linux/fs/xfs/libxfs/xfs_ialloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_mount.h"
  14#include "xfs_inode.h"
  15#include "xfs_btree.h"
  16#include "xfs_ialloc.h"
  17#include "xfs_ialloc_btree.h"
  18#include "xfs_alloc.h"
  19#include "xfs_errortag.h"
  20#include "xfs_error.h"
  21#include "xfs_bmap.h"
  22#include "xfs_trans.h"
  23#include "xfs_buf_item.h"
  24#include "xfs_icreate_item.h"
  25#include "xfs_icache.h"
  26#include "xfs_trace.h"
  27#include "xfs_log.h"
  28#include "xfs_rmap.h"
  29#include "xfs_ag.h"
  30
  31/*
  32 * Lookup a record by ino in the btree given by cur.
  33 */
  34int                                     /* error */
  35xfs_inobt_lookup(
  36        struct xfs_btree_cur    *cur,   /* btree cursor */
  37        xfs_agino_t             ino,    /* starting inode of chunk */
  38        xfs_lookup_t            dir,    /* <=, >=, == */
  39        int                     *stat)  /* success/failure */
  40{
  41        cur->bc_rec.i.ir_startino = ino;
  42        cur->bc_rec.i.ir_holemask = 0;
  43        cur->bc_rec.i.ir_count = 0;
  44        cur->bc_rec.i.ir_freecount = 0;
  45        cur->bc_rec.i.ir_free = 0;
  46        return xfs_btree_lookup(cur, dir, stat);
  47}
  48
  49/*
  50 * Update the record referred to by cur to the value given.
  51 * This either works (return 0) or gets an EFSCORRUPTED error.
  52 */
  53STATIC int                              /* error */
  54xfs_inobt_update(
  55        struct xfs_btree_cur    *cur,   /* btree cursor */
  56        xfs_inobt_rec_incore_t  *irec)  /* btree record */
  57{
  58        union xfs_btree_rec     rec;
  59
  60        rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
  61        if (xfs_has_sparseinodes(cur->bc_mp)) {
  62                rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
  63                rec.inobt.ir_u.sp.ir_count = irec->ir_count;
  64                rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
  65        } else {
  66                /* ir_holemask/ir_count not supported on-disk */
  67                rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
  68        }
  69        rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
  70        return xfs_btree_update(cur, &rec);
  71}
  72
  73/* Convert on-disk btree record to incore inobt record. */
  74void
  75xfs_inobt_btrec_to_irec(
  76        struct xfs_mount                *mp,
  77        const union xfs_btree_rec       *rec,
  78        struct xfs_inobt_rec_incore     *irec)
  79{
  80        irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
  81        if (xfs_has_sparseinodes(mp)) {
  82                irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
  83                irec->ir_count = rec->inobt.ir_u.sp.ir_count;
  84                irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
  85        } else {
  86                /*
  87                 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
  88                 * values for full inode chunks.
  89                 */
  90                irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
  91                irec->ir_count = XFS_INODES_PER_CHUNK;
  92                irec->ir_freecount =
  93                                be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
  94        }
  95        irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
  96}
  97
  98/*
  99 * Get the data from the pointed-to record.
 100 */
 101int
 102xfs_inobt_get_rec(
 103        struct xfs_btree_cur            *cur,
 104        struct xfs_inobt_rec_incore     *irec,
 105        int                             *stat)
 106{
 107        struct xfs_mount                *mp = cur->bc_mp;
 108        xfs_agnumber_t                  agno = cur->bc_ag.pag->pag_agno;
 109        union xfs_btree_rec             *rec;
 110        int                             error;
 111        uint64_t                        realfree;
 112
 113        error = xfs_btree_get_rec(cur, &rec, stat);
 114        if (error || *stat == 0)
 115                return error;
 116
 117        xfs_inobt_btrec_to_irec(mp, rec, irec);
 118
 119        if (!xfs_verify_agino(mp, agno, irec->ir_startino))
 120                goto out_bad_rec;
 121        if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
 122            irec->ir_count > XFS_INODES_PER_CHUNK)
 123                goto out_bad_rec;
 124        if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
 125                goto out_bad_rec;
 126
 127        /* if there are no holes, return the first available offset */
 128        if (!xfs_inobt_issparse(irec->ir_holemask))
 129                realfree = irec->ir_free;
 130        else
 131                realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
 132        if (hweight64(realfree) != irec->ir_freecount)
 133                goto out_bad_rec;
 134
 135        return 0;
 136
 137out_bad_rec:
 138        xfs_warn(mp,
 139                "%s Inode BTree record corruption in AG %d detected!",
 140                cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
 141        xfs_warn(mp,
 142"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
 143                irec->ir_startino, irec->ir_count, irec->ir_freecount,
 144                irec->ir_free, irec->ir_holemask);
 145        return -EFSCORRUPTED;
 146}
 147
 148/*
 149 * Insert a single inobt record. Cursor must already point to desired location.
