linux/fs/verity/verify.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Data verification functions, i.e. hooks for ->readpages()
   4 *
   5 * Copyright 2019 Google LLC
   6 */
   7
   8#include "fsverity_private.h"
   9
  10#include <crypto/hash.h>
  11#include <linux/bio.h>
  12#include <linux/ratelimit.h>
  13
  14static struct workqueue_struct *fsverity_read_workqueue;
  15
  16/**
  17 * hash_at_level() - compute the location of the block's hash at the given level
  18 *
  19 * @params:     (in) the Merkle tree parameters
  20 * @dindex:     (in) the index of the data block being verified
  21 * @level:      (in) the level of hash we want (0 is leaf level)
  22 * @hindex:     (out) the index of the hash block containing the wanted hash
  23 * @hoffset:    (out) the byte offset to the wanted hash within the hash block
  24 */
  25static void hash_at_level(const struct merkle_tree_params *params,
  26                          pgoff_t dindex, unsigned int level, pgoff_t *hindex,
  27                          unsigned int *hoffset)
  28{
  29        pgoff_t position;
  30
  31        /* Offset of the hash within the level's region, in hashes */
  32        position = dindex >> (level * params->log_arity);
  33
  34        /* Index of the hash block in the tree overall */
  35        *hindex = params->level_start[level] + (position >> params->log_arity);
  36
  37        /* Offset of the wanted hash (in bytes) within the hash block */
  38        *hoffset = (position & ((1 << params->log_arity) - 1)) <<
  39                   (params->log_blocksize - params->log_arity);
  40}
  41
  42/* Extract a hash from a hash page */
  43static void extract_hash(struct page *hpage, unsigned int hoffset,
  44                         unsigned int hsize, u8 *out)
  45{
  46        void *virt = kmap_atomic(hpage);
  47
  48        memcpy(out, virt + hoffset, hsize);
  49        kunmap_atomic(virt);
  50}
  51
  52static inline int cmp_hashes(const struct fsverity_info *vi,
  53                             const u8 *want_hash, const u8 *real_hash,
  54                             pgoff_t index, int level)
  55{
  56        const unsigned int hsize = vi->tree_params.digest_size;
  57
  58        if (memcmp(want_hash, real_hash, hsize) == 0)
  59                return 0;
  60
  61        fsverity_err(vi->inode,
  62                     "FILE CORRUPTED! index=%lu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN",
  63                     index, level,
  64                     vi->tree_params.hash_alg->name, hsize, want_hash,
  65                     vi->tree_params.hash_alg->name, hsize, real_hash);
  66        return -EBADMSG;
  67}
  68
  69/*
  70 * Verify a single data page against the file's Merkle tree.
  71 *
  72 * In principle, we need to verify the entire path to the root node.  However,
  73 * for efficiency the filesystem may cache the hash pages.  Therefore we need
  74 * only ascend the tree until an already-verified page is seen, as indicated by
  75 * the PageChecked bit being set; then verify the path to that page.
  76 *
  77 * This code currently only supports the case where the verity block size is
  78 * equal to PAGE_SIZE.  Doing otherwise would be possible but tricky, since we
  79 * wouldn't be able to use the PageChecked bit.
  80 *
  81 * Note that multiple processes may race to verify a hash page and mark it
  82 * Checked, but it doesn't matter; the result will be the same either way.
  83 *
  84 * Return: true if the page is valid, else false.
  85 */
  86static bool verify_page(struct inode *inode, const struct fsverity_info *vi,
  87                        struct ahash_request *req, struct page *data_page,
  88                        unsigned long level0_ra_pages)
  89{
  90        const struct merkle_tree_params *params = &vi->tree_params;
  91        const unsigned int hsize = params->digest_size;
  92        const pgoff_t index = data_page->index;
  93        int level;
  94        u8 _want_hash[FS_VERITY_MAX_DIGEST_SIZE];
  95        const u8 *want_hash;
  96        u8 real_hash[FS_VERITY_MAX_DIGEST_SIZE];
  97        struct page *hpages[FS_VERITY_MAX_LEVELS];
  98        unsigned int hoffsets[FS_VERITY_MAX_LEVELS];
  99        int err;
 100
 101        if (WARN_ON_ONCE(!PageLocked(data_page) || PageUptodate(data_page)))
 102                return false;
 103
 104        pr_debug_ratelimited("Verifying data page %lu...\n", index);
 105
 106        /*
 107         * Starting at the leaf level, ascend the tree saving hash pages along
 108         * the way until we find a verified hash page, indicated by PageChecked;
 109         * or until we reach the root.
