linux/fs/ubifs/io.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 * Copyright (C) 2006, 2007 University of Szeged, Hungary
   7 *
   8 * Authors: Artem Bityutskiy (Битюцкий Артём)
   9 *          Adrian Hunter
  10 *          Zoltan Sogor
  11 */
  12
  13/*
  14 * This file implements UBIFS I/O subsystem which provides various I/O-related
  15 * helper functions (reading/writing/checking/validating nodes) and implements
  16 * write-buffering support. Write buffers help to save space which otherwise
  17 * would have been wasted for padding to the nearest minimal I/O unit boundary.
  18 * Instead, data first goes to the write-buffer and is flushed when the
  19 * buffer is full or when it is not used for some time (by timer). This is
  20 * similar to the mechanism is used by JFFS2.
  21 *
  22 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
  23 * write size (@c->max_write_size). The latter is the maximum amount of bytes
  24 * the underlying flash is able to program at a time, and writing in
  25 * @c->max_write_size units should presumably be faster. Obviously,
  26 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
  27 * @c->max_write_size bytes in size for maximum performance. However, when a
  28 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
  29 * boundary) which contains data is written, not the whole write-buffer,
  30 * because this is more space-efficient.
  31 *
  32 * This optimization adds few complications to the code. Indeed, on the one
  33 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
  34 * also means aligning writes at the @c->max_write_size bytes offsets. On the
  35 * other hand, we do not want to waste space when synchronizing the write
  36 * buffer, so during synchronization we writes in smaller chunks. And this makes
  37 * the next write offset to be not aligned to @c->max_write_size bytes. So the
  38 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
  39 * to @c->max_write_size bytes again. We do this by temporarily shrinking
  40 * write-buffer size (@wbuf->size).
  41 *
  42 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
  43 * mutexes defined inside these objects. Since sometimes upper-level code
  44 * has to lock the write-buffer (e.g. journal space reservation code), many
  45 * functions related to write-buffers have "nolock" suffix which means that the
  46 * caller has to lock the write-buffer before calling this function.
  47 *
  48 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
  49 * aligned, UBIFS starts the next node from the aligned address, and the padded
  50 * bytes may contain any rubbish. In other words, UBIFS does not put padding
  51 * bytes in those small gaps. Common headers of nodes store real node lengths,
  52 * not aligned lengths. Indexing nodes also store real lengths in branches.
  53 *
  54 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
  55 * uses padding nodes or padding bytes, if the padding node does not fit.
  56 *
  57 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
  58 * they are read from the flash media.
  59 */
  60
  61#include <linux/crc32.h>
  62#include <linux/slab.h>
  63#include "ubifs.h"
  64
  65/**
  66 * ubifs_ro_mode - switch UBIFS to read read-only mode.
  67 * @c: UBIFS file-system description object
  68 * @err: error code which is the reason of switching to R/O mode
  69 */
  70void ubifs_ro_mode(struct ubifs_info *c, int err)
  71{
  72        if (!c->ro_error) {
  73                c->ro_error = 1;
  74                c->no_chk_data_crc = 0;
  75                c->vfs_sb->s_flags |= SB_RDONLY;
  76                ubifs_warn(c, "switched to read-only mode, error %d", err);
  77                dump_stack();
  78        }
  79}
  80
  81/*
  82 * Below are simple wrappers over UBI I/O functions which include some
  83 * additional checks and UBIFS debugging stuff. See corresponding UBI function
  84 * for more information.
  85 */
  86
  87int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
  88                   int len, int even_ebadmsg)
  89{
  90        int err;
  91
  92        err = ubi_read(c->ubi, lnum, buf, offs, len);
  93        /*
  94         * In case of %-EBADMSG print the error message only if the
  95         * @even_ebadmsg is true.
