linux/fs/udf/super.c
<<
>>
Prefs
   1/*
   2 * super.c
   3 *
   4 * PURPOSE
   5 *  Super block routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * DESCRIPTION
   8 *  OSTA-UDF(tm) = Optical Storage Technology Association
   9 *  Universal Disk Format.
  10 *
  11 *  This code is based on version 2.00 of the UDF specification,
  12 *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
  13 *    http://www.osta.org/
  14 *    https://www.ecma.ch/
  15 *    https://www.iso.org/
  16 *
  17 * COPYRIGHT
  18 *  This file is distributed under the terms of the GNU General Public
  19 *  License (GPL). Copies of the GPL can be obtained from:
  20 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  21 *  Each contributing author retains all rights to their own work.
  22 *
  23 *  (C) 1998 Dave Boynton
  24 *  (C) 1998-2004 Ben Fennema
  25 *  (C) 2000 Stelias Computing Inc
  26 *
  27 * HISTORY
  28 *
  29 *  09/24/98 dgb  changed to allow compiling outside of kernel, and
  30 *                added some debugging.
  31 *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
  32 *  10/16/98      attempting some multi-session support
  33 *  10/17/98      added freespace count for "df"
  34 *  11/11/98 gr   added novrs option
  35 *  11/26/98 dgb  added fileset,anchor mount options
  36 *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
  37 *                vol descs. rewrote option handling based on isofs
  38 *  12/20/98      find the free space bitmap (if it exists)
  39 */
  40
  41#include "udfdecl.h"
  42
  43#include <linux/blkdev.h>
  44#include <linux/slab.h>
  45#include <linux/kernel.h>
  46#include <linux/module.h>
  47#include <linux/parser.h>
  48#include <linux/stat.h>
  49#include <linux/cdrom.h>
  50#include <linux/nls.h>
  51#include <linux/vfs.h>
  52#include <linux/vmalloc.h>
  53#include <linux/errno.h>
  54#include <linux/mount.h>
  55#include <linux/seq_file.h>
  56#include <linux/bitmap.h>
  57#include <linux/crc-itu-t.h>
  58#include <linux/log2.h>
  59#include <asm/byteorder.h>
  60
  61#include "udf_sb.h"
  62#include "udf_i.h"
  63
  64#include <linux/init.h>
  65#include <linux/uaccess.h>
  66
  67enum {
  68        VDS_POS_PRIMARY_VOL_DESC,
  69        VDS_POS_UNALLOC_SPACE_DESC,
  70        VDS_POS_LOGICAL_VOL_DESC,
  71        VDS_POS_IMP_USE_VOL_DESC,
  72        VDS_POS_LENGTH
  73};
  74
  75#define VSD_FIRST_SECTOR_OFFSET         32768
  76#define VSD_MAX_SECTOR_OFFSET           0x800000
  77
  78/*
  79 * Maximum number of Terminating Descriptor / Logical Volume Integrity
  80 * Descriptor redirections. The chosen numbers are arbitrary - just that we
  81 * hopefully don't limit any real use of rewritten inode on write-once media
  82 * but avoid looping for too long on corrupted media.
  83 */
  84#define UDF_MAX_TD_NESTING 64
  85#define UDF_MAX_LVID_NESTING 1000
  86
  87enum { UDF_MAX_LINKS = 0xffff };
  88
  89/* These are the "meat" - everything else is stuffing */
  90static int udf_fill_super(struct super_block *, void *, int);
  91static void udf_put_super(struct super_block *);
  92static int udf_sync_fs(struct super_block *, int);
  93static int udf_remount_fs(struct super_block *, int *, char *);
  94static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
  95static void udf_open_lvid(struct super_block *);
  96static void udf_close_lvid(struct super_block *);
  97static unsigned int udf_count_free(struct super_block *);
  98static int udf_statfs(struct dentry *, struct kstatfs *);
  99static int udf_show_options(struct seq_file *, struct dentry *);
 100
 101struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
 102{
 103        struct logicalVolIntegrityDesc *lvid;
 104        unsigned int partnum;
 105        unsigned int offset;
 106
 107        if (!UDF_SB(sb)->s_lvid_bh)
 108                return NULL;
 109        lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
 110        partnum = le32_to_cpu(lvid->numOfPartitions);
 111        /* The offset is to skip freeSpaceTable and sizeTable arrays */
 112        offset = partnum * 2 * sizeof(uint32_t);
 113        return (struct logicalVolIntegrityDescImpUse *)
 114                                        (((uint8_t *)(lvid + 1)) + offset);
 115}
 116
 117/* UDF filesystem type */
 118static struct dentry *udf_mount(struct file_system_type *fs_type,
 119                      int flags, const char *dev_name, void *data)
 120{
 121        return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
 122}
 123
 124static struct file_system_type udf_fstype = {
 125        .owner          = THIS_MODULE,
 126        .name           = "udf",
 127        .mount          = udf_mount,
 128        .kill_sb        = kill_block_super,
 129        .fs_flags       = FS_REQUIRES_DEV,
 130};
 131MODULE_ALIAS_FS("udf");
 132
 133static struct kmem_cache *udf_inode_cachep;
 134
 135static struct inode *udf_alloc_inode(struct super_block *sb)
 136{
 137        struct udf_inode_info *ei;
 138        ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
 139        if (!ei)
 140                return NULL;
 141
 142        ei->i_unique = 0;
 143        ei->i_lenExtents = 0;
 144        ei->i_lenStreams = 0;
 145        ei->i_next_alloc_block = 0;
 146        ei->i_next_alloc_goal = 0;
 147        ei->i_strat4096 = 0;
 148        ei->i_streamdir = 0;
 149        init_rwsem(&ei->i_data_sem);
 150        ei->cached_extent.lstart = -1;
 151        spin_lock_init(&ei->i_extent_cache_lock);
 152
 153        return &ei->vfs_inode;
 154}
 155
 156static void udf_free_in_core_inode(struct inode *inode)
 157{
 158        kmem_cache_free(udf_inode_cachep, UDF_I(inode));
 159}
 160
 161static void init_once(void *foo)
 162{
 163        struct udf_inode_info *ei = (struct udf_inode_info *)foo;
 164
 165        ei->i_data = NULL;
 166        inode_init_once(&ei->vfs_inode);
 167}
 168
 169static int __init init_inodecache(void)
 170{
 171        udf_inode_cachep = kmem_cache_create("udf_inode_cache",
 172                                             sizeof(struct udf_inode_info),
 173                                             0, (SLAB_RECLAIM_ACCOUNT |
 174                                                 SLAB_MEM_SPREAD |
 175                                                 SLAB_ACCOUNT),
 176                                             init_once);
 177        if (!udf_inode_cachep)
 178                return -ENOMEM;
 179        return 0;
 180}
 181
 182static void destroy_inodecache(void)
 183{
 184        /*
 185         * Make sure all delayed rcu free inodes are flushed before we
 186         * destroy cache.
 187         */
 188        rcu_barrier();
 189        kmem_cache_destroy(udf_inode_cachep);
 190}
 191
 192/* Superblock operations */
 193static const struct super_operations udf_sb_ops = {
 194        .alloc_inode    = udf_alloc_inode,
 195        .free_inode     = udf_free_in_core_inode,
 196        .write_inode    = udf_write_inode,
 197        .evict_inode    = udf_evict_inode,
 198        .put_super      = udf_put_super,
 199        .sync_fs        = udf_sync_fs,
 200        .statfs         = udf_statfs,
 201        .remount_fs     = udf_remount_fs,
 202        .show_options   = udf_show_options,
 203};
 204
 205struct udf_options {
 206        unsigned char novrs;
 207        unsigned int blocksize;
 208        unsigned int session;
 209        unsigned int lastblock;
 210        unsigned int anchor;
 211        unsigned int flags;
 212        umode_t umask;
 213        kgid_t gid;
 214        kuid_t uid;
 215        umode_t fmode;
 216        umode_t dmode;
 217        struct nls_table *nls_map;
 218};
 219
 220static int __init init_udf_fs(void)
 221{
 222        int err;
 223
 224        err = init_inodecache();
 225        if (err)
 226                goto out1;
 227        err = register_filesystem(&udf_fstype);
 228        if (err)
 229                goto out;
 230
 231        return 0;
 232
 233out:
 234        destroy_inodecache();
 235
 236out1:
 237        return err;
 238}
 239
 240static void __exit exit_udf_fs(void)
 241{
 242        unregister_filesystem(&udf_fstype);
 243        destroy_inodecache();
 244}
 245
 246static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
 247{
 248        struct udf_sb_info *sbi = UDF_SB(sb);
 249
 250        sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
 251        if (!sbi->s_partmaps) {
 252                sbi->s_partitions = 0;
 253                return -ENOMEM;
 254        }
 255
 256        sbi->s_partitions = count;
 257        return 0;
 258}
 259
 260static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
 261{
 262        int i;
 263        int nr_groups = bitmap->s_nr_groups;
 264
 265        for (i = 0; i < nr_groups; i++)
 266                brelse(bitmap->s_block_bitmap[i]);
 267
 268        kvfree(bitmap);
 269}
 270
 271static void udf_free_partition(struct udf_part_map *map)
 272{
 273        int i;
 274        struct udf_meta_data *mdata;
 275
 276        if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
 277                iput(map->s_uspace.s_table);
 278        if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
 279                udf_sb_free_bitmap(map->s_uspace.s_bitmap);
 280        if (map->s_partition_type == UDF_SPARABLE_MAP15)
 281                for (i = 0; i < 4; i++)
 282                        brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
 283        else if (map->s_partition_type == UDF_METADATA_MAP25) {
 284                mdata = &map->s_type_specific.s_metadata;
 285                iput(mdata->s_metadata_fe);
 286                mdata->s_metadata_fe = NULL;
 287
 288                iput(mdata->s_mirror_fe);
 289                mdata->s_mirror_fe = NULL;
 290
 291                iput(mdata->s_bitmap_fe);
 292                mdata->s_bitmap_fe = NULL;
 293        }
 294}
 295
 296static void udf_sb_free_partitions(struct super_block *sb)
 297{
 298        struct udf_sb_info *sbi = UDF_SB(sb);
 299        int i;
 300
 301        if (!sbi->s_partmaps)
 302                return;
 303        for (i = 0; i < sbi->s_partitions; i++)
 304                udf_free_partition(&sbi->s_partmaps[i]);
 305        kfree(sbi->s_partmaps);
 306        sbi->s_partmaps = NULL;
 307}
 308
 309static int udf_show_options(struct seq_file *seq, struct dentry *root)
 310{
 311        struct super_block *sb = root->d_sb;
 312        struct udf_sb_info *sbi = UDF_SB(sb);
 313
 314        if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
 315                seq_puts(seq, ",nostrict");
 316        if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
 317                seq_printf(seq, ",bs=%lu", sb->s_blocksize);
 318        if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
 319                seq_puts(seq, ",unhide");
 320        if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
 321                seq_puts(seq, ",undelete");
 322        if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
 323                seq_puts(seq, ",noadinicb");
 324        if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
 325                seq_puts(seq, ",shortad");
 326        if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
 327                seq_puts(seq, ",uid=forget");
 328        if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
 329                seq_puts(seq, ",gid=forget");
 330        if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
 331                seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
 332        if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
 333                seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
 334        if (sbi->s_umask != 0)
 335                seq_printf(seq, ",umask=%ho", sbi->s_umask);
 336        if (sbi->s_fmode != UDF_INVALID_MODE)
 337                seq_printf(seq, ",mode=%ho", sbi->s_fmode);
 338        if (sbi->s_dmode != UDF_INVALID_MODE)
 339                seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
 340        if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
 341                seq_printf(seq, ",session=%d", sbi->s_session);
 342        if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
 343                seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
 344        if (sbi->s_anchor != 0)
 345                seq_printf(seq, ",anchor=%u", sbi->s_anchor);
 346        if (sbi->s_nls_map)
 347                seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
 348        else
 349                seq_puts(seq, ",iocharset=utf8");
 350
 351        return 0;
 352}
 353
 354/*
 355 * udf_parse_options
 356 *
 357 * PURPOSE
 358 *      Parse mount options.