 110         */
 111        for (level = 0; level < params->num_levels; level++) {
 112                pgoff_t hindex;
 113                unsigned int hoffset;
 114                struct page *hpage;
 115
 116                hash_at_level(params, index, level, &hindex, &hoffset);
 117
 118                pr_debug_ratelimited("Level %d: hindex=%lu, hoffset=%u\n",
 119                                     level, hindex, hoffset);
 120
 121                hpage = inode->i_sb->s_vop->read_merkle_tree_page(inode, hindex,
 122                                level == 0 ? level0_ra_pages : 0);
 123                if (IS_ERR(hpage)) {
 124                        err = PTR_ERR(hpage);
 125                        fsverity_err(inode,
 126                                     "Error %d reading Merkle tree page %lu",
 127                                     err, hindex);
 128                        goto out;
 129                }
 130
 131                if (PageChecked(hpage)) {
 132                        extract_hash(hpage, hoffset, hsize, _want_hash);
 133                        want_hash = _want_hash;
 134                        put_page(hpage);
 135                        pr_debug_ratelimited("Hash page already checked, want %s:%*phN\n",
 136                                             params->hash_alg->name,
 137                                             hsize, want_hash);
 138                        goto descend;
 139                }
 140                pr_debug_ratelimited("Hash page not yet checked\n");
 141                hpages[level] = hpage;
 142                hoffsets[level] = hoffset;
 143        }
 144
 145        want_hash = vi->root_hash;
 146        pr_debug("Want root hash: %s:%*phN\n",
 147                 params->hash_alg->name, hsize, want_hash);
 148descend:
 149        /* Descend the tree verifying hash pages */
 150        for (; level > 0; level--) {
 151                struct page *hpage = hpages[level - 1];
 152                unsigned int hoffset = hoffsets[level - 1];
 153
 154                err = fsverity_hash_page(params, inode, req, hpage, real_hash);
 155                if (err)
 156                        goto out;
 157                err = cmp_hashes(vi, want_hash, real_hash, index, level - 1);
 158                if (err)
 159                        goto out;
 160                SetPageChecked(hpage);
 161                extract_hash(hpage, hoffset, hsize, _want_hash);
 162                want_hash = _want_hash;
 163                put_page(hpage);
 164                pr_debug("Verified hash page at level %d, now want %s:%*phN\n",
 165                         level - 1, params->hash_alg->name, hsize, want_hash);
 166        }
 167
 168        /* Finally, verify the data page */
 169        err = fsverity_hash_page(params, inode, req, data_page, real_hash);
 170        if (err)
 171                goto out;
 172        err = cmp_hashes(vi, want_hash, real_hash, index, -1);
 173out:
 174        for (; level > 0; level--)
 175                put_page(hpages[level - 1]);
 176
 177        return err == 0;
 178}
 179
 180/**
 181 * fsverity_verify_page() - verify a data page
 182 * @page: the page to verity
 183 *
 184 * Verify a page that has just been read from a verity file.  The page must be a
 185 * pagecache page that is still locked and not yet uptodate.
 186 *
 187 * Return: true if the page is valid, else false.
 188 */
 189bool fsverity_verify_page(struct page *page)
 190{
 191        struct inode *inode = page->mapping->host;
 192        const struct fsverity_info *vi = inode->i_verity_info;
 193        struct ahash_request *req;
 194        bool valid;
 195
 196        /* This allocation never fails, since it's mempool-backed. */
 197        req = fsverity_alloc_hash_request(vi->tree_params.hash_alg, GFP_NOFS);
 198
 199        valid = verify_page(inode, vi, req, page, 0);
 200
 201        fsverity_free_hash_request(vi->tree_params.hash_alg, req);
 202
 203        return valid;
 204}
 205EXPORT_SYMBOL_GPL(fsverity_verify_page);
 206
 207#ifdef CONFIG_BLOCK
 208/**
 209 * fsverity_verify_bio() - verify a 'read' bio that has just completed
 210 * @bio: the bio to verify
 211 *
 212 * Verify a set of pages that have just been read from a verity file.  The pages
 213 * must be pagecache pages that are still locked and not yet uptodate.  Pages
 214 * that fail verification are set to the Error state.  Verification is skipped
 215 * for pages already in the Error state, e.g. due to fscrypt decryption failure.