  96         */
  97        if (err && (err != -EBADMSG || even_ebadmsg)) {
  98                ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
  99                          len, lnum, offs, err);
 100                dump_stack();
 101        }
 102        return err;
 103}
 104
 105int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
 106                    int len)
 107{
 108        int err;
 109
 110        ubifs_assert(c, !c->ro_media && !c->ro_mount);
 111        if (c->ro_error)
 112                return -EROFS;
 113        if (!dbg_is_tst_rcvry(c))
 114                err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
 115        else
 116                err = dbg_leb_write(c, lnum, buf, offs, len);
 117        if (err) {
 118                ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
 119                          len, lnum, offs, err);
 120                ubifs_ro_mode(c, err);
 121                dump_stack();
 122        }
 123        return err;
 124}
 125
 126int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
 127{
 128        int err;
 129
 130        ubifs_assert(c, !c->ro_media && !c->ro_mount);
 131        if (c->ro_error)
 132                return -EROFS;
 133        if (!dbg_is_tst_rcvry(c))
 134                err = ubi_leb_change(c->ubi, lnum, buf, len);
 135        else
 136                err = dbg_leb_change(c, lnum, buf, len);
 137        if (err) {
 138                ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
 139                          len, lnum, err);
 140                ubifs_ro_mode(c, err);
 141                dump_stack();
 142        }
 143        return err;
 144}
 145
 146int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
 147{
 148        int err;
 149
 150        ubifs_assert(c, !c->ro_media && !c->ro_mount);
 151        if (c->ro_error)
 152                return -EROFS;
 153        if (!dbg_is_tst_rcvry(c))
 154                err = ubi_leb_unmap(c->ubi, lnum);
 155        else
 156                err = dbg_leb_unmap(c, lnum);
 157        if (err) {
 158                ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
 159                ubifs_ro_mode(c, err);
 160                dump_stack();
 161        }
 162        return err;
 163}
 164
 165int ubifs_leb_map(struct ubifs_info *c, int lnum)
 166{
 167        int err;
 168
 169        ubifs_assert(c, !c->ro_media && !c->ro_mount);
 170        if (c->ro_error)
 171                return -EROFS;
 172        if (!dbg_is_tst_rcvry(c))
 173                err = ubi_leb_map(c->ubi, lnum);
 174        else
 175                err = dbg_leb_map(c, lnum);
 176        if (err) {
 177                ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
 178                ubifs_ro_mode(c, err);
 179                dump_stack();
 180        }
 181        return err;
 182}
 183
 184int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
 185{
 186        int err;
 187
 188        err = ubi_is_mapped(c->ubi, lnum);
 189        if (err < 0) {
 190                ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
 191                          lnum, err);
 192                dump_stack();
 193        }
 194        return err;
 195}
 196
 197/**
 198 * ubifs_check_node - check node.
 199 * @c: UBIFS file-system description object
 200 * @buf: node to check
 201 * @len: node length
 202 * @lnum: logical eraseblock number
 203 * @offs: offset within the logical eraseblock
 204 * @quiet: print no messages
 205 * @must_chk_crc: indicates whether to always check the CRC
 206 *
 207 * This function checks node magic number and CRC checksum. This function also
 208 * validates node length to prevent UBIFS from becoming crazy when an attacker
 209 * feeds it a file-system image with incorrect nodes. For example, too large
 210 * node length in the common header could cause UBIFS to read memory outside of
 211 * allocated buffer when checking the CRC checksum.
 212 *
 213 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
 214 * true, which is controlled by corresponding UBIFS mount option. However, if
 215 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
 216 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
 217 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
 218 * is checked. This is because during mounting or re-mounting from R/O mode to
 219 * R/W mode we may read journal nodes (when replying the journal or doing the
 220 * recovery) and the journal nodes may potentially be corrupted, so checking is
 221 * required.
 222 *
 223 * This function returns zero in case of success and %-EUCLEAN in case of bad
 224 * CRC or magic.
 225 */
 226int ubifs_check_node(const struct ubifs_info *c, const void *buf, int len,
 227                     int lnum, int offs, int quiet, int must_chk_crc)
 228{
 229        int err = -EINVAL, type, node_len;
 230        uint32_t crc, node_crc, magic;
 231        const struct ubifs_ch *ch = buf;
 232
 233        ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 234        ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
 235
 236        magic = le32_to_cpu(ch->magic);
 237        if (magic != UBIFS_NODE_MAGIC) {
 238                if (!quiet)
 239                        ubifs_err(c, "bad magic %#08x, expected %#08x",
 240                                  magic, UBIFS_NODE_MAGIC);
 241                err = -EUCLEAN;
 242                goto out;
 243        }
 244
 245        type = ch->node_type;
 246        if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
 247                if (!quiet)
 248                        ubifs_err(c, "bad node type %d", type);
 249                goto out;
 250        }
 251
 252        node_len = le32_to_cpu(ch->len);
 253        if (node_len + offs > c->leb_size)
 254                goto out_len;
 255
 256        if (c->ranges[type].max_len == 0) {
 257                if (node_len != c->ranges[type].len)
 258                        goto out_len;
 259        } else if (node_len < c->ranges[type].min_len ||
 260                   node_len > c->ranges[type].max_len)
 261                goto out_len;
 262
 263        if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
 264            !c->remounting_rw && c->no_chk_data_crc)
 265                return 0;
 266
 267        crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 268        node_crc = le32_to_cpu(ch->crc);
 269        if (crc != node_crc) {
 270                if (!quiet)
 271                        ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
 272                                  crc, node_crc);
 273                err = -EUCLEAN;
 274                goto out;
 275        }
 276
 277        return 0;
 278
 279out_len:
 280        if (!quiet)
 281                ubifs_err(c, "bad node length %d", node_len);
 282out:
 283        if (!quiet) {
 284                ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
 285                ubifs_dump_node(c, buf, len);
 286                dump_stack();
 287        }
 288        return err;
 289}
 290
 291/**
 292 * ubifs_pad - pad flash space.
 293 * @c: UBIFS file-system description object
 294 * @buf: buffer to put padding to
 295 * @pad: how many bytes to pad
 296 *
 297 * The flash media obliges us to write only in chunks of %c->min_io_size and
 298 * when we have to write less data we add padding node to the write-buffer and
 299 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
 300 * media is being scanned. If the amount of wasted space is not enough to fit a
 301 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
 302 * pattern (%UBIFS_PADDING_BYTE).