 359 *
 360 * DESCRIPTION
 361 *      The following mount options are supported:
 362 *
 363 *      gid=            Set the default group.
 364 *      umask=          Set the default umask.
 365 *      mode=           Set the default file permissions.
 366 *      dmode=          Set the default directory permissions.
 367 *      uid=            Set the default user.
 368 *      bs=             Set the block size.
 369 *      unhide          Show otherwise hidden files.
 370 *      undelete        Show deleted files in lists.
 371 *      adinicb         Embed data in the inode (default)
 372 *      noadinicb       Don't embed data in the inode
 373 *      shortad         Use short ad's
 374 *      longad          Use long ad's (default)
 375 *      nostrict        Unset strict conformance
 376 *      iocharset=      Set the NLS character set
 377 *
 378 *      The remaining are for debugging and disaster recovery:
 379 *
 380 *      novrs           Skip volume sequence recognition
 381 *
 382 *      The following expect a offset from 0.
 383 *
 384 *      session=        Set the CDROM session (default= last session)
 385 *      anchor=         Override standard anchor location. (default= 256)
 386 *      volume=         Override the VolumeDesc location. (unused)
 387 *      partition=      Override the PartitionDesc location. (unused)
 388 *      lastblock=      Set the last block of the filesystem/
 389 *
 390 *      The following expect a offset from the partition root.
 391 *
 392 *      fileset=        Override the fileset block location. (unused)
 393 *      rootdir=        Override the root directory location. (unused)
 394 *              WARNING: overriding the rootdir to a non-directory may
 395 *              yield highly unpredictable results.
 396 *
 397 * PRE-CONDITIONS
 398 *      options         Pointer to mount options string.
 399 *      uopts           Pointer to mount options variable.
 400 *
 401 * POST-CONDITIONS
 402 *      <return>        1       Mount options parsed okay.
 403 *      <return>        0       Error parsing mount options.
 404 *
 405 * HISTORY
 406 *      July 1, 1997 - Andrew E. Mileski
 407 *      Written, tested, and released.
 408 */
 409
 410enum {
 411        Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
 412        Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
 413        Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
 414        Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
 415        Opt_rootdir, Opt_utf8, Opt_iocharset,
 416        Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
 417        Opt_fmode, Opt_dmode
 418};
 419
 420static const match_table_t tokens = {
 421        {Opt_novrs,     "novrs"},
 422        {Opt_nostrict,  "nostrict"},
 423        {Opt_bs,        "bs=%u"},
 424        {Opt_unhide,    "unhide"},
 425        {Opt_undelete,  "undelete"},
 426        {Opt_noadinicb, "noadinicb"},
 427        {Opt_adinicb,   "adinicb"},
 428        {Opt_shortad,   "shortad"},
 429        {Opt_longad,    "longad"},
 430        {Opt_uforget,   "uid=forget"},
 431        {Opt_uignore,   "uid=ignore"},
 432        {Opt_gforget,   "gid=forget"},
 433        {Opt_gignore,   "gid=ignore"},
 434        {Opt_gid,       "gid=%u"},
 435        {Opt_uid,       "uid=%u"},
 436        {Opt_umask,     "umask=%o"},
 437        {Opt_session,   "session=%u"},
 438        {Opt_lastblock, "lastblock=%u"},
 439        {Opt_anchor,    "anchor=%u"},
 440        {Opt_volume,    "volume=%u"},
 441        {Opt_partition, "partition=%u"},
 442        {Opt_fileset,   "fileset=%u"},
 443        {Opt_rootdir,   "rootdir=%u"},
 444        {Opt_utf8,      "utf8"},
 445        {Opt_iocharset, "iocharset=%s"},
 446        {Opt_fmode,     "mode=%o"},
 447        {Opt_dmode,     "dmode=%o"},
 448        {Opt_err,       NULL}
 449};
 450
 451static int udf_parse_options(char *options, struct udf_options *uopt,
 452                             bool remount)
 453{
 454        char *p;
 455        int option;
 456        unsigned int uv;
 457
 458        uopt->novrs = 0;
 459        uopt->session = 0xFFFFFFFF;
 460        uopt->lastblock = 0;
 461        uopt->anchor = 0;
 462
 463        if (!options)
 464                return 1;
 465
 466        while ((p = strsep(&options, ",")) != NULL) {
 467                substring_t args[MAX_OPT_ARGS];
 468                int token;
 469                unsigned n;
 470                if (!*p)
 471                        continue;
 472
 473                token = match_token(p, tokens, args);
 474                switch (token) {
 475                case Opt_novrs:
 476                        uopt->novrs = 1;
 477                        break;
 478                case Opt_bs:
 479                        if (match_int(&args[0], &option))
 480                                return 0;
 481                        n = option;
 482                        if (n != 512 && n != 1024 && n != 2048 && n != 4096)
 483                                return 0;
 484                        uopt->blocksize = n;
 485                        uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
 486                        break;
 487                case Opt_unhide:
 488                        uopt->flags |= (1 << UDF_FLAG_UNHIDE);
 489                        break;
 490                case Opt_undelete:
 491                        uopt->flags |= (1 << UDF_FLAG_UNDELETE);
 492                        break;
 493                case Opt_noadinicb:
 494                        uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
 495                        break;
 496                case Opt_adinicb:
 497                        uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
 498                        break;
 499                case Opt_shortad:
 500                        uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
 501                        break;
 502                case Opt_longad:
 503                        uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
 504                        break;
 505                case Opt_gid:
 506                        if (match_uint(args, &uv))
 507                                return 0;
 508                        uopt->gid = make_kgid(current_user_ns(), uv);
 509                        if (!gid_valid(uopt->gid))
 510                                return 0;
 511                        uopt->flags |= (1 << UDF_FLAG_GID_SET);
 512                        break;
 513                case Opt_uid:
 514                        if (match_uint(args, &uv))
 515                                return 0;
 516                        uopt->uid = make_kuid(current_user_ns(), uv);
 517                        if (!uid_valid(uopt->uid))
 518                                return 0;
 519                        uopt->flags |= (1 << UDF_FLAG_UID_SET);
 520                        break;
 521                case Opt_umask:
 522                        if (match_octal(args, &option))
 523                                return 0;
 524                        uopt->umask = option;
 525                        break;
 526                case Opt_nostrict:
 527                        uopt->flags &= ~(1 << UDF_FLAG_STRICT);
 528                        break;
 529                case Opt_session:
 530                        if (match_int(args, &option))
 531                                return 0;
 532                        uopt->session = option;
 533                        if (!remount)
 534                                uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
 535                        break;
 536                case Opt_lastblock:
 537                        if (match_int(args, &option))
 538                                return 0;
 539                        uopt->lastblock = option;
 540                        if (!remount)
 541                                uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
 542                        break;
 543                case Opt_anchor:
 544                        if (match_int(args, &option))
 545                                return 0;
 546                        uopt->anchor = option;
 547                        break;
 548                case Opt_volume:
 549                case Opt_partition:
 550                case Opt_fileset:
 551                case Opt_rootdir:
 552                        /* Ignored (never implemented properly) */
 553                        break;
 554                case Opt_utf8:
 555                        if (!remount) {
 556                                unload_nls(uopt->nls_map);
 557                                uopt->nls_map = NULL;
 558                        }
 559                        break;
 560                case Opt_iocharset:
 561                        if (!remount) {
 562                                unload_nls(uopt->nls_map);
 563                                uopt->nls_map = NULL;
 564                        }
 565                        /* When nls_map is not loaded then UTF-8 is used */
 566                        if (!remount && strcmp(args[0].from, "utf8") != 0) {
 567                                uopt->nls_map = load_nls(args[0].from);
 568                                if (!uopt->nls_map) {
 569                                        pr_err("iocharset %s not found\n",
 570                                                args[0].from);
 571                                        return 0;
 572                                }
 573                        }
 574                        break;
 575                case Opt_uforget:
 576                        uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
 577                        break;
 578                case Opt_uignore:
 579                case Opt_gignore:
 580                        /* These options are superseeded by uid=<number> */
 581                        break;
 582                case Opt_gforget:
 583                        uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
 584                        break;
 585                case Opt_fmode:
 586                        if (match_octal(args, &option))
 587                                return 0;
 588                        uopt->fmode = option & 0777;
 589                        break;
 590                case Opt_dmode:
 591                        if (match_octal(args, &option))
 592                                return 0;
 593                        uopt->dmode = option & 0777;
 594                        break;
 595                default:
 596                        pr_err("bad mount option \"%s\" or missing value\n", p);
 597                        return 0;
 598                }
 599        }
 600        return 1;
 601}
 602
 603static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
 604{
 605        struct udf_options uopt;
 606        struct udf_sb_info *sbi = UDF_SB(sb);
 607        int error = 0;
 608
 609        if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
 610                return -EACCES;
 611
 612        sync_filesystem(sb);
 613
 614        uopt.flags = sbi->s_flags;
 615        uopt.uid   = sbi->s_uid;
 616        uopt.gid   = sbi->s_gid;
 617        uopt.umask = sbi->s_umask;
 618        uopt.fmode = sbi->s_fmode;
 619        uopt.dmode = sbi->s_dmode;
 620        uopt.nls_map = NULL;
 621
 622        if (!udf_parse_options(options, &uopt, true))
 623                return -EINVAL;
 624
 625        write_lock(&sbi->s_cred_lock);
 626        sbi->s_flags = uopt.flags;
 627        sbi->s_uid   = uopt.uid;
 628        sbi->s_gid   = uopt.gid;
 629        sbi->s_umask = uopt.umask;
 630        sbi->s_fmode = uopt.fmode;
 631        sbi->s_dmode = uopt.dmode;
 632        write_unlock(&sbi->s_cred_lock);
 633
 634        if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
 635                goto out_unlock;
 636
 637        if (*flags & SB_RDONLY)
 638                udf_close_lvid(sb);
 639        else
 640                udf_open_lvid(sb);
 641
 642out_unlock:
 643        return error;
 644}
 645
 646/*
 647 * Check VSD descriptor. Returns -1 in case we are at the end of volume
 648 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
 649 * we found one of NSR descriptors we are looking for.
