linux/fs/reiserfs/stree.c
<<
>>
Prefs
   1/*
   2 *  Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5/*
   6 *  Written by Anatoly P. Pinchuk pap@namesys.botik.ru
   7 *  Programm System Institute
   8 *  Pereslavl-Zalessky Russia
   9 */
  10
  11#include <linux/time.h>
  12#include <linux/string.h>
  13#include <linux/pagemap.h>
  14#include <linux/bio.h>
  15#include "reiserfs.h"
  16#include <linux/buffer_head.h>
  17#include <linux/quotaops.h>
  18
  19/* Does the buffer contain a disk block which is in the tree. */
  20inline int B_IS_IN_TREE(const struct buffer_head *bh)
  21{
  22
  23        RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
  24               "PAP-1010: block (%b) has too big level (%z)", bh, bh);
  25
  26        return (B_LEVEL(bh) != FREE_LEVEL);
  27}
  28
  29/* to get item head in le form */
  30inline void copy_item_head(struct item_head *to,
  31                           const struct item_head *from)
  32{
  33        memcpy(to, from, IH_SIZE);
  34}
  35
  36/*
  37 * k1 is pointer to on-disk structure which is stored in little-endian
  38 * form. k2 is pointer to cpu variable. For key of items of the same
  39 * object this returns 0.
  40 * Returns: -1 if key1 < key2
  41 * 0 if key1 == key2
  42 * 1 if key1 > key2
  43 */
  44inline int comp_short_keys(const struct reiserfs_key *le_key,
  45                           const struct cpu_key *cpu_key)
  46{
  47        __u32 n;
  48        n = le32_to_cpu(le_key->k_dir_id);
  49        if (n < cpu_key->on_disk_key.k_dir_id)
  50                return -1;
  51        if (n > cpu_key->on_disk_key.k_dir_id)
  52                return 1;
  53        n = le32_to_cpu(le_key->k_objectid);
  54        if (n < cpu_key->on_disk_key.k_objectid)
  55                return -1;
  56        if (n > cpu_key->on_disk_key.k_objectid)
  57                return 1;
  58        return 0;
  59}
  60
  61/*
  62 * k1 is pointer to on-disk structure which is stored in little-endian
  63 * form. k2 is pointer to cpu variable.
  64 * Compare keys using all 4 key fields.
  65 * Returns: -1 if key1 < key2 0
  66 * if key1 = key2 1 if key1 > key2
  67 */
  68static inline int comp_keys(const struct reiserfs_key *le_key,
  69                            const struct cpu_key *cpu_key)
  70{
  71        int retval;
  72
  73        retval = comp_short_keys(le_key, cpu_key);
  74        if (retval)
  75                return retval;
  76        if (le_key_k_offset(le_key_version(le_key), le_key) <
  77            cpu_key_k_offset(cpu_key))
  78                return -1;
  79        if (le_key_k_offset(le_key_version(le_key), le_key) >
  80            cpu_key_k_offset(cpu_key))
  81                return 1;
  82
  83        if (cpu_key->key_length == 3)
  84                return 0;
  85
  86        /* this part is needed only when tail conversion is in progress */
  87        if (le_key_k_type(le_key_version(le_key), le_key) <
  88            cpu_key_k_type(cpu_key))
  89                return -1;
  90
  91        if (le_key_k_type(le_key_version(le_key), le_key) >
  92            cpu_key_k_type(cpu_key))
  93                return 1;
  94
  95        return 0;
  96}
  97
  98inline int comp_short_le_keys(const struct reiserfs_key *key1,
  99                              const struct reiserfs_key *key2)
 100{
 101        __u32 *k1_u32, *k2_u32;
 102        int key_length = REISERFS_SHORT_KEY_LEN;
 103
 104        k1_u32 = (__u32 *) key1;
 105        k2_u32 = (__u32 *) key2;
 106        for (; key_length--; ++k1_u32, ++k2_u32) {
 107                if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
 108                        return -1;
 109                if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
 110                        return 1;
 111        }
 112        return 0;
 113}
 114
 115inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
 116{
 117        int version;
 118        to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
 119        to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
 120
 121        /* find out version of the key */
 122        version = le_key_version(from);
 123        to->version = version;
 124        to->on_disk_key.k_offset = le_key_k_offset(version, from);
 125        to->on_disk_key.k_type = le_key_k_type(version, from);
 126}
 127
 128/*
 129 * this does not say which one is bigger, it only returns 1 if keys
 130 * are not equal, 0 otherwise
 131 */
 132inline int comp_le_keys(const struct reiserfs_key *k1,
 133                        const struct reiserfs_key *k2)
 134{
 135        return memcmp(k1, k2, sizeof(struct reiserfs_key));
 136}
 137
 138/**************************************************************************
 139 *  Binary search toolkit function                                        *
 140 *  Search for an item in the array by the item key                       *
 141 *  Returns:    1 if found,  0 if not found;                              *
 142 *        *pos = number of the searched element if found, else the        *
 143 *        number of the first element that is larger than key.            *
 144 **************************************************************************/
 145/*
 146 * For those not familiar with binary search: lbound is the leftmost item
 147 * that it could be, rbound the rightmost item that it could be.  We examine
 148 * the item halfway between lbound and rbound, and that tells us either
 149 * that we can increase lbound, or decrease rbound, or that we have found it,
 150 * or if lbound <= rbound that there are no possible items, and we have not
 151 * found it. With each examination we cut the number of possible items it
 152 * could be by one more than half rounded down, or we find it.
 153 */
 154static inline int bin_search(const void *key,   /* Key to search for. */
 155                             const void *base,  /* First item in the array. */
 156                             int num,   /* Number of items in the array. */
 157                             /*
 158                              * Item size in the array.  searched. Lest the
 159                              * reader be confused, note that this is crafted
 160                              * as a general function, and when it is applied
 161                              * specifically to the array of item headers in a
 162                              * node, width is actually the item header size
 163                              * not the item size.
 164                              */
 165                             int width,
 166                             int *pos /* Number of the searched for element. */
 167    )
 168{
 169        int rbound, lbound, j;
 170
 171        for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
 172             lbound <= rbound; j = (rbound + lbound) / 2)
 173                switch (comp_keys
 174                        ((struct reiserfs_key *)((char *)base + j * width),
 175                         (struct cpu_key *)key)) {
 176                case -1:
 177                        lbound = j + 1;
 178                        continue;
 179                case 1:
 180                        rbound = j - 1;
 181                        continue;
 182                case 0:
 183                        *pos = j;
 184                        return ITEM_FOUND;      /* Key found in the array.  */
 185                }
 186
 187        /*
 188         * bin_search did not find given key, it returns position of key,
 189         * that is minimal and greater than the given one.
 190         */
 191        *pos = lbound;
 192        return ITEM_NOT_FOUND;
 193}
 194
 195
 196/* Minimal possible key. It is never in the tree. */
 197const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
 198
 199/* Maximal possible key. It is never in the tree. */
 200static const struct reiserfs_key MAX_KEY = {
 201        cpu_to_le32(0xffffffff),
 202        cpu_to_le32(0xffffffff),
 203        {{cpu_to_le32(0xffffffff),
 204          cpu_to_le32(0xffffffff)},}
 205};
 206
 207/*
 208 * Get delimiting key of the buffer by looking for it in the buffers in the
 209 * path, starting from the bottom of the path, and going upwards.  We must
 210 * check the path's validity at each step.  If the key is not in the path,
 211 * there is no delimiting key in the tree (buffer is first or last buffer
 212 * in tree), and in this case we return a special key, either MIN_KEY or
 213 * MAX_KEY.
 214 */
 215static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
 216                                                  const struct super_block *sb)
 217{
 218        int position, path_offset = chk_path->path_length;
 219        struct buffer_head *parent;
 220
 221        RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
 222               "PAP-5010: invalid offset in the path");
 223
 224        /* While not higher in path than first element. */
 225        while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
 226
 227                RFALSE(!buffer_uptodate
 228                       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
 229                       "PAP-5020: parent is not uptodate");
 230
 231                /* Parent at the path is not in the tree now. */
 232                if (!B_IS_IN_TREE
 233                    (parent =
 234                     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
 235                        return &MAX_KEY;
 236                /* Check whether position in the parent is correct. */
 237                if ((position =
 238                     PATH_OFFSET_POSITION(chk_path,
 239                                          path_offset)) >
 240                    B_NR_ITEMS(parent))
 241                        return &MAX_KEY;
 242                /* Check whether parent at the path really points to the child. */
 243                if (B_N_CHILD_NUM(parent, position) !=
 244                    PATH_OFFSET_PBUFFER(chk_path,
 245                                        path_offset + 1)->b_blocknr)
 246                        return &MAX_KEY;
 247                /*
 248                 * Return delimiting key if position in the parent
 249                 * is not equal to zero.
 250                 */
 251                if (position)
 252                        return internal_key(parent, position - 1);
 253        }
 254        /* Return MIN_KEY if we are in the root of the buffer tree. */
 255        if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
 256            b_blocknr == SB_ROOT_BLOCK(sb))
 257                return &MIN_KEY;
 258        return &MAX_KEY;
 259}
 260
 261/* Get delimiting key of the buffer at the path and its right neighbor. */
 262inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
 263                                           const struct super_block *sb)
 264{
 265        int position, path_offset = chk_path->path_length;
 266        struct buffer_head *parent;
 267
 268        RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
 269               "PAP-5030: invalid offset in the path");
 270
 271        while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
 272
 273                RFALSE(!buffer_uptodate
 274                       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
 275                       "PAP-5040: parent is not uptodate");
 276
 277                /* Parent at the path is not in the tree now. */
 278                if (!B_IS_IN_TREE
 279                    (parent =
 280                     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
 281                        return &MIN_KEY;
 282                /* Check whether position in the parent is correct. */
 283                if ((position =
 284                     PATH_OFFSET_POSITION(chk_path,
 285                                          path_offset)) >
 286                    B_NR_ITEMS(parent))
 287                        return &MIN_KEY;
 288                /*
 289                 * Check whether parent at the path really points
 290                 * to the child.
