0
1143#define STAT_DATA_V2 1
1144
1145static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
1146{
1147        return container_of(inode, struct reiserfs_inode_info, vfs_inode);
1148}
1149
1150static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
1151{
1152        return sb->s_fs_info;
1153}
1154
1155/*
1156 * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
1157 * which overflows on large file systems.
1158 */
1159static inline __u32 reiserfs_bmap_count(struct super_block *sb)
1160{
1161        return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
1162}
1163
1164static inline int bmap_would_wrap(unsigned bmap_nr)
1165{
1166        return bmap_nr > ((1LL << 16) - 1);
1167}
1168
1169extern const struct xattr_handler *reiserfs_xattr_handlers[];
1170
1171/*
1172 * this says about version of key of all items (but stat data) the
1173 * object consists of
1174 */
1175#define get_inode_item_key_version( inode )                                    \
1176    ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
1177
1178#define set_inode_item_key_version( inode, version )                           \
1179         ({ if((version)==KEY_FORMAT_3_6)                                      \
1180                REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
1181            else                                                               \
1182                REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
1183
1184#define get_inode_sd_version(inode)                                            \
1185    ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
1186
1187#define set_inode_sd_version(inode, version)                                   \
1188         ({ if((version)==STAT_DATA_V2)                                        \
1189                REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
1190            else                                                               \
1191                REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
1192
1193/*
1194 * This is an aggressive tail suppression policy, I am hoping it
1195 * improves our benchmarks. The principle behind it is that percentage
1196 * space saving is what matters, not absolute space saving.  This is
1197 * non-intuitive, but it helps to understand it if you consider that the
1198 * cost to access 4 blocks is not much more than the cost to access 1
1199 * block, if you have to do a seek and rotate.  A tail risks a
1200 * non-linear disk access that is significant as a percentage of total
1201 * time cost for a 4 block file and saves an amount of space that is
1202 * less significant as a percentage of space, or so goes the hypothesis.
1203 * -Hans
1204 */
1205#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
1206(\
1207  (!(n_tail_size)) || \
1208  (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
1209   ( (n_file_size) >= (n_block_size) * 4 ) || \
1210   ( ( (n_file_size) >= (n_block_size) * 3 ) && \
1211     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
1212   ( ( (n_file_size) >= (n_block_size) * 2 ) && \
1213     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
1214   ( ( (n_file_size) >= (n_block_size) ) && \
1215     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
1216)
1217
1218/*
1219 * Another strategy for tails, this one means only create a tail if all the
1220 * file would fit into one DIRECT item.
1221 * Primary intention for this one is to increase performance by decreasing
1222 * seeking.
1223*/
1224#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
1225(\
1226  (!(n_tail_size)) || \
1227  (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
1228)
1229
1230/*
1231 * values for s_umount_state field
1232 */
1233#define REISERFS_VALID_FS    1
1234#define REISERFS_ERROR_FS    2
1235
1236/*
1237 * there are 5 item types currently
1238 */
1239#define TYPE_STAT_DATA 0
1240#define TYPE_INDIRECT 1
1241#define TYPE_DIRECT 2
1242#define TYPE_DIRENTRY 3
1243#define TYPE_MAXTYPE 3
1244#define TYPE_ANY 15             /* FIXME: comment is required */
1245
1246/***************************************************************************
1247 *                       KEY & ITEM HEAD                                   *
1248 ***************************************************************************/
1249
1250/* * directories use this key as well as old files */
1251struct offset_v1 {
1252        __le32 k_offset;
1253        __le32 k_uniqueness;
1254} __attribute__ ((__packed__));
1255
1256struct offset_v2 {
1257        __le64 v;
1258} __attribute__ ((__packed__));
1259
1260static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
1261{
1262        __u8 type = le64_to_cpu(v2->v) >> 60;
1263        return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
1264}
1265
1266static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
1267{
1268        v2->v =
1269            (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
1270}
1271
1272static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
1273{
1274        return le64_to_cpu(v2->v) & (~0ULL >> 4);
1275}
1276
1277static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
1278{
1279        offset &= (~0ULL >> 4);
1280        v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
1281}
1282
1283/*
1284 * Key of an item determines its location in the S+tree, and
1285 * is composed of 4 components
1286 */
1287struct reiserfs_key {
1288        /* packing locality: by default parent directory object id */
1289        __le32 k_dir_id;
1290
1291        __le32 k_objectid;      /* object identifier */
1292        union {
1293                struct offset_v1 k_offset_v1;
1294                struct offset_v2 k_offset_v2;
1295        } __attribute__ ((__packed__)) u;
1296} __attribute__ ((__packed__));
1297
1298struct in_core_key {
1299        /* packing locality: by default parent directory object id */
1300        __u32 k_dir_id;
1301        __u32 k_objectid;       /* object identifier */
1302        __u64 k_offset;
1303        __u8 k_type;
1304};
1305
1306struct cpu_key {
1307        struct in_core_key on_disk_key;
1308        int version;
1309        /* 3 in all cases but direct2indirect and indirect2direct conversion */
1310        int key_length;
1311};
1312
1313/*
1314 * Our function for comparing keys can compare keys of different
1315 * lengths.  It takes as a parameter the length of the keys it is to
1316 * compare.  These defines are used in determining what is to be passed
1317 * to it as that parameter.
1318 */
1319#define REISERFS_FULL_KEY_LEN     4
1320#define REISERFS_SHORT_KEY_LEN    2
1321
1322/* The result of the key compare */
1323#define FIRST_GREATER 1
1324#define SECOND_GREATER -1
1325#define KEYS_IDENTICAL 0
1326#define KEY_FOUND 1
1327#define KEY_NOT_FOUND 0
1328
1329#define KEY_SIZE (sizeof(struct reiserfs_key))
1330
1331/* return values for search_by_key and clones */
1332#define ITEM_FOUND 1
1333#define ITEM_NOT_FOUND 0
1334#define ENTRY_FOUND 1
1335#define ENTRY_NOT_FOUND 0
1336#define DIRECTORY_NOT_FOUND -1
1337#define REGULAR_FILE_FOUND -2
1338#define DIRECTORY_FOUND -3
1339#define BYTE_FOUND 1
1340#define BYTE_NOT_FOUND 0
1341#define FILE_NOT_FOUND -1
1342
1343#define POSITION_FOUND 1
1344#define POSITION_NOT_FOUND 0
1345
1346/* return values for reiserfs_find_entry and search_by_entry_key */
1347#define NAME_FOUND 1
1348#define NAME_NOT_FOUND 0
1349#define GOTO_PREVIOUS_ITEM 2
1350#define NAME_FOUND_INVISIBLE 3
1351
1352/*
1353 * Everything in the filesystem is stored as a set of items.  The
1354 * item head contains the key of the item, its free space (for
1355 * indirect items) and specifies the location of the item itself
1356 * within the block.
1357 */
1358
1359struct item_head {
1360        /*
1361         * Everything in the tree is found by searching for it based on
1362         * its key.
1363         */
1364        struct reiserfs_key ih_key;
1365        union {
1366                /*
1367                 * The free space in the last unformatted node of an
1368                 * indirect item if this is an indirect item.  This
1369                 * equals 0xFFFF iff this is a direct item or stat data
1370                 * item. Note that the key, not this field, is used to
1371                 * determine the item type, and thus which field this
1372                 * union contains.
1373                 */
1374                __le16 ih_free_space_reserved;
1375
1376                /*
1377                 * Iff this is a directory item, this field equals the
1378                 * number of directory entries in the directory item.
1379                 */
1380                __le16 ih_entry_count;
1381        } __attribute__ ((__packed__)) u;
1382        __le16 ih_item_len;     /* total size of the item body */
1383
1384        /* an offset to the item body within the block */
1385        __le16 ih_item_location;
1386
1387        /*
1388         * 0 for all old items, 2 for new ones. Highest bit is set by fsck
1389         * temporary, cleaned after all done
1390         */
1391        __le16 ih_version;
1392} __attribute__ ((__packed__));
1393/* size of item header     */
1394#define IH_SIZE (sizeof(struct item_head))
1395
1396#define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
1397#define ih_version(ih)               le16_to_cpu((ih)->ih_version)
1398#define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
1399#define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
1400#define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
1401
1402#define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
1403#define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
1404#define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
1405#define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
1406#define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
1407
1408#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
1409
1410#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
1411#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
1412
1413/*
1414 * these operate on indirect items, where you've got an array of ints
1415 * at a possibly unaligned location.  These are a noop on ia32
1416 *
1417 * p is the array of __u32, i is the index into the array, v is the value
1418 * to store there.
