linux/fs/ubifs/lprops.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements the functions that access LEB properties and their
  13 * categories. LEBs are categorized based on the needs of UBIFS, and the
  14 * categories are stored as either heaps or lists to provide a fast way of
  15 * finding a LEB in a particular category. For example, UBIFS may need to find
  16 * an empty LEB for the journal, or a very dirty LEB for garbage collection.
  17 */
  18
  19#include "ubifs.h"
  20
  21/**
  22 * get_heap_comp_val - get the LEB properties value for heap comparisons.
  23 * @lprops: LEB properties
  24 * @cat: LEB category
  25 */
  26static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
  27{
  28        switch (cat) {
  29        case LPROPS_FREE:
  30                return lprops->free;
  31        case LPROPS_DIRTY_IDX:
  32                return lprops->free + lprops->dirty;
  33        default:
  34                return lprops->dirty;
  35        }
  36}
  37
  38/**
  39 * move_up_lpt_heap - move a new heap entry up as far as possible.
  40 * @c: UBIFS file-system description object
  41 * @heap: LEB category heap
  42 * @lprops: LEB properties to move
  43 * @cat: LEB category
  44 *
  45 * New entries to a heap are added at the bottom and then moved up until the
  46 * parent's value is greater.  In the case of LPT's category heaps, the value
  47 * is either the amount of free space or the amount of dirty space, depending
  48 * on the category.
  49 */
  50static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
  51                             struct ubifs_lprops *lprops, int cat)
  52{
  53        int val1, val2, hpos;
  54
  55        hpos = lprops->hpos;
  56        if (!hpos)
  57                return; /* Already top of the heap */
  58        val1 = get_heap_comp_val(lprops, cat);
  59        /* Compare to parent and, if greater, move up the heap */
  60        do {
  61                int ppos = (hpos - 1) / 2;
  62
  63                val2 = get_heap_comp_val(heap->arr[ppos], cat);
  64                if (val2 >= val1)
  65                        return;
  66                /* Greater than parent so move up */
  67                heap->arr[ppos]->hpos = hpos;
  68                heap->arr[hpos] = heap->arr[ppos];
  69                heap->arr[ppos] = lprops;
  70                lprops->hpos = ppos;
  71                hpos = ppos;
  72        } while (hpos);
  73}
  74
  75/**
  76 * adjust_lpt_heap - move a changed heap entry up or down the heap.
  77 * @c: UBIFS file-system description object
  78 * @heap: LEB category heap
  79 * @lprops: LEB properties to move
  80 * @hpos: heap position of @lprops
  81 * @cat: LEB category
  82 *
  83 * Changed entries in a heap are moved up or down until the parent's value is
  84 * greater.  In the case of LPT's category heaps, the value is either the amount
  85 * of free space or the amount of dirty space, depending on the category.
  86 */
  87static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
  88                            struct ubifs_lprops *lprops, int hpos, int cat)
  89{
  90        int val1, val2, val3, cpos;
  91
  92        val1 = get_heap_comp_val(lprops, cat);
  93        /* Compare to parent and, if greater than parent, move up the heap */
  94        if (hpos) {
  95                int ppos = (hpos - 1) / 2;
  96
  97                val2 = get_heap_comp_val(heap->arr[ppos], cat);
  98                if (val1 > val2) {
  99                        /* Greater than parent so move up */
 100                        while (1) {
 101                                heap->arr[ppos]->hpos = hpos;
 102                                heap->arr[hpos] = heap->arr[ppos];
 103                                heap->arr[ppos] = lprops;
 104                                lprops->hpos = ppos;
 105                                hpos = ppos;
 106                                if (!hpos)
 107                                        return;
 108                                ppos = (hpos - 1) / 2;
 109                                val2 = get_heap_comp_val(heap->arr[ppos], cat);
 110                                if (val1 <= val2)
 111                                        return;
 112                                /* Still greater than parent so keep going */
 113                        }
 114                }
 115        }
 116
 117        /* Not greater than parent, so compare to children */
 118        while (1) {
 119                /* Compare to left child */
 120                cpos = hpos * 2 + 1;
 121                if (cpos >= heap->cnt)
 122                        return;
 123                val2 = get_heap_comp_val(heap->arr[cpos], cat);
 124                if (val1 < val2) {
 125                        /* Less than left child, so promote biggest child */
 126                        if (cpos + 1 < heap->cnt) {
 127                                val3 = get_heap_comp_val(heap->arr[cpos + 1],
 128                                                         cat);
 129                                if (val3 > val2)
 130                                        cpos += 1; /* Right child is bigger */
 131                        }
 132                        heap->arr[cpos]->hpos = hpos;
 133                        heap->arr[hpos] = heap->arr[cpos];
 134                        heap->arr[cpos] = lprops;
 135                        lprops->hpos = cpos;
 136                        hpos = cpos;
 137                        continue;
 138                }
 139                /* Compare to right child */
 140                cpos += 1;
 141                if (cpos >= heap->cnt)
 142                        return;
 143                val3 = get_heap_comp_val(heap->arr[cpos], cat);
 144                if (val1 < val3) {
 145                        /* Less than right child, so promote right child */
 146                        heap->arr[cpos]->hpos = hpos;
 147                        heap->arr[hpos] = heap->arr[cpos];
 148                        heap->arr[cpos] = lprops;
 149                        lprops->hpos = cpos;
 150                        hpos = cpos;
 151                        continue;
 152                }
 153                return;
 154        }
 155}
 156
 157/**
 158 * add_to_lpt_heap - add LEB properties to a LEB category heap.
 159 * @c: UBIFS file-system description object
 160 * @lprops: LEB properties to add
 161 * @cat: LEB category
 162 *
 163 * This function returns %1 if @lprops is added to the heap for LEB category
 164 * @cat, otherwise %0 is returned because the heap is full.