 150 */
 151int
 152xfs_inobt_insert_rec(
 153        struct xfs_btree_cur    *cur,
 154        uint16_t                holemask,
 155        uint8_t                 count,
 156        int32_t                 freecount,
 157        xfs_inofree_t           free,
 158        int                     *stat)
 159{
 160        cur->bc_rec.i.ir_holemask = holemask;
 161        cur->bc_rec.i.ir_count = count;
 162        cur->bc_rec.i.ir_freecount = freecount;
 163        cur->bc_rec.i.ir_free = free;
 164        return xfs_btree_insert(cur, stat);
 165}
 166
 167/*
 168 * Insert records describing a newly allocated inode chunk into the inobt.
 169 */
 170STATIC int
 171xfs_inobt_insert(
 172        struct xfs_mount        *mp,
 173        struct xfs_trans        *tp,
 174        struct xfs_buf          *agbp,
 175        struct xfs_perag        *pag,
 176        xfs_agino_t             newino,
 177        xfs_agino_t             newlen,
 178        xfs_btnum_t             btnum)
 179{
 180        struct xfs_btree_cur    *cur;
 181        xfs_agino_t             thisino;
 182        int                     i;
 183        int                     error;
 184
 185        cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
 186
 187        for (thisino = newino;
 188             thisino < newino + newlen;
 189             thisino += XFS_INODES_PER_CHUNK) {
 190                error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
 191                if (error) {
 192                        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 193                        return error;
 194                }
 195                ASSERT(i == 0);
 196
 197                error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
 198                                             XFS_INODES_PER_CHUNK,
 199                                             XFS_INODES_PER_CHUNK,
 200                                             XFS_INOBT_ALL_FREE, &i);
 201                if (error) {
 202                        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 203                        return error;
 204                }
 205                ASSERT(i == 1);
 206        }
 207
 208        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 209
 210        return 0;
 211}
 212
 213/*
 214 * Verify that the number of free inodes in the AGI is correct.
 215 */
 216#ifdef DEBUG
 217static int
 218xfs_check_agi_freecount(
 219        struct xfs_btree_cur    *cur)
 220{
 221        if (cur->bc_nlevels == 1) {
 222                xfs_inobt_rec_incore_t rec;
 223                int             freecount = 0;
 224                int             error;
 225                int             i;
 226
 227                error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
 228                if (error)
 229                        return error;
 230
 231                do {
 232                        error = xfs_inobt_get_rec(cur, &rec, &i);
 233                        if (error)
 234                                return error;
 235
 236                        if (i) {
 237                                freecount += rec.ir_freecount;
 238                                error = xfs_btree_increment(cur, 0, &i);
 239                                if (error)
 240                                        return error;
 241                        }
 242                } while (i == 1);
 243
 244                if (!xfs_is_shutdown(cur->bc_mp))
 245                        ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
 246        }
 247        return 0;
 248}
 249#else
 250#define xfs_check_agi_freecount(cur)    0
 251#endif
 252
 253/*
 254 * Initialise a new set of inodes. When called without a transaction context
 255 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
 256 * than logging them (which in a transaction context puts them into the AIL
 257 * for writeback rather than the xfsbufd queue).