1419 */
1420#define get_block_num(p, i) get_unaligned_le32((p) + (i))
1421#define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
1422
1423/* * in old version uniqueness field shows key type */
1424#define V1_SD_UNIQUENESS 0
1425#define V1_INDIRECT_UNIQUENESS 0xfffffffe
1426#define V1_DIRECT_UNIQUENESS 0xffffffff
1427#define V1_DIRENTRY_UNIQUENESS 500
1428#define V1_ANY_UNIQUENESS 555   /* FIXME: comment is required */
1429
1430/* here are conversion routines */
1431static inline int uniqueness2type(__u32 uniqueness) CONSTF;
1432static inline int uniqueness2type(__u32 uniqueness)
1433{
1434        switch ((int)uniqueness) {
1435        case V1_SD_UNIQUENESS:
1436                return TYPE_STAT_DATA;
1437        case V1_INDIRECT_UNIQUENESS:
1438                return TYPE_INDIRECT;
1439        case V1_DIRECT_UNIQUENESS:
1440                return TYPE_DIRECT;
1441        case V1_DIRENTRY_UNIQUENESS:
1442                return TYPE_DIRENTRY;
1443        case V1_ANY_UNIQUENESS:
1444        default:
1445                return TYPE_ANY;
1446        }
1447}
1448
1449static inline __u32 type2uniqueness(int type) CONSTF;
1450static inline __u32 type2uniqueness(int type)
1451{
1452        switch (type) {
1453        case TYPE_STAT_DATA:
1454                return V1_SD_UNIQUENESS;
1455        case TYPE_INDIRECT:
1456                return V1_INDIRECT_UNIQUENESS;
1457        case TYPE_DIRECT:
1458                return V1_DIRECT_UNIQUENESS;
1459        case TYPE_DIRENTRY:
1460                return V1_DIRENTRY_UNIQUENESS;
1461        case TYPE_ANY:
1462        default:
1463                return V1_ANY_UNIQUENESS;
1464        }
1465}
1466
1467/*
1468 * key is pointer to on disk key which is stored in le, result is cpu,
1469 * there is no way to get version of object from key, so, provide
1470 * version to these defines
1471 */
1472static inline loff_t le_key_k_offset(int version,
1473                                     const struct reiserfs_key *key)
1474{
1475        return (version == KEY_FORMAT_3_5) ?
1476            le32_to_cpu(key->u.k_offset_v1.k_offset) :
1477            offset_v2_k_offset(&(key->u.k_offset_v2));
1478}
1479
1480static inline loff_t le_ih_k_offset(const struct item_head *ih)
1481{
1482        return le_key_k_offset(ih_version(ih), &(ih->ih_key));
1483}
1484
1485static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
1486{
1487        if (version == KEY_FORMAT_3_5) {
1488                loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness);
1489                return uniqueness2type(val);
1490        } else
1491                return offset_v2_k_type(&(key->u.k_offset_v2));
1492}
1493
1494static inline loff_t le_ih_k_type(const struct item_head *ih)
1495{
1496        return le_key_k_type(ih_version(ih), &(ih->ih_key));
1497}
1498
1499static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
1500                                       loff_t offset)
1501{
1502        if (version == KEY_FORMAT_3_5)
1503                key->u.k_offset_v1.k_offset = cpu_to_le32(offset);
1504        else
1505                set_offset_v2_k_offset(&key->u.k_offset_v2, offset);
1506}
1507
1508static inline void add_le_key_k_offset(int version, struct reiserfs_key *key,
1509                                       loff_t offset)
1510{
1511        set_le_key_k_offset(version, key,
1512                            le_key_k_offset(version, key) + offset);
1513}
1514
1515static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset)
1516{
1517        add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1518}
1519
1520static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
1521{
1522        set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1523}
1524
1525static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
1526                                     int type)
1527{
1528        if (version == KEY_FORMAT_3_5) {
1529                type = type2uniqueness(type);
1530                key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type);
1531        } else
1532               set_offset_v2_k_type(&key->u.k_offset_v2, type);
1533}
1534
1535static inline void set_le_ih_k_type(struct item_head *ih, int type)
1536{
1537        set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
1538}
1539
1540static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
1541{
1542        return le_key_k_type(version, key) == TYPE_DIRENTRY;
1543}
1544
1545static inline int is_direct_le_key(int version, struct reiserfs_key *key)
1546{
1547        return le_key_k_type(version, key) == TYPE_DIRECT;
1548}
1549
1550static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
1551{
1552        return le_key_k_type(version, key) == TYPE_INDIRECT;
1553}
1554
1555static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
1556{
1557        return le_key_k_type(version, key) == TYPE_STAT_DATA;
1558}
1559
1560/* item header has version.  */
1561static inline int is_direntry_le_ih(struct item_head *ih)
1562{
1563        return is_direntry_le_key(ih_version(ih), &ih->ih_key);
1564}
1565
1566static inline int is_direct_le_ih(struct item_head *ih)
1567{
1568        return is_direct_le_key(ih_version(ih), &ih->ih_key);
1569}
1570
1571static inline int is_indirect_le_ih(struct item_head *ih)
1572{
1573        return is_indirect_le_key(ih_version(ih), &ih->ih_key);
1574}
1575
1576static inline int is_statdata_le_ih(struct item_head *ih)
1577{
1578        return is_statdata_le_key(ih_version(ih), &ih->ih_key);
1579}
1580
1581/* key is pointer to cpu key, result is cpu */
1582static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
1583{
1584        return key->on_disk_key.k_offset;
1585}
1586
1587static inline loff_t cpu_key_k_type(const struct cpu_key *key)
1588{
1589        return key->on_disk_key.k_type;
1590}
1591
1592static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
1593{
1594        key->on_disk_key.k_offset = offset;
1595}
1596
1597static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
1598{
1599        key->on_disk_key.k_type = type;
1600}
1601
1602static inline void cpu_key_k_offset_dec(struct cpu_key *key)
1603{
1604        key->on_disk_key.k_offset--;
1605}
1606
1607#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
1608#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
1609#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
1610#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
1611
1612/* are these used ? */
1613#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
1614#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
1615#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
1616#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
1617
1618#define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
1619    (!COMP_SHORT_KEYS(ih, key) && \
1620          I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
1621
1622/* maximal length of item */
1623#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
1624#define MIN_ITEM_LEN 1
1625
1626/* object identifier for root dir */
1627#define REISERFS_ROOT_OBJECTID 2
1628#define REISERFS_ROOT_PARENT_OBJECTID 1
1629
1630extern struct reiserfs_key root_key;
1631
1632/*
1633 * Picture represents a leaf of the S+tree
1634 *  ______________________________________________________
1635 * |      |  Array of     |                   |           |
1636 * |Block |  Object-Item  |      F r e e      |  Objects- |
1637 * | head |  Headers      |     S p a c e     |   Items   |
1638 * |______|_______________|___________________|___________|
1639 */
1640
1641/*
1642 * Header of a disk block.  More precisely, header of a formatted leaf
1643 * or internal node, and not the header of an unformatted node.
1644 */
1645struct block_head {
1646        __le16 blk_level;       /* Level of a block in the tree. */
1647        __le16 blk_nr_item;     /* Number of keys/items in a block. */
1648        __le16 blk_free_space;  /* Block free space in bytes. */
1649        __le16 blk_reserved;
1650        /* dump this in v4/planA */
1651
1652        /* kept only for compatibility */
1653        struct reiserfs_key blk_right_delim_key;
1654};
1655
1656#define BLKH_SIZE                     (sizeof(struct block_head))
1657#define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
1658#define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
1659#define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
1660#define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
1661#define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
1662#define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
1663#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
1664#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
1665#define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
1666#define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
1667
1668/* values for blk_level field of the struct block_head */
1669
1670/*
1671 * When node gets removed from the tree its blk_level is set to FREE_LEVEL.
1672 * It is then  used to see whether the node is still in the tree
1673 */
1674#define FREE_LEVEL 0
1675
1676#define DISK_LEAF_NODE_LEVEL  1 /* Leaf node level. */
1677
1678/*
1679 * Given the buffer head of a formatted node, resolve to the
1680 * block head of that node.
1681 */
1682#define B_BLK_HEAD(bh)                  ((struct block_head *)((bh)->b_data))
1683/* Number of items that are in buffer. */
1684#define B_NR_ITEMS(bh)                  (blkh_nr_item(B_BLK_HEAD(bh)))
1685#define B_LEVEL(bh)                     (blkh_level(B_BLK_HEAD(bh)))
1686#define B_FREE_SPACE(bh)                (blkh_free_space(B_BLK_HEAD(bh)))
1687
1688#define PUT_B_NR_ITEMS(bh, val)         do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
1689#define PUT_B_LEVEL(bh, val)            do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
1690#define PUT_B_FREE_SPACE(bh, val)       do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
1691
1692/* Get right delimiting key. -- little endian */
1693#define B_PRIGHT_DELIM_KEY(bh)          (&(blk_right_delim_key(B_BLK_HEAD(bh))))
1694
1695/* Does the buffer contain a disk leaf. */
1696#define B_IS_ITEMS_LEVEL(bh)            (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
1697
1698/* Does the buffer contain a disk internal node */
1699#define B_IS_KEYS_LEVEL(bh)      (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
1700                                            && B_LEVEL(bh) <= MAX_HEIGHT)
1701
1702/***************************************************************************
1703 *                             STAT DATA                                   *
1704 ***************************************************************************/
1705
1706/*
1707 * old stat data is 32 bytes long. We are going to distinguish new one by
1708 * different size
1709*/
1710struct stat_data_v1 {
1711        __le16 sd_mode;         /* file type, permissions */
1712        __le16 sd_nlink;        /* number of hard links */
1713        __le16 sd_uid;          /* owner */
1714        __le16 sd_gid;          /* group */
1715        __le32 sd_size;         /* file size */
1716        __le32 sd_atime;        /* time of last access */
1717        __le32 sd_mtime;        /* time file was last modified  */
1718
1719        /*
1720         * time inode (stat data) was last changed
1721         * (except changes to sd_atime and sd_mtime)
1722         */
1723        __le32 sd_ctime;
1724        union {
1725                __le32 sd_rdev;
1726                __le32 sd_blocks;       /* number of blocks file uses */
1727        } __attribute__ ((__packed__)) u;
1728
1729        /*
1730         * first byte of file which is stored in a direct item: except that if
1731         * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no
1732         * direct item.  The existence of this field really grates on me.