 165 */
 166static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
 167                           int cat)
 168{
 169        struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
 170
 171        if (heap->cnt >= heap->max_cnt) {
 172                const int b = LPT_HEAP_SZ / 2 - 1;
 173                int cpos, val1, val2;
 174
 175                /* Compare to some other LEB on the bottom of heap */
 176                /* Pick a position kind of randomly */
 177                cpos = (((size_t)lprops >> 4) & b) + b;
 178                ubifs_assert(c, cpos >= b);
 179                ubifs_assert(c, cpos < LPT_HEAP_SZ);
 180                ubifs_assert(c, cpos < heap->cnt);
 181
 182                val1 = get_heap_comp_val(lprops, cat);
 183                val2 = get_heap_comp_val(heap->arr[cpos], cat);
 184                if (val1 > val2) {
 185                        struct ubifs_lprops *lp;
 186
 187                        lp = heap->arr[cpos];
 188                        lp->flags &= ~LPROPS_CAT_MASK;
 189                        lp->flags |= LPROPS_UNCAT;
 190                        list_add(&lp->list, &c->uncat_list);
 191                        lprops->hpos = cpos;
 192                        heap->arr[cpos] = lprops;
 193                        move_up_lpt_heap(c, heap, lprops, cat);
 194                        dbg_check_heap(c, heap, cat, lprops->hpos);
 195                        return 1; /* Added to heap */
 196                }
 197                dbg_check_heap(c, heap, cat, -1);
 198                return 0; /* Not added to heap */
 199        } else {
 200                lprops->hpos = heap->cnt++;
 201                heap->arr[lprops->hpos] = lprops;
 202                move_up_lpt_heap(c, heap, lprops, cat);
 203                dbg_check_heap(c, heap, cat, lprops->hpos);
 204                return 1; /* Added to heap */
 205        }
 206}
 207
 208/**
 209 * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
 210 * @c: UBIFS file-system description object
 211 * @lprops: LEB properties to remove
 212 * @cat: LEB category
 213 */
 214static void remove_from_lpt_heap(struct ubifs_info *c,
 215                                 struct ubifs_lprops *lprops, int cat)
 216{
 217        struct ubifs_lpt_heap *heap;
 218        int hpos = lprops->hpos;
 219
 220        heap = &c->lpt_heap[cat - 1];
 221        ubifs_assert(c, hpos >= 0 && hpos < heap->cnt);
 222        ubifs_assert(c, heap->arr[hpos] == lprops);
 223        heap->cnt -= 1;
 224        if (hpos < heap->cnt) {
 225                heap->arr[hpos] = heap->arr[heap->cnt];
 226                heap->arr[hpos]->hpos = hpos;
 227                adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
 228        }
 229        dbg_check_heap(c, heap, cat, -1);
 230}
 231
 232/**
 233 * lpt_heap_replace - replace lprops in a category heap.
 234 * @c: UBIFS file-system description object
 235 * @new_lprops: LEB properties with which to replace
 236 * @cat: LEB category
 237 *
 238 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
 239 * and the lprops that the pnode contains.  When that happens, references in
 240 * the category heaps to those lprops must be updated to point to the new
 241 * lprops.  This function does that.
 242 */
 243static void lpt_heap_replace(struct ubifs_info *c,
 244                             struct ubifs_lprops *new_lprops, int cat)
 245{
 246        struct ubifs_lpt_heap *heap;
 247        int hpos = new_lprops->hpos;
 248
 249        heap = &c->lpt_heap[cat - 1];
 250        heap->arr[hpos] = new_lprops;
 251}
 252
 253/**
 254 * ubifs_add_to_cat - add LEB properties to a category list or heap.
 255 * @c: UBIFS file-system description object
 256 * @lprops: LEB properties to add
 257 * @cat: LEB category to which to add
 258 *
 259 * LEB properties are categorized to enable fast find operations.
 260 */
 261void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
 262                      int cat)
 263{
 264        switch (cat) {
 265        case LPROPS_DIRTY:
 266        case LPROPS_DIRTY_IDX:
 267        case LPROPS_FREE:
 268                if (add_to_lpt_heap(c, lprops, cat))
 269                        break;
 270                /* No more room on heap so make it un-categorized */
 271                cat = LPROPS_UNCAT;
 272                fallthrough;
 273        case LPROPS_UNCAT:
 274                list_add(&lprops->list, &c->uncat_list);
 275                break;
 276        case LPROPS_EMPTY:
 277                list_add(&lprops->list, &c->empty_list);
 278                break;
 279        case LPROPS_FREEABLE:
 280                list_add(&lprops->list, &c->freeable_list);
 281                c->freeable_cnt += 1;
 282                break;
 283        case LPROPS_FRDI_IDX:
 284                list_add(&lprops->list, &c->frdi_idx_list);
 285                break;
 286        default:
 287                ubifs_assert(c, 0);
 288        }
 289
 290        lprops->flags &= ~LPROPS_CAT_MASK;
 291        lprops->flags |= cat;
 292        c->in_a_category_cnt += 1;
 293        ubifs_assert(c, c->in_a_category_cnt <= c->main_lebs);
 294}
 295
 296/**
 297 * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
 298 * @c: UBIFS file-system description object
 299 * @lprops: LEB properties to remove
 300 * @cat: LEB category from which to remove
 301 *
 302 * LEB properties are categorized to enable fast find operations.