 291                 */
 292                if (B_N_CHILD_NUM(parent, position) !=
 293                    PATH_OFFSET_PBUFFER(chk_path,
 294                                        path_offset + 1)->b_blocknr)
 295                        return &MIN_KEY;
 296
 297                /*
 298                 * Return delimiting key if position in the parent
 299                 * is not the last one.
 300                 */
 301                if (position != B_NR_ITEMS(parent))
 302                        return internal_key(parent, position);
 303        }
 304
 305        /* Return MAX_KEY if we are in the root of the buffer tree. */
 306        if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
 307            b_blocknr == SB_ROOT_BLOCK(sb))
 308                return &MAX_KEY;
 309        return &MIN_KEY;
 310}
 311
 312/*
 313 * Check whether a key is contained in the tree rooted from a buffer at a path.
 314 * This works by looking at the left and right delimiting keys for the buffer
 315 * in the last path_element in the path.  These delimiting keys are stored
 316 * at least one level above that buffer in the tree. If the buffer is the
 317 * first or last node in the tree order then one of the delimiting keys may
 318 * be absent, and in this case get_lkey and get_rkey return a special key
 319 * which is MIN_KEY or MAX_KEY.
 320 */
 321static inline int key_in_buffer(
 322                                /* Path which should be checked. */
 323                                struct treepath *chk_path,
 324                                /* Key which should be checked. */
 325                                const struct cpu_key *key,
 326                                struct super_block *sb
 327    )
 328{
 329
 330        RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
 331               || chk_path->path_length > MAX_HEIGHT,
 332               "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
 333               key, chk_path->path_length);
 334        RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
 335               "PAP-5060: device must not be NODEV");
 336
 337        if (comp_keys(get_lkey(chk_path, sb), key) == 1)
 338                /* left delimiting key is bigger, that the key we look for */
 339                return 0;
 340        /*  if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
 341        if (comp_keys(get_rkey(chk_path, sb), key) != 1)
 342                /* key must be less than right delimitiing key */
 343                return 0;
 344        return 1;
 345}
 346
 347int reiserfs_check_path(struct treepath *p)
 348{
 349        RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
 350               "path not properly relsed");
 351        return 0;
 352}
 353
 354/*
 355 * Drop the reference to each buffer in a path and restore
 356 * dirty bits clean when preparing the buffer for the log.
 357 * This version should only be called from fix_nodes()
 358 */
 359void pathrelse_and_restore(struct super_block *sb,
 360                           struct treepath *search_path)
 361{
 362        int path_offset = search_path->path_length;
 363
 364        RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
 365               "clm-4000: invalid path offset");
 366
 367        while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
 368                struct buffer_head *bh;
 369                bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
 370                reiserfs_restore_prepared_buffer(sb, bh);
 371                brelse(bh);
 372        }
 373        search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
 374}
 375
 376/* Drop the reference to each buffer in a path */
 377void pathrelse(struct treepath *search_path)
 378{
 379        int path_offset = search_path->path_length;
 380
 381        RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
 382               "PAP-5090: invalid path offset");
 383
 384        while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
 385                brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
 386
 387        search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
 388}
 389
 390static int has_valid_deh_location(struct buffer_head *bh, struct item_head *ih)
 391{
 392        struct reiserfs_de_head *deh;
 393        int i;
 394
 395        deh = B_I_DEH(bh, ih);
 396        for (i = 0; i < ih_entry_count(ih); i++) {
 397                if (deh_location(&deh[i]) > ih_item_len(ih)) {
 398                        reiserfs_warning(NULL, "reiserfs-5094",
 399                                         "directory entry location seems wrong %h",
 400                                         &deh[i]);
 401                        return 0;
 402                }
 403        }
 404
 405        return 1;
 406}
 407
 408static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
 409{
 410        struct block_head *blkh;
 411        struct item_head *ih;
 412        int used_space;
 413        int prev_location;
 414        int i;
 415        int nr;
 416
 417        blkh = (struct block_head *)buf;
 418        if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
 419                reiserfs_warning(NULL, "reiserfs-5080",
 420                                 "this should be caught earlier");
 421                return 0;
 422        }
 423
 424        nr = blkh_nr_item(blkh);
 425        if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
 426                /* item number is too big or too small */
 427                reiserfs_warning(NULL, "reiserfs-5081",
 428                                 "nr_item seems wrong: %z", bh);
 429                return 0;
 430        }
 431        ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
 432        used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
 433
 434        /* free space does not match to calculated amount of use space */
 435        if (used_space != blocksize - blkh_free_space(blkh)) {
 436                reiserfs_warning(NULL, "reiserfs-5082",
 437                                 "free space seems wrong: %z", bh);
 438                return 0;
 439        }
 440        /*
 441         * FIXME: it is_leaf will hit performance too much - we may have
 442         * return 1 here
 443         */
 444
 445        /* check tables of item heads */
 446        ih = (struct item_head *)(buf + BLKH_SIZE);
 447        prev_location = blocksize;
 448        for (i = 0; i < nr; i++, ih++) {
 449                if (le_ih_k_type(ih) == TYPE_ANY) {
 450                        reiserfs_warning(NULL, "reiserfs-5083",
 451                                         "wrong item type for item %h",
 452                                         ih);
 453                        return 0;
 454                }
 455                if (ih_location(ih) >= blocksize
 456                    || ih_location(ih) < IH_SIZE * nr) {
 457                        reiserfs_warning(NULL, "reiserfs-5084",
 458                                         "item location seems wrong: %h",
 459                                         ih);
 460                        return 0;
 461                }
 462                if (ih_item_len(ih) < 1
 463                    || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
 464                        reiserfs_warning(NULL, "reiserfs-5085",
 465                                         "item length seems wrong: %h",
 466                                         ih);
 467                        return 0;
 468                }
 469                if (prev_location - ih_location(ih) != ih_item_len(ih)) {
 470                        reiserfs_warning(NULL, "reiserfs-5086",
 471                                         "item location seems wrong "
 472                                         "(second one): %h", ih);
 473                        return 0;
 474                }
 475                if (is_direntry_le_ih(ih)) {
 476                        if (ih_item_len(ih) < (ih_entry_count(ih) * IH_SIZE)) {
 477                                reiserfs_warning(NULL, "reiserfs-5093",
 478                                                 "item entry count seems wrong %h",
 479                                                 ih);
 480                                return 0;
 481                        }
 482                        return has_valid_deh_location(bh, ih);
 483                }
 484                prev_location = ih_location(ih);
 485        }
 486
 487        /* one may imagine many more checks */
 488        return 1;
 489}
 490
 491/* returns 1 if buf looks like an internal node, 0 otherwise */
 492static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
 493{
 494        struct block_head *blkh;
 495        int nr;
 496        int used_space;
 497
 498        blkh = (struct block_head *)buf;
 499        nr = blkh_level(blkh);
 500        if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
 501                /* this level is not possible for internal nodes */
 502                reiserfs_warning(NULL, "reiserfs-5087",
 503                                 "this should be caught earlier");
 504                return 0;
 505        }
 506
 507        nr = blkh_nr_item(blkh);
 508        /* for internal which is not root we might check min number of keys */
 509        if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
 510                reiserfs_warning(NULL, "reiserfs-5088",
 511                                 "number of key seems wrong: %z", bh);
 512                return 0;
 513        }
 514
 515        used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
 516        if (used_space != blocksize - blkh_free_space(blkh)) {
 517                reiserfs_warning(NULL, "reiserfs-5089",
 518                                 "free space seems wrong: %z", bh);
 519                return 0;
 520        }
 521
 522        /* one may imagine many more checks */
 523        return 1;
 524}
 525
 526/*
 527 * make sure that bh contains formatted node of reiserfs tree of
 528 * 'level'-th level
 529 */
 530static int is_tree_node(struct buffer_head *bh, int level)
 531{
 532        if (B_LEVEL(bh) != level) {
 533                reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
 534                                 "not match to the expected one %d",
 535                                 B_LEVEL(bh), level);
 536                return 0;
 537        }
 538        if (level == DISK_LEAF_NODE_LEVEL)
 539                return is_leaf(bh->b_data, bh->b_size, bh);
 540
 541        return is_internal(bh->b_data, bh->b_size, bh);
 542}
 543
 544#define SEARCH_BY_KEY_READA 16
 545
 546/*
 547 * The function is NOT SCHEDULE-SAFE!
 548 * It might unlock the write lock if we needed to wait for a block
 549 * to be read. Note that in this case it won't recover the lock to avoid
 550 * high contention resulting from too much lock requests, especially
 551 * the caller (search_by_key) will perform other schedule-unsafe
 552 * operations just after calling this function.