 650 */
 651static int identify_vsd(const struct volStructDesc *vsd)
 652{
 653        int ret = 0;
 654
 655        if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
 656                switch (vsd->structType) {
 657                case 0:
 658                        udf_debug("ISO9660 Boot Record found\n");
 659                        break;
 660                case 1:
 661                        udf_debug("ISO9660 Primary Volume Descriptor found\n");
 662                        break;
 663                case 2:
 664                        udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
 665                        break;
 666                case 3:
 667                        udf_debug("ISO9660 Volume Partition Descriptor found\n");
 668                        break;
 669                case 255:
 670                        udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
 671                        break;
 672                default:
 673                        udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
 674                        break;
 675                }
 676        } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
 677                ; /* ret = 0 */
 678        else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
 679                ret = 1;
 680        else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
 681                ret = 1;
 682        else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
 683                ; /* ret = 0 */
 684        else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
 685                ; /* ret = 0 */
 686        else {
 687                /* TEA01 or invalid id : end of volume recognition area */
 688                ret = -1;
 689        }
 690
 691        return ret;
 692}
 693
 694/*
 695 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
 696 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
 697 * @return   1 if NSR02 or NSR03 found,
 698 *          -1 if first sector read error, 0 otherwise
 699 */
 700static int udf_check_vsd(struct super_block *sb)
 701{
 702        struct volStructDesc *vsd = NULL;
 703        loff_t sector = VSD_FIRST_SECTOR_OFFSET;
 704        int sectorsize;
 705        struct buffer_head *bh = NULL;
 706        int nsr = 0;
 707        struct udf_sb_info *sbi;
 708        loff_t session_offset;
 709
 710        sbi = UDF_SB(sb);
 711        if (sb->s_blocksize < sizeof(struct volStructDesc))
 712                sectorsize = sizeof(struct volStructDesc);
 713        else
 714                sectorsize = sb->s_blocksize;
 715
 716        session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
 717        sector += session_offset;
 718
 719        udf_debug("Starting at sector %u (%lu byte sectors)\n",
 720                  (unsigned int)(sector >> sb->s_blocksize_bits),
 721                  sb->s_blocksize);
 722        /* Process the sequence (if applicable). The hard limit on the sector
 723         * offset is arbitrary, hopefully large enough so that all valid UDF
 724         * filesystems will be recognised. There is no mention of an upper
 725         * bound to the size of the volume recognition area in the standard.
 726         *  The limit will prevent the code to read all the sectors of a
 727         * specially crafted image (like a bluray disc full of CD001 sectors),
 728         * potentially causing minutes or even hours of uninterruptible I/O
 729         * activity. This actually happened with uninitialised SSD partitions
 730         * (all 0xFF) before the check for the limit and all valid IDs were
 731         * added */
 732        for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
 733                /* Read a block */
 734                bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
 735                if (!bh)
 736                        break;
 737
 738                vsd = (struct volStructDesc *)(bh->b_data +
 739                                              (sector & (sb->s_blocksize - 1)));
 740                nsr = identify_vsd(vsd);
 741                /* Found NSR or end? */
 742                if (nsr) {
 743                        brelse(bh);
 744                        break;
 745                }
 746                /*
 747                 * Special handling for improperly formatted VRS (e.g., Win10)
 748                 * where components are separated by 2048 bytes even though
 749                 * sectors are 4K
 750                 */
 751                if (sb->s_blocksize == 4096) {
 752                        nsr = identify_vsd(vsd + 1);
 753                        /* Ignore unknown IDs... */
 754                        if (nsr < 0)
 755                                nsr = 0;
 756                }
 757                brelse(bh);
 758        }
 759
 760        if (nsr > 0)
 761                return 1;
 762        else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
 763                return -1;
 764        else
 765                return 0;
 766}
 767
 768static int udf_verify_domain_identifier(struct super_block *sb,
 769                                        struct regid *ident, char *dname)
 770{
 771        struct domainIdentSuffix *suffix;
 772
 773        if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
 774                udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
 775                goto force_ro;
 776        }
 777        if (ident->flags & ENTITYID_FLAGS_DIRTY) {
 778                udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
 779                         dname);
 780                goto force_ro;
 781        }
 782        suffix = (struct domainIdentSuffix *)ident->identSuffix;
 783        if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
 784            (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
 785                if (!sb_rdonly(sb)) {
 786                        udf_warn(sb, "Descriptor for %s marked write protected."
 787                                 " Forcing read only mount.\n", dname);
 788                }
 789                goto force_ro;
 790        }
 791        return 0;
 792
 793force_ro:
 794        if (!sb_rdonly(sb))
 795                return -EACCES;
 796        UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
 797        return 0;
 798}
 799
 800static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
 801                            struct kernel_lb_addr *root)
 802{
 803        int ret;
 804
 805        ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
 806        if (ret < 0)
 807                return ret;
 808
 809        *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
 810        UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
 811
 812        udf_debug("Rootdir at block=%u, partition=%u\n",
 813                  root->logicalBlockNum, root->partitionReferenceNum);
 814        return 0;
 815}
 816
 817static int udf_find_fileset(struct super_block *sb,
 818                            struct kernel_lb_addr *fileset,
 819                            struct kernel_lb_addr *root)
 820{
 821        struct buffer_head *bh = NULL;
 822        uint16_t ident;
 823        int ret;
 824
 825        if (fileset->logicalBlockNum == 0xFFFFFFFF &&
 826            fileset->partitionReferenceNum == 0xFFFF)
 827                return -EINVAL;
 828
 829        bh = udf_read_ptagged(sb, fileset, 0, &ident);
 830        if (!bh)
 831                return -EIO;
 832        if (ident != TAG_IDENT_FSD) {
 833                brelse(bh);
 834                return -EINVAL;
 835        }
 836
 837        udf_debug("Fileset at block=%u, partition=%u\n",
 838                  fileset->logicalBlockNum, fileset->partitionReferenceNum);
 839
 840        UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
 841        ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
 842        brelse(bh);
 843        return ret;
 844}
 845
 846/*
 847 * Load primary Volume Descriptor Sequence
 848 *
 849 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
 850 * should be tried.
 851 */
 852static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
 853{
 854        struct primaryVolDesc *pvoldesc;
 855        uint8_t *outstr;
 856        struct buffer_head *bh;
 857        uint16_t ident;
 858        int ret;
 859        struct timestamp *ts;
 860
 861        outstr = kmalloc(128, GFP_NOFS);
 862        if (!outstr)
 863                return -ENOMEM;
 864
 865        bh = udf_read_tagged(sb, block, block, &ident);
 866        if (!bh) {
 867                ret = -EAGAIN;
 868                goto out2;
 869        }
 870
 871        if (ident != TAG_IDENT_PVD) {
 872                ret = -EIO;
 873                goto out_bh;
 874        }
 875
 876        pvoldesc = (struct primaryVolDesc *)bh->b_data;
 877
 878        udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
 879                              pvoldesc->recordingDateAndTime);
 880        ts = &pvoldesc->recordingDateAndTime;
 881        udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
 882                  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
 883                  ts->minute, le16_to_cpu(ts->typeAndTimezone));
 884
 885        ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
 886        if (ret < 0) {
 887                strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
 888                pr_warn("incorrect volume identification, setting to "
 889                        "'InvalidName'\n");
 890        } else {
 891                strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
 892        }
 893        udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
 894
 895        ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
 896        if (ret < 0) {
 897                ret = 0;
 898                goto out_bh;
 899        }
 900        outstr[ret] = 0;
 901        udf_debug("volSetIdent[] = '%s'\n", outstr);
 902
 903        ret = 0;
 904out_bh:
 905        brelse(bh);
 906out2:
 907        kfree(outstr);
 908        return ret;
 909}
 910
 911struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
 912                                        u32 meta_file_loc, u32 partition_ref)
 913{
 914        struct kernel_lb_addr addr;
 915        struct inode *metadata_fe;
 916
 917        addr.logicalBlockNum = meta_file_loc;
 918        addr.partitionReferenceNum = partition_ref;
 919
 920        metadata_fe = udf_iget_special(sb, &addr);
 921
 922        if (IS_ERR(metadata_fe)) {
 923                udf_warn(sb, "metadata inode efe not found\n");
 924                return metadata_fe;
 925        }
 926        if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
 927                udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
 928                iput(metadata_fe);
 929                return ERR_PTR(-EIO);
 930        }
 931
 932        return metadata_fe;
 933}
 934
 935static int udf_load_metadata_files(struct super_block *sb, int partition,
 936                                   int type1_index)
 937{
 938        struct udf_sb_info *sbi = UDF_SB(sb);
 939        struct udf_part_map *map;
 940        struct udf_meta_data *mdata;
 941        struct kernel_lb_addr addr;
 942        struct inode *fe;
 943
 944        map = &sbi->s_partmaps[partition];
 945        mdata = &map->s_type_specific.s_metadata;
 946        mdata->s_phys_partition_ref = type1_index;
 947
 948        /* metadata address */
 949        udf_debug("Metadata file location: block = %u part = %u\n",
 950                  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
 951
 952        fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
 953                                         mdata->s_phys_partition_ref);
 954        if (IS_ERR(fe)) {
 955                /* mirror file entry */
 956                udf_debug("Mirror metadata file location: block = %u part = %u\n",
 957                          mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
 958
 959                fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
 960                                                 mdata->s_phys_partition_ref);
 961
 962                if (IS_ERR(fe)) {
 963                        udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
 964                        return PTR_ERR(fe);
 965                }
 966                mdata->s_mirror_fe = fe;
 967        } else
 968                mdata->s_metadata_fe = fe;
 969
 970
 971        /*
 972         * bitmap file entry
 973         * Note:
 974         * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
 975        */
 976        if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
 977                addr.logicalBlockNum = mdata->s_bitmap_file_loc;
 978                addr.partitionReferenceNum = mdata->s_phys_partition_ref;
 979
 980                udf_debug("Bitmap file location: block = %u part = %u\n",
 981                          addr.logicalBlockNum, addr.partitionReferenceNum);
 982
 983                fe = udf_iget_special(sb, &addr);
 984                if (IS_ERR(fe)) {
 985                        if (sb_rdonly(sb))
 986                                udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