 303 */
 304static void ubifs_remove_from_cat(struct ubifs_info *c,
 305                                  struct ubifs_lprops *lprops, int cat)
 306{
 307        switch (cat) {
 308        case LPROPS_DIRTY:
 309        case LPROPS_DIRTY_IDX:
 310        case LPROPS_FREE:
 311                remove_from_lpt_heap(c, lprops, cat);
 312                break;
 313        case LPROPS_FREEABLE:
 314                c->freeable_cnt -= 1;
 315                ubifs_assert(c, c->freeable_cnt >= 0);
 316                fallthrough;
 317        case LPROPS_UNCAT:
 318        case LPROPS_EMPTY:
 319        case LPROPS_FRDI_IDX:
 320                ubifs_assert(c, !list_empty(&lprops->list));
 321                list_del(&lprops->list);
 322                break;
 323        default:
 324                ubifs_assert(c, 0);
 325        }
 326
 327        c->in_a_category_cnt -= 1;
 328        ubifs_assert(c, c->in_a_category_cnt >= 0);
 329}
 330
 331/**
 332 * ubifs_replace_cat - replace lprops in a category list or heap.
 333 * @c: UBIFS file-system description object
 334 * @old_lprops: LEB properties to replace
 335 * @new_lprops: LEB properties with which to replace
 336 *
 337 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
 338 * and the lprops that the pnode contains. When that happens, references in
 339 * category lists and heaps must be replaced. This function does that.
 340 */
 341void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
 342                       struct ubifs_lprops *new_lprops)
 343{
 344        int cat;
 345
 346        cat = new_lprops->flags & LPROPS_CAT_MASK;
 347        switch (cat) {
 348        case LPROPS_DIRTY:
 349        case LPROPS_DIRTY_IDX:
 350        case LPROPS_FREE:
 351                lpt_heap_replace(c, new_lprops, cat);
 352                break;
 353        case LPROPS_UNCAT:
 354        case LPROPS_EMPTY:
 355        case LPROPS_FREEABLE:
 356        case LPROPS_FRDI_IDX:
 357                list_replace(&old_lprops->list, &new_lprops->list);
 358                break;
 359        default:
 360                ubifs_assert(c, 0);
 361        }
 362}
 363
 364/**
 365 * ubifs_ensure_cat - ensure LEB properties are categorized.
 366 * @c: UBIFS file-system description object
 367 * @lprops: LEB properties
 368 *
 369 * A LEB may have fallen off of the bottom of a heap, and ended up as
 370 * un-categorized even though it has enough space for us now. If that is the
 371 * case this function will put the LEB back onto a heap.
 372 */
 373void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
 374{
 375        int cat = lprops->flags & LPROPS_CAT_MASK;
 376
 377        if (cat != LPROPS_UNCAT)
 378                return;
 379        cat = ubifs_categorize_lprops(c, lprops);
 380        if (cat == LPROPS_UNCAT)
 381                return;
 382        ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
 383        ubifs_add_to_cat(c, lprops, cat);
 384}
 385
 386/**
 387 * ubifs_categorize_lprops - categorize LEB properties.
 388 * @c: UBIFS file-system description object
 389 * @lprops: LEB properties to categorize
 390 *
 391 * LEB properties are categorized to enable fast find operations. This function
 392 * returns the LEB category to which the LEB properties belong. Note however
 393 * that if the LEB category is stored as a heap and the heap is full, the
 394 * LEB properties may have their category changed to %LPROPS_UNCAT.
 395 */
 396int ubifs_categorize_lprops(const struct ubifs_info *c,
 397                            const struct ubifs_lprops *lprops)
 398{
 399        if (lprops->flags & LPROPS_TAKEN)
 400                return LPROPS_UNCAT;
 401
 402        if (lprops->free == c->leb_size) {
 403                ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
 404                return LPROPS_EMPTY;
 405        }
 406
 407        if (lprops->free + lprops->dirty == c->leb_size) {
 408                if (lprops->flags & LPROPS_INDEX)
 409                        return LPROPS_FRDI_IDX;
 410                else
 411                        return LPROPS_FREEABLE;
 412        }
 413
 414        if (lprops->flags & LPROPS_INDEX) {
 415                if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
 416                        return LPROPS_DIRTY_IDX;
 417        } else {
 418                if (lprops->dirty >= c->dead_wm &&
 419                    lprops->dirty > lprops->free)
 420                        return LPROPS_DIRTY;
 421                if (lprops->free > 0)
 422                        return LPROPS_FREE;
 423        }
 424
 425        return LPROPS_UNCAT;
 426}
 427
 428/**
 429 * change_category - change LEB properties category.
 430 * @c: UBIFS file-system description object
 431 * @lprops: LEB properties to re-categorize
 432 *
 433 * LEB properties are categorized to enable fast find operations. When the LEB
 434 * properties change they must be re-categorized.
 435 */
 436static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
 437{
 438        int old_cat = lprops->flags & LPROPS_CAT_MASK;
 439        int new_cat = ubifs_categorize_lprops(c, lprops);
 440
 441        if (old_cat == new_cat) {
 442                struct ubifs_lpt_heap *heap;
 443
 444                /* lprops on a heap now must be moved up or down */
 445                if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
 446                        return; /* Not on a heap */
 447                heap = &c->lpt_heap[new_cat - 1];
 448                adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
 449        } else {
 450                ubifs_remove_from_cat(c, lprops, old_cat);
 451                ubifs_add_to_cat(c, lprops, new_cat);
 452        }
 453}
 454
 455/**
 456 * ubifs_calc_dark - calculate LEB dark space size.
 457 * @c: the UBIFS file-system description object
 458 * @spc: amount of free and dirty space in the LEB
 459 *
 460 * This function calculates and returns amount of dark space in an LEB which
 461 * has @spc bytes of free and dirty space.
 462 *
 463 * UBIFS is trying to account the space which might not be usable, and this
 464 * space is called "dark space". For example, if an LEB has only %512 free
 465 * bytes, it is dark space, because it cannot fit a large data node.
 466 */
 467int ubifs_calc_dark(const struct ubifs_info *c, int spc)
 468{
 469        ubifs_assert(c, !(spc & 7));
 470
 471        if (spc < c->dark_wm)
 472                return spc;
 473
 474        /*
 475         * If we have slightly more space then the dark space watermark, we can
 476         * anyway safely assume it we'll be able to write a node of the
 477         * smallest size there.