1733         * Let's replace it with a macro based on sd_size and our tail
1734         * suppression policy.  Someday.  -Hans
1735         */
1736        __le32 sd_first_direct_byte;
1737} __attribute__ ((__packed__));
1738
1739#define SD_V1_SIZE              (sizeof(struct stat_data_v1))
1740#define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
1741#define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
1742#define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
1743#define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
1744#define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
1745#define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
1746#define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
1747#define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
1748#define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
1749#define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
1750#define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
1751#define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
1752#define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
1753#define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
1754#define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
1755#define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
1756#define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
1757#define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
1758#define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
1759#define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
1760#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
1761#define sd_v1_first_direct_byte(sdp) \
1762                                (le32_to_cpu((sdp)->sd_first_direct_byte))
1763#define set_sd_v1_first_direct_byte(sdp,v) \
1764                                ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
1765
1766/* inode flags stored in sd_attrs (nee sd_reserved) */
1767
1768/*
1769 * we want common flags to have the same values as in ext2,
1770 * so chattr(1) will work without problems
1771 */
1772#define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
1773#define REISERFS_APPEND_FL    FS_APPEND_FL
1774#define REISERFS_SYNC_FL      FS_SYNC_FL
1775#define REISERFS_NOATIME_FL   FS_NOATIME_FL
1776#define REISERFS_NODUMP_FL    FS_NODUMP_FL
1777#define REISERFS_SECRM_FL     FS_SECRM_FL
1778#define REISERFS_UNRM_FL      FS_UNRM_FL
1779#define REISERFS_COMPR_FL     FS_COMPR_FL
1780#define REISERFS_NOTAIL_FL    FS_NOTAIL_FL
1781
1782/* persistent flags that file inherits from the parent directory */
1783#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
1784                                REISERFS_SYNC_FL |      \
1785                                REISERFS_NOATIME_FL |   \
1786                                REISERFS_NODUMP_FL |    \
1787                                REISERFS_SECRM_FL |     \
1788                                REISERFS_COMPR_FL |     \
1789                                REISERFS_NOTAIL_FL )
1790
1791/*
1792 * Stat Data on disk (reiserfs version of UFS disk inode minus the
1793 * address blocks)
1794 */
1795struct stat_data {
1796        __le16 sd_mode;         /* file type, permissions */
1797        __le16 sd_attrs;        /* persistent inode flags */
1798        __le32 sd_nlink;        /* number of hard links */
1799        __le64 sd_size;         /* file size */
1800        __le32 sd_uid;          /* owner */
1801        __le32 sd_gid;          /* group */
1802        __le32 sd_atime;        /* time of last access */
1803        __le32 sd_mtime;        /* time file was last modified  */
1804
1805        /*
1806         * time inode (stat data) was last changed
1807         * (except changes to sd_atime and sd_mtime)
1808         */
1809        __le32 sd_ctime;
1810        __le32 sd_blocks;
1811        union {
1812                __le32 sd_rdev;
1813                __le32 sd_generation;
1814        } __attribute__ ((__packed__)) u;
1815} __attribute__ ((__packed__));
1816
1817/* this is 44 bytes long */
1818#define SD_SIZE (sizeof(struct stat_data))
1819#define SD_V2_SIZE              SD_SIZE
1820#define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
1821#define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
1822#define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
1823/* sd_reserved */
1824/* set_sd_reserved */
1825#define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
1826#define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
1827#define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
1828#define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
1829#define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
1830#define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
1831#define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
1832#define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
1833#define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
1834#define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
1835#define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
1836#define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
1837#define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
1838#define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
1839#define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
1840#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1841#define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
1842#define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
1843#define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
1844#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1845#define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
1846#define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
1847
1848/***************************************************************************
1849 *                      DIRECTORY STRUCTURE                                *
1850 ***************************************************************************/
1851/*
1852 * Picture represents the structure of directory items
1853 * ________________________________________________
1854 * |  Array of     |   |     |        |       |   |
1855 * | directory     |N-1| N-2 | ....   |   1st |0th|
1856 * | entry headers |   |     |        |       |   |
1857 * |_______________|___|_____|________|_______|___|
1858 *                  <----   directory entries         ------>
1859 *
1860 * First directory item has k_offset component 1. We store "." and ".."
1861 * in one item, always, we never split "." and ".." into differing
1862 * items.  This makes, among other things, the code for removing
1863 * directories simpler.
1864 */
1865#define SD_OFFSET  0
1866#define SD_UNIQUENESS 0
1867#define DOT_OFFSET 1
1868#define DOT_DOT_OFFSET 2
1869#define DIRENTRY_UNIQUENESS 500
1870
1871#define FIRST_ITEM_OFFSET 1
1872
1873/*
1874 * Q: How to get key of object pointed to by entry from entry?
1875 *
1876 * A: Each directory entry has its header. This header has deh_dir_id
1877 *    and deh_objectid fields, those are key of object, entry points to
1878 */
1879
1880/*
1881 * NOT IMPLEMENTED:
1882 * Directory will someday contain stat data of object
1883 */
1884
1885struct reiserfs_de_head {
1886        __le32 deh_offset;      /* third component of the directory entry key */
1887
1888        /*
1889         * objectid of the parent directory of the object, that is referenced
1890         * by directory entry
1891         */
1892        __le32 deh_dir_id;
1893
1894        /* objectid of the object, that is referenced by directory entry */
1895        __le32 deh_objectid;
1896        __le16 deh_location;    /* offset of name in the whole item */
1897
1898        /*
1899         * whether 1) entry contains stat data (for future), and
1900         * 2) whether entry is hidden (unlinked)
1901         */
1902        __le16 deh_state;
1903} __attribute__ ((__packed__));
1904#define DEH_SIZE                  sizeof(struct reiserfs_de_head)
1905#define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
1906#define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
1907#define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
1908#define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
1909#define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
1910
1911#define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
1912#define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1913#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1914#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1915#define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
1916
1917/* empty directory contains two entries "." and ".." and their headers */
1918#define EMPTY_DIR_SIZE \
1919(DEH_SIZE * 2 + ROUND_UP (sizeof(".") - 1) + ROUND_UP (sizeof("..") - 1))
1920
1921/* old format directories have this size when empty */
1922#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1923
1924#define DEH_Statdata 0          /* not used now */
1925#define DEH_Visible 2
1926
1927/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1928#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1929#   define ADDR_UNALIGNED_BITS  (3)
1930#endif
1931
1932/*
1933 * These are only used to manipulate deh_state.
1934 * Because of this, we'll use the ext2_ bit routines,
1935 * since they are little endian
1936 */
1937#ifdef ADDR_UNALIGNED_BITS
1938
1939#   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1940#   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1941
1942#   define set_bit_unaligned(nr, addr)  \
1943        __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1944#   define clear_bit_unaligned(nr, addr)        \
1945        __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1946#   define test_bit_unaligned(nr, addr) \
1947        test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1948
1949#else
1950
1951#   define set_bit_unaligned(nr, addr)  __test_and_set_bit_le(nr, addr)
1952#   define clear_bit_unaligned(nr, addr)        __test_and_clear_bit_le(nr, addr)
1953#   define test_bit_unaligned(nr, addr) test_bit_le(nr, addr)
1954
1955#endif
1956
1957#define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1958#define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1959#define mark_de_visible(deh)        set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1960#define mark_de_hidden(deh)         clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1961
1962#define de_with_sd(deh)             test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1963#define de_visible(deh)             test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1964#define de_hidden(deh)              !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1965
1966extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1967                                   __le32 par_dirid, __le32 par_objid);
1968extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1969                                __le32 par_dirid, __le32 par_objid);
1970
1971/* two entries per block (at least) */
1972#define REISERFS_MAX_NAME(block_size) 255
1973
1974/*
1975 * this structure is used for operations on directory entries. It is
1976 * not a disk structure.
1977 *
1978 * When reiserfs_find_entry or search_by_entry_key find directory
1979 * entry, they return filled reiserfs_dir_entry structure
1980 */
1981struct reiserfs_dir_entry {
1982        struct buffer_head *de_bh;
1983        int de_item_num;
1984        struct item_head *de_ih;
1985        int de_entry_num;
1986        struct reiserfs_de_head *de_deh;
1987        int de_entrylen;
1988        int de_namelen;
1989        char *de_name;
1990        unsigned long *de_gen_number_bit_string;
1991
1992        __u32 de_dir_id;
1993        __u32 de_objectid;
1994
1995        struct cpu_key de_entry_key;
1996};
1997
1998/*
1999 * these defines are useful when a particular member of
2000 * a reiserfs_dir_entry is needed
2001 */
2002
2003/* pointer to file name, stored in entry */
2004#define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \
2005                                (ih_item_body(bh, ih) + deh_location(deh))
2006
2007/* length of name */
2008#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
2009(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
2010
2011/* hash value occupies bits from 7 up to 30 */
2012#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
2013/* generation number occupies 7 bits starting from 0 up to 6 */
2014#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
2015#define MAX_GENERATION_NUMBER  127
2016
2017#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
2018
2019/*
2020 * Picture represents an internal node of the reiserfs tree
2021 *  ______________________________________________________
2022 * |      |  Array of     |  Array of         |  Free     |
2023 * |block |    keys       |  pointers         | space     |
2024 * | head |      N        |      N+1          |           |
2025 * |______|_______________|___________________|___________|
2026 */
2027
2028/***************************************************************************
2029 *                      DISK CHILD                                         *
2030 ***************************************************************************/
2031/*
2032 * Disk child pointer:
2033 * The pointer from an internal node of the tree to a node that is on disk.