 303 *
 304 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
 305 * used.
 306 */
 307void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
 308{
 309        uint32_t crc;
 310
 311        ubifs_assert(c, pad >= 0);
 312
 313        if (pad >= UBIFS_PAD_NODE_SZ) {
 314                struct ubifs_ch *ch = buf;
 315                struct ubifs_pad_node *pad_node = buf;
 316
 317                ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
 318                ch->node_type = UBIFS_PAD_NODE;
 319                ch->group_type = UBIFS_NO_NODE_GROUP;
 320                ch->padding[0] = ch->padding[1] = 0;
 321                ch->sqnum = 0;
 322                ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
 323                pad -= UBIFS_PAD_NODE_SZ;
 324                pad_node->pad_len = cpu_to_le32(pad);
 325                crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
 326                ch->crc = cpu_to_le32(crc);
 327                memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
 328        } else if (pad > 0)
 329                /* Too little space, padding node won't fit */
 330                memset(buf, UBIFS_PADDING_BYTE, pad);
 331}
 332
 333/**
 334 * next_sqnum - get next sequence number.
 335 * @c: UBIFS file-system description object
 336 */
 337static unsigned long long next_sqnum(struct ubifs_info *c)
 338{
 339        unsigned long long sqnum;
 340
 341        spin_lock(&c->cnt_lock);
 342        sqnum = ++c->max_sqnum;
 343        spin_unlock(&c->cnt_lock);
 344
 345        if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
 346                if (sqnum >= SQNUM_WATERMARK) {
 347                        ubifs_err(c, "sequence number overflow %llu, end of life",
 348                                  sqnum);
 349                        ubifs_ro_mode(c, -EINVAL);
 350                }
 351                ubifs_warn(c, "running out of sequence numbers, end of life soon");
 352        }
 353
 354        return sqnum;
 355}
 356
 357void ubifs_init_node(struct ubifs_info *c, void *node, int len, int pad)
 358{
 359        struct ubifs_ch *ch = node;
 360        unsigned long long sqnum = next_sqnum(c);
 361
 362        ubifs_assert(c, len >= UBIFS_CH_SZ);
 363
 364        ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
 365        ch->len = cpu_to_le32(len);
 366        ch->group_type = UBIFS_NO_NODE_GROUP;
 367        ch->sqnum = cpu_to_le64(sqnum);
 368        ch->padding[0] = ch->padding[1] = 0;
 369
 370        if (pad) {
 371                len = ALIGN(len, 8);
 372                pad = ALIGN(len, c->min_io_size) - len;
 373                ubifs_pad(c, node + len, pad);
 374        }
 375}
 376
 377void ubifs_crc_node(struct ubifs_info *c, void *node, int len)
 378{
 379        struct ubifs_ch *ch = node;
 380        uint32_t crc;
 381
 382        crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
 383        ch->crc = cpu_to_le32(crc);
 384}
 385
 386/**
 387 * ubifs_prepare_node_hmac - prepare node to be written to flash.
 388 * @c: UBIFS file-system description object
 389 * @node: the node to pad
 390 * @len: node length
 391 * @hmac_offs: offset of the HMAC in the node
 392 * @pad: if the buffer has to be padded
 393 *
 394 * This function prepares node at @node to be written to the media - it
 395 * calculates node CRC, fills the common header, and adds proper padding up to
 396 * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then
 397 * a HMAC is inserted into the node at the given offset.
 398 *
 399 * This function returns 0 for success or a negative error code otherwise.
 400 */
 401int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len,
 402                            int hmac_offs, int pad)
 403{
 404        int err;
 405
 406        ubifs_init_node(c, node, len, pad);
 407
 408        if (hmac_offs > 0) {
 409                err = ubifs_node_insert_hmac(c, node, len, hmac_offs);
 410                if (err)
 411                        return err;
 412        }
 413
 414        ubifs_crc_node(c, node, len);
 415
 416        return 0;
 417}
 418
 419/**
 420 * ubifs_prepare_node - prepare node to be written to flash.
 421 * @c: UBIFS file-system description object
 422 * @node: the node to pad
 423 * @len: node length
 424 * @pad: if the buffer has to be padded
 425 *
 426 * This function prepares node at @node to be written to the media - it
 427 * calculates node CRC, fills the common header, and adds proper padding up to
 428 * the next minimum I/O unit if @pad is not zero.
 429 */
 430void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
 431{
 432        /*
 433         * Deliberately ignore return value since this function can only fail
 434         * when a hmac offset is given.
 435         */
 436        ubifs_prepare_node_hmac(c, node, len, 0, pad);
 437}
 438
 439/**
 440 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
 441 * @c: UBIFS file-system description object
 442 * @node: the node to pad
 443 * @len: node length
 444 * @last: indicates the last node of the group
 445 *
 446 * This function prepares node at @node to be written to the media - it
 447 * calculates node CRC and fills the common header.