 987                        else {
 988                                udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
 989                                return PTR_ERR(fe);
 990                        }
 991                } else
 992                        mdata->s_bitmap_fe = fe;
 993        }
 994
 995        udf_debug("udf_load_metadata_files Ok\n");
 996        return 0;
 997}
 998
 999int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1000{
1001        struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1002        return DIV_ROUND_UP(map->s_partition_len +
1003                            (sizeof(struct spaceBitmapDesc) << 3),
1004                            sb->s_blocksize * 8);
1005}
1006
1007static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1008{
1009        struct udf_bitmap *bitmap;
1010        int nr_groups = udf_compute_nr_groups(sb, index);
1011
1012        bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1013                          GFP_KERNEL);
1014        if (!bitmap)
1015                return NULL;
1016
1017        bitmap->s_nr_groups = nr_groups;
1018        return bitmap;
1019}
1020
1021static int check_partition_desc(struct super_block *sb,
1022                                struct partitionDesc *p,
1023                                struct udf_part_map *map)
1024{
1025        bool umap, utable, fmap, ftable;
1026        struct partitionHeaderDesc *phd;
1027
1028        switch (le32_to_cpu(p->accessType)) {
1029        case PD_ACCESS_TYPE_READ_ONLY:
1030        case PD_ACCESS_TYPE_WRITE_ONCE:
1031        case PD_ACCESS_TYPE_NONE:
1032                goto force_ro;
1033        }
1034
1035        /* No Partition Header Descriptor? */
1036        if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1037            strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1038                goto force_ro;
1039
1040        phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1041        utable = phd->unallocSpaceTable.extLength;
1042        umap = phd->unallocSpaceBitmap.extLength;
1043        ftable = phd->freedSpaceTable.extLength;
1044        fmap = phd->freedSpaceBitmap.extLength;
1045
1046        /* No allocation info? */
1047        if (!utable && !umap && !ftable && !fmap)
1048                goto force_ro;
1049
1050        /* We don't support blocks that require erasing before overwrite */
1051        if (ftable || fmap)
1052                goto force_ro;
1053        /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1054        if (utable && umap)
1055                goto force_ro;
1056
1057        if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1058            map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1059            map->s_partition_type == UDF_METADATA_MAP25)
1060                goto force_ro;
1061
1062        return 0;
1063force_ro:
1064        if (!sb_rdonly(sb))
1065                return -EACCES;
1066        UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1067        return 0;
1068}
1069
1070static int udf_fill_partdesc_info(struct super_block *sb,
1071                struct partitionDesc *p, int p_index)
1072{
1073        struct udf_part_map *map;
1074        struct udf_sb_info *sbi = UDF_SB(sb);
1075        struct partitionHeaderDesc *phd;
1076        int err;
1077
1078        map = &sbi->s_partmaps[p_index];
1079
1080        map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1081        map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1082
1083        if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1084                map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1085        if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1086                map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1087        if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1088                map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1089        if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1090                map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1091
1092        udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1093                  p_index, map->s_partition_type,
1094                  map->s_partition_root, map->s_partition_len);
1095
1096        err = check_partition_desc(sb, p, map);
1097        if (err)
1098                return err;
1099
1100        /*
1101         * Skip loading allocation info it we cannot ever write to the fs.
1102         * This is a correctness thing as we may have decided to force ro mount
1103         * to avoid allocation info we don't support.
1104         */
1105        if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1106                return 0;
1107
1108        phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1109        if (phd->unallocSpaceTable.extLength) {
1110                struct kernel_lb_addr loc = {
1111                        .logicalBlockNum = le32_to_cpu(
1112                                phd->unallocSpaceTable.extPosition),
1113                        .partitionReferenceNum = p_index,
1114                };
1115                struct inode *inode;
1116
1117                inode = udf_iget_special(sb, &loc);
1118                if (IS_ERR(inode)) {
1119                        udf_debug("cannot load unallocSpaceTable (part %d)\n",
1120                                  p_index);
1121                        return PTR_ERR(inode);
1122                }
1123                map->s_uspace.s_table = inode;
1124                map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1125                udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1126                          p_index, map->s_uspace.s_table->i_ino);
1127        }
1128
1129        if (phd->unallocSpaceBitmap.extLength) {
1130                struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1131                if (!bitmap)
1132                        return -ENOMEM;
1133                map->s_uspace.s_bitmap = bitmap;
1134                bitmap->s_extPosition = le32_to_cpu(
1135                                phd->unallocSpaceBitmap.extPosition);
1136                map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1137                udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1138                          p_index, bitmap->s_extPosition);
1139        }
1140
1141        return 0;
1142}
1143
1144static void udf_find_vat_block(struct super_block *sb, int p_index,
1145                               int type1_index, sector_t start_block)
1146{
1147        struct udf_sb_info *sbi = UDF_SB(sb);
1148        struct udf_part_map *map = &sbi->s_partmaps[p_index];
1149        sector_t vat_block;
1150        struct kernel_lb_addr ino;
1151        struct inode *inode;
1152
1153        /*
1154         * VAT file entry is in the last recorded block. Some broken disks have
1155         * it a few blocks before so try a bit harder...
1156         */
1157        ino.partitionReferenceNum = type1_index;
1158        for (vat_block = start_block;
1159             vat_block >= map->s_partition_root &&
1160             vat_block >= start_block - 3; vat_block--) {
1161                ino.logicalBlockNum = vat_block - map->s_partition_root;
1162                inode = udf_iget_special(sb, &ino);
1163                if (!IS_ERR(inode)) {
1164                        sbi->s_vat_inode = inode;
1165                        break;
1166                }
1167        }
1168}
1169
1170static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1171{
1172        struct udf_sb_info *sbi = UDF_SB(sb);
1173        struct udf_part_map *map = &sbi->s_partmaps[p_index];
1174        struct buffer_head *bh = NULL;
1175        struct udf_inode_info *vati;
1176        uint32_t pos;
1177        struct virtualAllocationTable20 *vat20;
1178        sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1179                          sb->s_blocksize_bits;
1180
1181        udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1182        if (!sbi->s_vat_inode &&
1183            sbi->s_last_block != blocks - 1) {
1184                pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1185                          (unsigned long)sbi->s_last_block,
1186                          (unsigned long)blocks - 1);
1187                udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1188        }
1189        if (!sbi->s_vat_inode)
1190                return -EIO;
1191
1192        if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1193                map->s_type_specific.s_virtual.s_start_offset = 0;
1194                map->s_type_specific.s_virtual.s_num_entries =
1195                        (sbi->s_vat_inode->i_size - 36) >> 2;
1196        } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1197                vati = UDF_I(sbi->s_vat_inode);
1198                if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1199                        pos = udf_block_map(sbi->s_vat_inode, 0);
1200                        bh = sb_bread(sb, pos);
1201                        if (!bh)
1202                                return -EIO;
1203                        vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1204                } else {
1205                        vat20 = (struct virtualAllocationTable20 *)
1206                                                        vati->i_data;
1207                }
1208
1209                map->s_type_specific.s_virtual.s_start_offset =
1210                        le16_to_cpu(vat20->lengthHeader);
1211                map->s_type_specific.s_virtual.s_num_entries =
1212                        (sbi->s_vat_inode->i_size -
1213                                map->s_type_specific.s_virtual.
1214                                        s_start_offset) >> 2;
1215                brelse(bh);
1216        }
1217        return 0;
1218}
1219
1220/*
1221 * Load partition descriptor block
1222 *
1223 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1224 * sequence.
1225 */
1226static int udf_load_partdesc(struct super_block *sb, sector_t block)
1227{
1228        struct buffer_head *bh;
1229        struct partitionDesc *p;
1230        struct udf_part_map *map;
1231        struct udf_sb_info *sbi = UDF_SB(sb);
1232        int i, type1_idx;
1233        uint16_t partitionNumber;
1234        uint16_t ident;
1235        int ret;
1236
1237        bh = udf_read_tagged(sb, block, block, &ident);
1238        if (!bh)
1239                return -EAGAIN;
1240        if (ident != TAG_IDENT_PD) {
1241                ret = 0;
1242                goto out_bh;
1243        }
1244
1245        p = (struct partitionDesc *)bh->b_data;
1246        partitionNumber = le16_to_cpu(p->partitionNumber);
1247
1248        /* First scan for TYPE1 and SPARABLE partitions */
1249        for (i = 0; i < sbi->s_partitions; i++) {
1250                map = &sbi->s_partmaps[i];
1251                udf_debug("Searching map: (%u == %u)\n",
1252                          map->s_partition_num, partitionNumber);
1253                if (map->s_partition_num == partitionNumber &&
1254                    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1255                     map->s_partition_type == UDF_SPARABLE_MAP15))
1256                        break;
1257        }
1258
1259        if (i >= sbi->s_partitions) {
1260                udf_debug("Partition (%u) not found in partition map\n",
1261                          partitionNumber);
1262                ret = 0;
1263                goto out_bh;
1264        }
1265
1266        ret = udf_fill_partdesc_info(sb, p, i);
1267        if (ret < 0)
1268                goto out_bh;
1269
1270        /*
1271         * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1272         * PHYSICAL partitions are already set up
1273         */
1274        type1_idx = i;
1275        map = NULL; /* supress 'maybe used uninitialized' warning */
1276        for (i = 0; i < sbi->s_partitions; i++) {
1277                map = &sbi->s_partmaps[i];
1278
1279                if (map->s_partition_num == partitionNumber &&
1280                    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1281                     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1282                     map->s_partition_type == UDF_METADATA_MAP25))
1283                        break;
1284        }
1285
1286        if (i >= sbi->s_partitions) {
1287                ret = 0;
1288                goto out_bh;
1289        }
1290
1291        ret = udf_fill_partdesc_info(sb, p, i);
1292        if (ret < 0)
1293                goto out_bh;
1294
1295        if (map->s_partition_type == UDF_METADATA_MAP25) {
1296                ret = udf_load_metadata_files(sb, i, type1_idx);
1297                if (ret < 0) {
1298                        udf_err(sb, "error loading MetaData partition map %d\n",
1299                                i);
1300                        goto out_bh;
1301                }
1302        } else {
1303                /*
1304                 * If we have a partition with virtual map, we don't handle
1305                 * writing to it (we overwrite blocks instead of relocating
1306                 * them).