 553 *
 554 * @return depth of lock to be restored after read completes
 555 */
 556static int search_by_key_reada(struct super_block *s,
 557                                struct buffer_head **bh,
 558                                b_blocknr_t *b, int num)
 559{
 560        int i, j;
 561        int depth = -1;
 562
 563        for (i = 0; i < num; i++) {
 564                bh[i] = sb_getblk(s, b[i]);
 565        }
 566        /*
 567         * We are going to read some blocks on which we
 568         * have a reference. It's safe, though we might be
 569         * reading blocks concurrently changed if we release
 570         * the lock. But it's still fine because we check later
 571         * if the tree changed
 572         */
 573        for (j = 0; j < i; j++) {
 574                /*
 575                 * note, this needs attention if we are getting rid of the BKL
 576                 * you have to make sure the prepared bit isn't set on this
 577                 * buffer
 578                 */
 579                if (!buffer_uptodate(bh[j])) {
 580                        if (depth == -1)
 581                                depth = reiserfs_write_unlock_nested(s);
 582                        ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, bh + j);
 583                }
 584                brelse(bh[j]);
 585        }
 586        return depth;
 587}
 588
 589/*
 590 * This function fills up the path from the root to the leaf as it
 591 * descends the tree looking for the key.  It uses reiserfs_bread to
 592 * try to find buffers in the cache given their block number.  If it
 593 * does not find them in the cache it reads them from disk.  For each
 594 * node search_by_key finds using reiserfs_bread it then uses
 595 * bin_search to look through that node.  bin_search will find the
 596 * position of the block_number of the next node if it is looking
 597 * through an internal node.  If it is looking through a leaf node
 598 * bin_search will find the position of the item which has key either
 599 * equal to given key, or which is the maximal key less than the given
 600 * key.  search_by_key returns a path that must be checked for the
 601 * correctness of the top of the path but need not be checked for the
 602 * correctness of the bottom of the path
 603 */
 604/*
 605 * search_by_key - search for key (and item) in stree
 606 * @sb: superblock
 607 * @key: pointer to key to search for
 608 * @search_path: Allocated and initialized struct treepath; Returned filled
 609 *               on success.
 610 * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
 611 *              stop at leaf level.
 612 *
 613 * The function is NOT SCHEDULE-SAFE!
 614 */
 615int search_by_key(struct super_block *sb, const struct cpu_key *key,
 616                  struct treepath *search_path, int stop_level)
 617{
 618        b_blocknr_t block_number;
 619        int expected_level;
 620        struct buffer_head *bh;
 621        struct path_element *last_element;
 622        int node_level, retval;
 623        int fs_gen;
 624        struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
 625        b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
 626        int reada_count = 0;
 627
 628#ifdef CONFIG_REISERFS_CHECK
 629        int repeat_counter = 0;
 630#endif
 631
 632        PROC_INFO_INC(sb, search_by_key);
 633
 634        /*
 635         * As we add each node to a path we increase its count.  This means
 636         * that we must be careful to release all nodes in a path before we
 637         * either discard the path struct or re-use the path struct, as we
 638         * do here.
 639         */
 640
 641        pathrelse(search_path);
 642
 643        /*
 644         * With each iteration of this loop we search through the items in the
 645         * current node, and calculate the next current node(next path element)
 646         * for the next iteration of this loop..
 647         */
 648        block_number = SB_ROOT_BLOCK(sb);
 649        expected_level = -1;
 650        while (1) {
 651
 652#ifdef CONFIG_REISERFS_CHECK
 653                if (!(++repeat_counter % 50000))
 654                        reiserfs_warning(sb, "PAP-5100",
 655                                         "%s: there were %d iterations of "
 656                                         "while loop looking for key %K",
 657                                         current->comm, repeat_counter,
 658                                         key);
 659#endif
 660
 661                /* prep path to have another element added to it. */
 662                last_element =
 663                    PATH_OFFSET_PELEMENT(search_path,
 664                                         ++search_path->path_length);
 665                fs_gen = get_generation(sb);
 666
 667                /*
 668                 * Read the next tree node, and set the last element
 669                 * in the path to have a pointer to it.
 670                 */
 671                if ((bh = last_element->pe_buffer =
 672                     sb_getblk(sb, block_number))) {
 673
 674                        /*
 675                         * We'll need to drop the lock if we encounter any
 676                         * buffers that need to be read. If all of them are
 677                         * already up to date, we don't need to drop the lock.
 678                         */
 679                        int depth = -1;
 680
 681                        if (!buffer_uptodate(bh) && reada_count > 1)
 682                                depth = search_by_key_reada(sb, reada_bh,
 683                                                    reada_blocks, reada_count);
 684
 685                        if (!buffer_uptodate(bh) && depth == -1)
 686                                depth = reiserfs_write_unlock_nested(sb);
 687
 688                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
 689                        wait_on_buffer(bh);
 690
 691                        if (depth != -1)
 692                                reiserfs_write_lock_nested(sb, depth);
 693                        if (!buffer_uptodate(bh))
 694                                goto io_error;
 695                } else {
 696io_error:
 697                        search_path->path_length--;
 698                        pathrelse(search_path);
 699                        return IO_ERROR;
 700                }
 701                reada_count = 0;
 702                if (expected_level == -1)
 703                        expected_level = SB_TREE_HEIGHT(sb);
 704                expected_level--;
 705
 706                /*
 707                 * It is possible that schedule occurred. We must check
 708                 * whether the key to search is still in the tree rooted
 709                 * from the current buffer. If not then repeat search
 710                 * from the root.
 711                 */
 712                if (fs_changed(fs_gen, sb) &&
 713                    (!B_IS_IN_TREE(bh) ||
 714                     B_LEVEL(bh) != expected_level ||
 715                     !key_in_buffer(search_path, key, sb))) {
 716                        PROC_INFO_INC(sb, search_by_key_fs_changed);
 717                        PROC_INFO_INC(sb, search_by_key_restarted);
 718                        PROC_INFO_INC(sb,
 719                                      sbk_restarted[expected_level - 1]);
 720                        pathrelse(search_path);
 721
 722                        /*
 723                         * Get the root block number so that we can
 724                         * repeat the search starting from the root.
 725                         */
 726                        block_number = SB_ROOT_BLOCK(sb);
 727                        expected_level = -1;
 728
 729                        /* repeat search from the root */
 730                        continue;
 731                }
 732
 733                /*
 734                 * only check that the key is in the buffer if key is not
 735                 * equal to the MAX_KEY. Latter case is only possible in
 736                 * "finish_unfinished()" processing during mount.
 737                 */
 738                RFALSE(comp_keys(&MAX_KEY, key) &&
 739                       !key_in_buffer(search_path, key, sb),
 740                       "PAP-5130: key is not in the buffer");
 741#ifdef CONFIG_REISERFS_CHECK
 742                if (REISERFS_SB(sb)->cur_tb) {
 743                        print_cur_tb("5140");
 744                        reiserfs_panic(sb, "PAP-5140",
 745                                       "schedule occurred in do_balance!");
 746                }
 747#endif
 748
 749                /*
 750                 * make sure, that the node contents look like a node of
 751                 * certain level
 752                 */
 753                if (!is_tree_node(bh, expected_level)) {
 754                        reiserfs_error(sb, "vs-5150",
 755                                       "invalid format found in block %ld. "
 756                                       "Fsck?", bh->b_blocknr);
 757                        pathrelse(search_path);
 758                        return IO_ERROR;
 759                }
 760
 761                /* ok, we have acquired next formatted node in the tree */
 762                node_level = B_LEVEL(bh);
 763
 764                PROC_INFO_BH_STAT(sb, bh, node_level - 1);
 765
 766                RFALSE(node_level < stop_level,
 767                       "vs-5152: tree level (%d) is less than stop level (%d)",
 768                       node_level, stop_level);
 769
 770                retval = bin_search(key, item_head(bh, 0),
 771                                      B_NR_ITEMS(bh),
 772                                      (node_level ==
 773                                       DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
 774                                      KEY_SIZE,
 775                                      &last_element->pe_position);
 776                if (node_level == stop_level) {
 777                        return retval;
 778                }
 779
 780                /* we are not in the stop level */
 781                /*
 782                 * item has been found, so we choose the pointer which
 783                 * is to the right of the found one
 784                 */
 785                if (retval == ITEM_FOUND)
 786                        last_element->pe_position++;
 787
 788                /*
 789                 * if item was not found we choose the position which is to
 790                 * the left of the found item. This requires no code,
 791                 * bin_search did it already.
 792                 */
 793
 794                /*
 795                 * So we have chosen a position in the current node which is
 796                 * an internal node.  Now we calculate child block number by
 797                 * position in the node.
 798                 */
 799                block_number =
 800                    B_N_CHILD_NUM(bh, last_element->pe_position);
 801
 802                /*
 803                 * if we are going to read leaf nodes, try for read
 804                 * ahead as well
 805                 */
 806                if ((search_path->reada & PATH_READA) &&
 807                    node_level == DISK_LEAF_NODE_LEVEL + 1) {
 808                        int pos = last_element->pe_position;
 809                        int limit = B_NR_ITEMS(bh);
 810                        struct reiserfs_key *le_key;
 811
 812                        if (search_path->reada & PATH_READA_BACK)
 813                                limit = 0;
 814                        while (reada_count < SEARCH_BY_KEY_READA) {
 815                                if (pos == limit)
 816                                        break;
 817                                reada_blocks[reada_count++] =
 818                                    B_N_CHILD_NUM(bh, pos);
 819                                if (search_path->reada & PATH_READA_BACK)
 820                                        pos--;
 821                                else
 822                                        pos++;
 823
 824                                /*
 825                                 * check to make sure we're in the same object
 826                                 */
 827                                le_key = internal_key(bh, pos);
 828                                if (le32_to_cpu(le_key->k_objectid) !=
 829                                    key->on_disk_key.k_objectid) {
 830                                        break;
 831                                }
 832                        }
 833                }
 834        }
 835}
 836
 837/*
 838 * Form the path to an item and position in this item which contains
 839 * file byte defined by key. If there is no such item
 840 * corresponding to the key, we point the path to the item with
 841 * maximal key less than key, and *pos_in_item is set to one
 842 * past the last entry/byte in the item.  If searching for entry in a
 843 * directory item, and it is not found, *pos_in_item is set to one
 844 * entry more than the entry with maximal key which is less than the
 845 * sought key.
