linux/fs/userfaultfd.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  fs/userfaultfd.c
   4 *
   5 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
   6 *  Copyright (C) 2008-2009 Red Hat, Inc.
   7 *  Copyright (C) 2015  Red Hat, Inc.
   8 *
   9 *  Some part derived from fs/eventfd.c (anon inode setup) and
  10 *  mm/ksm.c (mm hashing).
  11 */
  12
  13#include <linux/list.h>
  14#include <linux/hashtable.h>
  15#include <linux/sched/signal.h>
  16#include <linux/sched/mm.h>
  17#include <linux/mm.h>
  18#include <linux/mmu_notifier.h>
  19#include <linux/poll.h>
  20#include <linux/slab.h>
  21#include <linux/seq_file.h>
  22#include <linux/file.h>
  23#include <linux/bug.h>
  24#include <linux/anon_inodes.h>
  25#include <linux/syscalls.h>
  26#include <linux/userfaultfd_k.h>
  27#include <linux/mempolicy.h>
  28#include <linux/ioctl.h>
  29#include <linux/security.h>
  30#include <linux/hugetlb.h>
  31
  32int sysctl_unprivileged_userfaultfd __read_mostly;
  33
  34static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
  35
  36/*
  37 * Start with fault_pending_wqh and fault_wqh so they're more likely
  38 * to be in the same cacheline.
  39 *
  40 * Locking order:
  41 *      fd_wqh.lock
  42 *              fault_pending_wqh.lock
  43 *                      fault_wqh.lock
  44 *              event_wqh.lock
  45 *
  46 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
  47 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
  48 * also taken in IRQ context.
  49 */
  50struct userfaultfd_ctx {
  51        /* waitqueue head for the pending (i.e. not read) userfaults */
  52        wait_queue_head_t fault_pending_wqh;
  53        /* waitqueue head for the userfaults */
  54        wait_queue_head_t fault_wqh;
  55        /* waitqueue head for the pseudo fd to wakeup poll/read */
  56        wait_queue_head_t fd_wqh;
  57        /* waitqueue head for events */
  58        wait_queue_head_t event_wqh;
  59        /* a refile sequence protected by fault_pending_wqh lock */
  60        seqcount_spinlock_t refile_seq;
  61        /* pseudo fd refcounting */
  62        refcount_t refcount;
  63        /* userfaultfd syscall flags */
  64        unsigned int flags;
  65        /* features requested from the userspace */
  66        unsigned int features;
  67        /* released */
  68        bool released;
  69        /* memory mappings are changing because of non-cooperative event */
  70        atomic_t mmap_changing;
  71        /* mm with one ore more vmas attached to this userfaultfd_ctx */
  72        struct mm_struct *mm;
  73};
  74
  75struct userfaultfd_fork_ctx {
  76        struct userfaultfd_ctx *orig;
  77        struct userfaultfd_ctx *new;
  78        struct list_head list;
  79};
  80
  81struct userfaultfd_unmap_ctx {
  82        struct userfaultfd_ctx *ctx;
  83        unsigned long start;
  84        unsigned long end;
  85        struct list_head list;
  86};
  87
  88struct userfaultfd_wait_queue {
  89        struct uffd_msg msg;
  90        wait_queue_entry_t wq;
  91        struct userfaultfd_ctx *ctx;
  92        bool waken;
  93};
  94
  95struct userfaultfd_wake_range {
  96        unsigned long start;
  97        unsigned long len;
  98};
  99
 100/* internal indication that UFFD_API ioctl was successfully executed */
 101#define UFFD_FEATURE_INITIALIZED                (1u << 31)
 102
 103static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
 104{
 105        return ctx->features & UFFD_FEATURE_INITIALIZED;
 106}
 107
 108static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
 109                                     int wake_flags, void *key)
 110{
 111        struct userfaultfd_wake_range *range = key;
 112        int ret;
 113        struct userfaultfd_wait_queue *uwq;
 114        unsigned long start, len;
 115
 116        uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 117        ret = 0;
 118        /* len == 0 means wake all */
 119        start = range->start;
 120        len = range->len;
 121        if (len && (start > uwq->msg.arg.pagefault.address ||
 122                    start + len <= uwq->msg.arg.pagefault.address))
 123                goto out;
 124        WRITE_ONCE(uwq->waken, true);
 125        /*
 126         * The Program-Order guarantees provided by the scheduler
 127         * ensure uwq->waken is visible before the task is woken.
 128         */
 129        ret = wake_up_state(wq->private, mode);
 130        if (ret) {
 131                /*
 132                 * Wake only once, autoremove behavior.
 133                 *
 134                 * After the effect of list_del_init is visible to the other
 135                 * CPUs, the waitqueue may disappear from under us, see the
 136                 * !list_empty_careful() in handle_userfault().
 137                 *
 138                 * try_to_wake_up() has an implicit smp_mb(), and the
 139                 * wq->private is read before calling the extern function
 140                 * "wake_up_state" (which in turns calls try_to_wake_up).
 141                 */
 142                list_del_init(&wq->entry);
 143        }
 144out:
 145        return ret;
 146}
 147
 148/**
 149 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
 150 * context.
 151 * @ctx: [in] Pointer to the userfaultfd context.
 152 */
 153static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
 154{
 155        refcount_inc(&ctx->refcount);
 156}
 157
 158/**
 159 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
 160 * context.
 161 * @ctx: [in] Pointer to userfaultfd context.
 162 *
 163 * The userfaultfd context reference must have been previously acquired either
 164 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
 165 */
 166static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
 167{
 168        if (refcount_dec_and_test(&ctx->refcount)) {
 169                VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
 170                VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
 171                VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
 172                VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
 173                VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
 174                VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
 175                VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
 176                VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
 177                mmdrop(ctx->mm);
 178                kmem_cache_free(userfaultfd_ctx_cachep, ctx);
 179        }
 180}
 181
 182static inline void msg_init(struct uffd_msg *msg)
 183{
 184        BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
 185        /*
 186         * Must use memset to zero out the paddings or kernel data is
 187         * leaked to userland.
 188         */
 189        memset(msg, 0, sizeof(struct uffd_msg));
 190}
 191
 192static inline struct uffd_msg userfault_msg(unsigned long address,
 193                                            unsigned int flags,
 194                                            unsigned long reason,
 195                                            unsigned int features)
 196{
 197        struct uffd_msg msg;
 198        msg_init(&msg);
 199        msg.event = UFFD_EVENT_PAGEFAULT;
 200        msg.arg.pagefault.address = address;
 201        /*
 202         * These flags indicate why the userfault occurred:
 203         * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
 204         * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
 205         * - Neither of these flags being set indicates a MISSING fault.
 206         *
 207         * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
 208         * fault. Otherwise, it was a read fault.
 209         */
 210        if (flags & FAULT_FLAG_WRITE)
 211                msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
 212        if (reason & VM_UFFD_WP)
 213                msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
 214        if (reason & VM_UFFD_MINOR)
 215                msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
 216        if (features & UFFD_FEATURE_THREAD_ID)
 217                msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
 218        return msg;
 219}
 220
 221#ifdef CONFIG_HUGETLB_PAGE
 222/*
 223 * Same functionality as userfaultfd_must_wait below with modifications for
 224 * hugepmd ranges.
 225 */
 226static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 227                                         struct vm_area_struct *vma,
 228                                         unsigned long address,
 229                                         unsigned long flags,
 230                                         unsigned long reason)
 231{
 232        struct mm_struct *mm = ctx->mm;
 233        pte_t *ptep, pte;
 234        bool ret = true;
 235
 236        mmap_assert_locked(mm);
 237
 238        ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
 239
 240        if (!ptep)
 241                goto out;
 242
 243        ret = false;
 244        pte = huge_ptep_get(ptep);
 245
 246        /*
 247         * Lockless access: we're in a wait_event so it's ok if it
 248         * changes under us.
 249         */
 250        if (huge_pte_none(pte))
 251                ret = true;
 252        if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
 253                ret = true;
 254out:
 255        return ret;
 256}
 257#else
 258static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 259                                         struct vm_area_struct *vma,
 260                                         unsigned long address,
 261                                         unsigned long flags,
 262                                         unsigned long reason)
 263{
 264        return false;   /* should never get here */
 265}
 266#endif /* CONFIG_HUGETLB_PAGE */
 267
 268/*
 269 * Verify the pagetables are still not ok after having reigstered into
 270 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
 271 * userfault that has already been resolved, if userfaultfd_read and
 272 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
 273 * threads.