 448 */
 449void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
 450{
 451        uint32_t crc;
 452        struct ubifs_ch *ch = node;
 453        unsigned long long sqnum = next_sqnum(c);
 454
 455        ubifs_assert(c, len >= UBIFS_CH_SZ);
 456
 457        ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
 458        ch->len = cpu_to_le32(len);
 459        if (last)
 460                ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
 461        else
 462                ch->group_type = UBIFS_IN_NODE_GROUP;
 463        ch->sqnum = cpu_to_le64(sqnum);
 464        ch->padding[0] = ch->padding[1] = 0;
 465        crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
 466        ch->crc = cpu_to_le32(crc);
 467}
 468
 469/**
 470 * wbuf_timer_callback - write-buffer timer callback function.
 471 * @timer: timer data (write-buffer descriptor)
 472 *
 473 * This function is called when the write-buffer timer expires.
 474 */
 475static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
 476{
 477        struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
 478
 479        dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
 480        wbuf->need_sync = 1;
 481        wbuf->c->need_wbuf_sync = 1;
 482        ubifs_wake_up_bgt(wbuf->c);
 483        return HRTIMER_NORESTART;
 484}
 485
 486/**
 487 * new_wbuf_timer - start new write-buffer timer.
 488 * @c: UBIFS file-system description object
 489 * @wbuf: write-buffer descriptor
 490 */
 491static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
 492{
 493        ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10);
 494        unsigned long long delta = dirty_writeback_interval;
 495
 496        /* centi to milli, milli to nano, then 10% */
 497        delta *= 10ULL * NSEC_PER_MSEC / 10ULL;
 498
 499        ubifs_assert(c, !hrtimer_active(&wbuf->timer));
 500        ubifs_assert(c, delta <= ULONG_MAX);
 501
 502        if (wbuf->no_timer)
 503                return;
 504        dbg_io("set timer for jhead %s, %llu-%llu millisecs",
 505               dbg_jhead(wbuf->jhead),
 506               div_u64(ktime_to_ns(softlimit), USEC_PER_SEC),
 507               div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC));
 508        hrtimer_start_range_ns(&wbuf->timer, softlimit, delta,
 509                               HRTIMER_MODE_REL);
 510}
 511
 512/**
 513 * cancel_wbuf_timer - cancel write-buffer timer.
 514 * @wbuf: write-buffer descriptor
 515 */
 516static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
 517{
 518        if (wbuf->no_timer)
 519                return;
 520        wbuf->need_sync = 0;
 521        hrtimer_cancel(&wbuf->timer);
 522}
 523
 524/**
 525 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
 526 * @wbuf: write-buffer to synchronize
 527 *
 528 * This function synchronizes write-buffer @buf and returns zero in case of
 529 * success or a negative error code in case of failure.
 530 *
 531 * Note, although write-buffers are of @c->max_write_size, this function does
 532 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
 533 * if the write-buffer is only partially filled with data, only the used part
 534 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
 535 * This way we waste less space.
 536 */
 537int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
 538{
 539        struct ubifs_info *c = wbuf->c;
 540        int err, dirt, sync_len;
 541
 542        cancel_wbuf_timer_nolock(wbuf);
 543        if (!wbuf->used || wbuf->lnum == -1)
 544                /* Write-buffer is empty or not seeked */
 545                return 0;
 546
 547        dbg_io("LEB %d:%d, %d bytes, jhead %s",
 548               wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
 549        ubifs_assert(c, !(wbuf->avail & 7));
 550        ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size);
 551        ubifs_assert(c, wbuf->size >= c->min_io_size);
 552        ubifs_assert(c, wbuf->size <= c->max_write_size);
 553        ubifs_assert(c, wbuf->size % c->min_io_size == 0);
 554        ubifs_assert(c, !c->ro_media && !c->ro_mount);
 555        if (c->leb_size - wbuf->offs >= c->max_write_size)
 556                ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
 557
 558        if (c->ro_error)
 559                return -EROFS;
 560
 561        /*
 562         * Do not write whole write buffer but write only the minimum necessary
 563         * amount of min. I/O units.
 564         */
 565        sync_len = ALIGN(wbuf->used, c->min_io_size);
 566        dirt = sync_len - wbuf->used;
 567        if (dirt)
 568                ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
 569        err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
 570        if (err)
 571                return err;
 572
 573        spin_lock(&wbuf->lock);
 574        wbuf->offs += sync_len;
 575        /*
 576         * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
 577         * But our goal is to optimize writes and make sure we write in
 578         * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
 579         * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
 580         * sure that @wbuf->offs + @wbuf->size is aligned to
 581         * @c->max_write_size. This way we make sure that after next
 582         * write-buffer flush we are again at the optimal offset (aligned to
 583         * @c->max_write_size).
 584         */
 585        if (c->leb_size - wbuf->offs < c->max_write_size)
 586                wbuf->size = c->leb_size - wbuf->offs;
 587        else if (wbuf->offs & (c->max_write_size - 1))
 588                wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
 589        else
 590                wbuf->size = c->max_write_size;
 591        wbuf->avail = wbuf->size;
 592        wbuf->used = 0;
 593        wbuf->next_ino = 0;
 594        spin_unlock(&wbuf->lock);
 595
 596        if (wbuf->sync_callback)
 597                err = wbuf->sync_callback(c, wbuf->lnum,
 598                                          c->leb_size - wbuf->offs, dirt);
 599        return err;
 600}
 601
 602/**
 603 * ubifs_wbuf_seek_nolock - seek write-buffer.