 846 *
 847 * Note that if there is no entry in this same node which is one more,
 848 * then we point to an imaginary entry.  for direct items, the
 849 * position is in units of bytes, for indirect items the position is
 850 * in units of blocknr entries, for directory items the position is in
 851 * units of directory entries.
 852 */
 853/* The function is NOT SCHEDULE-SAFE! */
 854int search_for_position_by_key(struct super_block *sb,
 855                               /* Key to search (cpu variable) */
 856                               const struct cpu_key *p_cpu_key,
 857                               /* Filled up by this function. */
 858                               struct treepath *search_path)
 859{
 860        struct item_head *p_le_ih;      /* pointer to on-disk structure */
 861        int blk_size;
 862        loff_t item_offset, offset;
 863        struct reiserfs_dir_entry de;
 864        int retval;
 865
 866        /* If searching for directory entry. */
 867        if (is_direntry_cpu_key(p_cpu_key))
 868                return search_by_entry_key(sb, p_cpu_key, search_path,
 869                                           &de);
 870
 871        /* If not searching for directory entry. */
 872
 873        /* If item is found. */
 874        retval = search_item(sb, p_cpu_key, search_path);
 875        if (retval == IO_ERROR)
 876                return retval;
 877        if (retval == ITEM_FOUND) {
 878
 879                RFALSE(!ih_item_len
 880                       (item_head
 881                        (PATH_PLAST_BUFFER(search_path),
 882                         PATH_LAST_POSITION(search_path))),
 883                       "PAP-5165: item length equals zero");
 884
 885                pos_in_item(search_path) = 0;
 886                return POSITION_FOUND;
 887        }
 888
 889        RFALSE(!PATH_LAST_POSITION(search_path),
 890               "PAP-5170: position equals zero");
 891
 892        /* Item is not found. Set path to the previous item. */
 893        p_le_ih =
 894            item_head(PATH_PLAST_BUFFER(search_path),
 895                           --PATH_LAST_POSITION(search_path));
 896        blk_size = sb->s_blocksize;
 897
 898        if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key))
 899                return FILE_NOT_FOUND;
 900
 901        /* FIXME: quite ugly this far */
 902
 903        item_offset = le_ih_k_offset(p_le_ih);
 904        offset = cpu_key_k_offset(p_cpu_key);
 905
 906        /* Needed byte is contained in the item pointed to by the path. */
 907        if (item_offset <= offset &&
 908            item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
 909                pos_in_item(search_path) = offset - item_offset;
 910                if (is_indirect_le_ih(p_le_ih)) {
 911                        pos_in_item(search_path) /= blk_size;
 912                }
 913                return POSITION_FOUND;
 914        }
 915
 916        /*
 917         * Needed byte is not contained in the item pointed to by the
 918         * path. Set pos_in_item out of the item.
 919         */
 920        if (is_indirect_le_ih(p_le_ih))
 921                pos_in_item(search_path) =
 922                    ih_item_len(p_le_ih) / UNFM_P_SIZE;
 923        else
 924                pos_in_item(search_path) = ih_item_len(p_le_ih);
 925
 926        return POSITION_NOT_FOUND;
 927}
 928
 929/* Compare given item and item pointed to by the path. */
 930int comp_items(const struct item_head *stored_ih, const struct treepath *path)
 931{
 932        struct buffer_head *bh = PATH_PLAST_BUFFER(path);
 933        struct item_head *ih;
 934
 935        /* Last buffer at the path is not in the tree. */
 936        if (!B_IS_IN_TREE(bh))
 937                return 1;
 938
 939        /* Last path position is invalid. */
 940        if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
 941                return 1;
 942
 943        /* we need only to know, whether it is the same item */
 944        ih = tp_item_head(path);
 945        return memcmp(stored_ih, ih, IH_SIZE);
 946}
 947
 948/* prepare for delete or cut of direct item */
 949static inline int prepare_for_direct_item(struct treepath *path,
 950                                          struct item_head *le_ih,
 951                                          struct inode *inode,
 952                                          loff_t new_file_length, int *cut_size)
 953{
 954        loff_t round_len;
 955
 956        if (new_file_length == max_reiserfs_offset(inode)) {
 957                /* item has to be deleted */
 958                *cut_size = -(IH_SIZE + ih_item_len(le_ih));
 959                return M_DELETE;
 960        }
 961        /* new file gets truncated */
 962        if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
 963                round_len = ROUND_UP(new_file_length);
 964                /* this was new_file_length < le_ih ... */
 965                if (round_len < le_ih_k_offset(le_ih)) {
 966                        *cut_size = -(IH_SIZE + ih_item_len(le_ih));
 967                        return M_DELETE;        /* Delete this item. */
 968                }
 969                /* Calculate first position and size for cutting from item. */
 970                pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
 971                *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
 972
 973                return M_CUT;   /* Cut from this item. */
 974        }
 975
 976        /* old file: items may have any length */
 977
 978        if (new_file_length < le_ih_k_offset(le_ih)) {
 979                *cut_size = -(IH_SIZE + ih_item_len(le_ih));
 980                return M_DELETE;        /* Delete this item. */
 981        }
 982
 983        /* Calculate first position and size for cutting from item. */
 984        *cut_size = -(ih_item_len(le_ih) -
 985                      (pos_in_item(path) =
 986                       new_file_length + 1 - le_ih_k_offset(le_ih)));
 987        return M_CUT;           /* Cut from this item. */
 988}
 989
 990static inline int prepare_for_direntry_item(struct treepath *path,
 991                                            struct item_head *le_ih,
 992                                            struct inode *inode,
 993                                            loff_t new_file_length,
 994                                            int *cut_size)
 995{
 996        if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
 997            new_file_length == max_reiserfs_offset(inode)) {
 998                RFALSE(ih_entry_count(le_ih) != 2,
 999                       "PAP-5220: incorrect empty directory item (%h)", le_ih);
1000                *cut_size = -(IH_SIZE + ih_item_len(le_ih));
1001                /* Delete the directory item containing "." and ".." entry. */
1002                return M_DELETE;
1003        }
1004
1005        if (ih_entry_count(le_ih) == 1) {
1006                /*
1007                 * Delete the directory item such as there is one record only
1008                 * in this item
1009                 */
1010                *cut_size = -(IH_SIZE + ih_item_len(le_ih));
1011                return M_DELETE;
1012        }
1013
1014        /* Cut one record from the directory item. */
1015        *cut_size =
1016            -(DEH_SIZE +
1017              entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
1018        return M_CUT;
1019}
1020
1021#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
1022
1023/*
1024 * If the path points to a directory or direct item, calculate mode
1025 * and the size cut, for balance.
1026 * If the path points to an indirect item, remove some number of its
1027 * unformatted nodes.
1028 * In case of file truncate calculate whether this item must be
1029 * deleted/truncated or last unformatted node of this item will be
1030 * converted to a direct item.
1031 * This function returns a determination of what balance mode the
1032 * calling function should employ.
1033 */
1034static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
1035                                      struct inode *inode,
1036                                      struct treepath *path,
1037                                      const struct cpu_key *item_key,
1038                                      /*
1039                                       * Number of unformatted nodes
1040                                       * which were removed from end
1041                                       * of the file.
1042                                       */
1043                                      int *removed,
1044                                      int *cut_size,
1045                                      /* MAX_KEY_OFFSET in case of delete. */
1046                                      unsigned long long new_file_length
1047    )
1048{
1049        struct super_block *sb = inode->i_sb;
1050        struct item_head *p_le_ih = tp_item_head(path);
1051        struct buffer_head *bh = PATH_PLAST_BUFFER(path);
1052
1053        BUG_ON(!th->t_trans_id);
1054
1055        /* Stat_data item. */
1056        if (is_statdata_le_ih(p_le_ih)) {
1057
1058                RFALSE(new_file_length != max_reiserfs_offset(inode),
1059                       "PAP-5210: mode must be M_DELETE");
1060
1061                *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1062                return M_DELETE;
1063        }
1064
1065        /* Directory item. */
1066        if (is_direntry_le_ih(p_le_ih))
1067                return prepare_for_direntry_item(path, p_le_ih, inode,
1068                                                 new_file_length,
1069                                                 cut_size);
1070
1071        /* Direct item. */
1072        if (is_direct_le_ih(p_le_ih))
1073                return prepare_for_direct_item(path, p_le_ih, inode,
1074                                               new_file_length, cut_size);
1075
1076        /* Case of an indirect item. */
1077        {
1078            int blk_size = sb->s_blocksize;
1079            struct item_head s_ih;
1080            int need_re_search;
1081            int delete = 0;
1082            int result = M_CUT;
1083            int pos = 0;
1084
1085            if ( new_file_length == max_reiserfs_offset (inode) ) {
1086                /*
1087                 * prepare_for_delete_or_cut() is called by
1088                 * reiserfs_delete_item()
1089                 */
1090                new_file_length = 0;
1091                delete = 1;
1092            }
1093
1094            do {
1095                need_re_search = 0;
1096                *cut_size = 0;
1097                bh = PATH_PLAST_BUFFER(path);
1098                copy_item_head(&s_ih, tp_item_head(path));
1099                pos = I_UNFM_NUM(&s_ih);
1100
1101                while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1102                    __le32 *unfm;
1103                    __u32 block;
1104
1105                    /*
1106                     * Each unformatted block deletion may involve
1107                     * one additional bitmap block into the transaction,
1108                     * thereby the initial journal space reservation
1109                     * might not be enough.