 274 */
 275static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
 276                                         unsigned long address,
 277                                         unsigned long flags,
 278                                         unsigned long reason)
 279{
 280        struct mm_struct *mm = ctx->mm;
 281        pgd_t *pgd;
 282        p4d_t *p4d;
 283        pud_t *pud;
 284        pmd_t *pmd, _pmd;
 285        pte_t *pte;
 286        bool ret = true;
 287
 288        mmap_assert_locked(mm);
 289
 290        pgd = pgd_offset(mm, address);
 291        if (!pgd_present(*pgd))
 292                goto out;
 293        p4d = p4d_offset(pgd, address);
 294        if (!p4d_present(*p4d))
 295                goto out;
 296        pud = pud_offset(p4d, address);
 297        if (!pud_present(*pud))
 298                goto out;
 299        pmd = pmd_offset(pud, address);
 300        /*
 301         * READ_ONCE must function as a barrier with narrower scope
 302         * and it must be equivalent to:
 303         *      _pmd = *pmd; barrier();
 304         *
 305         * This is to deal with the instability (as in
 306         * pmd_trans_unstable) of the pmd.
 307         */
 308        _pmd = READ_ONCE(*pmd);
 309        if (pmd_none(_pmd))
 310                goto out;
 311
 312        ret = false;
 313        if (!pmd_present(_pmd))
 314                goto out;
 315
 316        if (pmd_trans_huge(_pmd)) {
 317                if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
 318                        ret = true;
 319                goto out;
 320        }
 321
 322        /*
 323         * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
 324         * and use the standard pte_offset_map() instead of parsing _pmd.
 325         */
 326        pte = pte_offset_map(pmd, address);
 327        /*
 328         * Lockless access: we're in a wait_event so it's ok if it
 329         * changes under us.
 330         */
 331        if (pte_none(*pte))
 332                ret = true;
 333        if (!pte_write(*pte) && (reason & VM_UFFD_WP))
 334                ret = true;
 335        pte_unmap(pte);
 336
 337out:
 338        return ret;
 339}
 340
 341static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
 342{
 343        if (flags & FAULT_FLAG_INTERRUPTIBLE)
 344                return TASK_INTERRUPTIBLE;
 345
 346        if (flags & FAULT_FLAG_KILLABLE)
 347                return TASK_KILLABLE;
 348
 349        return TASK_UNINTERRUPTIBLE;
 350}
 351
 352/*
 353 * The locking rules involved in returning VM_FAULT_RETRY depending on
 354 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
 355 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
 356 * recommendation in __lock_page_or_retry is not an understatement.
 357 *
 358 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
 359 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
 360 * not set.
 361 *
 362 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
 363 * set, VM_FAULT_RETRY can still be returned if and only if there are
 364 * fatal_signal_pending()s, and the mmap_lock must be released before
 365 * returning it.
 366 */
 367vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
 368{
 369        struct mm_struct *mm = vmf->vma->vm_mm;
 370        struct userfaultfd_ctx *ctx;
 371        struct userfaultfd_wait_queue uwq;
 372        vm_fault_t ret = VM_FAULT_SIGBUS;
 373        bool must_wait;
 374        unsigned int blocking_state;
 375
 376        /*
 377         * We don't do userfault handling for the final child pid update.
 378         *
 379         * We also don't do userfault handling during
 380         * coredumping. hugetlbfs has the special
 381         * follow_hugetlb_page() to skip missing pages in the
 382         * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
 383         * the no_page_table() helper in follow_page_mask(), but the
 384         * shmem_vm_ops->fault method is invoked even during
 385         * coredumping without mmap_lock and it ends up here.
 386         */
 387        if (current->flags & (PF_EXITING|PF_DUMPCORE))
 388                goto out;
 389
 390        /*
 391         * Coredumping runs without mmap_lock so we can only check that
 392         * the mmap_lock is held, if PF_DUMPCORE was not set.
 393         */
 394        mmap_assert_locked(mm);
 395
 396        ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
 397        if (!ctx)
 398                goto out;
 399
 400        BUG_ON(ctx->mm != mm);
 401
 402        /* Any unrecognized flag is a bug. */
 403        VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
 404        /* 0 or > 1 flags set is a bug; we expect exactly 1. */
 405        VM_BUG_ON(!reason || (reason & (reason - 1)));
 406
 407        if (ctx->features & UFFD_FEATURE_SIGBUS)
 408                goto out;
 409        if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
 410            ctx->flags & UFFD_USER_MODE_ONLY) {
 411                printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
 412                        "sysctl knob to 1 if kernel faults must be handled "
 413                        "without obtaining CAP_SYS_PTRACE capability\n");
 414                goto out;
 415        }
 416
 417        /*
 418         * If it's already released don't get it. This avoids to loop
 419         * in __get_user_pages if userfaultfd_release waits on the
 420         * caller of handle_userfault to release the mmap_lock.
 421         */
 422        if (unlikely(READ_ONCE(ctx->released))) {
 423                /*
 424                 * Don't return VM_FAULT_SIGBUS in this case, so a non
 425                 * cooperative manager can close the uffd after the
 426                 * last UFFDIO_COPY, without risking to trigger an
 427                 * involuntary SIGBUS if the process was starting the
 428                 * userfaultfd while the userfaultfd was still armed
 429                 * (but after the last UFFDIO_COPY). If the uffd
 430                 * wasn't already closed when the userfault reached
 431                 * this point, that would normally be solved by
 432                 * userfaultfd_must_wait returning 'false'.
 433                 *
 434                 * If we were to return VM_FAULT_SIGBUS here, the non
 435                 * cooperative manager would be instead forced to
 436                 * always call UFFDIO_UNREGISTER before it can safely
 437                 * close the uffd.
 438                 */
 439                ret = VM_FAULT_NOPAGE;
 440                goto out;
 441        }
 442
 443        /*
 444         * Check that we can return VM_FAULT_RETRY.
 445         *
 446         * NOTE: it should become possible to return VM_FAULT_RETRY
 447         * even if FAULT_FLAG_TRIED is set without leading to gup()
 448         * -EBUSY failures, if the userfaultfd is to be extended for
 449         * VM_UFFD_WP tracking and we intend to arm the userfault
 450         * without first stopping userland access to the memory. For
 451         * VM_UFFD_MISSING userfaults this is enough for now.
 452         */
 453        if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
 454                /*
 455                 * Validate the invariant that nowait must allow retry
 456                 * to be sure not to return SIGBUS erroneously on
 457                 * nowait invocations.
 458                 */
 459                BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
 460#ifdef CONFIG_DEBUG_VM
 461                if (printk_ratelimit()) {
 462                        printk(KERN_WARNING
 463                               "FAULT_FLAG_ALLOW_RETRY missing %x\n",
 464                               vmf->flags);
 465                        dump_stack();
 466                }
 467#endif
 468                goto out;
 469        }
 470
 471        /*
 472         * Handle nowait, not much to do other than tell it to retry
 473         * and wait.
 474         */
 475        ret = VM_FAULT_RETRY;
 476        if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
 477                goto out;
 478
 479        /* take the reference before dropping the mmap_lock */
 480        userfaultfd_ctx_get(ctx);
 481
 482        init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
 483        uwq.wq.private = current;
 484        uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
 485                        ctx->features);
 486        uwq.ctx = ctx;
 487        uwq.waken = false;
 488
 489        blocking_state = userfaultfd_get_blocking_state(vmf->flags);
 490
 491        spin_lock_irq(&ctx->fault_pending_wqh.lock);
 492        /*
 493         * After the __add_wait_queue the uwq is visible to userland
 494         * through poll/read().
 495         */
 496        __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
 497        /*
 498         * The smp_mb() after __set_current_state prevents the reads
 499         * following the spin_unlock to happen before the list_add in
 500         * __add_wait_queue.