 604 * @wbuf: write-buffer
 605 * @lnum: logical eraseblock number to seek to
 606 * @offs: logical eraseblock offset to seek to
 607 *
 608 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
 609 * The write-buffer has to be empty. Returns zero in case of success and a
 610 * negative error code in case of failure.
 611 */
 612int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
 613{
 614        const struct ubifs_info *c = wbuf->c;
 615
 616        dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
 617        ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt);
 618        ubifs_assert(c, offs >= 0 && offs <= c->leb_size);
 619        ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7));
 620        ubifs_assert(c, lnum != wbuf->lnum);
 621        ubifs_assert(c, wbuf->used == 0);
 622
 623        spin_lock(&wbuf->lock);
 624        wbuf->lnum = lnum;
 625        wbuf->offs = offs;
 626        if (c->leb_size - wbuf->offs < c->max_write_size)
 627                wbuf->size = c->leb_size - wbuf->offs;
 628        else if (wbuf->offs & (c->max_write_size - 1))
 629                wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
 630        else
 631                wbuf->size = c->max_write_size;
 632        wbuf->avail = wbuf->size;
 633        wbuf->used = 0;
 634        spin_unlock(&wbuf->lock);
 635
 636        return 0;
 637}
 638
 639/**
 640 * ubifs_bg_wbufs_sync - synchronize write-buffers.
 641 * @c: UBIFS file-system description object
 642 *
 643 * This function is called by background thread to synchronize write-buffers.
 644 * Returns zero in case of success and a negative error code in case of
 645 * failure.
 646 */
 647int ubifs_bg_wbufs_sync(struct ubifs_info *c)
 648{
 649        int err, i;
 650
 651        ubifs_assert(c, !c->ro_media && !c->ro_mount);
 652        if (!c->need_wbuf_sync)
 653                return 0;
 654        c->need_wbuf_sync = 0;
 655
 656        if (c->ro_error) {
 657                err = -EROFS;
 658                goto out_timers;
 659        }
 660
 661        dbg_io("synchronize");
 662        for (i = 0; i < c->jhead_cnt; i++) {
 663                struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
 664
 665                cond_resched();
 666
 667                /*
 668                 * If the mutex is locked then wbuf is being changed, so
 669                 * synchronization is not necessary.
 670                 */
 671                if (mutex_is_locked(&wbuf->io_mutex))
 672                        continue;
 673
 674                mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 675                if (!wbuf->need_sync) {
 676                        mutex_unlock(&wbuf->io_mutex);
 677                        continue;
 678                }
 679
 680                err = ubifs_wbuf_sync_nolock(wbuf);
 681                mutex_unlock(&wbuf->io_mutex);
 682                if (err) {
 683                        ubifs_err(c, "cannot sync write-buffer, error %d", err);
 684                        ubifs_ro_mode(c, err);
 685                        goto out_timers;
 686                }
 687        }
 688
 689        return 0;
 690
 691out_timers:
 692        /* Cancel all timers to prevent repeated errors */
 693        for (i = 0; i < c->jhead_cnt; i++) {
 694                struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
 695
 696                mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 697                cancel_wbuf_timer_nolock(wbuf);
 698                mutex_unlock(&wbuf->io_mutex);
 699        }
 700        return err;
 701}
 702
 703/**
 704 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
 705 * @wbuf: write-buffer
 706 * @buf: node to write
 707 * @len: node length
 708 *
 709 * This function writes data to flash via write-buffer @wbuf. This means that
 710 * the last piece of the node won't reach the flash media immediately if it
 711 * does not take whole max. write unit (@c->max_write_size). Instead, the node
 712 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
 713 * because more data are appended to the write-buffer).
 714 *
 715 * This function returns zero in case of success and a negative error code in
 716 * case of failure. If the node cannot be written because there is no more
 717 * space in this logical eraseblock, %-ENOSPC is returned.
 718 */
 719int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
 720{
 721        struct ubifs_info *c = wbuf->c;
 722        int err, n, written = 0, aligned_len = ALIGN(len, 8);
 723
 724        dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
 725               dbg_ntype(((struct ubifs_ch *)buf)->node_type),
 726               dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
 727        ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
 728        ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
 729        ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
 730        ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size);
 731        ubifs_assert(c, wbuf->size >= c->min_io_size);
 732        ubifs_assert(c, wbuf->size <= c->max_write_size);
 733        ubifs_assert(c, wbuf->size % c->min_io_size == 0);
 734        ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex));
 735        ubifs_assert(c, !c->ro_media && !c->ro_mount);
 736        ubifs_assert(c, !c->space_fixup);
 737        if (c->leb_size - wbuf->offs >= c->max_write_size)
 738                ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
 739
 740        if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
 741                err = -ENOSPC;
 742                goto out;
 743        }
 744
 745        cancel_wbuf_timer_nolock(wbuf);
 746
 747        if (c->ro_error)
 748                return -EROFS;
 749
 750        if (aligned_len <= wbuf->avail) {
 751                /*
 752                 * The node is not very large and fits entirely within
 753                 * write-buffer.