1307                 */
1308                if (!sb_rdonly(sb)) {
1309                        ret = -EACCES;
1310                        goto out_bh;
1311                }
1312                UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1313                ret = udf_load_vat(sb, i, type1_idx);
1314                if (ret < 0)
1315                        goto out_bh;
1316        }
1317        ret = 0;
1318out_bh:
1319        /* In case loading failed, we handle cleanup in udf_fill_super */
1320        brelse(bh);
1321        return ret;
1322}
1323
1324static int udf_load_sparable_map(struct super_block *sb,
1325                                 struct udf_part_map *map,
1326                                 struct sparablePartitionMap *spm)
1327{
1328        uint32_t loc;
1329        uint16_t ident;
1330        struct sparingTable *st;
1331        struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1332        int i;
1333        struct buffer_head *bh;
1334
1335        map->s_partition_type = UDF_SPARABLE_MAP15;
1336        sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1337        if (!is_power_of_2(sdata->s_packet_len)) {
1338                udf_err(sb, "error loading logical volume descriptor: "
1339                        "Invalid packet length %u\n",
1340                        (unsigned)sdata->s_packet_len);
1341                return -EIO;
1342        }
1343        if (spm->numSparingTables > 4) {
1344                udf_err(sb, "error loading logical volume descriptor: "
1345                        "Too many sparing tables (%d)\n",
1346                        (int)spm->numSparingTables);
1347                return -EIO;
1348        }
1349        if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1350                udf_err(sb, "error loading logical volume descriptor: "
1351                        "Too big sparing table size (%u)\n",
1352                        le32_to_cpu(spm->sizeSparingTable));
1353                return -EIO;
1354        }
1355
1356        for (i = 0; i < spm->numSparingTables; i++) {
1357                loc = le32_to_cpu(spm->locSparingTable[i]);
1358                bh = udf_read_tagged(sb, loc, loc, &ident);
1359                if (!bh)
1360                        continue;
1361
1362                st = (struct sparingTable *)bh->b_data;
1363                if (ident != 0 ||
1364                    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1365                            strlen(UDF_ID_SPARING)) ||
1366                    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1367                                                        sb->s_blocksize) {
1368                        brelse(bh);
1369                        continue;
1370                }
1371
1372                sdata->s_spar_map[i] = bh;
1373        }
1374        map->s_partition_func = udf_get_pblock_spar15;
1375        return 0;
1376}
1377
1378static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1379                               struct kernel_lb_addr *fileset)
1380{
1381        struct logicalVolDesc *lvd;
1382        int i, offset;
1383        uint8_t type;
1384        struct udf_sb_info *sbi = UDF_SB(sb);
1385        struct genericPartitionMap *gpm;
1386        uint16_t ident;
1387        struct buffer_head *bh;
1388        unsigned int table_len;
1389        int ret;
1390
1391        bh = udf_read_tagged(sb, block, block, &ident);
1392        if (!bh)
1393                return -EAGAIN;
1394        BUG_ON(ident != TAG_IDENT_LVD);
1395        lvd = (struct logicalVolDesc *)bh->b_data;
1396        table_len = le32_to_cpu(lvd->mapTableLength);
1397        if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1398                udf_err(sb, "error loading logical volume descriptor: "
1399                        "Partition table too long (%u > %lu)\n", table_len,
1400                        sb->s_blocksize - sizeof(*lvd));
1401                ret = -EIO;
1402                goto out_bh;
1403        }
1404
1405        ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1406                                           "logical volume");
1407        if (ret)
1408                goto out_bh;
1409        ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1410        if (ret)
1411                goto out_bh;
1412
1413        for (i = 0, offset = 0;
1414             i < sbi->s_partitions && offset < table_len;
1415             i++, offset += gpm->partitionMapLength) {
1416                struct udf_part_map *map = &sbi->s_partmaps[i];
1417                gpm = (struct genericPartitionMap *)
1418                                &(lvd->partitionMaps[offset]);
1419                type = gpm->partitionMapType;
1420                if (type == 1) {
1421                        struct genericPartitionMap1 *gpm1 =
1422                                (struct genericPartitionMap1 *)gpm;
1423                        map->s_partition_type = UDF_TYPE1_MAP15;
1424                        map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1425                        map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1426                        map->s_partition_func = NULL;
1427                } else if (type == 2) {
1428                        struct udfPartitionMap2 *upm2 =
1429                                                (struct udfPartitionMap2 *)gpm;
1430                        if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1431                                                strlen(UDF_ID_VIRTUAL))) {
1432                                u16 suf =
1433                                        le16_to_cpu(((__le16 *)upm2->partIdent.
1434                                                        identSuffix)[0]);
1435                                if (suf < 0x0200) {
1436                                        map->s_partition_type =
1437                                                        UDF_VIRTUAL_MAP15;
1438                                        map->s_partition_func =
1439                                                        udf_get_pblock_virt15;
1440                                } else {
1441                                        map->s_partition_type =
1442                                                        UDF_VIRTUAL_MAP20;
1443                                        map->s_partition_func =
1444                                                        udf_get_pblock_virt20;
1445                                }
1446                        } else if (!strncmp(upm2->partIdent.ident,
1447                                                UDF_ID_SPARABLE,
1448                                                strlen(UDF_ID_SPARABLE))) {
1449                                ret = udf_load_sparable_map(sb, map,
1450                                        (struct sparablePartitionMap *)gpm);
1451                                if (ret < 0)
1452                                        goto out_bh;
1453                        } else if (!strncmp(upm2->partIdent.ident,
1454                                                UDF_ID_METADATA,
1455                                                strlen(UDF_ID_METADATA))) {
1456                                struct udf_meta_data *mdata =
1457                                        &map->s_type_specific.s_metadata;
1458                                struct metadataPartitionMap *mdm =
1459                                                (struct metadataPartitionMap *)
1460                                                &(lvd->partitionMaps[offset]);
1461                                udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1462                                          i, type, UDF_ID_METADATA);
1463
1464                                map->s_partition_type = UDF_METADATA_MAP25;
1465                                map->s_partition_func = udf_get_pblock_meta25;
1466
1467                                mdata->s_meta_file_loc   =
1468                                        le32_to_cpu(mdm->metadataFileLoc);
1469                                mdata->s_mirror_file_loc =
1470                                        le32_to_cpu(mdm->metadataMirrorFileLoc);
1471                                mdata->s_bitmap_file_loc =
1472                                        le32_to_cpu(mdm->metadataBitmapFileLoc);
1473                                mdata->s_alloc_unit_size =
1474                                        le32_to_cpu(mdm->allocUnitSize);
1475                                mdata->s_align_unit_size =
1476                                        le16_to_cpu(mdm->alignUnitSize);
1477                                if (mdm->flags & 0x01)
1478                                        mdata->s_flags |= MF_DUPLICATE_MD;
1479
1480                                udf_debug("Metadata Ident suffix=0x%x\n",
1481                                          le16_to_cpu(*(__le16 *)
1482                                                      mdm->partIdent.identSuffix));
1483                                udf_debug("Metadata part num=%u\n",
1484                                          le16_to_cpu(mdm->partitionNum));
1485                                udf_debug("Metadata part alloc unit size=%u\n",
1486                                          le32_to_cpu(mdm->allocUnitSize));
1487                                udf_debug("Metadata file loc=%u\n",
1488                                          le32_to_cpu(mdm->metadataFileLoc));
1489                                udf_debug("Mirror file loc=%u\n",
1490                                          le32_to_cpu(mdm->metadataMirrorFileLoc));
1491                                udf_debug("Bitmap file loc=%u\n",
1492                                          le32_to_cpu(mdm->metadataBitmapFileLoc));
1493                                udf_debug("Flags: %d %u\n",
1494                                          mdata->s_flags, mdm->flags);
1495                        } else {
1496                                udf_debug("Unknown ident: %s\n",
1497                                          upm2->partIdent.ident);
1498                                continue;
1499                        }
1500                        map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1501                        map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1502                }
1503                udf_debug("Partition (%d:%u) type %u on volume %u\n",
1504                          i, map->s_partition_num, type, map->s_volumeseqnum);
1505        }
1506
1507        if (fileset) {
1508                struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1509
1510                *fileset = lelb_to_cpu(la->extLocation);
1511                udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1512                          fileset->logicalBlockNum,
1513                          fileset->partitionReferenceNum);
1514        }
1515        if (lvd->integritySeqExt.extLength)
1516                udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1517        ret = 0;
1518
1519        if (!sbi->s_lvid_bh) {
1520                /* We can't generate unique IDs without a valid LVID */
1521                if (sb_rdonly(sb)) {
1522                        UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1523                } else {
1524                        udf_warn(sb, "Damaged or missing LVID, forcing "
1525                                     "readonly mount\n");
1526                        ret = -EACCES;
1527                }
1528        }
1529out_bh:
1530        brelse(bh);
1531        return ret;
1532}
1533
1534/*
1535 * Find the prevailing Logical Volume Integrity Descriptor.