 478         */
 479        if (spc - c->dark_wm < MIN_WRITE_SZ)
 480                return spc - MIN_WRITE_SZ;
 481
 482        return c->dark_wm;
 483}
 484
 485/**
 486 * is_lprops_dirty - determine if LEB properties are dirty.
 487 * @c: the UBIFS file-system description object
 488 * @lprops: LEB properties to test
 489 */
 490static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
 491{
 492        struct ubifs_pnode *pnode;
 493        int pos;
 494
 495        pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
 496        pnode = (struct ubifs_pnode *)container_of(lprops - pos,
 497                                                   struct ubifs_pnode,
 498                                                   lprops[0]);
 499        return !test_bit(COW_CNODE, &pnode->flags) &&
 500               test_bit(DIRTY_CNODE, &pnode->flags);
 501}
 502
 503/**
 504 * ubifs_change_lp - change LEB properties.
 505 * @c: the UBIFS file-system description object
 506 * @lp: LEB properties to change
 507 * @free: new free space amount
 508 * @dirty: new dirty space amount
 509 * @flags: new flags
 510 * @idx_gc_cnt: change to the count of @idx_gc list
 511 *
 512 * This function changes LEB properties (@free, @dirty or @flag). However, the
 513 * property which has the %LPROPS_NC value is not changed. Returns a pointer to
 514 * the updated LEB properties on success and a negative error code on failure.
 515 *
 516 * Note, the LEB properties may have had to be copied (due to COW) and
 517 * consequently the pointer returned may not be the same as the pointer
 518 * passed.
 519 */
 520const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
 521                                           const struct ubifs_lprops *lp,
 522                                           int free, int dirty, int flags,
 523                                           int idx_gc_cnt)
 524{
 525        /*
 526         * This is the only function that is allowed to change lprops, so we
 527         * discard the "const" qualifier.
 528         */
 529        struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
 530
 531        dbg_lp("LEB %d, free %d, dirty %d, flags %d",
 532               lprops->lnum, free, dirty, flags);
 533
 534        ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
 535        ubifs_assert(c, c->lst.empty_lebs >= 0 &&
 536                     c->lst.empty_lebs <= c->main_lebs);
 537        ubifs_assert(c, c->freeable_cnt >= 0);
 538        ubifs_assert(c, c->freeable_cnt <= c->main_lebs);
 539        ubifs_assert(c, c->lst.taken_empty_lebs >= 0);
 540        ubifs_assert(c, c->lst.taken_empty_lebs <= c->lst.empty_lebs);
 541        ubifs_assert(c, !(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
 542        ubifs_assert(c, !(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
 543        ubifs_assert(c, !(c->lst.total_used & 7));
 544        ubifs_assert(c, free == LPROPS_NC || free >= 0);
 545        ubifs_assert(c, dirty == LPROPS_NC || dirty >= 0);
 546
 547        if (!is_lprops_dirty(c, lprops)) {
 548                lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
 549                if (IS_ERR(lprops))
 550                        return lprops;
 551        } else
 552                ubifs_assert(c, lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
 553
 554        ubifs_assert(c, !(lprops->free & 7) && !(lprops->dirty & 7));
 555
 556        spin_lock(&c->space_lock);
 557        if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
 558                c->lst.taken_empty_lebs -= 1;
 559
 560        if (!(lprops->flags & LPROPS_INDEX)) {
 561                int old_spc;
 562
 563                old_spc = lprops->free + lprops->dirty;
 564                if (old_spc < c->dead_wm)
 565                        c->lst.total_dead -= old_spc;
 566                else
 567                        c->lst.total_dark -= ubifs_calc_dark(c, old_spc);
 568
 569                c->lst.total_used -= c->leb_size - old_spc;
 570        }
 571
 572        if (free != LPROPS_NC) {
 573                free = ALIGN(free, 8);
 574                c->lst.total_free += free - lprops->free;
 575
 576                /* Increase or decrease empty LEBs counter if needed */
 577                if (free == c->leb_size) {
 578                        if (lprops->free != c->leb_size)
 579                                c->lst.empty_lebs += 1;
 580                } else if (lprops->free == c->leb_size)
 581                        c->lst.empty_lebs -= 1;
 582                lprops->free = free;
 583        }
 584
 585        if (dirty != LPROPS_NC) {
 586                dirty = ALIGN(dirty, 8);
 587                c->lst.total_dirty += dirty - lprops->dirty;
 588                lprops->dirty = dirty;
 589        }
 590
 591        if (flags != LPROPS_NC) {
 592                /* Take care about indexing LEBs counter if needed */
 593                if ((lprops->flags & LPROPS_INDEX)) {
 594                        if (!(flags & LPROPS_INDEX))
 595                                c->lst.idx_lebs -= 1;
 596                } else if (flags & LPROPS_INDEX)
 597                        c->lst.idx_lebs += 1;
 598                lprops->flags = flags;
 599        }
 600
 601        if (!(lprops->flags & LPROPS_INDEX)) {
 602                int new_spc;
 603
 604                new_spc = lprops->free + lprops->dirty;
 605                if (new_spc < c->dead_wm)
 606                        c->lst.total_dead += new_spc;
 607                else
 608                        c->lst.total_dark += ubifs_calc_dark(c, new_spc);
 609
 610                c->lst.total_used += c->leb_size - new_spc;
 611        }
 612
 613        if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
 614                c->lst.taken_empty_lebs += 1;
 615
 616        change_category(c, lprops);
 617        c->idx_gc_cnt += idx_gc_cnt;
 618        spin_unlock(&c->space_lock);
 619        return lprops;
 620}
 621
 622/**
 623 * ubifs_get_lp_stats - get lprops statistics.