 216 *
 217 * This is a helper function for use by the ->readpages() method of filesystems
 218 * that issue bios to read data directly into the page cache.  Filesystems that
 219 * populate the page cache without issuing bios (e.g. non block-based
 220 * filesystems) must instead call fsverity_verify_page() directly on each page.
 221 * All filesystems must also call fsverity_verify_page() on holes.
 222 */
 223void fsverity_verify_bio(struct bio *bio)
 224{
 225        struct inode *inode = bio_first_page_all(bio)->mapping->host;
 226        const struct fsverity_info *vi = inode->i_verity_info;
 227        const struct merkle_tree_params *params = &vi->tree_params;
 228        struct ahash_request *req;
 229        struct bio_vec *bv;
 230        struct bvec_iter_all iter_all;
 231        unsigned long max_ra_pages = 0;
 232
 233        /* This allocation never fails, since it's mempool-backed. */
 234        req = fsverity_alloc_hash_request(params->hash_alg, GFP_NOFS);
 235
 236        if (bio->bi_opf & REQ_RAHEAD) {
 237                /*
 238                 * If this bio is for data readahead, then we also do readahead
 239                 * of the first (largest) level of the Merkle tree.  Namely,
 240                 * when a Merkle tree page is read, we also try to piggy-back on
 241                 * some additional pages -- up to 1/4 the number of data pages.
 242                 *
 243                 * This improves sequential read performance, as it greatly
 244                 * reduces the number of I/O requests made to the Merkle tree.
 245                 */
 246                bio_for_each_segment_all(bv, bio, iter_all)
 247                        max_ra_pages++;
 248                max_ra_pages /= 4;
 249        }
 250
 251        bio_for_each_segment_all(bv, bio, iter_all) {
 252                struct page *page = bv->bv_page;
 253                unsigned long level0_index = page->index >> params->log_arity;
 254                unsigned long level0_ra_pages =
 255                        min(max_ra_pages, params->level0_blocks - level0_index);
 256
 257                if (!PageError(page) &&
 258                    !verify_page(inode, vi, req, page, level0_ra_pages))
 259                        SetPageError(page);
 260        }
 261
 262        fsverity_free_hash_request(params->hash_alg, req);
 263}
 264EXPORT_SYMBOL_GPL(fsverity_verify_bio);
 265#endif /* CONFIG_BLOCK */
 266
 267/**
 268 * fsverity_enqueue_verify_work() - enqueue work on the fs-verity workqueue
 269 * @work: the work to enqueue
 270 *
 271 * Enqueue verification work for asynchronous processing.
 272 */
 273void fsverity_enqueue_verify_work(struct work_struct *work)
 274{
 275        queue_work(fsverity_read_workqueue, work);
 276}
 277EXPORT_SYMBOL_GPL(fsverity_enqueue_verify_work);
 278
 279int __init fsverity_init_workqueue(void)
 280{
 281        /*
 282         * Use an unbound workqueue to allow bios to be verified in parallel
 283         * even when they happen to complete on the same CPU.  This sacrifices
 284         * locality, but it's worthwhile since hashing is CPU-intensive.
 285         *
 286         * Also use a high-priority workqueue to prioritize verification work,
 287         * which blocks reads from completing, over regular application tasks.
 288         */
 289        fsverity_read_workqueue = alloc_workqueue("fsverity_read_queue",
 290                                                  WQ_UNBOUND | WQ_HIGHPRI,
 291                                                  num_online_cpus());
 292        if (!fsverity_read_workqueue)
 293                return -ENOMEM;
 294        return 0;
 295}
 296
 297void __init fsverity_exit_workqueue(void)
 298{
 299        destroy_workqueue(fsverity_read_workqueue);
 300        fsverity_read_workqueue = NULL;
 301}
 302