1536 */
1537static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1538{
1539        struct buffer_head *bh, *final_bh;
1540        uint16_t ident;
1541        struct udf_sb_info *sbi = UDF_SB(sb);
1542        struct logicalVolIntegrityDesc *lvid;
1543        int indirections = 0;
1544        u32 parts, impuselen;
1545
1546        while (++indirections <= UDF_MAX_LVID_NESTING) {
1547                final_bh = NULL;
1548                while (loc.extLength > 0 &&
1549                        (bh = udf_read_tagged(sb, loc.extLocation,
1550                                        loc.extLocation, &ident))) {
1551                        if (ident != TAG_IDENT_LVID) {
1552                                brelse(bh);
1553                                break;
1554                        }
1555
1556                        brelse(final_bh);
1557                        final_bh = bh;
1558
1559                        loc.extLength -= sb->s_blocksize;
1560                        loc.extLocation++;
1561                }
1562
1563                if (!final_bh)
1564                        return;
1565
1566                brelse(sbi->s_lvid_bh);
1567                sbi->s_lvid_bh = final_bh;
1568
1569                lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1570                if (lvid->nextIntegrityExt.extLength == 0)
1571                        goto check;
1572
1573                loc = leea_to_cpu(lvid->nextIntegrityExt);
1574        }
1575
1576        udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1577                UDF_MAX_LVID_NESTING);
1578out_err:
1579        brelse(sbi->s_lvid_bh);
1580        sbi->s_lvid_bh = NULL;
1581        return;
1582check:
1583        parts = le32_to_cpu(lvid->numOfPartitions);
1584        impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1585        if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1586            sizeof(struct logicalVolIntegrityDesc) + impuselen +
1587            2 * parts * sizeof(u32) > sb->s_blocksize) {
1588                udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1589                         "ignoring.\n", parts, impuselen);
1590                goto out_err;
1591        }
1592}
1593
1594/*
1595 * Step for reallocation of table of partition descriptor sequence numbers.
1596 * Must be power of 2.
1597 */
1598#define PART_DESC_ALLOC_STEP 32
1599
1600struct part_desc_seq_scan_data {
1601        struct udf_vds_record rec;
1602        u32 partnum;
1603};
1604
1605struct desc_seq_scan_data {
1606        struct udf_vds_record vds[VDS_POS_LENGTH];
1607        unsigned int size_part_descs;
1608        unsigned int num_part_descs;
1609        struct part_desc_seq_scan_data *part_descs_loc;
1610};
1611
1612static struct udf_vds_record *handle_partition_descriptor(
1613                                struct buffer_head *bh,
1614                                struct desc_seq_scan_data *data)
1615{
1616        struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1617        int partnum;
1618        int i;
1619
1620        partnum = le16_to_cpu(desc->partitionNumber);
1621        for (i = 0; i < data->num_part_descs; i++)
1622                if (partnum == data->part_descs_loc[i].partnum)
1623                        return &(data->part_descs_loc[i].rec);
1624        if (data->num_part_descs >= data->size_part_descs) {
1625                struct part_desc_seq_scan_data *new_loc;
1626                unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1627
1628                new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1629                if (!new_loc)
1630                        return ERR_PTR(-ENOMEM);
1631                memcpy(new_loc, data->part_descs_loc,
1632                       data->size_part_descs * sizeof(*new_loc));
1633                kfree(data->part_descs_loc);
1634                data->part_descs_loc = new_loc;
1635                data->size_part_descs = new_size;
1636        }
1637        return &(data->part_descs_loc[data->num_part_descs++].rec);
1638}
1639
1640
1641static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1642                struct buffer_head *bh, struct desc_seq_scan_data *data)
1643{
1644        switch (ident) {
1645        case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1646                return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1647        case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1648                return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1649        case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1650                return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1651        case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1652                return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1653        case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1654                return handle_partition_descriptor(bh, data);
1655        }
1656        return NULL;
1657}
1658
1659/*
1660 * Process a main/reserve volume descriptor sequence.
1661 *   @block             First block of first extent of the sequence.
1662 *   @lastblock         Lastblock of first extent of the sequence.
1663 *   @fileset           There we store extent containing root fileset
1664 *
1665 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1666 * sequence
1667 */
1668static noinline int udf_process_sequence(
1669                struct super_block *sb,
1670                sector_t block, sector_t lastblock,
1671                struct kernel_lb_addr *fileset)
1672{
1673        struct buffer_head *bh = NULL;
1674        struct udf_vds_record *curr;
1675        struct generic_desc *gd;
1676        struct volDescPtr *vdp;
1677        bool done = false;
1678        uint32_t vdsn;
1679        uint16_t ident;
1680        int ret;
1681        unsigned int indirections = 0;
1682        struct desc_seq_scan_data data;
1683        unsigned int i;
1684
1685        memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1686        data.size_part_descs = PART_DESC_ALLOC_STEP;
1687        data.num_part_descs = 0;
1688        data.part_descs_loc = kcalloc(data.size_part_descs,
1689                                      sizeof(*data.part_descs_loc),
1690                                      GFP_KERNEL);
1691        if (!data.part_descs_loc)
1692                return -ENOMEM;
1693
1694        /*
1695         * Read the main descriptor sequence and find which descriptors
1696         * are in it.
1697         */
1698        for (; (!done && block <= lastblock); block++) {
1699                bh = udf_read_tagged(sb, block, block, &ident);
1700                if (!bh)
1701                        break;
1702
1703                /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1704                gd = (struct generic_desc *)bh->b_data;
1705                vdsn = le32_to_cpu(gd->volDescSeqNum);
1706                switch (ident) {
1707                case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1708                        if (++indirections > UDF_MAX_TD_NESTING) {
1709                                udf_err(sb, "too many Volume Descriptor "
1710                                        "Pointers (max %u supported)\n",
1711                                        UDF_MAX_TD_NESTING);
1712                                brelse(bh);
1713                                ret = -EIO;
1714                                goto out;
1715                        }
1716
1717                        vdp = (struct volDescPtr *)bh->b_data;
1718                        block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1719                        lastblock = le32_to_cpu(
1720                                vdp->nextVolDescSeqExt.extLength) >>
1721                                sb->s_blocksize_bits;
1722                        lastblock += block - 1;
1723                        /* For loop is going to increment 'block' again */
1724                        block--;
1725                        break;
1726                case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1727                case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1728                case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1729                case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1730                case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1731                        curr = get_volume_descriptor_record(ident, bh, &data);
1732                        if (IS_ERR(curr)) {
1733                                brelse(bh);
1734                                ret = PTR_ERR(curr);
1735                                goto out;
1736                        }
1737                        /* Descriptor we don't care about? */
1738                        if (!curr)
1739                                break;
1740                        if (vdsn >= curr->volDescSeqNum) {
1741                                curr->volDescSeqNum = vdsn;
1742                                curr->block = block;
1743                        }
1744                        break;
1745                case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1746                        done = true;
1747                        break;
1748                }
1749                brelse(bh);
1750        }
1751        /*
1752         * Now read interesting descriptors again and process them
1753         * in a suitable order
1754         */
1755        if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1756                udf_err(sb, "Primary Volume Descriptor not found!\n");
1757                ret = -EAGAIN;
1758                goto out;
1759        }
1760        ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1761        if (ret < 0)
1762                goto out;
1763
1764        if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1765                ret = udf_load_logicalvol(sb,
1766                                data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1767                                fileset);
1768                if (ret < 0)
1769                        goto out;
1770        }
1771
1772        /* Now handle prevailing Partition Descriptors */
1773        for (i = 0; i < data.num_part_descs; i++) {
1774                ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1775                if (ret < 0)
1776                        goto out;
1777        }
1778        ret = 0;
1779out:
1780        kfree(data.part_descs_loc);
1781        return ret;
1782}
1783
1784/*
1785 * Load Volume Descriptor Sequence described by anchor in bh
1786 *
1787 * Returns <0 on error, 0 on success
1788 */
1789static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1790                             struct kernel_lb_addr *fileset)
1791{
1792        struct anchorVolDescPtr *anchor;
1793        sector_t main_s, main_e, reserve_s, reserve_e;
1794        int ret;
1795
1796        anchor = (struct anchorVolDescPtr *)bh->b_data;
1797
1798        /* Locate the main sequence */
1799        main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1800        main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1801        main_e = main_e >> sb->s_blocksize_bits;
1802        main_e += main_s - 1;
1803
1804        /* Locate the reserve sequence */
1805        reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1806        reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1807        reserve_e = reserve_e >> sb->s_blocksize_bits;
1808        reserve_e += reserve_s - 1;
1809
1810        /* Process the main & reserve sequences */
1811        /* responsible for finding the PartitionDesc(s) */
1812        ret = udf_process_sequence(sb, main_s, main_e, fileset);
1813        if (ret != -EAGAIN)
1814                return ret;
1815        udf_sb_free_partitions(sb);
1816        ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1817        if (ret < 0) {
1818                udf_sb_free_partitions(sb);
1819                /* No sequence was OK, return -EIO */
1820                if (ret == -EAGAIN)
1821                        ret = -EIO;
1822        }
1823        return ret;
1824}
1825
1826/*
1827 * Check whether there is an anchor block in the given block and
1828 * load Volume Descriptor Sequence if so.
1829 *
1830 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1831 * block
1832 */
1833static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1834                                  struct kernel_lb_addr *fileset)
1835{
1836        struct buffer_head *bh;
1837        uint16_t ident;
1838        int ret;
1839
1840        if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1841            udf_fixed_to_variable(block) >=
1842            i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1843                return -EAGAIN;
1844
1845        bh = udf_read_tagged(sb, block, block, &ident);
1846        if (!bh)
1847                return -EAGAIN;
1848        if (ident != TAG_IDENT_AVDP) {
1849                brelse(bh);
1850                return -EAGAIN;
1851        }
1852        ret = udf_load_sequence(sb, bh, fileset);
1853        brelse(bh);
1854        return ret;
1855}
1856
1857/*
1858 * Search for an anchor volume descriptor pointer.
1859 *
1860 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1861 * of anchors.
1862 */
1863static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1864                            struct kernel_lb_addr *fileset)
1865{
1866        sector_t last[6];
1867        int i;
1868        struct udf_sb_info *sbi = UDF_SB(sb);
1869        int last_count = 0;
1870        int ret;
1871
1872        /* First try user provided anchor */
1873        if (sbi->s_anchor) {
1874                ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1875                if (ret != -EAGAIN)
1876                        return ret;
1877        }
1878        /*
1879         * according to spec, anchor is in either:
1880         *     block 256
1881         *     lastblock-256
1882         *     lastblock
1883         *  however, if the disc isn't closed, it could be 512.
1884         */
1885        ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1886        if (ret != -EAGAIN)
1887                return ret;
1888        /*
1889         * The trouble is which block is the last one. Drives often misreport
1890         * this so we try various possibilities.