 624 * @c: UBIFS file-system description object
 625 * @lst: return statistics
 626 */
 627void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
 628{
 629        spin_lock(&c->space_lock);
 630        memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
 631        spin_unlock(&c->space_lock);
 632}
 633
 634/**
 635 * ubifs_change_one_lp - change LEB properties.
 636 * @c: the UBIFS file-system description object
 637 * @lnum: LEB to change properties for
 638 * @free: amount of free space
 639 * @dirty: amount of dirty space
 640 * @flags_set: flags to set
 641 * @flags_clean: flags to clean
 642 * @idx_gc_cnt: change to the count of idx_gc list
 643 *
 644 * This function changes properties of LEB @lnum. It is a helper wrapper over
 645 * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
 646 * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
 647 * a negative error code in case of failure.
 648 */
 649int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
 650                        int flags_set, int flags_clean, int idx_gc_cnt)
 651{
 652        int err = 0, flags;
 653        const struct ubifs_lprops *lp;
 654
 655        ubifs_get_lprops(c);
 656
 657        lp = ubifs_lpt_lookup_dirty(c, lnum);
 658        if (IS_ERR(lp)) {
 659                err = PTR_ERR(lp);
 660                goto out;
 661        }
 662
 663        flags = (lp->flags | flags_set) & ~flags_clean;
 664        lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
 665        if (IS_ERR(lp))
 666                err = PTR_ERR(lp);
 667
 668out:
 669        ubifs_release_lprops(c);
 670        if (err)
 671                ubifs_err(c, "cannot change properties of LEB %d, error %d",
 672                          lnum, err);
 673        return err;
 674}
 675
 676/**
 677 * ubifs_update_one_lp - update LEB properties.
 678 * @c: the UBIFS file-system description object
 679 * @lnum: LEB to change properties for
 680 * @free: amount of free space
 681 * @dirty: amount of dirty space to add
 682 * @flags_set: flags to set
 683 * @flags_clean: flags to clean
 684 *
 685 * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
 686 * current dirty space, not substitutes it.
 687 */
 688int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
 689                        int flags_set, int flags_clean)
 690{
 691        int err = 0, flags;
 692        const struct ubifs_lprops *lp;
 693
 694        ubifs_get_lprops(c);
 695
 696        lp = ubifs_lpt_lookup_dirty(c, lnum);
 697        if (IS_ERR(lp)) {
 698                err = PTR_ERR(lp);
 699                goto out;
 700        }
 701
 702        flags = (lp->flags | flags_set) & ~flags_clean;
 703        lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
 704        if (IS_ERR(lp))
 705                err = PTR_ERR(lp);
 706
 707out:
 708        ubifs_release_lprops(c);
 709        if (err)
 710                ubifs_err(c, "cannot update properties of LEB %d, error %d",
 711                          lnum, err);
 712        return err;
 713}
 714
 715/**
 716 * ubifs_read_one_lp - read LEB properties.
 717 * @c: the UBIFS file-system description object
 718 * @lnum: LEB to read properties for
 719 * @lp: where to store read properties
 720 *
 721 * This helper function reads properties of a LEB @lnum and stores them in @lp.
 722 * Returns zero in case of success and a negative error code in case of
 723 * failure.
 724 */
 725int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
 726{
 727        int err = 0;
 728        const struct ubifs_lprops *lpp;
 729
 730        ubifs_get_lprops(c);
 731
 732        lpp = ubifs_lpt_lookup(c, lnum);
 733        if (IS_ERR(lpp)) {
 734                err = PTR_ERR(lpp);
 735                ubifs_err(c, "cannot read properties of LEB %d, error %d",
 736                          lnum, err);
 737                goto out;
 738        }
 739
 740        memcpy(lp, lpp, sizeof(struct ubifs_lprops));
 741
 742out:
 743        ubifs_release_lprops(c);
 744        return err;
 745}
 746
 747/**
 748 * ubifs_fast_find_free - try to find a LEB with free space quickly.
 749 * @c: the UBIFS file-system description object
 750 *
 751 * This function returns LEB properties for a LEB with free space or %NULL if
 752 * the function is unable to find a LEB quickly.
 753 */
 754const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
 755{
 756        struct ubifs_lprops *lprops;
 757        struct ubifs_lpt_heap *heap;
 758
 759        ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
 760
 761        heap = &c->lpt_heap[LPROPS_FREE - 1];
 762        if (heap->cnt == 0)
 763                return NULL;
 764
 765        lprops = heap->arr[0];
 766        ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
 767        ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
 768        return lprops;
 769}
 770
 771/**
 772 * ubifs_fast_find_empty - try to find an empty LEB quickly.
 773 * @c: the UBIFS file-system description object
 774 *
 775 * This function returns LEB properties for an empty LEB or %NULL if the
 776 * function is unable to find an empty LEB quickly.
 777 */
 778const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
 779{
 780        struct ubifs_lprops *lprops;
 781
 782        ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
 783
 784        if (list_empty(&c->empty_list))
 785                return NULL;
 786
 787        lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
 788        ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
 789        ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
 790        ubifs_assert(c, lprops->free == c->leb_size);
 791        return lprops;
 792}
 793
 794/**
 795 * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
 796 * @c: the UBIFS file-system description object
 797 *
 798 * This function returns LEB properties for a freeable LEB or %NULL if the
 799 * function is unable to find a freeable LEB quickly.
 800 */
 801const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
 802{
 803        struct ubifs_lprops *lprops;
 804
 805        ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
 806
 807        if (list_empty(&c->freeable_list))
 808                return NULL;
 809
 810        lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
 811        ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
 812        ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
 813        ubifs_assert(c, lprops->free + lprops->dirty == c->leb_size);
 814        ubifs_assert(c, c->freeable_cnt > 0);
 815        return lprops;
 816}
 817
 818/**
 819 * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
 820 * @c: the UBIFS file-system description object
 821 *
 822 * This function returns LEB properties for a freeable index LEB or %NULL if the
 823 * function is unable to find a freeable index LEB quickly.