 258 */
 259int
 260xfs_ialloc_inode_init(
 261        struct xfs_mount        *mp,
 262        struct xfs_trans        *tp,
 263        struct list_head        *buffer_list,
 264        int                     icount,
 265        xfs_agnumber_t          agno,
 266        xfs_agblock_t           agbno,
 267        xfs_agblock_t           length,
 268        unsigned int            gen)
 269{
 270        struct xfs_buf          *fbuf;
 271        struct xfs_dinode       *free;
 272        int                     nbufs;
 273        int                     version;
 274        int                     i, j;
 275        xfs_daddr_t             d;
 276        xfs_ino_t               ino = 0;
 277        int                     error;
 278
 279        /*
 280         * Loop over the new block(s), filling in the inodes.  For small block
 281         * sizes, manipulate the inodes in buffers  which are multiples of the
 282         * blocks size.
 283         */
 284        nbufs = length / M_IGEO(mp)->blocks_per_cluster;
 285
 286        /*
 287         * Figure out what version number to use in the inodes we create.  If
 288         * the superblock version has caught up to the one that supports the new
 289         * inode format, then use the new inode version.  Otherwise use the old
 290         * version so that old kernels will continue to be able to use the file
 291         * system.
 292         *
 293         * For v3 inodes, we also need to write the inode number into the inode,
 294         * so calculate the first inode number of the chunk here as
 295         * XFS_AGB_TO_AGINO() only works within a filesystem block, not
 296         * across multiple filesystem blocks (such as a cluster) and so cannot
 297         * be used in the cluster buffer loop below.
 298         *
 299         * Further, because we are writing the inode directly into the buffer
 300         * and calculating a CRC on the entire inode, we have ot log the entire
 301         * inode so that the entire range the CRC covers is present in the log.
 302         * That means for v3 inode we log the entire buffer rather than just the
 303         * inode cores.
 304         */
 305        if (xfs_has_v3inodes(mp)) {
 306                version = 3;
 307                ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
 308
 309                /*
 310                 * log the initialisation that is about to take place as an
 311                 * logical operation. This means the transaction does not
 312                 * need to log the physical changes to the inode buffers as log
 313                 * recovery will know what initialisation is actually needed.
 314                 * Hence we only need to log the buffers as "ordered" buffers so
 315                 * they track in the AIL as if they were physically logged.
 316                 */
 317                if (tp)
 318                        xfs_icreate_log(tp, agno, agbno, icount,
 319                                        mp->m_sb.sb_inodesize, length, gen);
 320        } else
 321                version = 2;
 322
 323        for (j = 0; j < nbufs; j++) {
 324                /*
 325                 * Get the block.
 326                 */
 327                d = XFS_AGB_TO_DADDR(mp, agno, agbno +
 328                                (j * M_IGEO(mp)->blocks_per_cluster));
 329                error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
 330                                mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
 331                                XBF_UNMAPPED, &fbuf);
 332                if (error)
 333                        return error;
 334
 335                /* Initialize the inode buffers and log them appropriately. */
 336                fbuf->b_ops = &xfs_inode_buf_ops;
 337                xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
 338                for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
 339                        int     ioffset = i << mp->m_sb.sb_inodelog;
 340
 341                        free = xfs_make_iptr(mp, fbuf, i);
 342                        free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
 343                        free->di_version = version;
 344                        free->di_gen = cpu_to_be32(gen);
 345                        free->di_next_unlinked = cpu_to_be32(NULLAGINO);
 346
 347                        if (version == 3) {
 348                                free->di_ino = cpu_to_be64(ino);
 349                                ino++;
 350                                uuid_copy(&free->di_uuid,
 351                                          &mp->m_sb.sb_meta_uuid);
 352                                xfs_dinode_calc_crc(mp, free);
 353                        } else if (tp) {
 354                                /* just log the inode core */
 355                                xfs_trans_log_buf(tp, fbuf, ioffset,
 356                                          ioffset + XFS_DINODE_SIZE(mp) - 1);
 357                        }
 358                }
 359
 360                if (tp) {
 361                        /*
 362                         * Mark the buffer as an inode allocation buffer so it
 363                         * sticks in AIL at the point of this allocation
 364                         * transaction. This ensures the they are on disk before
 365                         * the tail of the log can be moved past this
 366                         * transaction (i.e. by preventing relogging from moving
 367                         * it forward in the log).