1891         */
1892        last[last_count++] = *lastblock;
1893        if (*lastblock >= 1)
1894                last[last_count++] = *lastblock - 1;
1895        last[last_count++] = *lastblock + 1;
1896        if (*lastblock >= 2)
1897                last[last_count++] = *lastblock - 2;
1898        if (*lastblock >= 150)
1899                last[last_count++] = *lastblock - 150;
1900        if (*lastblock >= 152)
1901                last[last_count++] = *lastblock - 152;
1902
1903        for (i = 0; i < last_count; i++) {
1904                if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1905                                sb->s_blocksize_bits)
1906                        continue;
1907                ret = udf_check_anchor_block(sb, last[i], fileset);
1908                if (ret != -EAGAIN) {
1909                        if (!ret)
1910                                *lastblock = last[i];
1911                        return ret;
1912                }
1913                if (last[i] < 256)
1914                        continue;
1915                ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1916                if (ret != -EAGAIN) {
1917                        if (!ret)
1918                                *lastblock = last[i];
1919                        return ret;
1920                }
1921        }
1922
1923        /* Finally try block 512 in case media is open */
1924        return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1925}
1926
1927/*
1928 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1929 * area specified by it. The function expects sbi->s_lastblock to be the last
1930 * block on the media.
1931 *
1932 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1933 * was not found.
1934 */
1935static int udf_find_anchor(struct super_block *sb,
1936                           struct kernel_lb_addr *fileset)
1937{
1938        struct udf_sb_info *sbi = UDF_SB(sb);
1939        sector_t lastblock = sbi->s_last_block;
1940        int ret;
1941
1942        ret = udf_scan_anchors(sb, &lastblock, fileset);
1943        if (ret != -EAGAIN)
1944                goto out;
1945
1946        /* No anchor found? Try VARCONV conversion of block numbers */
1947        UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1948        lastblock = udf_variable_to_fixed(sbi->s_last_block);
1949        /* Firstly, we try to not convert number of the last block */
1950        ret = udf_scan_anchors(sb, &lastblock, fileset);
1951        if (ret != -EAGAIN)
1952                goto out;
1953
1954        lastblock = sbi->s_last_block;
1955        /* Secondly, we try with converted number of the last block */
1956        ret = udf_scan_anchors(sb, &lastblock, fileset);
1957        if (ret < 0) {
1958                /* VARCONV didn't help. Clear it. */
1959                UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1960        }
1961out:
1962        if (ret == 0)
1963                sbi->s_last_block = lastblock;
1964        return ret;
1965}
1966
1967/*
1968 * Check Volume Structure Descriptor, find Anchor block and load Volume
1969 * Descriptor Sequence.
1970 *
1971 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1972 * block was not found.
1973 */
1974static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1975                        int silent, struct kernel_lb_addr *fileset)
1976{
1977        struct udf_sb_info *sbi = UDF_SB(sb);
1978        int nsr = 0;
1979        int ret;
1980
1981        if (!sb_set_blocksize(sb, uopt->blocksize)) {
1982                if (!silent)
1983                        udf_warn(sb, "Bad block size\n");
1984                return -EINVAL;
1985        }
1986        sbi->s_last_block = uopt->lastblock;
1987        if (!uopt->novrs) {
1988                /* Check that it is NSR02 compliant */
1989                nsr = udf_check_vsd(sb);
1990                if (!nsr) {
1991                        if (!silent)
1992                                udf_warn(sb, "No VRS found\n");
1993                        return -EINVAL;
1994                }
1995                if (nsr == -1)
1996                        udf_debug("Failed to read sector at offset %d. "
1997                                  "Assuming open disc. Skipping validity "
1998                                  "check\n", VSD_FIRST_SECTOR_OFFSET);
1999                if (!sbi->s_last_block)
2000                        sbi->s_last_block = udf_get_last_block(sb);
2001        } else {
2002                udf_debug("Validity check skipped because of novrs option\n");
2003        }
2004
2005        /* Look for anchor block and load Volume Descriptor Sequence */
2006        sbi->s_anchor = uopt->anchor;
2007        ret = udf_find_anchor(sb, fileset);
2008        if (ret < 0) {
2009                if (!silent && ret == -EAGAIN)
2010                        udf_warn(sb, "No anchor found\n");
2011                return ret;
2012        }
2013        return 0;
2014}
2015
2016static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2017{
2018        struct timespec64 ts;
2019
2020        ktime_get_real_ts64(&ts);
2021        udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2022        lvid->descTag.descCRC = cpu_to_le16(
2023                crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2024                        le16_to_cpu(lvid->descTag.descCRCLength)));
2025        lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2026}
2027
2028static void udf_open_lvid(struct super_block *sb)
2029{
2030        struct udf_sb_info *sbi = UDF_SB(sb);
2031        struct buffer_head *bh = sbi->s_lvid_bh;
2032        struct logicalVolIntegrityDesc *lvid;
2033        struct logicalVolIntegrityDescImpUse *lvidiu;
2034
2035        if (!bh)
2036                return;
2037        lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2038        lvidiu = udf_sb_lvidiu(sb);
2039        if (!lvidiu)
2040                return;
2041
2042        mutex_lock(&sbi->s_alloc_mutex);
2043        lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2044        lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2045        if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2046                lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2047        else
2048                UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2049
2050        udf_finalize_lvid(lvid);
2051        mark_buffer_dirty(bh);
2052        sbi->s_lvid_dirty = 0;
2053        mutex_unlock(&sbi->s_alloc_mutex);
2054        /* Make opening of filesystem visible on the media immediately */
2055        sync_dirty_buffer(bh);
2056}
2057
2058static void udf_close_lvid(struct super_block *sb)
2059{
2060        struct udf_sb_info *sbi = UDF_SB(sb);
2061        struct buffer_head *bh = sbi->s_lvid_bh;
2062        struct logicalVolIntegrityDesc *lvid;
2063        struct logicalVolIntegrityDescImpUse *lvidiu;
2064
2065        if (!bh)
2066                return;
2067        lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2068        lvidiu = udf_sb_lvidiu(sb);
2069        if (!lvidiu)
2070                return;
2071
2072        mutex_lock(&sbi->s_alloc_mutex);
2073        lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2074        lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2075        if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2076                lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2077        if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2078                lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2079        if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2080                lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2081        if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2082                lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2083
2084        /*
2085         * We set buffer uptodate unconditionally here to avoid spurious
2086         * warnings from mark_buffer_dirty() when previous EIO has marked
2087         * the buffer as !uptodate
2088         */
2089        set_buffer_uptodate(bh);
2090        udf_finalize_lvid(lvid);
2091        mark_buffer_dirty(bh);
2092        sbi->s_lvid_dirty = 0;
2093        mutex_unlock(&sbi->s_alloc_mutex);
2094        /* Make closing of filesystem visible on the media immediately */
2095        sync_dirty_buffer(bh);
2096}
2097
2098u64 lvid_get_unique_id(struct super_block *sb)
2099{
2100        struct buffer_head *bh;
2101        struct udf_sb_info *sbi = UDF_SB(sb);
2102        struct logicalVolIntegrityDesc *lvid;
2103        struct logicalVolHeaderDesc *lvhd;
2104        u64 uniqueID;
2105        u64 ret;
2106
2107        bh = sbi->s_lvid_bh;
2108        if (!bh)
2109                return 0;
2110
2111        lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2112        lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2113
2114        mutex_lock(&sbi->s_alloc_mutex);
2115        ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2116        if (!(++uniqueID & 0xFFFFFFFF))
2117                uniqueID += 16;
2118        lvhd->uniqueID = cpu_to_le64(uniqueID);
2119        udf_updated_lvid(sb);
2120        mutex_unlock(&sbi->s_alloc_mutex);
2121
2122        return ret;
2123}
2124
2125static int udf_fill_super(struct super_block *sb, void *options, int silent)
2126{
2127        int ret = -EINVAL;
2128        struct inode *inode = NULL;
2129        struct udf_options uopt;
2130        struct kernel_lb_addr rootdir, fileset;
2131        struct udf_sb_info *sbi;
2132        bool lvid_open = false;
2133
2134        uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2135        /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2136        uopt.uid = make_kuid(current_user_ns(), overflowuid);
2137        uopt.gid = make_kgid(current_user_ns(), overflowgid);
2138        uopt.umask = 0;
2139        uopt.fmode = UDF_INVALID_MODE;
2140        uopt.dmode = UDF_INVALID_MODE;
2141        uopt.nls_map = NULL;
2142
2143        sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2144        if (!sbi)
2145                return -ENOMEM;
2146
2147        sb->s_fs_info = sbi;
2148
2149        mutex_init(&sbi->s_alloc_mutex);
2150
2151        if (!udf_parse_options((char *)options, &uopt, false))
2152                goto parse_options_failure;
2153
2154        fileset.logicalBlockNum = 0xFFFFFFFF;
2155        fileset.partitionReferenceNum = 0xFFFF;
2156
2157        sbi->s_flags = uopt.flags;
2158        sbi->s_uid = uopt.uid;
2159        sbi->s_gid = uopt.gid;
2160        sbi->s_umask = uopt.umask;
2161        sbi->s_fmode = uopt.fmode;
2162        sbi->s_dmode = uopt.dmode;
2163        sbi->s_nls_map = uopt.nls_map;
2164        rwlock_init(&sbi->s_cred_lock);
2165
2166        if (uopt.session == 0xFFFFFFFF)
2167                sbi->s_session = udf_get_last_session(sb);
2168        else
2169                sbi->s_session = uopt.session;
2170
2171        udf_debug("Multi-session=%d\n", sbi->s_session);
2172
2173        /* Fill in the rest of the superblock */
2174        sb->s_op = &udf_sb_ops;
2175        sb->s_export_op = &udf_export_ops;
2176
2177        sb->s_magic = UDF_SUPER_MAGIC;
2178        sb->s_time_gran = 1000;
2179
2180        if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2181                ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2182        } else {
2183                uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2184                while (uopt.blocksize <= 4096) {
2185                        ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2186                        if (ret < 0) {
2187                                if (!silent && ret != -EACCES) {
2188                                        pr_notice("Scanning with blocksize %u failed\n",
2189                                                  uopt.blocksize);
2190                                }
2191                                brelse(sbi->s_lvid_bh);
2192                                sbi->s_lvid_bh = NULL;
2193                                /*
2194                                 * EACCES is special - we want to propagate to
2195                                 * upper layers that we cannot handle RW mount.