1110                     */
1111                    if (!delete && (*cut_size) != 0 &&
1112                        reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1113                        break;
1114
1115                    unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
1116                    block = get_block_num(unfm, 0);
1117
1118                    if (block != 0) {
1119                        reiserfs_prepare_for_journal(sb, bh, 1);
1120                        put_block_num(unfm, 0, 0);
1121                        journal_mark_dirty(th, bh);
1122                        reiserfs_free_block(th, inode, block, 1);
1123                    }
1124
1125                    reiserfs_cond_resched(sb);
1126
1127                    if (item_moved (&s_ih, path))  {
1128                        need_re_search = 1;
1129                        break;
1130                    }
1131
1132                    pos --;
1133                    (*removed)++;
1134                    (*cut_size) -= UNFM_P_SIZE;
1135
1136                    if (pos == 0) {
1137                        (*cut_size) -= IH_SIZE;
1138                        result = M_DELETE;
1139                        break;
1140                    }
1141                }
1142                /*
1143                 * a trick.  If the buffer has been logged, this will
1144                 * do nothing.  If we've broken the loop without logging
1145                 * it, it will restore the buffer
1146                 */
1147                reiserfs_restore_prepared_buffer(sb, bh);
1148            } while (need_re_search &&
1149                     search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1150            pos_in_item(path) = pos * UNFM_P_SIZE;
1151
1152            if (*cut_size == 0) {
1153                /*
1154                 * Nothing was cut. maybe convert last unformatted node to the
1155                 * direct item?
1156                 */
1157                result = M_CONVERT;
1158            }
1159            return result;
1160        }
1161}
1162
1163/* Calculate number of bytes which will be deleted or cut during balance */
1164static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1165{
1166        int del_size;
1167        struct item_head *p_le_ih = tp_item_head(tb->tb_path);
1168
1169        if (is_statdata_le_ih(p_le_ih))
1170                return 0;
1171
1172        del_size =
1173            (mode ==
1174             M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1175        if (is_direntry_le_ih(p_le_ih)) {
1176                /*
1177                 * return EMPTY_DIR_SIZE; We delete emty directories only.
1178                 * we can't use EMPTY_DIR_SIZE, as old format dirs have a
1179                 * different empty size.  ick. FIXME, is this right?
1180                 */
1181                return del_size;
1182        }
1183
1184        if (is_indirect_le_ih(p_le_ih))
1185                del_size = (del_size / UNFM_P_SIZE) *
1186                                (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1187        return del_size;
1188}
1189
1190static void init_tb_struct(struct reiserfs_transaction_handle *th,
1191                           struct tree_balance *tb,
1192                           struct super_block *sb,
1193                           struct treepath *path, int size)
1194{
1195
1196        BUG_ON(!th->t_trans_id);
1197
1198        memset(tb, '\0', sizeof(struct tree_balance));
1199        tb->transaction_handle = th;
1200        tb->tb_sb = sb;
1201        tb->tb_path = path;
1202        PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1203        PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1204        tb->insert_size[0] = size;
1205}
1206
1207void padd_item(char *item, int total_length, int length)
1208{
1209        int i;
1210
1211        for (i = total_length; i > length;)
1212                item[--i] = 0;
1213}
1214
1215#ifdef REISERQUOTA_DEBUG
1216char key2type(struct reiserfs_key *ih)
1217{
1218        if (is_direntry_le_key(2, ih))
1219                return 'd';
1220        if (is_direct_le_key(2, ih))
1221                return 'D';
1222        if (is_indirect_le_key(2, ih))
1223                return 'i';
1224        if (is_statdata_le_key(2, ih))
1225                return 's';
1226        return 'u';
1227}
1228
1229char head2type(struct item_head *ih)
1230{
1231        if (is_direntry_le_ih(ih))
1232                return 'd';
1233        if (is_direct_le_ih(ih))
1234                return 'D';
1235        if (is_indirect_le_ih(ih))
1236                return 'i';
1237        if (is_statdata_le_ih(ih))
1238                return 's';
1239        return 'u';
1240}
1241#endif
1242
1243/*
1244 * Delete object item.
1245 * th       - active transaction handle
1246 * path     - path to the deleted item
1247 * item_key - key to search for the deleted item
1248 * indode   - used for updating i_blocks and quotas
1249 * un_bh    - NULL or unformatted node pointer
1250 */
1251int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1252                         struct treepath *path, const struct cpu_key *item_key,
1253                         struct inode *inode, struct buffer_head *un_bh)
1254{
1255        struct super_block *sb = inode->i_sb;
1256        struct tree_balance s_del_balance;
1257        struct item_head s_ih;
1258        struct item_head *q_ih;
1259        int quota_cut_bytes;
1260        int ret_value, del_size, removed;
1261        int depth;
1262
1263#ifdef CONFIG_REISERFS_CHECK
1264        char mode;
1265        int iter = 0;
1266#endif
1267
1268        BUG_ON(!th->t_trans_id);
1269
1270        init_tb_struct(th, &s_del_balance, sb, path,
1271                       0 /*size is unknown */ );
1272
1273        while (1) {
1274                removed = 0;
1275
1276#ifdef CONFIG_REISERFS_CHECK
1277                iter++;
1278                mode =
1279#endif
1280                    prepare_for_delete_or_cut(th, inode, path,
1281                                              item_key, &removed,
1282                                              &del_size,
1283                                              max_reiserfs_offset(inode));
1284
1285                RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1286
1287                copy_item_head(&s_ih, tp_item_head(path));
1288                s_del_balance.insert_size[0] = del_size;
1289
1290                ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1291                if (ret_value != REPEAT_SEARCH)
1292                        break;
1293
1294                PROC_INFO_INC(sb, delete_item_restarted);
1295
1296                /* file system changed, repeat search */
1297                ret_value =
1298                    search_for_position_by_key(sb, item_key, path);
1299                if (ret_value == IO_ERROR)
1300                        break;
1301                if (ret_value == FILE_NOT_FOUND) {
1302                        reiserfs_warning(sb, "vs-5340",
1303                                         "no items of the file %K found",
1304                                         item_key);
1305                        break;
1306                }
1307        }                       /* while (1) */
1308
1309        if (ret_value != CARRY_ON) {
1310                unfix_nodes(&s_del_balance);
1311                return 0;
1312        }
1313
1314        /* reiserfs_delete_item returns item length when success */
1315        ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1316        q_ih = tp_item_head(path);
1317        quota_cut_bytes = ih_item_len(q_ih);
1318
1319        /*
1320         * hack so the quota code doesn't have to guess if the file has a
1321         * tail.  On tail insert, we allocate quota for 1 unformatted node.
1322         * We test the offset because the tail might have been
1323         * split into multiple items, and we only want to decrement for
1324         * the unfm node once
1325         */
1326        if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1327                if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1328                        quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1329                } else {
1330                        quota_cut_bytes = 0;
1331                }
1332        }
1333
1334        if (un_bh) {
1335                int off;
1336                char *data;
1337
1338                /*
1339                 * We are in direct2indirect conversion, so move tail contents
1340                 * to the unformatted node
1341                 */
1342                /*
1343                 * note, we do the copy before preparing the buffer because we
1344                 * don't care about the contents of the unformatted node yet.
1345                 * the only thing we really care about is the direct item's
1346                 * data is in the unformatted node.
1347                 *
1348                 * Otherwise, we would have to call
1349                 * reiserfs_prepare_for_journal on the unformatted node,
1350                 * which might schedule, meaning we'd have to loop all the
1351                 * way back up to the start of the while loop.
1352                 *
1353                 * The unformatted node must be dirtied later on.  We can't be
1354                 * sure here if the entire tail has been deleted yet.
1355                 *
1356                 * un_bh is from the page cache (all unformatted nodes are
1357                 * from the page cache) and might be a highmem page.  So, we
1358                 * can't use un_bh->b_data.
1359                 * -clm
1360                 */
1361
1362                data = kmap_atomic(un_bh->b_page);
1363                off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1));
1364                memcpy(data + off,
1365                       ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
1366                       ret_value);
1367                kunmap_atomic(data);
1368        }
1369
1370        /* Perform balancing after all resources have been collected at once. */
1371        do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1372
1373#ifdef REISERQUOTA_DEBUG
1374        reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1375                       "reiserquota delete_item(): freeing %u, id=%u type=%c",
1376                       quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1377#endif
1378        depth = reiserfs_write_unlock_nested(inode->i_sb);
1379        dquot_free_space_nodirty(inode, quota_cut_bytes);
1380        reiserfs_write_lock_nested(inode->i_sb, depth);
1381
1382        /* Return deleted body length */
1383        return ret_value;
1384}
1385
1386/*
1387 * Summary Of Mechanisms For Handling Collisions Between Processes:
1388 *
1389 *  deletion of the body of the object is performed by iput(), with the
1390 *  result that if multiple processes are operating on a file, the
1391 *  deletion of the body of the file is deferred until the last process
1392 *  that has an open inode performs its iput().
1393 *
1394 *  writes and truncates are protected from collisions by use of
1395 *  semaphores.
1396 *
1397 *  creates, linking, and mknod are protected from collisions with other
1398 *  processes by making the reiserfs_add_entry() the last step in the
1399 *  creation, and then rolling back all changes if there was a collision.
1400 *  - Hans
1401*/
1402
1403/* this deletes item which never gets split */
1404void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1405                                struct inode *inode, struct reiserfs_key *key)
1406{
1407        struct super_block *sb = th->t_super;
1408        struct tree_balance tb;
1409        INITIALIZE_PATH(path);
1410        int item_len = 0;
1411        int tb_init = 0;
1412        struct cpu_key cpu_key;
1413        int retval;
1414        int quota_cut_bytes = 0;
1415
1416        BUG_ON(!th->t_trans_id);
1417
1418        le_key2cpu_key(&cpu_key, key);
1419
1420        while (1) {
1421                retval = search_item(th->t_super, &cpu_key, &path);
1422                if (retval == IO_ERROR) {
1423                        reiserfs_error(th->t_super, "vs-5350",
1424                                       "i/o failure occurred trying "
1425                                       "to delete %K", &cpu_key);
1426                        break;
1427                }
1428                if (retval != ITEM_FOUND) {
1429                        pathrelse(&path);
1430                        /*
1431                         * No need for a warning, if there is just no free
1432                         * space to insert '..' item into the
1433                         * newly-created subdir
1434                         */
1435                        if (!