 368                         */
 369                        xfs_trans_inode_alloc_buf(tp, fbuf);
 370                        if (version == 3) {
 371                                /*
 372                                 * Mark the buffer as ordered so that they are
 373                                 * not physically logged in the transaction but
 374                                 * still tracked in the AIL as part of the
 375                                 * transaction and pin the log appropriately.
 376                                 */
 377                                xfs_trans_ordered_buf(tp, fbuf);
 378                        }
 379                } else {
 380                        fbuf->b_flags |= XBF_DONE;
 381                        xfs_buf_delwri_queue(fbuf, buffer_list);
 382                        xfs_buf_relse(fbuf);
 383                }
 384        }
 385        return 0;
 386}
 387
 388/*
 389 * Align startino and allocmask for a recently allocated sparse chunk such that
 390 * they are fit for insertion (or merge) into the on-disk inode btrees.
 391 *
 392 * Background:
 393 *
 394 * When enabled, sparse inode support increases the inode alignment from cluster
 395 * size to inode chunk size. This means that the minimum range between two
 396 * non-adjacent inode records in the inobt is large enough for a full inode
 397 * record. This allows for cluster sized, cluster aligned block allocation
 398 * without need to worry about whether the resulting inode record overlaps with
 399 * another record in the tree. Without this basic rule, we would have to deal
 400 * with the consequences of overlap by potentially undoing recent allocations in
 401 * the inode allocation codepath.
 402 *
 403 * Because of this alignment rule (which is enforced on mount), there are two
 404 * inobt possibilities for newly allocated sparse chunks. One is that the
 405 * aligned inode record for the chunk covers a range of inodes not already
 406 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
 407 * other is that a record already exists at the aligned startino that considers
 408 * the newly allocated range as sparse. In the latter case, record content is
 409 * merged in hope that sparse inode chunks fill to full chunks over time.
 410 */
 411STATIC void
 412xfs_align_sparse_ino(
 413        struct xfs_mount                *mp,
 414        xfs_agino_t                     *startino,
 415        uint16_t                        *allocmask)
 416{
 417        xfs_agblock_t                   agbno;
 418        xfs_agblock_t                   mod;
 419        int                             offset;
 420
 421        agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
 422        mod = agbno % mp->m_sb.sb_inoalignmt;
 423        if (!mod)
 424                return;
 425
 426        /* calculate the inode offset and align startino */
 427        offset = XFS_AGB_TO_AGINO(mp, mod);
 428        *startino -= offset;
 429
 430        /*
 431         * Since startino has been aligned down, left shift allocmask such that
 432         * it continues to represent the same physical inodes relative to the
 433         * new startino.
 434         */
 435        *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
 436}
 437
 438/*
 439 * Determine whether the source inode record can merge into the target. Both
 440 * records must be sparse, the inode ranges must match and there must be no
 441 * allocation overlap between the records.
 442 */
 443STATIC bool
 444__xfs_inobt_can_merge(
 445        struct xfs_inobt_rec_incore     *trec,  /* tgt record */
 446        struct xfs_inobt_rec_incore     *srec)  /* src record */
 447{
 448        uint64_t                        talloc;
 449        uint64_t                        salloc;
 450
 451        /* records must cover the same inode range */
 452        if (trec->ir_startino != srec->ir_startino)
 453                return false;
 454
 455        /* both records must be sparse */
 456        if (!xfs_inobt_issparse(trec->ir_holemask) ||
 457            !xfs_inobt_issparse(srec->ir_holemask))
 458                return false;
 459
 460        /* both records must track some inodes */
 461        if (!trec->ir_count || !srec->ir_count)
 462                return false;
 463
 464        /* can't exceed capacity of a full record */
 465        if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
 466                return false;
 467
 468        /* verify there is no allocation overlap */
 469        talloc = xfs_inobt_irec_to_allocmask(trec);
 470        salloc = xfs_inobt_irec_to_allocmask(srec);
 471        if (talloc & salloc)
 472                return false;
 473
 474        return true;
 475}
 476
 477/*
 478 * Merge the source inode record into the target. The caller must call
 479 * __xfs_inobt_can_merge() to ensure the merge is valid.