 754                 */
 755                memcpy(wbuf->buf + wbuf->used, buf, len);
 756                if (aligned_len > len) {
 757                        ubifs_assert(c, aligned_len - len < 8);
 758                        ubifs_pad(c, wbuf->buf + wbuf->used + len, aligned_len - len);
 759                }
 760
 761                if (aligned_len == wbuf->avail) {
 762                        dbg_io("flush jhead %s wbuf to LEB %d:%d",
 763                               dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
 764                        err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
 765                                              wbuf->offs, wbuf->size);
 766                        if (err)
 767                                goto out;
 768
 769                        spin_lock(&wbuf->lock);
 770                        wbuf->offs += wbuf->size;
 771                        if (c->leb_size - wbuf->offs >= c->max_write_size)
 772                                wbuf->size = c->max_write_size;
 773                        else
 774                                wbuf->size = c->leb_size - wbuf->offs;
 775                        wbuf->avail = wbuf->size;
 776                        wbuf->used = 0;
 777                        wbuf->next_ino = 0;
 778                        spin_unlock(&wbuf->lock);
 779                } else {
 780                        spin_lock(&wbuf->lock);
 781                        wbuf->avail -= aligned_len;
 782                        wbuf->used += aligned_len;
 783                        spin_unlock(&wbuf->lock);
 784                }
 785
 786                goto exit;
 787        }
 788
 789        if (wbuf->used) {
 790                /*
 791                 * The node is large enough and does not fit entirely within
 792                 * current available space. We have to fill and flush
 793                 * write-buffer and switch to the next max. write unit.
 794                 */
 795                dbg_io("flush jhead %s wbuf to LEB %d:%d",
 796                       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
 797                memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
 798                err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
 799                                      wbuf->size);
 800                if (err)
 801                        goto out;
 802
 803                wbuf->offs += wbuf->size;
 804                len -= wbuf->avail;
 805                aligned_len -= wbuf->avail;
 806                written += wbuf->avail;
 807        } else if (wbuf->offs & (c->max_write_size - 1)) {
 808                /*
 809                 * The write-buffer offset is not aligned to
 810                 * @c->max_write_size and @wbuf->size is less than
 811                 * @c->max_write_size. Write @wbuf->size bytes to make sure the
 812                 * following writes are done in optimal @c->max_write_size
 813                 * chunks.
 814                 */
 815                dbg_io("write %d bytes to LEB %d:%d",
 816                       wbuf->size, wbuf->lnum, wbuf->offs);
 817                err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
 818                                      wbuf->size);
 819                if (err)
 820                        goto out;
 821
 822                wbuf->offs += wbuf->size;
 823                len -= wbuf->size;
 824                aligned_len -= wbuf->size;
 825                written += wbuf->size;
 826        }
 827
 828        /*
 829         * The remaining data may take more whole max. write units, so write the
 830         * remains multiple to max. write unit size directly to the flash media.
 831         * We align node length to 8-byte boundary because we anyway flash wbuf
 832         * if the remaining space is less than 8 bytes.
 833         */
 834        n = aligned_len >> c->max_write_shift;
 835        if (n) {
 836                n <<= c->max_write_shift;
 837                dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
 838                       wbuf->offs);
 839                err = ubifs_leb_write(c, wbuf->lnum, buf + written,
 840                                      wbuf->offs, n);
 841                if (err)
 842                        goto out;
 843                wbuf->offs += n;
 844                aligned_len -= n;
 845                len -= n;
 846                written += n;
 847        }
 848
 849        spin_lock(&wbuf->lock);
 850        if (aligned_len) {
 851                /*
 852                 * And now we have what's left and what does not take whole
 853                 * max. write unit, so write it to the write-buffer and we are
 854                 * done.
 855                 */
 856                memcpy(wbuf->buf, buf + written, len);
 857                if (aligned_len > len) {
 858                        ubifs_assert(c, aligned_len - len < 8);
 859                        ubifs_pad(c, wbuf->buf + len, aligned_len - len);
 860                }
 861        }
 862
 863        if (c->leb_size - wbuf->offs >= c->max_write_size)
 864                wbuf->size = c->max_write_size;
 865        else
 866                wbuf->size = c->leb_size - wbuf->offs;
 867        wbuf->avail = wbuf->size - aligned_len;
 868        wbuf->used = aligned_len;
 869        wbuf->next_ino = 0;
 870        spin_unlock(&wbuf->lock);
 871
 872exit:
 873        if (wbuf->sync_callback) {
 874                int free = c->leb_size - wbuf->offs - wbuf->used;
 875
 876                err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
 877                if (err)
 878                        goto out;
 879        }
 880
 881        if (wbuf->used)
 882                new_wbuf_timer_nolock(c, wbuf);
 883
 884        return 0;
 885
 886out:
 887        ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
 888                  len, wbuf->lnum, wbuf->offs, err);
 889        ubifs_dump_node(c, buf, written + len);
 890        dump_stack();
 891        ubifs_dump_leb(c, wbuf->lnum);
 892        return err;
 893}
 894
 895/**
 896 * ubifs_write_node_hmac - write node to the media.