1436                            ((unsigned long long)
1437                             GET_HASH_VALUE(le_key_k_offset
1438                                            (le_key_version(key), key)) == 0
1439                             && (unsigned long long)
1440                             GET_GENERATION_NUMBER(le_key_k_offset
1441                                                   (le_key_version(key),
1442                                                    key)) == 1))
1443                                reiserfs_warning(th->t_super, "vs-5355",
1444                                                 "%k not found", key);
1445                        break;
1446                }
1447                if (!tb_init) {
1448                        tb_init = 1;
1449                        item_len = ih_item_len(tp_item_head(&path));
1450                        init_tb_struct(th, &tb, th->t_super, &path,
1451                                       -(IH_SIZE + item_len));
1452                }
1453                quota_cut_bytes = ih_item_len(tp_item_head(&path));
1454
1455                retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1456                if (retval == REPEAT_SEARCH) {
1457                        PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1458                        continue;
1459                }
1460
1461                if (retval == CARRY_ON) {
1462                        do_balance(&tb, NULL, NULL, M_DELETE);
1463                        /*
1464                         * Should we count quota for item? (we don't
1465                         * count quotas for save-links)
1466                         */
1467                        if (inode) {
1468                                int depth;
1469#ifdef REISERQUOTA_DEBUG
1470                                reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1471                                               "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1472                                               quota_cut_bytes, inode->i_uid,
1473                                               key2type(key));
1474#endif
1475                                depth = reiserfs_write_unlock_nested(sb);
1476                                dquot_free_space_nodirty(inode,
1477                                                         quota_cut_bytes);
1478                                reiserfs_write_lock_nested(sb, depth);
1479                        }
1480                        break;
1481                }
1482
1483                /* IO_ERROR, NO_DISK_SPACE, etc */
1484                reiserfs_warning(th->t_super, "vs-5360",
1485                                 "could not delete %K due to fix_nodes failure",
1486                                 &cpu_key);
1487                unfix_nodes(&tb);
1488                break;
1489        }
1490
1491        reiserfs_check_path(&path);
1492}
1493
1494int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1495                           struct inode *inode)
1496{
1497        int err;
1498        inode->i_size = 0;
1499        BUG_ON(!th->t_trans_id);
1500
1501        /* for directory this deletes item containing "." and ".." */
1502        err =
1503            reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1504        if (err)
1505                return err;
1506
1507#if defined( USE_INODE_GENERATION_COUNTER )
1508        if (!old_format_only(th->t_super)) {
1509                __le32 *inode_generation;
1510
1511                inode_generation =
1512                    &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1513                le32_add_cpu(inode_generation, 1);
1514        }
1515/* USE_INODE_GENERATION_COUNTER */
1516#endif
1517        reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1518
1519        return err;
1520}
1521
1522static void unmap_buffers(struct page *page, loff_t pos)
1523{
1524        struct buffer_head *bh;
1525        struct buffer_head *head;
1526        struct buffer_head *next;
1527        unsigned long tail_index;
1528        unsigned long cur_index;
1529
1530        if (page) {
1531                if (page_has_buffers(page)) {
1532                        tail_index = pos & (PAGE_SIZE - 1);
1533                        cur_index = 0;
1534                        head = page_buffers(page);
1535                        bh = head;
1536                        do {
1537                                next = bh->b_this_page;
1538
1539                                /*
1540                                 * we want to unmap the buffers that contain
1541                                 * the tail, and all the buffers after it
1542                                 * (since the tail must be at the end of the
1543                                 * file).  We don't want to unmap file data
1544                                 * before the tail, since it might be dirty
1545                                 * and waiting to reach disk
1546                                 */
1547                                cur_index += bh->b_size;
1548                                if (cur_index > tail_index) {
1549                                        reiserfs_unmap_buffer(bh);
1550                                }
1551                                bh = next;
1552                        } while (bh != head);
1553                }
1554        }
1555}
1556
1557static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1558                                    struct inode *inode,
1559                                    struct page *page,
1560                                    struct treepath *path,
1561                                    const struct cpu_key *item_key,
1562                                    loff_t new_file_size, char *mode)
1563{
1564        struct super_block *sb = inode->i_sb;
1565        int block_size = sb->s_blocksize;
1566        int cut_bytes;
1567        BUG_ON(!th->t_trans_id);
1568        BUG_ON(new_file_size != inode->i_size);
1569
1570        /*
1571         * the page being sent in could be NULL if there was an i/o error
1572         * reading in the last block.  The user will hit problems trying to
1573         * read the file, but for now we just skip the indirect2direct
1574         */
1575        if (atomic_read(&inode->i_count) > 1 ||
1576            !tail_has_to_be_packed(inode) ||
1577            !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1578                /* leave tail in an unformatted node */
1579                *mode = M_SKIP_BALANCING;
1580                cut_bytes =
1581                    block_size - (new_file_size & (block_size - 1));
1582                pathrelse(path);
1583                return cut_bytes;
1584        }
1585
1586        /* Perform the conversion to a direct_item. */
1587        return indirect2direct(th, inode, page, path, item_key,
1588                               new_file_size, mode);
1589}
1590
1591/*
1592 * we did indirect_to_direct conversion. And we have inserted direct
1593 * item successesfully, but there were no disk space to cut unfm
1594 * pointer being converted. Therefore we have to delete inserted
1595 * direct item(s)
1596 */
1597static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1598                                         struct inode *inode, struct treepath *path)
1599{
1600        struct cpu_key tail_key;
1601        int tail_len;
1602        int removed;
1603        BUG_ON(!th->t_trans_id);
1604
1605        make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
1606        tail_key.key_length = 4;
1607
1608        tail_len =
1609            (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1610        while (tail_len) {
1611                /* look for the last byte of the tail */
1612                if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1613                    POSITION_NOT_FOUND)
1614                        reiserfs_panic(inode->i_sb, "vs-5615",
1615                                       "found invalid item");
1616                RFALSE(path->pos_in_item !=
1617                       ih_item_len(tp_item_head(path)) - 1,
1618                       "vs-5616: appended bytes found");
1619                PATH_LAST_POSITION(path)--;
1620
1621                removed =
1622                    reiserfs_delete_item(th, path, &tail_key, inode,
1623                                         NULL /*unbh not needed */ );
1624                RFALSE(removed <= 0
1625                       || removed > tail_len,
1626                       "vs-5617: there was tail %d bytes, removed item length %d bytes",
1627                       tail_len, removed);
1628                tail_len -= removed;
1629                set_cpu_key_k_offset(&tail_key,
1630                                     cpu_key_k_offset(&tail_key) - removed);
1631        }
1632        reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1633                         "conversion has been rolled back due to "
1634                         "lack of disk space");
1635        mark_inode_dirty(inode);
1636}
1637
1638/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1639int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1640                           struct treepath *path,
1641                           struct cpu_key *item_key,
1642                           struct inode *inode,
1643                           struct page *page, loff_t new_file_size)
1644{
1645        struct super_block *sb = inode->i_sb;
1646        /*
1647         * Every function which is going to call do_balance must first
1648         * create a tree_balance structure.  Then it must fill up this
1649         * structure by using the init_tb_struct and fix_nodes functions.
1650         * After that we can make tree balancing.
1651         */
1652        struct tree_balance s_cut_balance;
1653        struct item_head *p_le_ih;
1654        int cut_size = 0;       /* Amount to be cut. */
1655        int ret_value = CARRY_ON;
1656        int removed = 0;        /* Number of the removed unformatted nodes. */
1657        int is_inode_locked = 0;
1658        char mode;              /* Mode of the balance. */
1659        int retval2 = -1;
1660        int quota_cut_bytes;
1661        loff_t tail_pos = 0;
1662        int depth;
1663
1664        BUG_ON(!th->t_trans_id);
1665
1666        init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1667                       cut_size);
1668
1669        /*
1670         * Repeat this loop until we either cut the item without needing
1671         * to balance, or we fix_nodes without schedule occurring
1672         */
1673        while (1) {
1674                /*
1675                 * Determine the balance mode, position of the first byte to
1676                 * be cut, and size to be cut.  In case of the indirect item
1677                 * free unformatted nodes which are pointed to by the cut
1678                 * pointers.
1679                 */
1680
1681                mode =
1682                    prepare_for_delete_or_cut(th, inode, path,
1683                                              item_key, &removed,
1684                                              &cut_size, new_file_size);
1685                if (mode == M_CONVERT) {
1686                        /*
1687                         * convert last unformatted node to direct item or
1688                         * leave tail in the unformatted node
1689                         */
1690                        RFALSE(ret_value != CARRY_ON,
1691                               "PAP-5570: can not convert twice");
1692
1693                        ret_value =
1694                            maybe_indirect_to_direct(th, inode, page,
1695                                                     path, item_key,
1696                                                     new_file_size, &mode);
1697                        if (mode == M_SKIP_BALANCING)
1698                                /* tail has been left in the unformatted node */
1699                                return ret_value;
1700
1701                        is_inode_locked = 1;
1702
1703                        /*
1704                         * removing of last unformatted node will
1705                         * change value we have to return to truncate.
1706                         * Save it
1707                         */
1708                        retval2 = ret_value;
1709
1710                        /*
1711                         * So, we have performed the first part of the
1712                         * conversion:
1713                         * inserting the new direct item.  Now we are
1714                         * removing the last unformatted node pointer.