 501         */
 502        set_current_state(blocking_state);
 503        spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 504
 505        if (!is_vm_hugetlb_page(vmf->vma))
 506                must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
 507                                                  reason);
 508        else
 509                must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
 510                                                       vmf->address,
 511                                                       vmf->flags, reason);
 512        mmap_read_unlock(mm);
 513
 514        if (likely(must_wait && !READ_ONCE(ctx->released))) {
 515                wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 516                schedule();
 517        }
 518
 519        __set_current_state(TASK_RUNNING);
 520
 521        /*
 522         * Here we race with the list_del; list_add in
 523         * userfaultfd_ctx_read(), however because we don't ever run
 524         * list_del_init() to refile across the two lists, the prev
 525         * and next pointers will never point to self. list_add also
 526         * would never let any of the two pointers to point to
 527         * self. So list_empty_careful won't risk to see both pointers
 528         * pointing to self at any time during the list refile. The
 529         * only case where list_del_init() is called is the full
 530         * removal in the wake function and there we don't re-list_add
 531         * and it's fine not to block on the spinlock. The uwq on this
 532         * kernel stack can be released after the list_del_init.
 533         */
 534        if (!list_empty_careful(&uwq.wq.entry)) {
 535                spin_lock_irq(&ctx->fault_pending_wqh.lock);
 536                /*
 537                 * No need of list_del_init(), the uwq on the stack
 538                 * will be freed shortly anyway.
 539                 */
 540                list_del(&uwq.wq.entry);
 541                spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 542        }
 543
 544        /*
 545         * ctx may go away after this if the userfault pseudo fd is
 546         * already released.
 547         */
 548        userfaultfd_ctx_put(ctx);
 549
 550out:
 551        return ret;
 552}
 553
 554static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
 555                                              struct userfaultfd_wait_queue *ewq)
 556{
 557        struct userfaultfd_ctx *release_new_ctx;
 558
 559        if (WARN_ON_ONCE(current->flags & PF_EXITING))
 560                goto out;
 561
 562        ewq->ctx = ctx;
 563        init_waitqueue_entry(&ewq->wq, current);
 564        release_new_ctx = NULL;
 565
 566        spin_lock_irq(&ctx->event_wqh.lock);
 567        /*
 568         * After the __add_wait_queue the uwq is visible to userland
 569         * through poll/read().
 570         */
 571        __add_wait_queue(&ctx->event_wqh, &ewq->wq);
 572        for (;;) {
 573                set_current_state(TASK_KILLABLE);
 574                if (ewq->msg.event == 0)
 575                        break;
 576                if (READ_ONCE(ctx->released) ||
 577                    fatal_signal_pending(current)) {
 578                        /*
 579                         * &ewq->wq may be queued in fork_event, but
 580                         * __remove_wait_queue ignores the head
 581                         * parameter. It would be a problem if it
 582                         * didn't.
 583                         */
 584                        __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 585                        if (ewq->msg.event == UFFD_EVENT_FORK) {
 586                                struct userfaultfd_ctx *new;
 587
 588                                new = (struct userfaultfd_ctx *)
 589                                        (unsigned long)
 590                                        ewq->msg.arg.reserved.reserved1;
 591                                release_new_ctx = new;
 592                        }
 593                        break;
 594                }
 595
 596                spin_unlock_irq(&ctx->event_wqh.lock);
 597
 598                wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 599                schedule();
 600
 601                spin_lock_irq(&ctx->event_wqh.lock);
 602        }
 603        __set_current_state(TASK_RUNNING);
 604        spin_unlock_irq(&ctx->event_wqh.lock);
 605
 606        if (release_new_ctx) {
 607                struct vm_area_struct *vma;
 608                struct mm_struct *mm = release_new_ctx->mm;
 609
 610                /* the various vma->vm_userfaultfd_ctx still points to it */
 611                mmap_write_lock(mm);
 612                for (vma = mm->mmap; vma; vma = vma->vm_next)
 613                        if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
 614                                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 615                                vma->vm_flags &= ~__VM_UFFD_FLAGS;
 616                        }
 617                mmap_write_unlock(mm);
 618
 619                userfaultfd_ctx_put(release_new_ctx);
 620        }
 621
 622        /*
 623         * ctx may go away after this if the userfault pseudo fd is
 624         * already released.
 625         */
 626out:
 627        atomic_dec(&ctx->mmap_changing);
 628        VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
 629        userfaultfd_ctx_put(ctx);
 630}
 631
 632static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
 633                                       struct userfaultfd_wait_queue *ewq)
 634{
 635        ewq->msg.event = 0;
 636        wake_up_locked(&ctx->event_wqh);
 637        __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 638}
 639
 640int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
 641{
 642        struct userfaultfd_ctx *ctx = NULL, *octx;
 643        struct userfaultfd_fork_ctx *fctx;
 644
 645        octx = vma->vm_userfaultfd_ctx.ctx;
 646        if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
 647                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 648                vma->vm_flags &= ~__VM_UFFD_FLAGS;
 649                return 0;
 650        }
 651
 652        list_for_each_entry(fctx, fcs, list)
 653                if (fctx->orig == octx) {
 654                        ctx = fctx->new;
 655                        break;
 656                }
 657
 658        if (!ctx) {
 659                fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
 660                if (!fctx)
 661                        return -ENOMEM;
 662
 663                ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
 664                if (!ctx) {
 665                        kfree(fctx);
 666                        return -ENOMEM;
 667                }
 668
 669                refcount_set(&ctx->refcount, 1);
 670                ctx->flags = octx->flags;
 671                ctx->features = octx->features;
 672                ctx->released = false;
 673                atomic_set(&ctx->mmap_changing, 0);
 674                ctx->mm = vma->vm_mm;
 675                mmgrab(ctx->mm);
 676
 677                userfaultfd_ctx_get(octx);
 678                atomic_inc(&octx->mmap_changing);
 679                fctx->orig = octx;
 680                fctx->new = ctx;
 681                list_add_tail(&fctx->list, fcs);
 682        }
 683
 684        vma->vm_userfaultfd_ctx.ctx = ctx;
 685        return 0;
 686}
 687
 688static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
 689{
 690        struct userfaultfd_ctx *ctx = fctx->orig;
 691        struct userfaultfd_wait_queue ewq;
 692
 693        msg_init(&ewq.msg);
 694
 695        ewq.msg.event = UFFD_EVENT_FORK;
 696        ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
 697
 698        userfaultfd_event_wait_completion(ctx, &ewq);
 699}
 700
 701void dup_userfaultfd_complete(struct list_head *fcs)
 702{
 703        struct userfaultfd_fork_ctx *fctx, *n;
 704
 705        list_for_each_entry_safe(fctx, n, fcs, list) {
 706                dup_fctx(fctx);
 707                list_del(&fctx->list);
 708                kfree(fctx);
 709        }
 710}
 711
 712void mremap_userfaultfd_prep(struct vm_area_struct *vma,
 713                             struct vm_userfaultfd_ctx *vm_ctx)
 714{
 715        struct userfaultfd_ctx *ctx;
 716
 717        ctx = vma->vm_userfaultfd_ctx.ctx;
 718
 719        if (!ctx)
 720                return;
 721
 722        if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
 723                vm_ctx->ctx = ctx;
 724                userfaultfd_ctx_get(ctx);
 725                atomic_inc(&ctx->mmap_changing);
 726        } else {
 727                /* Drop uffd context if remap feature not enabled */
 728                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 729                vma->vm_flags &= ~__VM_UFFD_FLAGS;
 730        }
 731}
 732
 733void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
 734                                 unsigned long from, unsigned long to,
 735                                 unsigned long len)
 736{
 737        struct userfaultfd_ctx *ctx = vm_ctx->ctx;
 738        struct userfaultfd_wait_queue ewq;
 739
 740        if (!ctx)
 741                return;
 742
 743        if (to & ~PAGE_MASK) {
 744                userfaultfd_ctx_put(ctx);
 745                return;
 746        }
 747
 748        msg_init(&ewq.msg);
 749
 750        ewq.msg.event = UFFD_EVENT_REMAP;
 751        ewq.msg.arg.remap.from = from;
 752        ewq.msg.arg.remap.to = to;
 753        ewq.msg.arg.remap.len = len;
 754
 755        userfaultfd_event_wait_completion(ctx, &ewq);
 756}
 757
 758bool userfaultfd_remove(struct vm_area_struct *vma,
 759                        unsigned long start, unsigned long end)
 760{
 761        struct mm_struct *mm = vma->vm_mm;
 762        struct userfaultfd_ctx *ctx;
 763        struct userfaultfd_wait_queue ewq;