 897 * @c: UBIFS file-system description object
 898 * @buf: the node to write
 899 * @len: node length
 900 * @lnum: logical eraseblock number
 901 * @offs: offset within the logical eraseblock
 902 * @hmac_offs: offset of the HMAC within the node
 903 *
 904 * This function automatically fills node magic number, assigns sequence
 905 * number, and calculates node CRC checksum. The length of the @buf buffer has
 906 * to be aligned to the minimal I/O unit size. This function automatically
 907 * appends padding node and padding bytes if needed. Returns zero in case of
 908 * success and a negative error code in case of failure.
 909 */
 910int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum,
 911                          int offs, int hmac_offs)
 912{
 913        int err, buf_len = ALIGN(len, c->min_io_size);
 914
 915        dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
 916               lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
 917               buf_len);
 918        ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 919        ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size);
 920        ubifs_assert(c, !c->ro_media && !c->ro_mount);
 921        ubifs_assert(c, !c->space_fixup);
 922
 923        if (c->ro_error)
 924                return -EROFS;
 925
 926        err = ubifs_prepare_node_hmac(c, buf, len, hmac_offs, 1);
 927        if (err)
 928                return err;
 929
 930        err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
 931        if (err)
 932                ubifs_dump_node(c, buf, len);
 933
 934        return err;
 935}
 936
 937/**
 938 * ubifs_write_node - write node to the media.
 939 * @c: UBIFS file-system description object
 940 * @buf: the node to write
 941 * @len: node length
 942 * @lnum: logical eraseblock number
 943 * @offs: offset within the logical eraseblock
 944 *
 945 * This function automatically fills node magic number, assigns sequence
 946 * number, and calculates node CRC checksum. The length of the @buf buffer has
 947 * to be aligned to the minimal I/O unit size. This function automatically
 948 * appends padding node and padding bytes if needed. Returns zero in case of
 949 * success and a negative error code in case of failure.
 950 */
 951int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
 952                     int offs)
 953{
 954        return ubifs_write_node_hmac(c, buf, len, lnum, offs, -1);
 955}
 956
 957/**
 958 * ubifs_read_node_wbuf - read node from the media or write-buffer.
 959 * @wbuf: wbuf to check for un-written data
 960 * @buf: buffer to read to
 961 * @type: node type
 962 * @len: node length
 963 * @lnum: logical eraseblock number
 964 * @offs: offset within the logical eraseblock
 965 *
 966 * This function reads a node of known type and length, checks it and stores
 967 * in @buf. If the node partially or fully sits in the write-buffer, this
 968 * function takes data from the buffer, otherwise it reads the flash media.
 969 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
 970 * error code in case of failure.
 971 */
 972int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
 973                         int lnum, int offs)
 974{
 975        const struct ubifs_info *c = wbuf->c;
 976        int err, rlen, overlap;
 977        struct ubifs_ch *ch = buf;
 978
 979        dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
 980               dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
 981        ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 982        ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
 983        ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
 984
 985        spin_lock(&wbuf->lock);
 986        overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
 987        if (!overlap) {
 988                /* We may safely unlock the write-buffer and read the data */
 989                spin_unlock(&wbuf->lock);
 990                return ubifs_read_node(c, buf, type, len, lnum, offs);
 991        }
 992
 993        /* Don't read under wbuf */
 994        rlen = wbuf->offs - offs;
 995        if (rlen < 0)
 996                rlen = 0;
 997
 998        /* Copy the rest from the write-buffer */
 999        memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1000        spin_unlock(&wbuf->lock);
1001
1002        if (rlen > 0) {
1003                /* Read everything that goes before write-buffer */
1004                err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1005                if (err && err != -EBADMSG)
1006                        return err;
1007        }
1008
1009        if (type != ch->node_type) {
1010                ubifs_err(c, "bad node type (%d but expected %d)",
1011                          ch->node_type, type);
1012                goto out;
1013        }
1014
1015        err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0);
1016        if (err) {
1017                ubifs_err(c, "expected node type %d", type);
1018                return err;
1019        }
1020
1021        rlen = le32_to_cpu(ch->len);
1022        if (rlen != len) {
1023                ubifs_err(c, "bad node length %d, expected %d", rlen, len);
1024                goto out;
1025        }
1026
1027        return 0;
1028
1029out:
1030        ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
1031        ubifs_dump_node(c, buf, len);
1032        dump_stack();
1033        return -EINVAL;
1034}
1035
1036/**
1037 * ubifs_read_node - read node.
1038 * @c: UBIFS file-system description object
1039 * @buf: buffer to read to
1040 * @type: node type
1041 * @len: node length (not aligned)
1042 * @lnum: logical eraseblock number
1043 * @offs: offset within the logical eraseblock
1044 *
1045 * This function reads a node of known type and length, checks it and
1046 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
1047 * and a negative error code in case of failure.