2196                                 */
2197                                if (ret == -EACCES)
2198                                        break;
2199                        } else
2200                                break;
2201
2202                        uopt.blocksize <<= 1;
2203                }
2204        }
2205        if (ret < 0) {
2206                if (ret == -EAGAIN) {
2207                        udf_warn(sb, "No partition found (1)\n");
2208                        ret = -EINVAL;
2209                }
2210                goto error_out;
2211        }
2212
2213        udf_debug("Lastblock=%u\n", sbi->s_last_block);
2214
2215        if (sbi->s_lvid_bh) {
2216                struct logicalVolIntegrityDescImpUse *lvidiu =
2217                                                        udf_sb_lvidiu(sb);
2218                uint16_t minUDFReadRev;
2219                uint16_t minUDFWriteRev;
2220
2221                if (!lvidiu) {
2222                        ret = -EINVAL;
2223                        goto error_out;
2224                }
2225                minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2226                minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2227                if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2228                        udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2229                                minUDFReadRev,
2230                                UDF_MAX_READ_VERSION);
2231                        ret = -EINVAL;
2232                        goto error_out;
2233                } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2234                        if (!sb_rdonly(sb)) {
2235                                ret = -EACCES;
2236                                goto error_out;
2237                        }
2238                        UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2239                }
2240
2241                sbi->s_udfrev = minUDFWriteRev;
2242
2243                if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2244                        UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2245                if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2246                        UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2247        }
2248
2249        if (!sbi->s_partitions) {
2250                udf_warn(sb, "No partition found (2)\n");
2251                ret = -EINVAL;
2252                goto error_out;
2253        }
2254
2255        if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2256                        UDF_PART_FLAG_READ_ONLY) {
2257                if (!sb_rdonly(sb)) {
2258                        ret = -EACCES;
2259                        goto error_out;
2260                }
2261                UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2262        }
2263
2264        ret = udf_find_fileset(sb, &fileset, &rootdir);
2265        if (ret < 0) {
2266                udf_warn(sb, "No fileset found\n");
2267                goto error_out;
2268        }
2269
2270        if (!silent) {
2271                struct timestamp ts;
2272                udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2273                udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2274                         sbi->s_volume_ident,
2275                         le16_to_cpu(ts.year), ts.month, ts.day,
2276                         ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2277        }
2278        if (!sb_rdonly(sb)) {
2279                udf_open_lvid(sb);
2280                lvid_open = true;
2281        }
2282
2283        /* Assign the root inode */
2284        /* assign inodes by physical block number */
2285        /* perhaps it's not extensible enough, but for now ... */
2286        inode = udf_iget(sb, &rootdir);
2287        if (IS_ERR(inode)) {
2288                udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2289                       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2290                ret = PTR_ERR(inode);
2291                goto error_out;
2292        }
2293
2294        /* Allocate a dentry for the root inode */
2295        sb->s_root = d_make_root(inode);
2296        if (!sb->s_root) {
2297                udf_err(sb, "Couldn't allocate root dentry\n");
2298                ret = -ENOMEM;
2299                goto error_out;
2300        }
2301        sb->s_maxbytes = MAX_LFS_FILESIZE;
2302        sb->s_max_links = UDF_MAX_LINKS;
2303        return 0;
2304
2305error_out:
2306        iput(sbi->s_vat_inode);
2307parse_options_failure:
2308        unload_nls(uopt.nls_map);
2309        if (lvid_open)
2310                udf_close_lvid(sb);
2311        brelse(sbi->s_lvid_bh);
2312        udf_sb_free_partitions(sb);
2313        kfree(sbi);
2314        sb->s_fs_info = NULL;
2315
2316        return ret;
2317}
2318
2319void _udf_err(struct super_block *sb, const char *function,
2320              const char *fmt, ...)
2321{
2322        struct va_format vaf;
2323        va_list args;
2324
2325        va_start(args, fmt);
2326
2327        vaf.fmt = fmt;
2328        vaf.va = &args;
2329
2330        pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2331
2332        va_end(args);
2333}
2334
2335void _udf_warn(struct super_block *sb, const char *function,
2336               const char *fmt, ...)
2337{
2338        struct va_format vaf;
2339        va_list args;
2340
2341        va_start(args, fmt);
2342
2343        vaf.fmt = fmt;
2344        vaf.va = &args;
2345
2346        pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2347
2348        va_end(args);
2349}
2350
2351static void udf_put_super(struct super_block *sb)
2352{
2353        struct udf_sb_info *sbi;
2354
2355        sbi = UDF_SB(sb);
2356
2357        iput(sbi->s_vat_inode);
2358        unload_nls(sbi->s_nls_map);
2359        if (!sb_rdonly(sb))
2360                udf_close_lvid(sb);
2361        brelse(sbi->s_lvid_bh);
2362        udf_sb_free_partitions(sb);
2363        mutex_destroy(&sbi->s_alloc_mutex);
2364        kfree(sb->s_fs_info);
2365        sb->s_fs_info = NULL;
2366}
2367
2368static int udf_sync_fs(struct super_block *sb, int wait)
2369{
2370        struct udf_sb_info *sbi = UDF_SB(sb);
2371
2372        mutex_lock(&sbi->s_alloc_mutex);
2373        if (sbi->s_lvid_dirty) {
2374                struct buffer_head *bh = sbi->s_lvid_bh;
2375                struct logicalVolIntegrityDesc *lvid;
2376
2377                lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2378                udf_finalize_lvid(lvid);
2379
2380                /*
2381                 * Blockdevice will be synced later so we don't have to submit
2382                 * the buffer for IO
2383                 */
2384                mark_buffer_dirty(bh);
2385                sbi->s_lvid_dirty = 0;
2386        }
2387        mutex_unlock(&sbi->s_alloc_mutex);
2388
2389        return 0;
2390}
2391
2392static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2393{
2394        struct super_block *sb = dentry->d_sb;
2395        struct udf_sb_info *sbi = UDF_SB(sb);
2396        struct logicalVolIntegrityDescImpUse *lvidiu;
2397        u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2398
2399        lvidiu = udf_sb_lvidiu(sb);
2400        buf->f_type = UDF_SUPER_MAGIC;
2401        buf->f_bsize = sb->s_blocksize;
2402        buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2403        buf->f_bfree = udf_count_free(sb);
2404        buf->f_bavail = buf->f_bfree;
2405        /*
2406         * Let's pretend each free block is also a free 'inode' since UDF does
2407         * not have separate preallocated table of inodes.
2408         */
2409        buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2410                                          le32_to_cpu(lvidiu->numDirs)) : 0)
2411                        + buf->f_bfree;
2412        buf->f_ffree = buf->f_bfree;
2413        buf->f_namelen = UDF_NAME_LEN;
2414        buf->f_fsid = u64_to_fsid(id);
2415
2416        return 0;
2417}
2418
2419static unsigned int udf_count_free_bitmap(struct super_block *sb,
2420                                          struct udf_bitmap *bitmap)
2421{
2422        struct buffer_head *bh = NULL;
2423        unsigned int accum = 0;
2424        int index;
2425        udf_pblk_t block = 0, newblock;
2426        struct kernel_lb_addr loc;
2427        uint32_t bytes;
2428        uint8_t *ptr;
2429        uint16_t ident;
2430        struct spaceBitmapDesc *bm;
2431
2432        loc.logicalBlockNum = bitmap->s_extPosition;
2433        loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2434        bh = udf_read_ptagged(sb, &loc, 0, &ident);
2435
2436        if (!bh) {
2437                udf_err(sb, "udf_count_free failed\n");
2438                goto out;
2439        } else if (ident != TAG_IDENT_SBD) {
2440                brelse(bh);
2441                udf_err(sb, "udf_count_free failed\n");
2442                goto out;
2443        }
2444
2445        bm = (struct spaceBitmapDesc *)bh->b_data;
2446        bytes = le32_to_cpu(bm->numOfBytes);
2447        index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2448        ptr = (uint8_t *)bh->b_data;
2449
2450        while (bytes > 0) {
2451                u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2452                accum += bitmap_weight((const unsigned long *)(ptr + index),
2453                                        cur_bytes * 8);
2454                bytes -= cur_bytes;
2455                if (bytes) {
2456                        brelse(bh);
2457                        newblock = udf_get_lb_pblock(sb, &loc, ++block);
2458                        bh = udf_tread(sb, newblock);
2459                        if (!bh) {
2460                                udf_debug("read failed\n");
2461                                goto out;
2462                        }
2463                        index = 0;
2464                        ptr = (uint8_t *)bh->b_data;
2465                }
2466        }
2467        brelse(bh);
2468out:
2469        return accum;
2470}
2471
2472static unsigned int udf_count_free_table(struct super_block *sb,
2473                                         struct inode *table)
2474{
2475        unsigned int accum = 0;
2476        uint32_t elen;
2477        struct kernel_lb_addr eloc;
2478        int8_t etype;
2479        struct extent_position epos;
2480
2481        mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2482        epos.block = UDF_I(table)->i_location;
2483        epos.offset = sizeof(struct unallocSpaceEntry);
2484        epos.bh = NULL;
2485
2486        while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2487                accum += (elen >> table->i_sb->s_blocksize_bits);
2488
2489        brelse(epos.bh);
2490        mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2491
2492        return accum;
2493}
2494
2495static unsigned int udf_count_free(struct super_block *sb)
2496{
2497        unsigned int accum = 0;
2498        struct udf_sb_info *sbi = UDF_SB(sb);
2499        struct udf_part_map *map;
2500        unsigned int part = sbi->s_partition;
2501        int ptype = sbi->s_partmaps[part].s_partition_type;
2502
2503        if (ptype == UDF_METADATA_MAP25) {
2504                part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2505                                                        s_phys_partition_ref;
2506        } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2507                /*
2508                 * Filesystems with VAT are append-only and we cannot write to
2509                 * them. Let's just report 0 here.
2510                 */
2511                return 0;
2512        }
2513
2514        if (sbi->s_lvid_bh) {
2515                struct logicalVolIntegrityDesc *lvid =
2516                        (struct logicalVolIntegrityDesc *)
2517                        sbi->s_lvid_bh->b_data;
2518                if (le32_to_cpu(lvid->numOfPartitions) > part) {
2519                        accum = le32_to_cpu(
2520                                        lvid->freeSpaceTable[part]);
2521                        if (accum == 0xFFFFFFFF)
2522                                accum = 0;
2523                }
2524        }
2525
2526        if (accum)
2527                return accum;
2528
2529        map = &sbi->s_partmaps[part];
2530        if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2531                accum += udf_count_free_bitmap(sb,
2532                                               map->s_uspace.s_bitmap);
2533        }
2534        if (accum)
2535                return accum;
2536
2537        if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2538                accum += udf_count_free_table(sb,
2539                                              map->s_uspace.s_table);
2540        }
2541        return accum;
2542}
2543
2544MODULE_AUTHOR("Ben Fennema");
2545MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2546MODULE_LICENSE("GPL");
2547module_init(init_udf_fs)
2548module_exit(exit_udf_fs)
2549