2034 */
2035struct disk_child {
2036        __le32 dc_block_number; /* Disk child's block number. */
2037        __le16 dc_size;         /* Disk child's used space.   */
2038        __le16 dc_reserved;
2039};
2040
2041#define DC_SIZE (sizeof(struct disk_child))
2042#define dc_block_number(dc_p)   (le32_to_cpu((dc_p)->dc_block_number))
2043#define dc_size(dc_p)           (le16_to_cpu((dc_p)->dc_size))
2044#define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
2045#define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
2046
2047/* Get disk child by buffer header and position in the tree node. */
2048#define B_N_CHILD(bh, n_pos)  ((struct disk_child *)\
2049((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
2050
2051/* Get disk child number by buffer header and position in the tree node. */
2052#define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
2053#define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
2054                                (put_dc_block_number(B_N_CHILD(bh, n_pos), val))
2055
2056 /* maximal value of field child_size in structure disk_child */
2057 /* child size is the combined size of all items and their headers */
2058#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
2059
2060/* amount of used space in buffer (not including block head) */
2061#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
2062
2063/* max and min number of keys in internal node */
2064#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
2065#define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
2066
2067/***************************************************************************
2068 *                      PATH STRUCTURES AND DEFINES                        *
2069 ***************************************************************************/
2070
2071/*
2072 * search_by_key fills up the path from the root to the leaf as it descends
2073 * the tree looking for the key.  It uses reiserfs_bread to try to find
2074 * buffers in the cache given their block number.  If it does not find
2075 * them in the cache it reads them from disk.  For each node search_by_key
2076 * finds using reiserfs_bread it then uses bin_search to look through that
2077 * node.  bin_search will find the position of the block_number of the next
2078 * node if it is looking through an internal node.  If it is looking through
2079 * a leaf node bin_search will find the position of the item which has key
2080 * either equal to given key, or which is the maximal key less than the
2081 * given key.
2082 */
2083
2084struct path_element {
2085        /* Pointer to the buffer at the path in the tree. */
2086        struct buffer_head *pe_buffer;
2087        /* Position in the tree node which is placed in the buffer above. */
2088        int pe_position;
2089};
2090
2091/*
2092 * maximal height of a tree. don't change this without
2093 * changing JOURNAL_PER_BALANCE_CNT
2094 */
2095#define MAX_HEIGHT 5
2096
2097/* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
2098#define EXTENDED_MAX_HEIGHT         7
2099
2100/* Must be equal to at least 2. */
2101#define FIRST_PATH_ELEMENT_OFFSET   2
2102
2103/* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
2104#define ILLEGAL_PATH_ELEMENT_OFFSET 1
2105
2106/* this MUST be MAX_HEIGHT + 1. See about FEB below */
2107#define MAX_FEB_SIZE 6
2108
2109/*
2110 * We need to keep track of who the ancestors of nodes are.  When we
2111 * perform a search we record which nodes were visited while
2112 * descending the tree looking for the node we searched for. This list
2113 * of nodes is called the path.  This information is used while
2114 * performing balancing.  Note that this path information may become
2115 * invalid, and this means we must check it when using it to see if it
2116 * is still valid. You'll need to read search_by_key and the comments
2117 * in it, especially about decrement_counters_in_path(), to understand
2118 * this structure.
2119 *
2120 * Paths make the code so much harder to work with and debug.... An
2121 * enormous number of bugs are due to them, and trying to write or modify
2122 * code that uses them just makes my head hurt.  They are based on an
2123 * excessive effort to avoid disturbing the precious VFS code.:-( The
2124 * gods only know how we are going to SMP the code that uses them.
2125 * znodes are the way!
2126 */
2127
2128#define PATH_READA      0x1     /* do read ahead */
2129#define PATH_READA_BACK 0x2     /* read backwards */
2130
2131struct treepath {
2132        int path_length;        /* Length of the array above.   */
2133        int reada;
2134        /* Array of the path elements.  */
2135        struct path_element path_elements[EXTENDED_MAX_HEIGHT];
2136        int pos_in_item;
2137};
2138
2139#define pos_in_item(path) ((path)->pos_in_item)
2140
2141#define INITIALIZE_PATH(var) \
2142struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
2143
2144/* Get path element by path and path position. */
2145#define PATH_OFFSET_PELEMENT(path, n_offset)  ((path)->path_elements + (n_offset))
2146
2147/* Get buffer header at the path by path and path position. */
2148#define PATH_OFFSET_PBUFFER(path, n_offset)   (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
2149
2150/* Get position in the element at the path by path and path position. */
2151#define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
2152
2153#define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
2154
2155/*
2156 * you know, to the person who didn't write this the macro name does not
2157 * at first suggest what it does.  Maybe POSITION_FROM_PATH_END? Or
2158 * maybe we should just focus on dumping paths... -Hans
2159 */
2160#define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
2161
2162/*
2163 * in do_balance leaf has h == 0 in contrast with path structure,
2164 * where root has level == 0. That is why we need these defines
2165 */
2166
2167/* tb->S[h] */
2168#define PATH_H_PBUFFER(path, h) \
2169                        PATH_OFFSET_PBUFFER(path, path->path_length - (h))
2170
2171/* tb->F[h] or tb->S[0]->b_parent */
2172#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1)
2173
2174#define PATH_H_POSITION(path, h) \
2175                        PATH_OFFSET_POSITION(path, path->path_length - (h))
2176
2177/* tb->S[h]->b_item_order */
2178#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)
2179
2180#define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
2181
2182static inline void *reiserfs_node_data(const struct buffer_head *bh)
2183{
2184        return bh->b_data + sizeof(struct block_head);
2185}
2186
2187/* get key from internal node */
2188static inline struct reiserfs_key *internal_key(struct buffer_head *bh,
2189                                                int item_num)
2190{
2191        struct reiserfs_key *key = reiserfs_node_data(bh);
2192
2193        return &key[item_num];
2194}
2195
2196/* get the item header from leaf node */
2197static inline struct item_head *item_head(const struct buffer_head *bh,
2198                                          int item_num)
2199{
2200        struct item_head *ih = reiserfs_node_data(bh);
2201
2202        return &ih[item_num];
2203}
2204
2205/* get the key from leaf node */
2206static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh,
2207                                            int item_num)
2208{
2209        return &item_head(bh, item_num)->ih_key;
2210}
2211
2212static inline void *ih_item_body(const struct buffer_head *bh,
2213                                 const struct item_head *ih)
2214{
2215        return bh->b_data + ih_location(ih);
2216}
2217
2218/* get item body from leaf node */
2219static inline void *item_body(const struct buffer_head *bh, int item_num)
2220{
2221        return ih_item_body(bh, item_head(bh, item_num));
2222}
2223
2224static inline struct item_head *tp_item_head(const struct treepath *path)
2225{
2226        return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
2227}
2228
2229static inline void *tp_item_body(const struct treepath *path)
2230{
2231        return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
2232}
2233
2234#define get_last_bh(path) PATH_PLAST_BUFFER(path)
2235#define get_item_pos(path) PATH_LAST_POSITION(path)
2236#define item_moved(ih,path) comp_items(ih, path)
2237#define path_changed(ih,path) comp_items (ih, path)
2238
2239/* array of the entry headers */
2240 /* get item body */
2241#define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih)))
2242
2243/*
2244 * length of the directory entry in directory item. This define
2245 * calculates length of i-th directory entry using directory entry
2246 * locations from dir entry head. When it calculates length of 0-th
2247 * directory entry, it uses length of whole item in place of entry
2248 * location of the non-existent following entry in the calculation.
2249 * See picture above.
2250 */
2251static inline int entry_length(const struct buffer_head *bh,
2252                               const struct item_head *ih, int pos_in_item)
2253{
2254        struct reiserfs_de_head *deh;
2255
2256        deh = B_I_DEH(bh, ih) + pos_in_item;
2257        if (pos_in_item)
2258                return deh_location(deh - 1) - deh_location(deh);
2259
2260        return ih_item_len(ih) - deh_location(deh);
2261}
2262
2263/***************************************************************************
2264 *                       MISC                                              *
2265 ***************************************************************************/
2266
2267/* Size of pointer to the unformatted node. */
2268#define UNFM_P_SIZE (sizeof(unp_t))
2269#define UNFM_P_SHIFT 2
2270
2271/* in in-core inode key is stored on le form */
2272#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
2273
2274#define MAX_UL_INT 0xffffffff
2275#define MAX_INT    0x7ffffff
2276#define MAX_US_INT 0xffff
2277
2278// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
2279static inline loff_t max_reiserfs_offset(struct inode *inode)
2280{
2281        if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
2282                return (loff_t) U32_MAX;
2283
2284        return (loff_t) ((~(__u64) 0) >> 4);
2285}
2286
2287#define MAX_KEY_OBJECTID        MAX_UL_INT
2288
2289#define MAX_B_NUM  MAX_UL_INT
2290#define MAX_FC_NUM MAX_US_INT
2291
2292/* the purpose is to detect overflow of an unsigned short */
2293#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
2294
2295/*
2296 * The following defines are used in reiserfs_insert_item
2297 * and reiserfs_append_item
2298 */
2299#define REISERFS_KERNEL_MEM             0       /* kernel memory mode */
2300#define REISERFS_USER_MEM               1       /* user memory mode */
2301
2302#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
2303#define get_generation(s) atomic_read (&fs_generation(s))
2304#define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
2305#define __fs_changed(gen,s) (gen != get_generation (s))
2306#define fs_changed(gen,s)               \
2307({                                      \
2308        reiserfs_cond_resched(s);       \
2309        __fs_changed(gen, s);           \
2310})
2311
2312/***************************************************************************
2313 *                  FIXATE NODES                                           *
2314 ***************************************************************************/
2315
2316#define VI_TYPE_LEFT_MERGEABLE 1
2317#define VI_TYPE_RIGHT_MERGEABLE 2
2318
2319/*
2320 * To make any changes in the tree we always first find node, that
2321 * contains item to be changed/deleted or place to insert a new
2322 * item. We call this node S. To do balancing we need to decide what
2323 * we will shift to left/right neighbor, or to a new node, where new
2324 * item will be etc. To make this analysis simpler we build virtual
2325 * node. Virtual node is an array of items, that will replace items of
2326 * node S. (For instance if we are going to delete an item, virtual
2327 * node does not contain it). Virtual node keeps information about
2328 * item sizes and types, mergeability of first and last items, sizes
2329 * of all entries in directory item. We use this array of items when
2330 * calculating what we can shift to neighbors and how many nodes we
2331 * have to have if we do not any shiftings, if we shift to left/right
2332 * neighbor or to both.