1715                         * Set key to search for it.
1716                         */
1717                        set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1718                        item_key->key_length = 4;
1719                        new_file_size -=
1720                            (new_file_size & (sb->s_blocksize - 1));
1721                        tail_pos = new_file_size;
1722                        set_cpu_key_k_offset(item_key, new_file_size + 1);
1723                        if (search_for_position_by_key
1724                            (sb, item_key,
1725                             path) == POSITION_NOT_FOUND) {
1726                                print_block(PATH_PLAST_BUFFER(path), 3,
1727                                            PATH_LAST_POSITION(path) - 1,
1728                                            PATH_LAST_POSITION(path) + 1);
1729                                reiserfs_panic(sb, "PAP-5580", "item to "
1730                                               "convert does not exist (%K)",
1731                                               item_key);
1732                        }
1733                        continue;
1734                }
1735                if (cut_size == 0) {
1736                        pathrelse(path);
1737                        return 0;
1738                }
1739
1740                s_cut_balance.insert_size[0] = cut_size;
1741
1742                ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1743                if (ret_value != REPEAT_SEARCH)
1744                        break;
1745
1746                PROC_INFO_INC(sb, cut_from_item_restarted);
1747
1748                ret_value =
1749                    search_for_position_by_key(sb, item_key, path);
1750                if (ret_value == POSITION_FOUND)
1751                        continue;
1752
1753                reiserfs_warning(sb, "PAP-5610", "item %K not found",
1754                                 item_key);
1755                unfix_nodes(&s_cut_balance);
1756                return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1757        }                       /* while */
1758
1759        /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
1760        if (ret_value != CARRY_ON) {
1761                if (is_inode_locked) {
1762                        /*
1763                         * FIXME: this seems to be not needed: we are always
1764                         * able to cut item
1765                         */
1766                        indirect_to_direct_roll_back(th, inode, path);
1767                }
1768                if (ret_value == NO_DISK_SPACE)
1769                        reiserfs_warning(sb, "reiserfs-5092",
1770                                         "NO_DISK_SPACE");
1771                unfix_nodes(&s_cut_balance);
1772                return -EIO;
1773        }
1774
1775        /* go ahead and perform balancing */
1776
1777        RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1778
1779        /* Calculate number of bytes that need to be cut from the item. */
1780        quota_cut_bytes =
1781            (mode ==
1782             M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
1783            insert_size[0];
1784        if (retval2 == -1)
1785                ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1786        else
1787                ret_value = retval2;
1788
1789        /*
1790         * For direct items, we only change the quota when deleting the last
1791         * item.
1792         */
1793        p_le_ih = tp_item_head(s_cut_balance.tb_path);
1794        if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1795                if (mode == M_DELETE &&
1796                    (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1797                    1) {
1798                        /* FIXME: this is to keep 3.5 happy */
1799                        REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1800                        quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1801                } else {
1802                        quota_cut_bytes = 0;
1803                }
1804        }
1805#ifdef CONFIG_REISERFS_CHECK
1806        if (is_inode_locked) {
1807                struct item_head *le_ih =
1808                    tp_item_head(s_cut_balance.tb_path);
1809                /*
1810                 * we are going to complete indirect2direct conversion. Make
1811                 * sure, that we exactly remove last unformatted node pointer
1812                 * of the item
1813                 */
1814                if (!is_indirect_le_ih(le_ih))
1815                        reiserfs_panic(sb, "vs-5652",
1816                                       "item must be indirect %h", le_ih);
1817
1818                if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1819                        reiserfs_panic(sb, "vs-5653", "completing "
1820                                       "indirect2direct conversion indirect "
1821                                       "item %h being deleted must be of "
1822                                       "4 byte long", le_ih);
1823
1824                if (mode == M_CUT
1825                    && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1826                        reiserfs_panic(sb, "vs-5654", "can not complete "
1827                                       "indirect2direct conversion of %h "
1828                                       "(CUT, insert_size==%d)",
1829                                       le_ih, s_cut_balance.insert_size[0]);
1830                }
1831                /*
1832                 * it would be useful to make sure, that right neighboring
1833                 * item is direct item of this file
1834                 */
1835        }
1836#endif
1837
1838        do_balance(&s_cut_balance, NULL, NULL, mode);
1839        if (is_inode_locked) {
1840                /*
1841                 * we've done an indirect->direct conversion.  when the
1842                 * data block was freed, it was removed from the list of
1843                 * blocks that must be flushed before the transaction
1844                 * commits, make sure to unmap and invalidate it
1845                 */
1846                unmap_buffers(page, tail_pos);
1847                REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1848        }
1849#ifdef REISERQUOTA_DEBUG
1850        reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1851                       "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1852                       quota_cut_bytes, inode->i_uid, '?');
1853#endif
1854        depth = reiserfs_write_unlock_nested(sb);
1855        dquot_free_space_nodirty(inode, quota_cut_bytes);
1856        reiserfs_write_lock_nested(sb, depth);
1857        return ret_value;
1858}
1859
1860static void truncate_directory(struct reiserfs_transaction_handle *th,
1861                               struct inode *inode)
1862{
1863        BUG_ON(!th->t_trans_id);
1864        if (inode->i_nlink)
1865                reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1866
1867        set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1868        set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1869        reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1870        reiserfs_update_sd(th, inode);
1871        set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1872        set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1873}
1874
1875/*
1876 * Truncate file to the new size. Note, this must be called with a
1877 * transaction already started
1878 */
1879int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1880                         struct inode *inode,   /* ->i_size contains new size */
1881                         struct page *page,     /* up to date for last block */
1882                         /*
1883                          * when it is called by file_release to convert
1884                          * the tail - no timestamps should be updated
1885                          */
1886                         int update_timestamps
1887    )
1888{
1889        INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1890        struct item_head *p_le_ih;      /* Pointer to an item header. */
1891
1892        /* Key to search for a previous file item. */
1893        struct cpu_key s_item_key;
1894        loff_t file_size,       /* Old file size. */
1895         new_file_size; /* New file size. */
1896        int deleted;            /* Number of deleted or truncated bytes. */
1897        int retval;
1898        int err = 0;
1899
1900        BUG_ON(!th->t_trans_id);
1901        if (!
1902            (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1903             || S_ISLNK(inode->i_mode)))
1904                return 0;
1905
1906        /* deletion of directory - no need to update timestamps */
1907        if (S_ISDIR(inode->i_mode)) {
1908                truncate_directory(th, inode);
1909                return 0;
1910        }
1911
1912        /* Get new file size. */
1913        new_file_size = inode->i_size;
1914
1915        /* FIXME: note, that key type is unimportant here */
1916        make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1917                     TYPE_DIRECT, 3);
1918
1919        retval =
1920            search_for_position_by_key(inode->i_sb, &s_item_key,
1921                                       &s_search_path);
1922        if (retval == IO_ERROR) {
1923                reiserfs_error(inode->i_sb, "vs-5657",
1924                               "i/o failure occurred trying to truncate %K",
1925                               &s_item_key);
1926                err = -EIO;
1927                goto out;
1928        }
1929        if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1930                reiserfs_error(inode->i_sb, "PAP-5660",
1931                               "wrong result %d of search for %K", retval,
1932                               &s_item_key);
1933
1934                err = -EIO;
1935                goto out;
1936        }
1937
1938        s_search_path.pos_in_item--;
1939
1940        /* Get real file size (total length of all file items) */
1941        p_le_ih = tp_item_head(&s_search_path);
1942        if (is_statdata_le_ih(p_le_ih))
1943                file_size = 0;
1944        else {
1945                loff_t offset = le_ih_k_offset(p_le_ih);
1946                int bytes =
1947                    op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1948
1949                /*
1950                 * this may mismatch with real file size: if last direct item
1951                 * had no padding zeros and last unformatted node had no free
1952                 * space, this file would have this file size
1953                 */
1954                file_size = offset + bytes - 1;
1955        }
1956        /*
1957         * are we doing a full truncate or delete, if so
1958         * kick in the reada code
1959         */
1960        if (new_file_size == 0)
1961                s_search_path.reada = PATH_READA | PATH_READA_BACK;
1962
1963        if (file_size == 0 || file_size < new_file_size) {
1964                goto update_and_out;
1965        }
1966
1967        /* Update key to search for the last file item. */
1968        set_cpu_key_k_offset(&s_item_key, file_size);
1969
1970        do {
1971                /* Cut or delete file item. */
1972                deleted =
1973                    reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1974                                           inode, page, new_file_size);
1975                if (deleted < 0) {
1976                        reiserfs_warning(inode->i_sb, "vs-5665",
1977                                         "reiserfs_cut_from_item failed");
1978                        reiserfs_check_path(&s_search_path);
1979                        return 0;
1980                }
1981
1982                RFALSE(deleted > file_size,
1983                       "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1984                       deleted, file_size, &s_item_key);
1985
1986                /* Change key to search the last file item. */
1987                file_size -= deleted;
1988
1989                set_cpu_key_k_offset(&s_item_key, file_size);
1990
1991                /*
1992                 * While there are bytes to truncate and previous
1993                 * file item is presented in the tree.