 824 */
 825const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
 826{
 827        struct ubifs_lprops *lprops;
 828
 829        ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
 830
 831        if (list_empty(&c->frdi_idx_list))
 832                return NULL;
 833
 834        lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
 835        ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
 836        ubifs_assert(c, (lprops->flags & LPROPS_INDEX));
 837        ubifs_assert(c, lprops->free + lprops->dirty == c->leb_size);
 838        return lprops;
 839}
 840
 841/*
 842 * Everything below is related to debugging.
 843 */
 844
 845/**
 846 * dbg_check_cats - check category heaps and lists.
 847 * @c: UBIFS file-system description object
 848 *
 849 * This function returns %0 on success and a negative error code on failure.
 850 */
 851int dbg_check_cats(struct ubifs_info *c)
 852{
 853        struct ubifs_lprops *lprops;
 854        struct list_head *pos;
 855        int i, cat;
 856
 857        if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
 858                return 0;
 859
 860        list_for_each_entry(lprops, &c->empty_list, list) {
 861                if (lprops->free != c->leb_size) {
 862                        ubifs_err(c, "non-empty LEB %d on empty list (free %d dirty %d flags %d)",
 863                                  lprops->lnum, lprops->free, lprops->dirty,
 864                                  lprops->flags);
 865                        return -EINVAL;
 866                }
 867                if (lprops->flags & LPROPS_TAKEN) {
 868                        ubifs_err(c, "taken LEB %d on empty list (free %d dirty %d flags %d)",
 869                                  lprops->lnum, lprops->free, lprops->dirty,
 870                                  lprops->flags);
 871                        return -EINVAL;
 872                }
 873        }
 874
 875        i = 0;
 876        list_for_each_entry(lprops, &c->freeable_list, list) {
 877                if (lprops->free + lprops->dirty != c->leb_size) {
 878                        ubifs_err(c, "non-freeable LEB %d on freeable list (free %d dirty %d flags %d)",
 879                                  lprops->lnum, lprops->free, lprops->dirty,
 880                                  lprops->flags);
 881                        return -EINVAL;
 882                }
 883                if (lprops->flags & LPROPS_TAKEN) {
 884                        ubifs_err(c, "taken LEB %d on freeable list (free %d dirty %d flags %d)",
 885                                  lprops->lnum, lprops->free, lprops->dirty,
 886                                  lprops->flags);
 887                        return -EINVAL;
 888                }
 889                i += 1;
 890        }
 891        if (i != c->freeable_cnt) {
 892                ubifs_err(c, "freeable list count %d expected %d", i,
 893                          c->freeable_cnt);
 894                return -EINVAL;
 895        }
 896
 897        i = 0;
 898        list_for_each(pos, &c->idx_gc)
 899                i += 1;
 900        if (i != c->idx_gc_cnt) {
 901                ubifs_err(c, "idx_gc list count %d expected %d", i,
 902                          c->idx_gc_cnt);
 903                return -EINVAL;
 904        }
 905
 906        list_for_each_entry(lprops, &c->frdi_idx_list, list) {
 907                if (lprops->free + lprops->dirty != c->leb_size) {
 908                        ubifs_err(c, "non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)",
 909                                  lprops->lnum, lprops->free, lprops->dirty,
 910                                  lprops->flags);
 911                        return -EINVAL;
 912                }
 913                if (lprops->flags & LPROPS_TAKEN) {
 914                        ubifs_err(c, "taken LEB %d on frdi_idx list (free %d dirty %d flags %d)",
 915                                  lprops->lnum, lprops->free, lprops->dirty,
 916                                  lprops->flags);
 917                        return -EINVAL;
 918                }
 919                if (!(lprops->flags & LPROPS_INDEX)) {
 920                        ubifs_err(c, "non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)",
 921                                  lprops->lnum, lprops->free, lprops->dirty,
 922                                  lprops->flags);
 923                        return -EINVAL;
 924                }
 925        }
 926
 927        for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
 928                struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
 929
 930                for (i = 0; i < heap->cnt; i++) {
 931                        lprops = heap->arr[i];
 932                        if (!lprops) {
 933                                ubifs_err(c, "null ptr in LPT heap cat %d", cat);
 934                                return -EINVAL;
 935                        }
 936                        if (lprops->hpos != i) {
 937                                ubifs_err(c, "bad ptr in LPT heap cat %d", cat);
 938                                return -EINVAL;
 939                        }
 940                        if (lprops->flags & LPROPS_TAKEN) {
 941                                ubifs_err(c, "taken LEB in LPT heap cat %d", cat);
 942                                return -EINVAL;
 943                        }
 944                }
 945        }
 946
 947        return 0;
 948}
 949
 950void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
 951                    int add_pos)
 952{
 953        int i = 0, j, err = 0;
 954
 955        if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
 956                return;
 957
 958        for (i = 0; i < heap->cnt; i++) {
 959                struct ubifs_lprops *lprops = heap->arr[i];
 960                struct ubifs_lprops *lp;
 961
 962                if (i != add_pos)
 963                        if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
 964                                err = 1;
 965                                goto out;
 966                        }
 967                if (lprops->hpos != i) {
 968                        err = 2;
 969                        goto out;
 970                }
 971                lp = ubifs_lpt_lookup(c, lprops->lnum);
 972                if (IS_ERR(lp)) {
 973                        err = 3;
 974                        goto out;
 975                }
 976                if (lprops != lp) {
 977                        ubifs_err(c, "lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
 978                                  (size_t)lprops, (size_t)lp, lprops->lnum,
 979                                  lp->lnum);
 980                        err = 4;
 981                        goto out;
 982                }
 983                for (j = 0; j < i; j++) {
 984                        lp = heap->arr[j];
 985                        if (lp == lprops) {
 986                                err = 5;
 987                                goto out;
 988                        }
 989                        if (lp->lnum == lprops->lnum) {
 990                                err = 6;
 991                                goto out;
 992                        }
 993                }
 994        }
 995out:
 996        if (err) {
 997                ubifs_err(c, "failed cat %d hpos %d err %d", cat, i, err);
 998                dump_stack();
 999                ubifs_dump_heap(c, heap, cat);
1000        }
1001}
1002
1003/**
1004 * scan_check_cb - scan callback.