 480 */
 481STATIC void
 482__xfs_inobt_rec_merge(
 483        struct xfs_inobt_rec_incore     *trec,  /* target */
 484        struct xfs_inobt_rec_incore     *srec)  /* src */
 485{
 486        ASSERT(trec->ir_startino == srec->ir_startino);
 487
 488        /* combine the counts */
 489        trec->ir_count += srec->ir_count;
 490        trec->ir_freecount += srec->ir_freecount;
 491
 492        /*
 493         * Merge the holemask and free mask. For both fields, 0 bits refer to
 494         * allocated inodes. We combine the allocated ranges with bitwise AND.
 495         */
 496        trec->ir_holemask &= srec->ir_holemask;
 497        trec->ir_free &= srec->ir_free;
 498}
 499
 500/*
 501 * Insert a new sparse inode chunk into the associated inode btree. The inode
 502 * record for the sparse chunk is pre-aligned to a startino that should match
 503 * any pre-existing sparse inode record in the tree. This allows sparse chunks
 504 * to fill over time.
 505 *
 506 * This function supports two modes of handling preexisting records depending on
 507 * the merge flag. If merge is true, the provided record is merged with the
 508 * existing record and updated in place. The merged record is returned in nrec.
 509 * If merge is false, an existing record is replaced with the provided record.
 510 * If no preexisting record exists, the provided record is always inserted.
 511 *
 512 * It is considered corruption if a merge is requested and not possible. Given
 513 * the sparse inode alignment constraints, this should never happen.
 514 */
 515STATIC int
 516xfs_inobt_insert_sprec(
 517        struct xfs_mount                *mp,
 518        struct xfs_trans                *tp,
 519        struct xfs_buf                  *agbp,
 520        struct xfs_perag                *pag,
 521        int                             btnum,
 522        struct xfs_inobt_rec_incore     *nrec,  /* in/out: new/merged rec. */
 523        bool                            merge)  /* merge or replace */
 524{
 525        struct xfs_btree_cur            *cur;
 526        int                             error;
 527        int                             i;
 528        struct xfs_inobt_rec_incore     rec;
 529
 530        cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
 531
 532        /* the new record is pre-aligned so we know where to look */
 533        error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
 534        if (error)
 535                goto error;
 536        /* if nothing there, insert a new record and return */
 537        if (i == 0) {
 538                error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
 539                                             nrec->ir_count, nrec->ir_freecount,
 540                                             nrec->ir_free, &i);
 541                if (error)
 542                        goto error;
 543                if (XFS_IS_CORRUPT(mp, i != 1)) {
 544                        error = -EFSCORRUPTED;
 545                        goto error;
 546                }
 547
 548                goto out;
 549        }
 550
 551        /*
 552         * A record exists at this startino. Merge or replace the record
 553         * depending on what we've been asked to do.
 554         */
 555        if (merge) {
 556                error = xfs_inobt_get_rec(cur, &rec, &i);
 557                if (error)
 558                        goto error;
 559                if (XFS_IS_CORRUPT(mp, i != 1)) {
 560                        error = -EFSCORRUPTED;
 561                        goto error;
 562                }
 563                if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
 564                        error = -EFSCORRUPTED;
 565                        goto error;
 566                }
 567
 568                /*
 569                 * This should never fail. If we have coexisting records that
 570                 * cannot merge, something is seriously wrong.
 571                 */
 572                if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
 573                        error = -EFSCORRUPTED;
 574                        goto error;
 575                }
 576
 577                trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
 578                                         rec.ir_holemask, nrec->ir_startino,
 579                                         nrec->ir_holemask);
 580
 581                /* merge to nrec to output the updated record */
 582                __xfs_inobt_rec_merge(nrec, &rec);
 583
 584                trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
 585                                          nrec->ir_holemask);
 586
 587                error = xfs_inobt_rec_check_count(mp, nrec);
 588                if (error)
 589                        goto error;
 590        }
 591
 592        error = xfs_inobt_update(cur, nrec);
 593        if (error)
 594                goto error;
 595
 596out:
 597        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 598        return 0;
 599error:
 600        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 601        return error;
 602}
 603
 604/*
 605 * Allocate new inodes in the allocation group specified by agbp.  Returns 0 if
 606 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
 607 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
 608 * inode count threshold, or the usual negative error code for other errors.