1048 */
1049int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
1050                    int lnum, int offs)
1051{
1052        int err, l;
1053        struct ubifs_ch *ch = buf;
1054
1055        dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
1056        ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1057        ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
1058        ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1059        ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1060
1061        err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1062        if (err && err != -EBADMSG)
1063                return err;
1064
1065        if (type != ch->node_type) {
1066                ubifs_errc(c, "bad node type (%d but expected %d)",
1067                           ch->node_type, type);
1068                goto out;
1069        }
1070
1071        err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0);
1072        if (err) {
1073                ubifs_errc(c, "expected node type %d", type);
1074                return err;
1075        }
1076
1077        l = le32_to_cpu(ch->len);
1078        if (l != len) {
1079                ubifs_errc(c, "bad node length %d, expected %d", l, len);
1080                goto out;
1081        }
1082
1083        return 0;
1084
1085out:
1086        ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1087                   offs, ubi_is_mapped(c->ubi, lnum));
1088        if (!c->probing) {
1089                ubifs_dump_node(c, buf, len);
1090                dump_stack();
1091        }
1092        return -EINVAL;
1093}
1094
1095/**
1096 * ubifs_wbuf_init - initialize write-buffer.
1097 * @c: UBIFS file-system description object
1098 * @wbuf: write-buffer to initialize
1099 *
1100 * This function initializes write-buffer. Returns zero in case of success
1101 * %-ENOMEM in case of failure.
1102 */
1103int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1104{
1105        size_t size;
1106
1107        wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1108        if (!wbuf->buf)
1109                return -ENOMEM;
1110
1111        size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1112        wbuf->inodes = kmalloc(size, GFP_KERNEL);
1113        if (!wbuf->inodes) {
1114                kfree(wbuf->buf);
1115                wbuf->buf = NULL;
1116                return -ENOMEM;
1117        }
1118
1119        wbuf->used = 0;
1120        wbuf->lnum = wbuf->offs = -1;
1121        /*
1122         * If the LEB starts at the max. write size aligned address, then
1123         * write-buffer size has to be set to @c->max_write_size. Otherwise,
1124         * set it to something smaller so that it ends at the closest max.
1125         * write size boundary.
1126         */
1127        size = c->max_write_size - (c->leb_start % c->max_write_size);
1128        wbuf->avail = wbuf->size = size;
1129        wbuf->sync_callback = NULL;
1130        mutex_init(&wbuf->io_mutex);
1131        spin_lock_init(&wbuf->lock);
1132        wbuf->c = c;
1133        wbuf->next_ino = 0;
1134
1135        hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1136        wbuf->timer.function = wbuf_timer_callback_nolock;
1137        return 0;
1138}
1139
1140/**
1141 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1142 * @wbuf: the write-buffer where to add
1143 * @inum: the inode number
1144 *
1145 * This function adds an inode number to the inode array of the write-buffer.
1146 */
1147void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1148{
1149        if (!wbuf->buf)
1150                /* NOR flash or something similar */
1151                return;
1152
1153        spin_lock(&wbuf->lock);
1154        if (wbuf->used)
1155                wbuf->inodes[wbuf->next_ino++] = inum;
1156        spin_unlock(&wbuf->lock);
1157}
1158
1159/**
1160 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1161 * @wbuf: the write-buffer
1162 * @inum: the inode number
1163 *
1164 * This function returns with %1 if the write-buffer contains some data from the
1165 * given inode otherwise it returns with %0.
1166 */
1167static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1168{
1169        int i, ret = 0;
1170
1171        spin_lock(&wbuf->lock);
1172        for (i = 0; i < wbuf->next_ino; i++)
1173                if (inum == wbuf->inodes[i]) {
1174                        ret = 1;
1175                        break;
1176                }
1177        spin_unlock(&wbuf->lock);
1178
1179        return ret;
1180}
1181
1182/**
1183 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1184 * @c: UBIFS file-system description object
1185 * @inode: inode to synchronize
1186 *
1187 * This function synchronizes write-buffers which contain nodes belonging to
1188 * @inode. Returns zero in case of success and a negative error code in case of
1189 * failure.
1190 */
1191int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1192{
1193        int i, err = 0;
1194
1195        for (i = 0; i < c->jhead_cnt; i++) {
1196                struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1197
1198                if (i == GCHD)
1199                        /*
1200                         * GC head is special, do not look at it. Even if the
1201                         * head contains something related to this inode, it is
1202                         * a _copy_ of corresponding on-flash node which sits
1203                         * somewhere else.
1204                         */
1205                        continue;
1206
1207                if (!wbuf_has_ino(wbuf, inode->i_ino))
1208                        continue;
1209
1210                mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1211                if (wbuf_has_ino(wbuf, inode->i_ino))
1212                        err = ubifs_wbuf_sync_nolock(wbuf);
1213                mutex_unlock(&wbuf->io_mutex);
1214
1215                if (err) {
1216                        ubifs_ro_mode(c, err);
1217                        return err;
1218                }
1219        }
1220        return 0;
1221}
1222