 764
 765        ctx = vma->vm_userfaultfd_ctx.ctx;
 766        if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
 767                return true;
 768
 769        userfaultfd_ctx_get(ctx);
 770        atomic_inc(&ctx->mmap_changing);
 771        mmap_read_unlock(mm);
 772
 773        msg_init(&ewq.msg);
 774
 775        ewq.msg.event = UFFD_EVENT_REMOVE;
 776        ewq.msg.arg.remove.start = start;
 777        ewq.msg.arg.remove.end = end;
 778
 779        userfaultfd_event_wait_completion(ctx, &ewq);
 780
 781        return false;
 782}
 783
 784static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
 785                          unsigned long start, unsigned long end)
 786{
 787        struct userfaultfd_unmap_ctx *unmap_ctx;
 788
 789        list_for_each_entry(unmap_ctx, unmaps, list)
 790                if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
 791                    unmap_ctx->end == end)
 792                        return true;
 793
 794        return false;
 795}
 796
 797int userfaultfd_unmap_prep(struct vm_area_struct *vma,
 798                           unsigned long start, unsigned long end,
 799                           struct list_head *unmaps)
 800{
 801        for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
 802                struct userfaultfd_unmap_ctx *unmap_ctx;
 803                struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
 804
 805                if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
 806                    has_unmap_ctx(ctx, unmaps, start, end))
 807                        continue;
 808
 809                unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
 810                if (!unmap_ctx)
 811                        return -ENOMEM;
 812
 813                userfaultfd_ctx_get(ctx);
 814                atomic_inc(&ctx->mmap_changing);
 815                unmap_ctx->ctx = ctx;
 816                unmap_ctx->start = start;
 817                unmap_ctx->end = end;
 818                list_add_tail(&unmap_ctx->list, unmaps);
 819        }
 820
 821        return 0;
 822}
 823
 824void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
 825{
 826        struct userfaultfd_unmap_ctx *ctx, *n;
 827        struct userfaultfd_wait_queue ewq;
 828
 829        list_for_each_entry_safe(ctx, n, uf, list) {
 830                msg_init(&ewq.msg);
 831
 832                ewq.msg.event = UFFD_EVENT_UNMAP;
 833                ewq.msg.arg.remove.start = ctx->start;
 834                ewq.msg.arg.remove.end = ctx->end;
 835
 836                userfaultfd_event_wait_completion(ctx->ctx, &ewq);
 837
 838                list_del(&ctx->list);
 839                kfree(ctx);
 840        }
 841}
 842
 843static int userfaultfd_release(struct inode *inode, struct file *file)
 844{
 845        struct userfaultfd_ctx *ctx = file->private_data;
 846        struct mm_struct *mm = ctx->mm;
 847        struct vm_area_struct *vma, *prev;
 848        /* len == 0 means wake all */
 849        struct userfaultfd_wake_range range = { .len = 0, };
 850        unsigned long new_flags;
 851
 852        WRITE_ONCE(ctx->released, true);
 853
 854        if (!mmget_not_zero(mm))
 855                goto wakeup;
 856
 857        /*
 858         * Flush page faults out of all CPUs. NOTE: all page faults
 859         * must be retried without returning VM_FAULT_SIGBUS if
 860         * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
 861         * changes while handle_userfault released the mmap_lock. So
 862         * it's critical that released is set to true (above), before
 863         * taking the mmap_lock for writing.
 864         */
 865        mmap_write_lock(mm);
 866        prev = NULL;
 867        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 868                cond_resched();
 869                BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
 870                       !!(vma->vm_flags & __VM_UFFD_FLAGS));
 871                if (vma->vm_userfaultfd_ctx.ctx != ctx) {
 872                        prev = vma;
 873                        continue;
 874                }
 875                new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
 876                prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
 877                                 new_flags, vma->anon_vma,
 878                                 vma->vm_file, vma->vm_pgoff,
 879                                 vma_policy(vma),
 880                                 NULL_VM_UFFD_CTX);
 881                if (prev)
 882                        vma = prev;
 883                else
 884                        prev = vma;
 885                vma->vm_flags = new_flags;
 886                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 887        }
 888        mmap_write_unlock(mm);
 889        mmput(mm);
 890wakeup:
 891        /*
 892         * After no new page faults can wait on this fault_*wqh, flush
 893         * the last page faults that may have been already waiting on
 894         * the fault_*wqh.
 895         */
 896        spin_lock_irq(&ctx->fault_pending_wqh.lock);
 897        __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
 898        __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
 899        spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 900
 901        /* Flush pending events that may still wait on event_wqh */
 902        wake_up_all(&ctx->event_wqh);
 903
 904        wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
 905        userfaultfd_ctx_put(ctx);
 906        return 0;
 907}
 908
 909/* fault_pending_wqh.lock must be hold by the caller */
 910static inline struct userfaultfd_wait_queue *find_userfault_in(
 911                wait_queue_head_t *wqh)
 912{
 913        wait_queue_entry_t *wq;
 914        struct userfaultfd_wait_queue *uwq;
 915
 916        lockdep_assert_held(&wqh->lock);
 917
 918        uwq = NULL;
 919        if (!waitqueue_active(wqh))
 920                goto out;
 921        /* walk in reverse to provide FIFO behavior to read userfaults */
 922        wq = list_last_entry(&wqh->head, typeof(*wq), entry);
 923        uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 924out:
 925        return uwq;
 926}
 927
 928static inline struct userfaultfd_wait_queue *find_userfault(
 929                struct userfaultfd_ctx *ctx)
 930{
 931        return find_userfault_in(&ctx->fault_pending_wqh);
 932}
 933
 934static inline struct userfaultfd_wait_queue *find_userfault_evt(
 935                struct userfaultfd_ctx *ctx)
 936{
 937        return find_userfault_in(&ctx->event_wqh);
 938}
 939
 940static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
 941{
 942        struct userfaultfd_ctx *ctx = file->private_data;
 943        __poll_t ret;
 944
 945        poll_wait(file, &ctx->fd_wqh, wait);
 946
 947        if (!userfaultfd_is_initialized(ctx))
 948                return EPOLLERR;
 949
 950        /*
 951         * poll() never guarantees that read won't block.
 952         * userfaults can be waken before they're read().
 953         */
 954        if (unlikely(!(file->f_flags & O_NONBLOCK)))
 955                return EPOLLERR;
 956        /*
 957         * lockless access to see if there are pending faults
 958         * __pollwait last action is the add_wait_queue but
 959         * the spin_unlock would allow the waitqueue_active to
 960         * pass above the actual list_add inside
 961         * add_wait_queue critical section. So use a full
 962         * memory barrier to serialize the list_add write of
 963         * add_wait_queue() with the waitqueue_active read
 964         * below.
 965         */
 966        ret = 0;
 967        smp_mb();
 968        if (waitqueue_active(&ctx->fault_pending_wqh))
 969                ret = EPOLLIN;
 970        else if (waitqueue_active(&ctx->event_wqh))
 971                ret = EPOLLIN;
 972
 973        return ret;
 974}
 975
 976static const struct file_operations userfaultfd_fops;
 977
 978static int resolve_userfault_fork(struct userfaultfd_ctx *new,
 979                                  struct inode *inode,
 980                                  struct uffd_msg *msg)
 981{
 982        int fd;
 983
 984        fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
 985                        O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
 986        if (fd < 0)
 987                return fd;
 988
 989        msg->arg.reserved.reserved1 = 0;
 990        msg->arg.fork.ufd = fd;
 991        return 0;
 992}
 993
 994static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
 995                                    struct uffd_msg *msg, struct inode *inode)
 996{
 997        ssize_t ret;
 998        DECLARE_WAITQUEUE(wait, current);
 999        struct userfaultfd_wait_queue *uwq;
1000        /*
1001         * Handling fork event requires sleeping operations, so
1002         * we drop the event_wqh lock, then do these ops, then
1003         * lock it back and wake up the waiter. While the lock is
1004         * dropped the ewq may go away so we keep track of it
1005         * carefully.
1006         */
1007        LIST_HEAD(fork_event);
1008        struct userfaultfd_ctx *fork_nctx = NULL;
1009
1010        /* always take the fd_wqh lock before the fault_pending_wqh lock */
1011        spin_lock_irq(&ctx->fd_wqh.lock);
1012        __add_wait_queue(&ctx->fd_wqh, &wait);
1013        for (;;) {
1014                set_current_state(TASK_INTERRUPTIBLE);
1015                spin_lock(&ctx->fault_pending_wqh.lock);
1016                uwq = find_userfault(ctx);
1017                if (uwq) {
1018                        /*
1019                         * Use a seqcount to repeat the lockless check
1020                         * in wake_userfault() to avoid missing
1021                         * wakeups because during the refile both
1022                         * waitqueue could become empty if this is the
1023                         * only userfault.