2333 */
2334struct virtual_item {
2335        int vi_index;           /* index in the array of item operations */
2336        unsigned short vi_type; /* left/right mergeability */
2337
2338        /* length of item that it will have after balancing */
2339        unsigned short vi_item_len;
2340
2341        struct item_head *vi_ih;
2342        const char *vi_item;    /* body of item (old or new) */
2343        const void *vi_new_data;        /* 0 always but paste mode */
2344        void *vi_uarea;         /* item specific area */
2345};
2346
2347struct virtual_node {
2348        /* this is a pointer to the free space in the buffer */
2349        char *vn_free_ptr;
2350
2351        unsigned short vn_nr_item;      /* number of items in virtual node */
2352
2353        /*
2354         * size of node , that node would have if it has
2355         * unlimited size and no balancing is performed
2356         */
2357        short vn_size;
2358
2359        /* mode of balancing (paste, insert, delete, cut) */
2360        short vn_mode;
2361
2362        short vn_affected_item_num;
2363        short vn_pos_in_item;
2364
2365        /* item header of inserted item, 0 for other modes */
2366        struct item_head *vn_ins_ih;
2367        const void *vn_data;
2368
2369        /* array of items (including a new one, excluding item to be deleted) */
2370        struct virtual_item *vn_vi;
2371};
2372
2373/* used by directory items when creating virtual nodes */
2374struct direntry_uarea {
2375        int flags;
2376        __u16 entry_count;
2377        __u16 entry_sizes[1];
2378} __attribute__ ((__packed__));
2379
2380/***************************************************************************
2381 *                  TREE BALANCE                                           *
2382 ***************************************************************************/
2383
2384/*
2385 * This temporary structure is used in tree balance algorithms, and
2386 * constructed as we go to the extent that its various parts are
2387 * needed.  It contains arrays of nodes that can potentially be
2388 * involved in the balancing of node S, and parameters that define how
2389 * each of the nodes must be balanced.  Note that in these algorithms
2390 * for balancing the worst case is to need to balance the current node
2391 * S and the left and right neighbors and all of their parents plus
2392 * create a new node.  We implement S1 balancing for the leaf nodes
2393 * and S0 balancing for the internal nodes (S1 and S0 are defined in
2394 * our papers.)
2395 */
2396
2397/* size of the array of buffers to free at end of do_balance */
2398#define MAX_FREE_BLOCK 7
2399
2400/* maximum number of FEB blocknrs on a single level */
2401#define MAX_AMOUNT_NEEDED 2
2402
2403/* someday somebody will prefix every field in this struct with tb_ */
2404struct tree_balance {
2405        int tb_mode;
2406        int need_balance_dirty;
2407        struct super_block *tb_sb;
2408        struct reiserfs_transaction_handle *transaction_handle;
2409        struct treepath *tb_path;
2410
2411        /* array of left neighbors of nodes in the path */
2412        struct buffer_head *L[MAX_HEIGHT];
2413
2414        /* array of right neighbors of nodes in the path */
2415        struct buffer_head *R[MAX_HEIGHT];
2416
2417        /* array of fathers of the left neighbors */
2418        struct buffer_head *FL[MAX_HEIGHT];
2419
2420        /* array of fathers of the right neighbors */
2421        struct buffer_head *FR[MAX_HEIGHT];
2422        /* array of common parents of center node and its left neighbor */
2423        struct buffer_head *CFL[MAX_HEIGHT];
2424
2425        /* array of common parents of center node and its right neighbor */
2426        struct buffer_head *CFR[MAX_HEIGHT];
2427
2428        /*
2429         * array of empty buffers. Number of buffers in array equals
2430         * cur_blknum.
2431         */
2432        struct buffer_head *FEB[MAX_FEB_SIZE];
2433        struct buffer_head *used[MAX_FEB_SIZE];
2434        struct buffer_head *thrown[MAX_FEB_SIZE];
2435
2436        /*
2437         * array of number of items which must be shifted to the left in
2438         * order to balance the current node; for leaves includes item that
2439         * will be partially shifted; for internal nodes, it is the number
2440         * of child pointers rather than items. It includes the new item
2441         * being created. The code sometimes subtracts one to get the
2442         * number of wholly shifted items for other purposes.
2443         */
2444        int lnum[MAX_HEIGHT];
2445
2446        /* substitute right for left in comment above */
2447        int rnum[MAX_HEIGHT];
2448
2449        /*
2450         * array indexed by height h mapping the key delimiting L[h] and
2451         * S[h] to its item number within the node CFL[h]
2452         */
2453        int lkey[MAX_HEIGHT];
2454
2455        /* substitute r for l in comment above */
2456        int rkey[MAX_HEIGHT];
2457
2458        /*
2459         * the number of bytes by we are trying to add or remove from
2460         * S[h]. A negative value means removing.
2461         */
2462        int insert_size[MAX_HEIGHT];
2463
2464        /*
2465         * number of nodes that will replace node S[h] after balancing
2466         * on the level h of the tree.  If 0 then S is being deleted,
2467         * if 1 then S is remaining and no new nodes are being created,
2468         * if 2 or 3 then 1 or 2 new nodes is being created
2469         */
2470        int blknum[MAX_HEIGHT];
2471
2472        /* fields that are used only for balancing leaves of the tree */
2473
2474        /* number of empty blocks having been already allocated */
2475        int cur_blknum;
2476
2477        /* number of items that fall into left most node when S[0] splits */
2478        int s0num;
2479
2480        /*
2481         * number of bytes which can flow to the left neighbor from the left
2482         * most liquid item that cannot be shifted from S[0] entirely
2483         * if -1 then nothing will be partially shifted
2484         */
2485        int lbytes;
2486
2487        /*
2488         * number of bytes which will flow to the right neighbor from the right
2489         * most liquid item that cannot be shifted from S[0] entirely
2490         * if -1 then nothing will be partially shifted
2491         */
2492        int rbytes;
2493
2494
2495        /*
2496         * index into the array of item headers in
2497         * S[0] of the affected item
2498         */
2499        int item_pos;
2500
2501        /* new nodes allocated to hold what could not fit into S */
2502        struct buffer_head *S_new[2];
2503
2504        /*
2505         * number of items that will be placed into nodes in S_new
2506         * when S[0] splits
2507         */
2508        int snum[2];
2509
2510        /*
2511         * number of bytes which flow to nodes in S_new when S[0] splits
2512         * note: if S[0] splits into 3 nodes, then items do not need to be cut
2513         */
2514        int sbytes[2];
2515
2516        int pos_in_item;
2517        int zeroes_num;
2518
2519        /*
2520         * buffers which are to be freed after do_balance finishes
2521         * by unfix_nodes
2522         */
2523        struct buffer_head *buf_to_free[MAX_FREE_BLOCK];
2524
2525        /*
2526         * kmalloced memory. Used to create virtual node and keep
2527         * map of dirtied bitmap blocks
2528         */
2529        char *vn_buf;
2530
2531        int vn_buf_size;        /* size of the vn_buf */
2532
2533        /* VN starts after bitmap of bitmap blocks */
2534        struct virtual_node *tb_vn;
2535
2536        /*
2537         * saved value of `reiserfs_generation' counter see
2538         * FILESYSTEM_CHANGED() macro in reiserfs_fs.h
2539         */
2540        int fs_gen;
2541
2542#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2543        /*
2544         * key pointer, to pass to block allocator or
2545         * another low-level subsystem
2546         */
2547        struct in_core_key key;
2548#endif
2549};
2550
2551/* These are modes of balancing */
2552
2553/* When inserting an item. */
2554#define M_INSERT        'i'
2555/*
2556 * When inserting into (directories only) or appending onto an already
2557 * existent item.
2558 */
2559#define M_PASTE         'p'
2560/* When deleting an item. */
2561#define M_DELETE        'd'
2562/* When truncating an item or removing an entry from a (directory) item. */
2563#define M_CUT           'c'
2564
2565/* used when balancing on leaf level skipped (in reiserfsck) */
2566#define M_INTERNAL      'n'
2567
2568/*
2569 * When further balancing is not needed, then do_balance does not need
2570 * to be called.
2571 */
2572#define M_SKIP_BALANCING                's'
2573#define M_CONVERT       'v'
2574
2575/* modes of leaf_move_items */
2576#define LEAF_FROM_S_TO_L 0
2577#define LEAF_FROM_S_TO_R 1
2578#define LEAF_FROM_R_TO_L 2
2579#define LEAF_FROM_L_TO_R 3
2580#define LEAF_FROM_S_TO_SNEW 4
2581
2582#define FIRST_TO_LAST 0
2583#define LAST_TO_FIRST 1
2584
2585/*
2586 * used in do_balance for passing parent of node information that has
2587 * been gotten from tb struct
2588 */
2589struct buffer_info {
2590        struct tree_balance *tb;
2591        struct buffer_head *bi_bh;
2592        struct buffer_head *bi_parent;
2593        int bi_position;
2594};
2595
2596static inline struct super_block *sb_from_tb(struct tree_balance *tb)
2597{
2598        return tb ? tb->tb_sb : NULL;
2599}
2600
2601static inline struct super_block *sb_from_bi(struct buffer_info *bi)
2602{
2603        return bi ? sb_from_tb(bi->tb) : NULL;
2604}
2605
2606/*
2607 * there are 4 types of items: stat data, directory item, indirect, direct.