1005 * @c: the UBIFS file-system description object
1006 * @lp: LEB properties to scan
1007 * @in_tree: whether the LEB properties are in main memory
1008 * @lst: lprops statistics to update
1009 *
1010 * This function returns a code that indicates whether the scan should continue
1011 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
1012 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
1013 * (%LPT_SCAN_STOP).
1014 */
1015static int scan_check_cb(struct ubifs_info *c,
1016                         const struct ubifs_lprops *lp, int in_tree,
1017                         struct ubifs_lp_stats *lst)
1018{
1019        struct ubifs_scan_leb *sleb;
1020        struct ubifs_scan_node *snod;
1021        int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
1022        void *buf = NULL;
1023
1024        cat = lp->flags & LPROPS_CAT_MASK;
1025        if (cat != LPROPS_UNCAT) {
1026                cat = ubifs_categorize_lprops(c, lp);
1027                if (cat != (lp->flags & LPROPS_CAT_MASK)) {
1028                        ubifs_err(c, "bad LEB category %d expected %d",
1029                                  (lp->flags & LPROPS_CAT_MASK), cat);
1030                        return -EINVAL;
1031                }
1032        }
1033
1034        /* Check lp is on its category list (if it has one) */
1035        if (in_tree) {
1036                struct list_head *list = NULL;
1037
1038                switch (cat) {
1039                case LPROPS_EMPTY:
1040                        list = &c->empty_list;
1041                        break;
1042                case LPROPS_FREEABLE:
1043                        list = &c->freeable_list;
1044                        break;
1045                case LPROPS_FRDI_IDX:
1046                        list = &c->frdi_idx_list;
1047                        break;
1048                case LPROPS_UNCAT:
1049                        list = &c->uncat_list;
1050                        break;
1051                }
1052                if (list) {
1053                        struct ubifs_lprops *lprops;
1054                        int found = 0;
1055
1056                        list_for_each_entry(lprops, list, list) {
1057                                if (lprops == lp) {
1058                                        found = 1;
1059                                        break;
1060                                }
1061                        }
1062                        if (!found) {
1063                                ubifs_err(c, "bad LPT list (category %d)", cat);
1064                                return -EINVAL;
1065                        }
1066                }
1067        }
1068
1069        /* Check lp is on its category heap (if it has one) */
1070        if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
1071                struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
1072
1073                if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
1074                    lp != heap->arr[lp->hpos]) {
1075                        ubifs_err(c, "bad LPT heap (category %d)", cat);
1076                        return -EINVAL;
1077                }
1078        }
1079
1080        /*
1081         * After an unclean unmount, empty and freeable LEBs
1082         * may contain garbage - do not scan them.
1083         */
1084        if (lp->free == c->leb_size) {
1085                lst->empty_lebs += 1;
1086                lst->total_free += c->leb_size;
1087                lst->total_dark += ubifs_calc_dark(c, c->leb_size);
1088                return LPT_SCAN_CONTINUE;
1089        }
1090        if (lp->free + lp->dirty == c->leb_size &&
1091            !(lp->flags & LPROPS_INDEX)) {
1092                lst->total_free  += lp->free;
1093                lst->total_dirty += lp->dirty;
1094                lst->total_dark  +=  ubifs_calc_dark(c, c->leb_size);
1095                return LPT_SCAN_CONTINUE;
1096        }
1097
1098        buf = __vmalloc(c->leb_size, GFP_NOFS);
1099        if (!buf)
1100                return -ENOMEM;
1101
1102        sleb = ubifs_scan(c, lnum, 0, buf, 0);
1103        if (IS_ERR(sleb)) {
1104                ret = PTR_ERR(sleb);
1105                if (ret == -EUCLEAN) {
1106                        ubifs_dump_lprops(c);
1107                        ubifs_dump_budg(c, &c->bi);
1108                }
1109                goto out;
1110        }
1111
1112        is_idx = -1;
1113        list_for_each_entry(snod, &sleb->nodes, list) {
1114                int found, level = 0;
1115
1116                cond_resched();
1117
1118                if (is_idx == -1)
1119                        is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
1120
1121                if (is_idx && snod->type != UBIFS_IDX_NODE) {
1122                        ubifs_err(c, "indexing node in data LEB %d:%d",
1123                                  lnum, snod->offs);
1124                        goto out_destroy;
1125                }
1126
1127                if (snod->type == UBIFS_IDX_NODE) {
1128                        struct ubifs_idx_node *idx = snod->node;
1129
1130                        key_read(c, ubifs_idx_key(c, idx), &snod->key);
1131                        level = le16_to_cpu(idx->level);
1132                }
1133
1134                found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
1135                                           snod->offs, is_idx);
1136                if (found) {
1137                        if (found < 0)
1138                                goto out_destroy;
1139                        used += ALIGN(snod->len, 8);
1140                }
1141        }
1142
1143        free = c->leb_size - sleb->endpt;
1144        dirty = sleb->endpt - used;
1145
1146        if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
1147            dirty < 0) {
1148                ubifs_err(c, "bad calculated accounting for LEB %d: free %d, dirty %d",
1149                          lnum, free, dirty);
1150                goto out_destroy;
1151        }
1152
1153        if (lp->free + lp->dirty == c->leb_size &&
1154            free + dirty == c->leb_size)
1155                if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
1156                    (!is_idx && free == c->leb_size) ||
1157                    lp->free == c->leb_size) {
1158                        /*
1159                         * Empty or freeable LEBs could contain index
1160                         * nodes from an uncompleted commit due to an
1161                         * unclean unmount. Or they could be empty for
1162                         * the same reason. Or it may simply not have been
1163                         * unmapped.