1024                         */
1025                        write_seqcount_begin(&ctx->refile_seq);
1026
1027                        /*
1028                         * The fault_pending_wqh.lock prevents the uwq
1029                         * to disappear from under us.
1030                         *
1031                         * Refile this userfault from
1032                         * fault_pending_wqh to fault_wqh, it's not
1033                         * pending anymore after we read it.
1034                         *
1035                         * Use list_del() by hand (as
1036                         * userfaultfd_wake_function also uses
1037                         * list_del_init() by hand) to be sure nobody
1038                         * changes __remove_wait_queue() to use
1039                         * list_del_init() in turn breaking the
1040                         * !list_empty_careful() check in
1041                         * handle_userfault(). The uwq->wq.head list
1042                         * must never be empty at any time during the
1043                         * refile, or the waitqueue could disappear
1044                         * from under us. The "wait_queue_head_t"
1045                         * parameter of __remove_wait_queue() is unused
1046                         * anyway.
1047                         */
1048                        list_del(&uwq->wq.entry);
1049                        add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1050
1051                        write_seqcount_end(&ctx->refile_seq);
1052
1053                        /* careful to always initialize msg if ret == 0 */
1054                        *msg = uwq->msg;
1055                        spin_unlock(&ctx->fault_pending_wqh.lock);
1056                        ret = 0;
1057                        break;
1058                }
1059                spin_unlock(&ctx->fault_pending_wqh.lock);
1060
1061                spin_lock(&ctx->event_wqh.lock);
1062                uwq = find_userfault_evt(ctx);
1063                if (uwq) {
1064                        *msg = uwq->msg;
1065
1066                        if (uwq->msg.event == UFFD_EVENT_FORK) {
1067                                fork_nctx = (struct userfaultfd_ctx *)
1068                                        (unsigned long)
1069                                        uwq->msg.arg.reserved.reserved1;
1070                                list_move(&uwq->wq.entry, &fork_event);
1071                                /*
1072                                 * fork_nctx can be freed as soon as
1073                                 * we drop the lock, unless we take a
1074                                 * reference on it.
1075                                 */
1076                                userfaultfd_ctx_get(fork_nctx);
1077                                spin_unlock(&ctx->event_wqh.lock);
1078                                ret = 0;
1079                                break;
1080                        }
1081
1082                        userfaultfd_event_complete(ctx, uwq);
1083                        spin_unlock(&ctx->event_wqh.lock);
1084                        ret = 0;
1085                        break;
1086                }
1087                spin_unlock(&ctx->event_wqh.lock);
1088
1089                if (signal_pending(current)) {
1090                        ret = -ERESTARTSYS;
1091                        break;
1092                }
1093                if (no_wait) {
1094                        ret = -EAGAIN;
1095                        break;
1096                }
1097                spin_unlock_irq(&ctx->fd_wqh.lock);
1098                schedule();
1099                spin_lock_irq(&ctx->fd_wqh.lock);
1100        }
1101        __remove_wait_queue(&ctx->fd_wqh, &wait);
1102        __set_current_state(TASK_RUNNING);
1103        spin_unlock_irq(&ctx->fd_wqh.lock);
1104
1105        if (!ret && msg->event == UFFD_EVENT_FORK) {
1106                ret = resolve_userfault_fork(fork_nctx, inode, msg);
1107                spin_lock_irq(&ctx->event_wqh.lock);
1108                if (!list_empty(&fork_event)) {
1109                        /*
1110                         * The fork thread didn't abort, so we can
1111                         * drop the temporary refcount.
1112                         */
1113                        userfaultfd_ctx_put(fork_nctx);
1114
1115                        uwq = list_first_entry(&fork_event,
1116                                               typeof(*uwq),
1117                                               wq.entry);
1118                        /*
1119                         * If fork_event list wasn't empty and in turn
1120                         * the event wasn't already released by fork
1121                         * (the event is allocated on fork kernel
1122                         * stack), put the event back to its place in
1123                         * the event_wq. fork_event head will be freed
1124                         * as soon as we return so the event cannot
1125                         * stay queued there no matter the current
1126                         * "ret" value.
1127                         */
1128                        list_del(&uwq->wq.entry);
1129                        __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1130
1131                        /*
1132                         * Leave the event in the waitqueue and report
1133                         * error to userland if we failed to resolve
1134                         * the userfault fork.
1135                         */
1136                        if (likely(!ret))
1137                                userfaultfd_event_complete(ctx, uwq);
1138                } else {
1139                        /*
1140                         * Here the fork thread aborted and the
1141                         * refcount from the fork thread on fork_nctx
1142                         * has already been released. We still hold
1143                         * the reference we took before releasing the
1144                         * lock above. If resolve_userfault_fork
1145                         * failed we've to drop it because the
1146                         * fork_nctx has to be freed in such case. If
1147                         * it succeeded we'll hold it because the new
1148                         * uffd references it.
1149                         */
1150                        if (ret)
1151                                userfaultfd_ctx_put(fork_nctx);
1152                }
1153                spin_unlock_irq(&ctx->event_wqh.lock);
1154        }
1155
1156        return ret;
1157}
1158
1159static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1160                                size_t count, loff_t *ppos)
1161{
1162        struct userfaultfd_ctx *ctx = file->private_data;
1163        ssize_t _ret, ret = 0;
1164        struct uffd_msg msg;
1165        int no_wait = file->f_flags & O_NONBLOCK;
1166        struct inode *inode = file_inode(file);
1167
1168        if (!userfaultfd_is_initialized(ctx))
1169                return -EINVAL;
1170
1171        for (;;) {
1172                if (count < sizeof(msg))
1173                        return ret ? ret : -EINVAL;
1174                _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1175                if (_ret < 0)
1176                        return ret ? ret : _ret;
1177                if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1178                        return ret ? ret : -EFAULT;
1179                ret += sizeof(msg);
1180                buf += sizeof(msg);
1181                count -= sizeof(msg);
1182                /*
1183                 * Allow to read more than one fault at time but only
1184                 * block if waiting for the very first one.
1185                 */
1186                no_wait = O_NONBLOCK;
1187        }
1188}
1189
1190static void __wake_userfault(struct userfaultfd_ctx *ctx,
1191                             struct userfaultfd_wake_range *range)
1192{
1193        spin_lock_irq(&ctx->fault_pending_wqh.lock);
1194        /* wake all in the range and autoremove */
1195        if (waitqueue_active(&ctx->fault_pending_wqh))
1196                __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1197                                     range);
1198        if (waitqueue_active(&ctx->fault_wqh))
1199                __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1200        spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1201}
1202
1203static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1204                                           struct userfaultfd_wake_range *range)
1205{
1206        unsigned seq;
1207        bool need_wakeup;
1208
1209        /*
1210         * To be sure waitqueue_active() is not reordered by the CPU
1211         * before the pagetable update, use an explicit SMP memory
1212         * barrier here. PT lock release or mmap_read_unlock(mm) still
1213         * have release semantics that can allow the
1214         * waitqueue_active() to be reordered before the pte update.
1215         */
1216        smp_mb();
1217
1218        /*
1219         * Use waitqueue_active because it's very frequent to
1220         * change the address space atomically even if there are no
1221         * userfaults yet. So we take the spinlock only when we're
1222         * sure we've userfaults to wake.