1994                 */
1995
1996                /*
1997                 * This loop could take a really long time, and could log
1998                 * many more blocks than a transaction can hold.  So, we do
1999                 * a polite journal end here, and if the transaction needs
2000                 * ending, we make sure the file is consistent before ending
2001                 * the current trans and starting a new one
2002                 */
2003                if (journal_transaction_should_end(th, 0) ||
2004                    reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
2005                        pathrelse(&s_search_path);
2006
2007                        if (update_timestamps) {
2008                                inode->i_mtime = current_time(inode);
2009                                inode->i_ctime = current_time(inode);
2010                        }
2011                        reiserfs_update_sd(th, inode);
2012
2013                        err = journal_end(th);
2014                        if (err)
2015                                goto out;
2016                        err = journal_begin(th, inode->i_sb,
2017                                            JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
2018                        if (err)
2019                                goto out;
2020                        reiserfs_update_inode_transaction(inode);
2021                }
2022        } while (file_size > ROUND_UP(new_file_size) &&
2023                 search_for_position_by_key(inode->i_sb, &s_item_key,
2024                                            &s_search_path) == POSITION_FOUND);
2025
2026        RFALSE(file_size > ROUND_UP(new_file_size),
2027               "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d",
2028               new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
2029
2030update_and_out:
2031        if (update_timestamps) {
2032                /* this is truncate, not file closing */
2033                inode->i_mtime = current_time(inode);
2034                inode->i_ctime = current_time(inode);
2035        }
2036        reiserfs_update_sd(th, inode);
2037
2038out:
2039        pathrelse(&s_search_path);
2040        return err;
2041}
2042
2043#ifdef CONFIG_REISERFS_CHECK
2044/* this makes sure, that we __append__, not overwrite or add holes */
2045static void check_research_for_paste(struct treepath *path,
2046                                     const struct cpu_key *key)
2047{
2048        struct item_head *found_ih = tp_item_head(path);
2049
2050        if (is_direct_le_ih(found_ih)) {
2051                if (le_ih_k_offset(found_ih) +
2052                    op_bytes_number(found_ih,
2053                                    get_last_bh(path)->b_size) !=
2054                    cpu_key_k_offset(key)
2055                    || op_bytes_number(found_ih,
2056                                       get_last_bh(path)->b_size) !=
2057                    pos_in_item(path))
2058                        reiserfs_panic(NULL, "PAP-5720", "found direct item "
2059                                       "%h or position (%d) does not match "
2060                                       "to key %K", found_ih,
2061                                       pos_in_item(path), key);
2062        }
2063        if (is_indirect_le_ih(found_ih)) {
2064                if (le_ih_k_offset(found_ih) +
2065                    op_bytes_number(found_ih,
2066                                    get_last_bh(path)->b_size) !=
2067                    cpu_key_k_offset(key)
2068                    || I_UNFM_NUM(found_ih) != pos_in_item(path)
2069                    || get_ih_free_space(found_ih) != 0)
2070                        reiserfs_panic(NULL, "PAP-5730", "found indirect "
2071                                       "item (%h) or position (%d) does not "
2072                                       "match to key (%K)",
2073                                       found_ih, pos_in_item(path), key);
2074        }
2075}
2076#endif                          /* config reiserfs check */
2077
2078/*
2079 * Paste bytes to the existing item.
2080 * Returns bytes number pasted into the item.
2081 */
2082int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2083                             /* Path to the pasted item. */
2084                             struct treepath *search_path,
2085                             /* Key to search for the needed item. */
2086                             const struct cpu_key *key,
2087                             /* Inode item belongs to */
2088                             struct inode *inode,
2089                             /* Pointer to the bytes to paste. */
2090                             const char *body,
2091                             /* Size of pasted bytes. */
2092                             int pasted_size)
2093{
2094        struct super_block *sb = inode->i_sb;
2095        struct tree_balance s_paste_balance;
2096        int retval;
2097        int fs_gen;
2098        int depth;
2099
2100        BUG_ON(!th->t_trans_id);
2101
2102        fs_gen = get_generation(inode->i_sb);
2103
2104#ifdef REISERQUOTA_DEBUG
2105        reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2106                       "reiserquota paste_into_item(): allocating %u id=%u type=%c",
2107                       pasted_size, inode->i_uid,
2108                       key2type(&key->on_disk_key));
2109#endif
2110
2111        depth = reiserfs_write_unlock_nested(sb);
2112        retval = dquot_alloc_space_nodirty(inode, pasted_size);
2113        reiserfs_write_lock_nested(sb, depth);
2114        if (retval) {
2115                pathrelse(search_path);
2116                return retval;
2117        }
2118        init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
2119                       pasted_size);
2120#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2121        s_paste_balance.key = key->on_disk_key;
2122#endif
2123
2124        /* DQUOT_* can schedule, must check before the fix_nodes */
2125        if (fs_changed(fs_gen, inode->i_sb)) {
2126                goto search_again;
2127        }
2128
2129        while ((retval =
2130                fix_nodes(M_PASTE, &s_paste_balance, NULL,
2131                          body)) == REPEAT_SEARCH) {
2132search_again:
2133                /* file system changed while we were in the fix_nodes */
2134                PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2135                retval =
2136                    search_for_position_by_key(th->t_super, key,
2137                                               search_path);
2138                if (retval == IO_ERROR) {
2139                        retval = -EIO;
2140                        goto error_out;
2141                }
2142                if (retval == POSITION_FOUND) {
2143                        reiserfs_warning(inode->i_sb, "PAP-5710",
2144                                         "entry or pasted byte (%K) exists",
2145                                         key);
2146                        retval = -EEXIST;
2147                        goto error_out;
2148                }
2149#ifdef CONFIG_REISERFS_CHECK
2150                check_research_for_paste(search_path, key);
2151#endif
2152        }
2153
2154        /*
2155         * Perform balancing after all resources are collected by fix_nodes,
2156         * and accessing them will not risk triggering schedule.
2157         */
2158        if (retval == CARRY_ON) {
2159                do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2160                return 0;
2161        }
2162        retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2163error_out:
2164        /* this also releases the path */
2165        unfix_nodes(&s_paste_balance);
2166#ifdef REISERQUOTA_DEBUG
2167        reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2168                       "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2169                       pasted_size, inode->i_uid,
2170                       key2type(&key->on_disk_key));
2171#endif
2172        depth = reiserfs_write_unlock_nested(sb);
2173        dquot_free_space_nodirty(inode, pasted_size);
2174        reiserfs_write_lock_nested(sb, depth);
2175        return retval;
2176}
2177
2178/*
2179 * Insert new item into the buffer at the path.
2180 * th   - active transaction handle
2181 * path - path to the inserted item
2182 * ih   - pointer to the item header to insert
2183 * body - pointer to the bytes to insert
2184 */
2185int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2186                         struct treepath *path, const struct cpu_key *key,
2187                         struct item_head *ih, struct inode *inode,
2188                         const char *body)
2189{
2190        struct tree_balance s_ins_balance;
2191        int retval;
2192        int fs_gen = 0;
2193        int quota_bytes = 0;
2194
2195        BUG_ON(!th->t_trans_id);
2196
2197        if (inode) {            /* Do we count quotas for item? */
2198                int depth;
2199                fs_gen = get_generation(inode->i_sb);
2200                quota_bytes = ih_item_len(ih);
2201
2202                /*
2203                 * hack so the quota code doesn't have to guess
2204                 * if the file has a tail, links are always tails,
2205                 * so there's no guessing needed
2206                 */
2207                if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2208                        quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2209#ifdef REISERQUOTA_DEBUG
2210                reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2211                               "reiserquota insert_item(): allocating %u id=%u type=%c",
2212                               quota_bytes, inode->i_uid, head2type(ih));
2213#endif
2214                /*
2215                 * We can't dirty inode here. It would be immediately
2216                 * written but appropriate stat item isn't inserted yet...
2217                 */
2218                depth = reiserfs_write_unlock_nested(inode->i_sb);
2219                retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2220                reiserfs_write_lock_nested(inode->i_sb, depth);
2221                if (retval) {
2222                        pathrelse(path);
2223                        return retval;
2224                }
2225        }
2226        init_tb_struct(th, &s_ins_balance, th->t_super, path,
2227                       IH_SIZE + ih_item_len(ih));
2228#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2229        s_ins_balance.key = key->on_disk_key;
2230#endif
2231        /*
2232         * DQUOT_* can schedule, must check to be sure calling
2233         * fix_nodes is safe
2234         */
2235        if (inode && fs_changed(fs_gen, inode->i_sb)) {
2236                goto search_again;
2237        }
2238
2239        while ((retval =
2240                fix_nodes(M_INSERT, &s_ins_balance, ih,
2241                          body)) == REPEAT_SEARCH) {
2242search_again:
2243                /* file system changed while we were in the fix_nodes */
2244                PROC_INFO_INC(th->t_super, insert_item_restarted);
2245                retval = search_item(th->t_super, key, path);
2246                if (retval == IO_ERROR) {
2247                        retval = -EIO;
2248                        goto error_out;
2249                }
2250                if (retval == ITEM_FOUND) {
2251                        reiserfs_warning(th->t_super, "PAP-5760",
2252                                         "key %K already exists in the tree",
2253                                         key);
2254                        retval = -EEXIST;
2255                        goto error_out;
2256                }
2257        }
2258
2259        /* make balancing after all resources will be collected at a time */
2260        if (retval == CARRY_ON) {
2261                do_balance(&s_ins_balance, ih, body, M_INSERT);
2262                return 0;
2263        }
2264
2265        retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2266error_out:
2267        /* also releases the path */
2268        unfix_nodes(&s_ins_balance);
2269#ifdef REISERQUOTA_DEBUG
2270        if (inode)
2271                reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2272                       "reiserquota insert_item(): freeing %u id=%u type=%c",
2273                       quota_bytes, inode->i_uid, head2type(ih));
2274#endif
2275        if (inode) {
2276                int depth = reiserfs_write_unlock_nested(inode->i_sb);
2277                dquot_free_space_nodirty(inode, quota_bytes);
2278                reiserfs_write_lock_nested(inode->i_sb, depth);
2279        }
2280        return retval;
2281}
2282