2608 * +-------------------+------------+--------------+------------+
2609 * |                   |  k_offset  | k_uniqueness | mergeable? |
2610 * +-------------------+------------+--------------+------------+
2611 * |     stat data     |     0      |      0       |   no       |
2612 * +-------------------+------------+--------------+------------+
2613 * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. |   no       |
2614 * | non 1st directory | hash value | UNIQUENESS   |   yes      |
2615 * |     item          |            |              |            |
2616 * +-------------------+------------+--------------+------------+
2617 * | indirect item     | offset + 1 |TYPE_INDIRECT |    [1]     |
2618 * +-------------------+------------+--------------+------------+
2619 * | direct item       | offset + 1 |TYPE_DIRECT   |    [2]     |
2620 * +-------------------+------------+--------------+------------+
2621 *
2622 * [1] if this is not the first indirect item of the object
2623 * [2] if this is not the first direct item of the object
2624*/
2625
2626struct item_operations {
2627        int (*bytes_number) (struct item_head * ih, int block_size);
2628        void (*decrement_key) (struct cpu_key *);
2629        int (*is_left_mergeable) (struct reiserfs_key * ih,
2630                                  unsigned long bsize);
2631        void (*print_item) (struct item_head *, char *item);
2632        void (*check_item) (struct item_head *, char *item);
2633
2634        int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
2635                          int is_affected, int insert_size);
2636        int (*check_left) (struct virtual_item * vi, int free,
2637                           int start_skip, int end_skip);
2638        int (*check_right) (struct virtual_item * vi, int free);
2639        int (*part_size) (struct virtual_item * vi, int from, int to);
2640        int (*unit_num) (struct virtual_item * vi);
2641        void (*print_vi) (struct virtual_item * vi);
2642};
2643
2644extern struct item_operations *item_ops[TYPE_ANY + 1];
2645
2646#define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
2647#define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
2648#define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
2649#define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
2650#define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
2651#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
2652#define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
2653#define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
2654#define op_unit_num(vi)                              item_ops[(vi)->vi_index]->unit_num (vi)
2655#define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
2656
2657#define COMP_SHORT_KEYS comp_short_keys
2658
2659/* number of blocks pointed to by the indirect item */
2660#define I_UNFM_NUM(ih)  (ih_item_len(ih) / UNFM_P_SIZE)
2661
2662/*
2663 * the used space within the unformatted node corresponding
2664 * to pos within the item pointed to by ih
2665 */
2666#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
2667
2668/*
2669 * number of bytes contained by the direct item or the
2670 * unformatted nodes the indirect item points to
2671 */
2672
2673/* following defines use reiserfs buffer header and item header */
2674
2675/* get stat-data */
2676#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
2677
2678/* this is 3976 for size==4096 */
2679#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
2680
2681/*
2682 * indirect items consist of entries which contain blocknrs, pos
2683 * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
2684 * blocknr contained by the entry pos points to
2685 */
2686#define B_I_POS_UNFM_POINTER(bh, ih, pos)                               \
2687        le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos)))
2688#define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val)                      \
2689        (*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val))
2690
2691struct reiserfs_iget_args {
2692        __u32 objectid;
2693        __u32 dirid;
2694};
2695
2696/***************************************************************************
2697 *                    FUNCTION DECLARATIONS                                *
2698 ***************************************************************************/
2699
2700#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
2701
2702#define journal_trans_half(blocksize) \
2703        ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
2704
2705/* journal.c see journal.c for all the comments here */
2706
2707/* first block written in a commit.  */
2708struct reiserfs_journal_desc {
2709        __le32 j_trans_id;      /* id of commit */
2710
2711        /* length of commit. len +1 is the commit block */
2712        __le32 j_len;
2713
2714        __le32 j_mount_id;      /* mount id of this trans */
2715        __le32 j_realblock[1];  /* real locations for each block */
2716};
2717
2718#define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
2719#define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
2720#define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
2721
2722#define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
2723#define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
2724#define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
2725
2726/* last block written in a commit */
2727struct reiserfs_journal_commit {
2728        __le32 j_trans_id;      /* must match j_trans_id from the desc block */
2729        __le32 j_len;           /* ditto */
2730        __le32 j_realblock[1];  /* real locations for each block */
2731};
2732
2733#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
2734#define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
2735#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
2736
2737#define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
2738#define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
2739
2740/*
2741 * this header block gets written whenever a transaction is considered
2742 * fully flushed, and is more recent than the last fully flushed transaction.
2743 * fully flushed means all the log blocks and all the real blocks are on
2744 * disk, and this transaction does not need to be replayed.
2745 */
2746struct reiserfs_journal_header {
2747        /* id of last fully flushed transaction */
2748        __le32 j_last_flush_trans_id;
2749
2750        /* offset in the log of where to start replay after a crash */
2751        __le32 j_first_unflushed_offset;
2752
2753        __le32 j_mount_id;
2754        /* 12 */ struct journal_params jh_journal;
2755};
2756
2757/* biggest tunable defines are right here */
2758#define JOURNAL_BLOCK_COUNT 8192        /* number of blocks in the journal */
2759
2760/* biggest possible single transaction, don't change for now (8/3/99) */
2761#define JOURNAL_TRANS_MAX_DEFAULT 1024
2762#define JOURNAL_TRANS_MIN_DEFAULT 256
2763
2764/*
2765 * max blocks to batch into one transaction,
2766 * don't make this any bigger than 900
2767 */
2768#define JOURNAL_MAX_BATCH_DEFAULT   900
2769#define JOURNAL_MIN_RATIO 2
2770#define JOURNAL_MAX_COMMIT_AGE 30
2771#define JOURNAL_MAX_TRANS_AGE 30
2772#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
2773#define JOURNAL_BLOCKS_PER_OBJECT(sb)  (JOURNAL_PER_BALANCE_CNT * 3 + \
2774                                         2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
2775                                              REISERFS_QUOTA_TRANS_BLOCKS(sb)))
2776
2777#ifdef CONFIG_QUOTA
2778#define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
2779/* We need to update data and inode (atime) */
2780#define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
2781/* 1 balancing, 1 bitmap, 1 data per write + stat data update */
2782#define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2783(DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
2784/* same as with INIT */
2785#define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2786(DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
2787#else
2788#define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
2789#define REISERFS_QUOTA_INIT_BLOCKS(s) 0
2790#define REISERFS_QUOTA_DEL_BLOCKS(s) 0
2791#endif
2792
2793/*
2794 * both of these can be as low as 1, or as high as you want.  The min is the
2795 * number of 4k bitmap nodes preallocated on mount. New nodes are allocated
2796 * as needed, and released when transactions are committed.  On release, if
2797 * the current number of nodes is > max, the node is freed, otherwise,
2798 * it is put on a free list for faster use later.
2799*/
2800#define REISERFS_MIN_BITMAP_NODES 10
2801#define REISERFS_MAX_BITMAP_NODES 100
2802
2803/* these are based on journal hash size of 8192 */
2804#define JBH_HASH_SHIFT 13
2805#define JBH_HASH_MASK 8191
2806
2807#define _jhashfn(sb,block)      \
2808        (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
2809         (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
2810#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
2811
2812/* We need these to make journal.c code more readable */
2813#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2814#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2815#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2816
2817enum reiserfs_bh_state_bits {
2818        BH_JDirty = BH_PrivateStart,    /* buffer is in current transaction */
2819        BH_JDirty_wait,
2820        /*
2821         * disk block was taken off free list before being in a
2822         * finished transaction, or written to disk. Can be reused immed.
2823         */
2824        BH_JNew,
2825        BH_JPrepared,
2826        BH_JRestore_dirty,
2827        BH_JTest,               /* debugging only will go away */
2828};
2829
2830BUFFER_FNS(JDirty, journaled);
2831TAS_BUFFER_FNS(JDirty, journaled);
2832BUFFER_FNS(JDirty_wait, journal_dirty);
2833TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
2834BUFFER_FNS(JNew, journal_new);
2835TAS_BUFFER_FNS(JNew, journal_new);
2836BUFFER_FNS(JPrepared, journal_prepared);
2837TAS_BUFFER_FNS(JPrepared, journal_prepared);
2838BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2839TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2840BUFFER_FNS(JTest, journal_test);
2841TAS_BUFFER_FNS(JTest, journal_test);
2842
2843/* transaction handle which is passed around for all journal calls */
2844struct reiserfs_transaction_handle {
2845        /*
2846         * super for this FS when journal_begin was called. saves calls to
2847         * reiserfs_get_super also used by nested transactions to make
2848         * sure they are nesting on the right FS _must_ be first
2849         * in the handle
2850         */
2851        struct super_block *t_super;
2852
2853        int t_refcount;
2854        int t_blocks_logged;    /* number of blocks this writer has logged */
2855        int t_blocks_allocated; /* number of blocks this writer allocated */
2856
2857        /* sanity check, equals the current trans id */
2858        unsigned int t_trans_id;
2859
2860        void *t_handle_save;    /* save existing current->journal_info */
2861
2862        /*
2863         * if new block allocation occurres, that block
2864         * should be displaced from others
2865         */
2866        unsigned displace_new_blocks:1;
2867
2868        struct list_head t_list;
2869};
2870
2871/*
2872 * used to keep track of ordered and tail writes, attached to the buffer
2873 * head through b_journal_head.