1223         */
1224        do {
1225                seq = read_seqcount_begin(&ctx->refile_seq);
1226                need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1227                        waitqueue_active(&ctx->fault_wqh);
1228                cond_resched();
1229        } while (read_seqcount_retry(&ctx->refile_seq, seq));
1230        if (need_wakeup)
1231                __wake_userfault(ctx, range);
1232}
1233
1234static __always_inline int validate_range(struct mm_struct *mm,
1235                                          __u64 start, __u64 len)
1236{
1237        __u64 task_size = mm->task_size;
1238
1239        if (start & ~PAGE_MASK)
1240                return -EINVAL;
1241        if (len & ~PAGE_MASK)
1242                return -EINVAL;
1243        if (!len)
1244                return -EINVAL;
1245        if (start < mmap_min_addr)
1246                return -EINVAL;
1247        if (start >= task_size)
1248                return -EINVAL;
1249        if (len > task_size - start)
1250                return -EINVAL;
1251        return 0;
1252}
1253
1254static inline bool vma_can_userfault(struct vm_area_struct *vma,
1255                                     unsigned long vm_flags)
1256{
1257        /* FIXME: add WP support to hugetlbfs and shmem */
1258        if (vm_flags & VM_UFFD_WP) {
1259                if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1260                        return false;
1261        }
1262
1263        if (vm_flags & VM_UFFD_MINOR) {
1264                if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma)))
1265                        return false;
1266        }
1267
1268        return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1269               vma_is_shmem(vma);
1270}
1271
1272static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1273                                unsigned long arg)
1274{
1275        struct mm_struct *mm = ctx->mm;
1276        struct vm_area_struct *vma, *prev, *cur;
1277        int ret;
1278        struct uffdio_register uffdio_register;
1279        struct uffdio_register __user *user_uffdio_register;
1280        unsigned long vm_flags, new_flags;
1281        bool found;
1282        bool basic_ioctls;
1283        unsigned long start, end, vma_end;
1284
1285        user_uffdio_register = (struct uffdio_register __user *) arg;
1286
1287        ret = -EFAULT;
1288        if (copy_from_user(&uffdio_register, user_uffdio_register,
1289                           sizeof(uffdio_register)-sizeof(__u64)))
1290                goto out;
1291
1292        ret = -EINVAL;
1293        if (!uffdio_register.mode)
1294                goto out;
1295        if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1296                goto out;
1297        vm_flags = 0;
1298        if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1299                vm_flags |= VM_UFFD_MISSING;
1300        if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1301#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1302                goto out;
1303#endif
1304                vm_flags |= VM_UFFD_WP;
1305        }
1306        if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1307#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1308                goto out;
1309#endif
1310                vm_flags |= VM_UFFD_MINOR;
1311        }
1312
1313        ret = validate_range(mm, uffdio_register.range.start,
1314                             uffdio_register.range.len);
1315        if (ret)
1316                goto out;
1317
1318        start = uffdio_register.range.start;
1319        end = start + uffdio_register.range.len;
1320
1321        ret = -ENOMEM;
1322        if (!mmget_not_zero(mm))
1323                goto out;
1324
1325        mmap_write_lock(mm);
1326        vma = find_vma_prev(mm, start, &prev);
1327        if (!vma)
1328                goto out_unlock;
1329
1330        /* check that there's at least one vma in the range */
1331        ret = -EINVAL;
1332        if (vma->vm_start >= end)
1333                goto out_unlock;
1334
1335        /*
1336         * If the first vma contains huge pages, make sure start address
1337         * is aligned to huge page size.
1338         */
1339        if (is_vm_hugetlb_page(vma)) {
1340                unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1341
1342                if (start & (vma_hpagesize - 1))
1343                        goto out_unlock;
1344        }
1345
1346        /*
1347         * Search for not compatible vmas.
1348         */
1349        found = false;
1350        basic_ioctls = false;
1351        for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1352                cond_resched();
1353
1354                BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1355                       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1356
1357                /* check not compatible vmas */
1358                ret = -EINVAL;
1359                if (!vma_can_userfault(cur, vm_flags))
1360                        goto out_unlock;
1361
1362                /*
1363                 * UFFDIO_COPY will fill file holes even without
1364                 * PROT_WRITE. This check enforces that if this is a
1365                 * MAP_SHARED, the process has write permission to the backing
1366                 * file. If VM_MAYWRITE is set it also enforces that on a
1367                 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1368                 * F_WRITE_SEAL can be taken until the vma is destroyed.
1369                 */
1370                ret = -EPERM;
1371                if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1372                        goto out_unlock;
1373
1374                /*
1375                 * If this vma contains ending address, and huge pages
1376                 * check alignment.
1377                 */
1378                if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1379                    end > cur->vm_start) {
1380                        unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1381
1382                        ret = -EINVAL;
1383
1384                        if (end & (vma_hpagesize - 1))
1385                                goto out_unlock;
1386                }
1387                if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1388                        goto out_unlock;
1389
1390                /*
1391                 * Check that this vma isn't already owned by a
1392                 * different userfaultfd. We can't allow more than one
1393                 * userfaultfd to own a single vma simultaneously or we
1394                 * wouldn't know which one to deliver the userfaults to.
1395                 */
1396                ret = -EBUSY;
1397                if (cur->vm_userfaultfd_ctx.ctx &&
1398                    cur->vm_userfaultfd_ctx.ctx != ctx)
1399                        goto out_unlock;
1400
1401                /*
1402                 * Note vmas containing huge pages
1403                 */
1404                if (is_vm_hugetlb_page(cur))
1405                        basic_ioctls = true;
1406
1407                found = true;
1408        }
1409        BUG_ON(!found);
1410
1411        if (vma->vm_start < start)
1412                prev = vma;
1413
1414        ret = 0;
1415        do {
1416                cond_resched();
1417
1418                BUG_ON(!vma_can_userfault(vma, vm_flags));
1419                BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1420                       vma->vm_userfaultfd_ctx.ctx != ctx);
1421                WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1422
1423                /*
1424                 * Nothing to do: this vma is already registered into this
1425                 * userfaultfd and with the right tracking mode too.
1426                 */
1427                if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1428                    (vma->vm_flags & vm_flags) == vm_flags)
1429                        goto skip;
1430
1431                if (vma->vm_start > start)
1432                        start = vma->vm_start;
1433                vma_end = min(end, vma->vm_end);
1434
1435                new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1436                prev = vma_merge(mm, prev, start, vma_end, new_flags,
1437                                 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1438                                 vma_policy(vma),
1439                                 ((struct vm_userfaultfd_ctx){ ctx }));
1440                if (prev) {
1441                        vma = prev;
1442                        goto next;
1443                }
1444                if (vma->vm_start < start) {
1445                        ret = split_vma(mm, vma, start, 1);
1446                        if (ret)
1447                                break;
1448                }
1449                if (vma->vm_end > end) {
1450                        ret = split_vma(mm, vma, end, 0);
1451                        if (ret)
1452                                break;
1453                }
1454        next:
1455                /*
1456                 * In the vma_merge() successful mprotect-like case 8:
1457                 * the next vma was merged into the current one and
1458                 * the current one has not been updated yet.
1459                 */
1460                vma->vm_flags = new_flags;
1461                vma->vm_userfaultfd_ctx.ctx = ctx;
1462
1463                if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1464                        hugetlb_unshare_all_pmds(vma);
1465
1466        skip:
1467                prev = vma;
1468                start = vma->vm_end;
1469                vma = vma->vm_next;
1470        } while (vma && vma->vm_start < end);
1471out_unlock:
1472        mmap_write_unlock(mm);
1473        mmput(mm);
1474        if (!ret) {
1475                __u64 ioctls_out;
1476
1477                ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1478                    UFFD_API_RANGE_IOCTLS;
1479
1480                /*
1481                 * Declare the WP ioctl only if the WP mode is
1482                 * specified and all checks passed with the range
1483                 */
1484                if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1485                        ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1486
1487                /* CONTINUE ioctl is only supported for MINOR ranges. */
1488                if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1489                        ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1490
1491                /*
1492                 * Now that we scanned all vmas we can already tell
1493                 * userland which ioctls methods are guaranteed to
1494                 * succeed on this range.
1495                 */
1496                if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1497                        ret = -EFAULT;
1498        }
1499out:
1500        return ret;
1501}
1502
1503static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1504                                  unsigned long arg)
1505{
1506        struct mm_struct *mm = ctx->mm;
1507        struct vm_area_struct *vma, *prev, *cur;
1508        int ret;
1509        struct uffdio_range uffdio_unregister;
1510        unsigned long new_flags;
1511        bool found;
1512        unsigned long start, end, vma_end;
1513        const void __user *buf = (void __user *)arg;
1514
1515        ret = -EFAULT;
1516        if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1517                goto out;
1518
1519        ret = validate_range(mm, uffdio_unregister.start,
1520                             uffdio_unregister.len);
1521        if (ret)
1522                goto out;
1523
1524        start = uffdio_unregister.start;
1525        end = start + uffdio_unregister.len;
1526
1527        ret = -ENOMEM;
1528        if (!mmget_not_zero(mm))
1529                goto out;
1530
1531        mmap_write_lock(mm);
1532        vma = find_vma_prev(mm, start, &prev);
1533        if (!vma)
1534                goto out_unlock;
1535
1536        /* check that there's at least one vma in the range */
1537        ret = -EINVAL;
1538        if (vma->vm_start >= end)
1539                goto out_unlock;
1540
1541        /*
1542         * If the first vma contains huge pages, make sure start address
1543         * is aligned to huge page size.