1164                         */
1165                        free = lp->free;
1166                        dirty = lp->dirty;
1167                        is_idx = 0;
1168                    }
1169
1170        if (is_idx && lp->free + lp->dirty == free + dirty &&
1171            lnum != c->ihead_lnum) {
1172                /*
1173                 * After an unclean unmount, an index LEB could have a different
1174                 * amount of free space than the value recorded by lprops. That
1175                 * is because the in-the-gaps method may use free space or
1176                 * create free space (as a side-effect of using ubi_leb_change
1177                 * and not writing the whole LEB). The incorrect free space
1178                 * value is not a problem because the index is only ever
1179                 * allocated empty LEBs, so there will never be an attempt to
1180                 * write to the free space at the end of an index LEB - except
1181                 * by the in-the-gaps method for which it is not a problem.
1182                 */
1183                free = lp->free;
1184                dirty = lp->dirty;
1185        }
1186
1187        if (lp->free != free || lp->dirty != dirty)
1188                goto out_print;
1189
1190        if (is_idx && !(lp->flags & LPROPS_INDEX)) {
1191                if (free == c->leb_size)
1192                        /* Free but not unmapped LEB, it's fine */
1193                        is_idx = 0;
1194                else {
1195                        ubifs_err(c, "indexing node without indexing flag");
1196                        goto out_print;
1197                }
1198        }
1199
1200        if (!is_idx && (lp->flags & LPROPS_INDEX)) {
1201                ubifs_err(c, "data node with indexing flag");
1202                goto out_print;
1203        }
1204
1205        if (free == c->leb_size)
1206                lst->empty_lebs += 1;
1207
1208        if (is_idx)
1209                lst->idx_lebs += 1;
1210
1211        if (!(lp->flags & LPROPS_INDEX))
1212                lst->total_used += c->leb_size - free - dirty;
1213        lst->total_free += free;
1214        lst->total_dirty += dirty;
1215
1216        if (!(lp->flags & LPROPS_INDEX)) {
1217                int spc = free + dirty;
1218
1219                if (spc < c->dead_wm)
1220                        lst->total_dead += spc;
1221                else
1222                        lst->total_dark += ubifs_calc_dark(c, spc);
1223        }
1224
1225        ubifs_scan_destroy(sleb);
1226        vfree(buf);
1227        return LPT_SCAN_CONTINUE;
1228
1229out_print:
1230        ubifs_err(c, "bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d",
1231                  lnum, lp->free, lp->dirty, lp->flags, free, dirty);
1232        ubifs_dump_leb(c, lnum);
1233out_destroy:
1234        ubifs_scan_destroy(sleb);
1235        ret = -EINVAL;
1236out:
1237        vfree(buf);
1238        return ret;
1239}
1240
1241/**
1242 * dbg_check_lprops - check all LEB properties.
1243 * @c: UBIFS file-system description object
1244 *
1245 * This function checks all LEB properties and makes sure they are all correct.
1246 * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
1247 * and other negative error codes in case of other errors. This function is
1248 * called while the file system is locked (because of commit start), so no
1249 * additional locking is required. Note that locking the LPT mutex would cause
1250 * a circular lock dependency with the TNC mutex.
1251 */
1252int dbg_check_lprops(struct ubifs_info *c)
1253{
1254        int i, err;
1255        struct ubifs_lp_stats lst;
1256
1257        if (!dbg_is_chk_lprops(c))
1258                return 0;
1259
1260        /*
1261         * As we are going to scan the media, the write buffers have to be
1262         * synchronized.
1263         */
1264        for (i = 0; i < c->jhead_cnt; i++) {
1265                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1266                if (err)
1267                        return err;
1268        }
1269
1270        memset(&lst, 0, sizeof(struct ubifs_lp_stats));
1271        err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
1272                                    (ubifs_lpt_scan_callback)scan_check_cb,
1273                                    &lst);
1274        if (err && err != -ENOSPC)
1275                goto out;
1276
1277        if (lst.empty_lebs != c->lst.empty_lebs ||
1278            lst.idx_lebs != c->lst.idx_lebs ||
1279            lst.total_free != c->lst.total_free ||
1280            lst.total_dirty != c->lst.total_dirty ||
1281            lst.total_used != c->lst.total_used) {
1282                ubifs_err(c, "bad overall accounting");
1283                ubifs_err(c, "calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1284                          lst.empty_lebs, lst.idx_lebs, lst.total_free,
1285                          lst.total_dirty, lst.total_used);
1286                ubifs_err(c, "read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1287                          c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
1288                          c->lst.total_dirty, c->lst.total_used);
1289                err = -EINVAL;
1290                goto out;
1291        }
1292
1293        if (lst.total_dead != c->lst.total_dead ||
1294            lst.total_dark != c->lst.total_dark) {
1295                ubifs_err(c, "bad dead/dark space accounting");
1296                ubifs_err(c, "calculated: total_dead %lld, total_dark %lld",
1297                          lst.total_dead, lst.total_dark);
1298                ubifs_err(c, "read from lprops: total_dead %lld, total_dark %lld",
1299                          c->lst.total_dead, c->lst.total_dark);
1300                err = -EINVAL;
1301                goto out;
1302        }
1303
1304        err = dbg_check_cats(c);
1305out:
1306        return err;
1307}
1308