2874 */
2875struct reiserfs_jh {
2876        struct reiserfs_journal_list *jl;
2877        struct buffer_head *bh;
2878        struct list_head list;
2879};
2880
2881void reiserfs_free_jh(struct buffer_head *bh);
2882int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
2883int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
2884int journal_mark_dirty(struct reiserfs_transaction_handle *,
2885                       struct buffer_head *bh);
2886
2887static inline int reiserfs_file_data_log(struct inode *inode)
2888{
2889        if (reiserfs_data_log(inode->i_sb) ||
2890            (REISERFS_I(inode)->i_flags & i_data_log))
2891                return 1;
2892        return 0;
2893}
2894
2895static inline int reiserfs_transaction_running(struct super_block *s)
2896{
2897        struct reiserfs_transaction_handle *th = current->journal_info;
2898        if (th && th->t_super == s)
2899                return 1;
2900        if (th && th->t_super == NULL)
2901                BUG();
2902        return 0;
2903}
2904
2905static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
2906{
2907        return th->t_blocks_allocated - th->t_blocks_logged;
2908}
2909
2910struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
2911                                                                    super_block
2912                                                                    *,
2913                                                                    int count);
2914int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
2915void reiserfs_vfs_truncate_file(struct inode *inode);
2916int reiserfs_commit_page(struct inode *inode, struct page *page,
2917                         unsigned from, unsigned to);
2918void reiserfs_flush_old_commits(struct super_block *);
2919int reiserfs_commit_for_inode(struct inode *);
2920int reiserfs_inode_needs_commit(struct inode *);
2921void reiserfs_update_inode_transaction(struct inode *);
2922void reiserfs_wait_on_write_block(struct super_block *s);
2923void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
2924void reiserfs_allow_writes(struct super_block *s);
2925void reiserfs_check_lock_depth(struct super_block *s, char *caller);
2926int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
2927                                 int wait);
2928void reiserfs_restore_prepared_buffer(struct super_block *,
2929                                      struct buffer_head *bh);
2930int journal_init(struct super_block *, const char *j_dev_name, int old_format,
2931                 unsigned int);
2932int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
2933int journal_release_error(struct reiserfs_transaction_handle *,
2934                          struct super_block *);
2935int journal_end(struct reiserfs_transaction_handle *);
2936int journal_end_sync(struct reiserfs_transaction_handle *);
2937int journal_mark_freed(struct reiserfs_transaction_handle *,
2938                       struct super_block *, b_blocknr_t blocknr);
2939int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
2940int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
2941                         int bit_nr, int searchall, b_blocknr_t *next);
2942int journal_begin(struct reiserfs_transaction_handle *,
2943                  struct super_block *sb, unsigned long);
2944int journal_join_abort(struct reiserfs_transaction_handle *,
2945                       struct super_block *sb);
2946void reiserfs_abort_journal(struct super_block *sb, int errno);
2947void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
2948int reiserfs_allocate_list_bitmaps(struct super_block *s,
2949                                   struct reiserfs_list_bitmap *, unsigned int);
2950
2951void reiserfs_schedule_old_flush(struct super_block *s);
2952void reiserfs_cancel_old_flush(struct super_block *s);
2953void add_save_link(struct reiserfs_transaction_handle *th,
2954                   struct inode *inode, int truncate);
2955int remove_save_link(struct inode *inode, int truncate);
2956
2957/* objectid.c */
2958__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
2959void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
2960                               __u32 objectid_to_release);
2961int reiserfs_convert_objectid_map_v1(struct super_block *);
2962
2963/* stree.c */
2964int B_IS_IN_TREE(const struct buffer_head *);
2965extern void copy_item_head(struct item_head *to,
2966                           const struct item_head *from);
2967
2968/* first key is in cpu form, second - le */
2969extern int comp_short_keys(const struct reiserfs_key *le_key,
2970                           const struct cpu_key *cpu_key);
2971extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
2972
2973/* both are in le form */
2974extern int comp_le_keys(const struct reiserfs_key *,
2975                        const struct reiserfs_key *);
2976extern int comp_short_le_keys(const struct reiserfs_key *,
2977                              const struct reiserfs_key *);
2978
2979/* * get key version from on disk key - kludge */
2980static inline int le_key_version(const struct reiserfs_key *key)
2981{
2982        int type;
2983
2984        type = offset_v2_k_type(&(key->u.k_offset_v2));
2985        if (type != TYPE_DIRECT && type != TYPE_INDIRECT
2986            && type != TYPE_DIRENTRY)
2987                return KEY_FORMAT_3_5;
2988
2989        return KEY_FORMAT_3_6;
2990
2991}
2992
2993static inline void copy_key(struct reiserfs_key *to,
2994                            const struct reiserfs_key *from)
2995{
2996        memcpy(to, from, KEY_SIZE);
2997}
2998
2999int comp_items(const struct item_head *stored_ih, const struct treepath *path);
3000const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
3001                                    const struct super_block *sb);
3002int search_by_key(struct super_block *, const struct cpu_key *,
3003                  struct treepath *, int);
3004#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
3005int search_for_position_by_key(struct super_block *sb,
3006                               const struct cpu_key *cpu_key,
3007                               struct treepath *search_path);
3008extern void decrement_bcount(struct buffer_head *bh);
3009void decrement_counters_in_path(struct treepath *search_path);
3010void pathrelse(struct treepath *search_path);
3011int reiserfs_check_path(struct treepath *p);
3012void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
3013
3014int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
3015                         struct treepath *path,
3016                         const struct cpu_key *key,
3017                         struct item_head *ih,
3018                         struct inode *inode, const char *body);
3019
3020int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
3021                             struct treepath *path,
3022                             const struct cpu_key *key,
3023                             struct inode *inode,
3024                             const char *body, int paste_size);
3025
3026int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
3027                           struct treepath *path,
3028                           struct cpu_key *key,
3029                           struct inode *inode,
3030                           struct page *page, loff_t new_file_size);
3031
3032int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
3033                         struct treepath *path,
3034                         const struct cpu_key *key,
3035                         struct inode *inode, struct buffer_head *un_bh);
3036
3037void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
3038                                struct inode *inode, struct reiserfs_key *key);
3039int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
3040                           struct inode *inode);
3041int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
3042                         struct inode *inode, struct page *,
3043                         int update_timestamps);
3044
3045#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
3046#define file_size(inode) ((inode)->i_size)
3047#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
3048
3049#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
3050!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
3051
3052void padd_item(char *item, int total_length, int length);
3053
3054/* inode.c */
3055/* args for the create parameter of reiserfs_get_block */
3056#define GET_BLOCK_NO_CREATE 0    /* don't create new blocks or convert tails */
3057#define GET_BLOCK_CREATE 1       /* add anything you need to find block */
3058#define GET_BLOCK_NO_HOLE 2      /* return -ENOENT for file holes */
3059#define GET_BLOCK_READ_DIRECT 4  /* read the tail if indirect item not found */
3060#define GET_BLOCK_NO_IMUX     8  /* i_mutex is not held, don't preallocate */
3061#define GET_BLOCK_NO_DANGLE   16 /* don't leave any transactions running */
3062
3063void reiserfs_read_locked_inode(struct inode *inode,
3064                                struct reiserfs_iget_args *args);
3065int reiserfs_find_actor(struct inode *inode, void *p);
3066int reiserfs_init_locked_inode(struct inode *inode, void *p);
3067void reiserfs_evict_inode(struct inode *inode);
3068int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3069int reiserfs_get_block(struct inode *inode, sector_t block,
3070                       struct buffer_head *bh_result, int create);
3071struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3072                                     int fh_len, int fh_type);
3073struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
3074                                     int fh_len, int fh_type);
3075int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
3076                       struct inode *parent);
3077
3078int reiserfs_truncate_file(struct inode *, int update_timestamps);
3079void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
3080                  int type, int key_length);
3081void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
3082                       int version,
3083                       loff_t offset, int type, int length, int entry_count);
3084struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
3085
3086struct reiserfs_security_handle;
3087int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
3088                       struct inode *dir, umode_t mode,
3089                       const char *symname, loff_t i_size,
3090                       struct dentry *dentry, struct inode *inode,
3091                       struct reiserfs_security_handle *security);
3092
3093void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
3094                             struct inode *inode, loff_t size);
3095
3096static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
3097                                      struct inode *inode)
3098{
3099        reiserfs_update_sd_size(th, inode, inode->i_size);
3100}
3101
3102void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
3103int reiserfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3104                     struct iattr *attr);
3105
3106int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
3107
3108/* namei.c */
3109void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
3110int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
3111                        struct treepath *path, struct reiserfs_dir_entry *de);
3112struct dentry *reiserfs_get_parent(struct dentry *);
3113
3114#ifdef CONFIG_REISERFS_PROC_INFO
3115int reiserfs_proc_info_init(struct super_block *sb);
3116int reiserfs_proc_info_done(struct super_block *sb);
3117int reiserfs_proc_info_global_init(void);
3118int reiserfs_proc_info_global_done(void);
3119
3120#define PROC_EXP( e )   e
3121
3122#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
3123#define PROC_INFO_MAX( sb, field, value )                                                               \
3124    __PINFO( sb ).field =                                                                                               \
3125        max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
3126#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
3127#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
3128#define PROC_INFO_BH_STAT( sb, bh, level )                                                      \
3129    PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );                                              \
3130    PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );      \
3131    PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
3132#else
3133static inline int reiserfs_proc_info_init(struct super_block *sb)
3134{
3135        return 0;
3136}
3137
3138static inline int reiserfs_proc_info_done(struct super_block *sb)
3139{
3140        return 0;
3141}
3142
3143static inline int reiserfs_proc_info_global_init(void)
3144{
3145        return 0;
3146}
3147
3148static inline int reiserfs_proc_info_global_done(void)
3149{
3150        return 0;
3151}
3152
3153#define PROC_EXP( e )
3154#define VOID_V ( ( void ) 0 )
3155#define PROC_INFO_MAX( sb, field, value ) VOID_V
3156#define PROC_INFO_INC( sb, field ) VOID_V
3157#define PROC_INFO_ADD( sb, field, val ) VOID_V
3158#define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
3159#endif
3160
3161/* dir.c */
3162extern const struct inode_operations reiserfs_dir_inode_operations;
3163extern const struct inode_operations reiserfs_symlink_inode_operations;
3164extern const struct inode_operations reiserfs_special_inode_operations;
3165extern const struct file_operations reiserfs_dir_operations;
3166int reiserfs_readdir_inode(struct inode *, struct dir_context *);
3167
3168/* tail_conversion.c */
3169int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
3170                    struct treepath *, struct buffer_head *, loff_t);
3171int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
3172                    struct page *, struct treepath *, const struct cpu_key *,
3173                    loff_t, char *);
3174void reiserfs_unmap_buffer(struct buffer_head *);
3175
3176/* file.c */
3177extern const struct inode_operations reiserfs_file_inode_operations;
3178extern const struct file_operations reiserfs_file_operations;
3179extern const struct address_space_operations reiserfs_address_space_operations;
3180
3181/* fix_nodes.c */
3182
3183int fix_nodes(int n_op_mode, struct tree_balance *tb,
3184              struct item_head *ins_ih, const void *);
3185void unfix_nodes(struct tree_balance *);
3186
3187/* prints.c */
3188void __reiserfs_panic(struct super_block *s, const char *id,
3189                      const char *function, const char *fmt, ...)