1544         */
1545        if (is_vm_hugetlb_page(vma)) {
1546                unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1547
1548                if (start & (vma_hpagesize - 1))
1549                        goto out_unlock;
1550        }
1551
1552        /*
1553         * Search for not compatible vmas.
1554         */
1555        found = false;
1556        ret = -EINVAL;
1557        for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1558                cond_resched();
1559
1560                BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1561                       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1562
1563                /*
1564                 * Check not compatible vmas, not strictly required
1565                 * here as not compatible vmas cannot have an
1566                 * userfaultfd_ctx registered on them, but this
1567                 * provides for more strict behavior to notice
1568                 * unregistration errors.
1569                 */
1570                if (!vma_can_userfault(cur, cur->vm_flags))
1571                        goto out_unlock;
1572
1573                found = true;
1574        }
1575        BUG_ON(!found);
1576
1577        if (vma->vm_start < start)
1578                prev = vma;
1579
1580        ret = 0;
1581        do {
1582                cond_resched();
1583
1584                BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1585
1586                /*
1587                 * Nothing to do: this vma is already registered into this
1588                 * userfaultfd and with the right tracking mode too.
1589                 */
1590                if (!vma->vm_userfaultfd_ctx.ctx)
1591                        goto skip;
1592
1593                WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1594
1595                if (vma->vm_start > start)
1596                        start = vma->vm_start;
1597                vma_end = min(end, vma->vm_end);
1598
1599                if (userfaultfd_missing(vma)) {
1600                        /*
1601                         * Wake any concurrent pending userfault while
1602                         * we unregister, so they will not hang
1603                         * permanently and it avoids userland to call
1604                         * UFFDIO_WAKE explicitly.
1605                         */
1606                        struct userfaultfd_wake_range range;
1607                        range.start = start;
1608                        range.len = vma_end - start;
1609                        wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1610                }
1611
1612                new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1613                prev = vma_merge(mm, prev, start, vma_end, new_flags,
1614                                 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1615                                 vma_policy(vma),
1616                                 NULL_VM_UFFD_CTX);
1617                if (prev) {
1618                        vma = prev;
1619                        goto next;
1620                }
1621                if (vma->vm_start < start) {
1622                        ret = split_vma(mm, vma, start, 1);
1623                        if (ret)
1624                                break;
1625                }
1626                if (vma->vm_end > end) {
1627                        ret = split_vma(mm, vma, end, 0);
1628                        if (ret)
1629                                break;
1630                }
1631        next:
1632                /*
1633                 * In the vma_merge() successful mprotect-like case 8:
1634                 * the next vma was merged into the current one and
1635                 * the current one has not been updated yet.
1636                 */
1637                vma->vm_flags = new_flags;
1638                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1639
1640        skip:
1641                prev = vma;
1642                start = vma->vm_end;
1643                vma = vma->vm_next;
1644        } while (vma && vma->vm_start < end);
1645out_unlock:
1646        mmap_write_unlock(mm);
1647        mmput(mm);
1648out:
1649        return ret;
1650}
1651
1652/*
1653 * userfaultfd_wake may be used in combination with the
1654 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1655 */
1656static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1657                            unsigned long arg)
1658{
1659        int ret;
1660        struct uffdio_range uffdio_wake;
1661        struct userfaultfd_wake_range range;
1662        const void __user *buf = (void __user *)arg;
1663
1664        ret = -EFAULT;
1665        if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1666                goto out;
1667
1668        ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1669        if (ret)
1670                goto out;
1671
1672        range.start = uffdio_wake.start;
1673        range.len = uffdio_wake.len;
1674
1675        /*
1676         * len == 0 means wake all and we don't want to wake all here,
1677         * so check it again to be sure.
1678         */
1679        VM_BUG_ON(!range.len);
1680
1681        wake_userfault(ctx, &range);
1682        ret = 0;
1683
1684out:
1685        return ret;
1686}
1687
1688static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1689                            unsigned long arg)
1690{
1691        __s64 ret;
1692        struct uffdio_copy uffdio_copy;
1693        struct uffdio_copy __user *user_uffdio_copy;
1694        struct userfaultfd_wake_range range;
1695
1696        user_uffdio_copy = (struct uffdio_copy __user *) arg;
1697
1698        ret = -EAGAIN;
1699        if (atomic_read(&ctx->mmap_changing))
1700                goto out;
1701
1702        ret = -EFAULT;
1703        if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1704                           /* don't copy "copy" last field */
1705                           sizeof(uffdio_copy)-sizeof(__s64)))
1706                goto out;
1707
1708        ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1709        if (ret)
1710                goto out;
1711        /*
1712         * double check for wraparound just in case. copy_from_user()
1713         * will later check uffdio_copy.src + uffdio_copy.len to fit
1714         * in the userland range.
1715         */
1716        ret = -EINVAL;
1717        if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1718                goto out;
1719        if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1720                goto out;
1721        if (mmget_not_zero(ctx->mm)) {
1722                ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1723                                   uffdio_copy.len, &ctx->mmap_changing,
1724                                   uffdio_copy.mode);
1725                mmput(ctx->mm);
1726        } else {
1727                return -ESRCH;
1728        }
1729        if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1730                return -EFAULT;
1731        if (ret < 0)
1732                goto out;
1733        BUG_ON(!ret);
1734        /* len == 0 would wake all */
1735        range.len = ret;
1736        if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1737                range.start = uffdio_copy.dst;
1738                wake_userfault(ctx, &range);
1739        }
1740        ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1741out:
1742        return ret;
1743}
1744
1745static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1746                                unsigned long arg)
1747{
1748        __s64 ret;
1749        struct uffdio_zeropage uffdio_zeropage;
1750        struct uffdio_zeropage __user *user_uffdio_zeropage;
1751        struct userfaultfd_wake_range range;
1752
1753        user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1754
1755        ret = -EAGAIN;
1756        if (atomic_read(&ctx->mmap_changing))
1757                goto out;
1758
1759        ret = -EFAULT;
1760        if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1761                           /* don't copy "zeropage" last field */
1762                           sizeof(uffdio_zeropage)-sizeof(__s64)))
1763                goto out;
1764
1765        ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1766                             uffdio_zeropage.range.len);
1767        if (ret)
1768                goto out;
1769        ret = -EINVAL;
1770        if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1771                goto out;
1772
1773        if (mmget_not_zero(ctx->mm)) {
1774                ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1775                                     uffdio_zeropage.range.len,
1776                                     &ctx->mmap_changing);
1777                mmput(ctx->mm);
1778        } else {
1779                return -ESRCH;
1780        }
1781        if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1782                return -EFAULT;
1783        if (ret < 0)
1784                goto out;
1785        /* len == 0 would wake all */
1786        BUG_ON(!ret);
1787        range.len = ret;
1788        if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1789                range.start = uffdio_zeropage.range.start;
1790                wake_userfault(ctx, &range);
1791        }
1792        ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1793out:
1794        return ret;
1795}
1796
1797static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1798                                    unsigned long arg)
1799{
1800        int ret;
1801        struct uffdio_writeprotect uffdio_wp;
1802        struct uffdio_writeprotect __user *user_uffdio_wp;
1803        struct userfaultfd_wake_range range;
1804        bool mode_wp, mode_dontwake;
1805
1806        if (atomic_read(&ctx->mmap_changing))
1807                return -EAGAIN;
1808
1809        user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1810
1811        if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1812                           sizeof(struct uffdio_writeprotect)))
1813                return -EFAULT;
1814
1815        ret = validate_range(ctx->mm, uffdio_wp.range.start,
1816                             uffdio_wp.range.len);
1817        if (ret)
1818                return ret;
1819
1820        if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1821                               UFFDIO_WRITEPROTECT_MODE_WP))
1822                return -EINVAL;
1823
1824        mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1825        mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1826
1827        if (mode_wp && mode_dontwake)
1828                return -EINVAL;