3190    __attribute__ ((noreturn));
3191#define reiserfs_panic(s, id, fmt, args...) \
3192        __reiserfs_panic(s, id, __func__, fmt, ##args)
3193void __reiserfs_error(struct super_block *s, const char *id,
3194                      const char *function, const char *fmt, ...);
3195#define reiserfs_error(s, id, fmt, args...) \
3196         __reiserfs_error(s, id, __func__, fmt, ##args)
3197void reiserfs_info(struct super_block *s, const char *fmt, ...);
3198void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
3199void print_indirect_item(struct buffer_head *bh, int item_num);
3200void store_print_tb(struct tree_balance *tb);
3201void print_cur_tb(char *mes);
3202void print_de(struct reiserfs_dir_entry *de);
3203void print_bi(struct buffer_info *bi, char *mes);
3204#define PRINT_LEAF_ITEMS 1      /* print all items */
3205#define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
3206#define PRINT_DIRECT_ITEMS 4    /* print contents of direct items */
3207void print_block(struct buffer_head *bh, ...);
3208void print_bmap(struct super_block *s, int silent);
3209void print_bmap_block(int i, char *data, int size, int silent);
3210/*void print_super_block (struct super_block * s, char * mes);*/
3211void print_objectid_map(struct super_block *s);
3212void print_block_head(struct buffer_head *bh, char *mes);
3213void check_leaf(struct buffer_head *bh);
3214void check_internal(struct buffer_head *bh);
3215void print_statistics(struct super_block *s);
3216char *reiserfs_hashname(int code);
3217
3218/* lbalance.c */
3219int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
3220                    int mov_bytes, struct buffer_head *Snew);
3221int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
3222int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
3223void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
3224                       int del_num, int del_bytes);
3225void leaf_insert_into_buf(struct buffer_info *bi, int before,
3226                          struct item_head * const inserted_item_ih,
3227                          const char * const inserted_item_body,
3228                          int zeros_number);
3229void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
3230                          int pos_in_item, int paste_size,
3231                          const char * const body, int zeros_number);
3232void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
3233                          int pos_in_item, int cut_size);
3234void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
3235                        int new_entry_count, struct reiserfs_de_head *new_dehs,
3236                        const char *records, int paste_size);
3237/* ibalance.c */
3238int balance_internal(struct tree_balance *, int, int, struct item_head *,
3239                     struct buffer_head **);
3240
3241/* do_balance.c */
3242void do_balance_mark_leaf_dirty(struct tree_balance *tb,
3243                                struct buffer_head *bh, int flag);
3244#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
3245#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
3246
3247void do_balance(struct tree_balance *tb, struct item_head *ih,
3248                const char *body, int flag);
3249void reiserfs_invalidate_buffer(struct tree_balance *tb,
3250                                struct buffer_head *bh);
3251
3252int get_left_neighbor_position(struct tree_balance *tb, int h);
3253int get_right_neighbor_position(struct tree_balance *tb, int h);
3254void replace_key(struct tree_balance *tb, struct buffer_head *, int,
3255                 struct buffer_head *, int);
3256void make_empty_node(struct buffer_info *);
3257struct buffer_head *get_FEB(struct tree_balance *);
3258
3259/* bitmap.c */
3260
3261/*
3262 * structure contains hints for block allocator, and it is a container for
3263 * arguments, such as node, search path, transaction_handle, etc.
3264 */
3265struct __reiserfs_blocknr_hint {
3266        /* inode passed to allocator, if we allocate unf. nodes */
3267        struct inode *inode;
3268
3269        sector_t block;         /* file offset, in blocks */
3270        struct in_core_key key;
3271
3272        /*
3273         * search path, used by allocator to deternine search_start by
3274         * various ways
3275         */
3276        struct treepath *path;
3277
3278        /*
3279         * transaction handle is needed to log super blocks
3280         * and bitmap blocks changes
3281         */
3282        struct reiserfs_transaction_handle *th;
3283
3284        b_blocknr_t beg, end;
3285
3286        /*
3287         * a field used to transfer search start value (block number)
3288         * between different block allocator procedures
3289         * (determine_search_start() and others)
3290         */
3291        b_blocknr_t search_start;
3292
3293        /*
3294         * is set in determine_prealloc_size() function,
3295         * used by underlayed function that do actual allocation
3296         */
3297        int prealloc_size;
3298
3299        /*
3300         * the allocator uses different polices for getting disk
3301         * space for formatted/unformatted blocks with/without preallocation
3302         */
3303        unsigned formatted_node:1;
3304        unsigned preallocate:1;
3305};
3306
3307typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
3308
3309int reiserfs_parse_alloc_options(struct super_block *, char *);
3310void reiserfs_init_alloc_options(struct super_block *s);
3311
3312/*
3313 * given a directory, this will tell you what packing locality
3314 * to use for a new object underneat it.  The locality is returned
3315 * in disk byte order (le).
3316 */
3317__le32 reiserfs_choose_packing(struct inode *dir);
3318
3319void show_alloc_options(struct seq_file *seq, struct super_block *s);
3320int reiserfs_init_bitmap_cache(struct super_block *sb);
3321void reiserfs_free_bitmap_cache(struct super_block *sb);
3322void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
3323struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
3324int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
3325void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
3326                         b_blocknr_t, int for_unformatted);
3327int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
3328                               int);
3329static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
3330                                             b_blocknr_t * new_blocknrs,
3331                                             int amount_needed)
3332{
3333        reiserfs_blocknr_hint_t hint = {
3334                .th = tb->transaction_handle,
3335                .path = tb->tb_path,
3336                .inode = NULL,
3337                .key = tb->key,
3338                .block = 0,
3339                .formatted_node = 1
3340        };
3341        return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
3342                                          0);
3343}
3344
3345static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
3346                                            *th, struct inode *inode,
3347                                            b_blocknr_t * new_blocknrs,
3348                                            struct treepath *path,
3349                                            sector_t block)
3350{
3351        reiserfs_blocknr_hint_t hint = {
3352                .th = th,
3353                .path = path,
3354                .inode = inode,
3355                .block = block,
3356                .formatted_node = 0,
3357                .preallocate = 0
3358        };
3359        return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
3360}
3361
3362#ifdef REISERFS_PREALLOCATE
3363static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
3364                                             *th, struct inode *inode,
3365                                             b_blocknr_t * new_blocknrs,
3366                                             struct treepath *path,
3367                                             sector_t block)
3368{
3369        reiserfs_blocknr_hint_t hint = {
3370                .th = th,
3371                .path = path,
3372                .inode = inode,
3373                .block = block,
3374                .formatted_node = 0,
3375                .preallocate = 1
3376        };
3377        return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
3378}
3379
3380void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
3381                               struct inode *inode);
3382void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
3383#endif
3384
3385/* hashes.c */
3386__u32 keyed_hash(const signed char *msg, int len);
3387__u32 yura_hash(const signed char *msg, int len);
3388__u32 r5_hash(const signed char *msg, int len);
3389
3390#define reiserfs_set_le_bit             __set_bit_le
3391#define reiserfs_test_and_set_le_bit    __test_and_set_bit_le
3392#define reiserfs_clear_le_bit           __clear_bit_le
3393#define reiserfs_test_and_clear_le_bit  __test_and_clear_bit_le
3394#define reiserfs_test_le_bit            test_bit_le
3395#define reiserfs_find_next_zero_le_bit  find_next_zero_bit_le
3396
3397/*
3398 * sometimes reiserfs_truncate may require to allocate few new blocks
3399 * to perform indirect2direct conversion. People probably used to
3400 * think, that truncate should work without problems on a filesystem
3401 * without free disk space. They may complain that they can not
3402 * truncate due to lack of free disk space. This spare space allows us
3403 * to not worry about it. 500 is probably too much, but it should be
3404 * absolutely safe
3405 */
3406#define SPARE_SPACE 500
3407
3408/* prototypes from ioctl.c */
3409int reiserfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3410int reiserfs_fileattr_set(struct user_namespace *mnt_userns,
3411                          struct dentry *dentry, struct fileattr *fa);
3412long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3413long reiserfs_compat_ioctl(struct file *filp,
3414                   unsigned int cmd, unsigned long arg);
3415int reiserfs_unpack(struct inode *inode);
3416