1829
1830        if (mmget_not_zero(ctx->mm)) {
1831                ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1832                                          uffdio_wp.range.len, mode_wp,
1833                                          &ctx->mmap_changing);
1834                mmput(ctx->mm);
1835        } else {
1836                return -ESRCH;
1837        }
1838
1839        if (ret)
1840                return ret;
1841
1842        if (!mode_wp && !mode_dontwake) {
1843                range.start = uffdio_wp.range.start;
1844                range.len = uffdio_wp.range.len;
1845                wake_userfault(ctx, &range);
1846        }
1847        return ret;
1848}
1849
1850static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1851{
1852        __s64 ret;
1853        struct uffdio_continue uffdio_continue;
1854        struct uffdio_continue __user *user_uffdio_continue;
1855        struct userfaultfd_wake_range range;
1856
1857        user_uffdio_continue = (struct uffdio_continue __user *)arg;
1858
1859        ret = -EAGAIN;
1860        if (atomic_read(&ctx->mmap_changing))
1861                goto out;
1862
1863        ret = -EFAULT;
1864        if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1865                           /* don't copy the output fields */
1866                           sizeof(uffdio_continue) - (sizeof(__s64))))
1867                goto out;
1868
1869        ret = validate_range(ctx->mm, uffdio_continue.range.start,
1870                             uffdio_continue.range.len);
1871        if (ret)
1872                goto out;
1873
1874        ret = -EINVAL;
1875        /* double check for wraparound just in case. */
1876        if (uffdio_continue.range.start + uffdio_continue.range.len <=
1877            uffdio_continue.range.start) {
1878                goto out;
1879        }
1880        if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1881                goto out;
1882
1883        if (mmget_not_zero(ctx->mm)) {
1884                ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1885                                     uffdio_continue.range.len,
1886                                     &ctx->mmap_changing);
1887                mmput(ctx->mm);
1888        } else {
1889                return -ESRCH;
1890        }
1891
1892        if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1893                return -EFAULT;
1894        if (ret < 0)
1895                goto out;
1896
1897        /* len == 0 would wake all */
1898        BUG_ON(!ret);
1899        range.len = ret;
1900        if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1901                range.start = uffdio_continue.range.start;
1902                wake_userfault(ctx, &range);
1903        }
1904        ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1905
1906out:
1907        return ret;
1908}
1909
1910static inline unsigned int uffd_ctx_features(__u64 user_features)
1911{
1912        /*
1913         * For the current set of features the bits just coincide. Set
1914         * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1915         */
1916        return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1917}
1918
1919/*
1920 * userland asks for a certain API version and we return which bits
1921 * and ioctl commands are implemented in this kernel for such API
1922 * version or -EINVAL if unknown.
1923 */
1924static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1925                           unsigned long arg)
1926{
1927        struct uffdio_api uffdio_api;
1928        void __user *buf = (void __user *)arg;
1929        unsigned int ctx_features;
1930        int ret;
1931        __u64 features;
1932
1933        ret = -EFAULT;
1934        if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1935                goto out;
1936        features = uffdio_api.features;
1937        ret = -EINVAL;
1938        if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1939                goto err_out;
1940        ret = -EPERM;
1941        if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1942                goto err_out;
1943        /* report all available features and ioctls to userland */
1944        uffdio_api.features = UFFD_API_FEATURES;
1945#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1946        uffdio_api.features &=
1947                ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1948#endif
1949#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1950        uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1951#endif
1952        uffdio_api.ioctls = UFFD_API_IOCTLS;
1953        ret = -EFAULT;
1954        if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1955                goto out;
1956
1957        /* only enable the requested features for this uffd context */
1958        ctx_features = uffd_ctx_features(features);
1959        ret = -EINVAL;
1960        if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1961                goto err_out;
1962
1963        ret = 0;
1964out:
1965        return ret;
1966err_out:
1967        memset(&uffdio_api, 0, sizeof(uffdio_api));
1968        if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1969                ret = -EFAULT;
1970        goto out;
1971}
1972
1973static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1974                              unsigned long arg)
1975{
1976        int ret = -EINVAL;
1977        struct userfaultfd_ctx *ctx = file->private_data;
1978
1979        if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1980                return -EINVAL;
1981
1982        switch(cmd) {
1983        case UFFDIO_API:
1984                ret = userfaultfd_api(ctx, arg);
1985                break;
1986        case UFFDIO_REGISTER:
1987                ret = userfaultfd_register(ctx, arg);
1988                break;
1989        case UFFDIO_UNREGISTER:
1990                ret = userfaultfd_unregister(ctx, arg);
1991                break;
1992        case UFFDIO_WAKE:
1993                ret = userfaultfd_wake(ctx, arg);
1994                break;
1995        case UFFDIO_COPY:
1996                ret = userfaultfd_copy(ctx, arg);
1997                break;
1998        case UFFDIO_ZEROPAGE:
1999                ret = userfaultfd_zeropage(ctx, arg);
2000                break;
2001        case UFFDIO_WRITEPROTECT:
2002                ret = userfaultfd_writeprotect(ctx, arg);
2003                break;
2004        case UFFDIO_CONTINUE:
2005                ret = userfaultfd_continue(ctx, arg);
2006                break;
2007        }
2008        return ret;
2009}
2010
2011#ifdef CONFIG_PROC_FS
2012static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2013{
2014        struct userfaultfd_ctx *ctx = f->private_data;
2015        wait_queue_entry_t *wq;
2016        unsigned long pending = 0, total = 0;
2017
2018        spin_lock_irq(&ctx->fault_pending_wqh.lock);
2019        list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2020                pending++;
2021                total++;
2022        }
2023        list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2024                total++;
2025        }
2026        spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2027
2028        /*
2029         * If more protocols will be added, there will be all shown
2030         * separated by a space. Like this:
2031         *      protocols: aa:... bb:...
2032         */
2033        seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2034                   pending, total, UFFD_API, ctx->features,
2035                   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2036}
2037#endif
2038
2039static const struct file_operations userfaultfd_fops = {
2040#ifdef CONFIG_PROC_FS
2041        .show_fdinfo    = userfaultfd_show_fdinfo,
2042#endif
2043        .release        = userfaultfd_release,
2044        .poll           = userfaultfd_poll,
2045        .read           = userfaultfd_read,
2046        .unlocked_ioctl = userfaultfd_ioctl,
2047        .compat_ioctl   = compat_ptr_ioctl,
2048        .llseek         = noop_llseek,
2049};
2050
2051static void init_once_userfaultfd_ctx(void *mem)
2052{
2053        struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2054
2055        init_waitqueue_head(&ctx->fault_pending_wqh);
2056        init_waitqueue_head(&ctx->fault_wqh);
2057        init_waitqueue_head(&ctx->event_wqh);
2058        init_waitqueue_head(&ctx->fd_wqh);
2059        seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2060}
2061
2062SYSCALL_DEFINE1(userfaultfd, int, flags)
2063{
2064        struct userfaultfd_ctx *ctx;
2065        int fd;
2066
2067        if (!sysctl_unprivileged_userfaultfd &&
2068            (flags & UFFD_USER_MODE_ONLY) == 0 &&
2069            !capable(CAP_SYS_PTRACE)) {
2070                printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2071                        "sysctl knob to 1 if kernel faults must be handled "
2072                        "without obtaining CAP_SYS_PTRACE capability\n");
2073                return -EPERM;
2074        }
2075
2076        BUG_ON(!current->mm);
2077
2078        /* Check the UFFD_* constants for consistency.  */
2079        BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2080        BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2081        BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2082
2083        if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2084                return -EINVAL;
2085
2086        ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2087        if (!ctx)
2088                return -ENOMEM;
2089
2090        refcount_set(&ctx->refcount, 1);
2091        ctx->flags = flags;
2092        ctx->features = 0;
2093        ctx->released = false;
2094        atomic_set(&ctx->mmap_changing, 0);
2095        ctx->mm = current->mm;
2096        /* prevent the mm struct to be freed */
2097        mmgrab(ctx->mm);
2098
2099        fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2100                        O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2101        if (fd < 0) {
2102                mmdrop(ctx->mm);
2103                kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2104        }
2105        return fd;
2106}
2107
2108static int __init userfaultfd_init(void)
2109{
2110        userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2111                                                sizeof(struct userfaultfd_ctx),
2112                                                0,
2113                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2114                                                init_once_userfaultfd_ctx);
2115        return 0;
2116}
2117__initcall(userfaultfd_init);
2118