 609 */
 610STATIC int
 611xfs_ialloc_ag_alloc(
 612        struct xfs_trans        *tp,
 613        struct xfs_buf          *agbp,
 614        struct xfs_perag        *pag)
 615{
 616        struct xfs_agi          *agi;
 617        struct xfs_alloc_arg    args;
 618        int                     error;
 619        xfs_agino_t             newino;         /* new first inode's number */
 620        xfs_agino_t             newlen;         /* new number of inodes */
 621        int                     isaligned = 0;  /* inode allocation at stripe */
 622                                                /* unit boundary */
 623        /* init. to full chunk */
 624        struct xfs_inobt_rec_incore rec;
 625        struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
 626        uint16_t                allocmask = (uint16_t) -1;
 627        int                     do_sparse = 0;
 628
 629        memset(&args, 0, sizeof(args));
 630        args.tp = tp;
 631        args.mp = tp->t_mountp;
 632        args.fsbno = NULLFSBLOCK;
 633        args.oinfo = XFS_RMAP_OINFO_INODES;
 634
 635#ifdef DEBUG
 636        /* randomly do sparse inode allocations */
 637        if (xfs_has_sparseinodes(tp->t_mountp) &&
 638            igeo->ialloc_min_blks < igeo->ialloc_blks)
 639                do_sparse = prandom_u32() & 1;
 640#endif
 641
 642        /*
 643         * Locking will ensure that we don't have two callers in here
 644         * at one time.
 645         */
 646        newlen = igeo->ialloc_inos;
 647        if (igeo->maxicount &&
 648            percpu_counter_read_positive(&args.mp->m_icount) + newlen >
 649                                                        igeo->maxicount)
 650                return -ENOSPC;
 651        args.minlen = args.maxlen = igeo->ialloc_blks;
 652        /*
 653         * First try to allocate inodes contiguous with the last-allocated
 654         * chunk of inodes.  If the filesystem is striped, this will fill
 655         * an entire stripe unit with inodes.
 656         */
 657        agi = agbp->b_addr;
 658        newino = be32_to_cpu(agi->agi_newino);
 659        args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
 660                     igeo->ialloc_blks;
 661        if (do_sparse)
 662                goto sparse_alloc;
 663        if (likely(newino != NULLAGINO &&
 664                  (args.agbno < be32_to_cpu(agi->agi_length)))) {
 665                args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
 666                args.type = XFS_ALLOCTYPE_THIS_BNO;
 667                args.prod = 1;
 668
 669                /*
 670                 * We need to take into account alignment here to ensure that
 671                 * we don't modify the free list if we fail to have an exact
 672                 * block. If we don't have an exact match, and every oher
 673                 * attempt allocation attempt fails, we'll end up cancelling
 674                 * a dirty transaction and shutting down.
 675                 *
 676                 * For an exact allocation, alignment must be 1,
 677                 * however we need to take cluster alignment into account when
 678                 * fixing up the freelist. Use the minalignslop field to
 679                 * indicate that extra blocks might be required for alignment,
 680                 * but not to use them in the actual exact allocation.
 681                 */
 682                args.alignment = 1;
 683                args.minalignslop = igeo->cluster_align - 1;
 684
 685                /* Allow space for the inode btree to split. */
 686                args.minleft = igeo->inobt_maxlevels;
 687                if ((error = xfs_alloc_vextent(&args)))
 688                        return error;
 689
 690                /*
 691                 * This request might have dirtied the transaction if the AG can
 692                 * satisfy the request, but the exact block was not available.
 693                 * If the allocation did fail, subsequent requests will relax
 694                 * the exact agbno requirement and increase the alignment
 695                 * instead. It is critical that the total size of the request
 696                 * (len + alignment + slop) does not increase from this point
 697                 * on, so reset minalignslop to ensure it is not included in
 698                 * subsequent requests.
 699                 */
 700                args.minalignslop = 0;
 701        }
 702
 703        if (unlikely(args.fsbno == NULLFSBLOCK)) {
 704                /*
 705                 * Set the alignment for the allocation.
 706                 * If stripe alignment is turned on then align at stripe unit
 707                 * boundary.
 708                 * If the cluster size is smaller than a filesystem block
 709                 * then we're doing I/O for inodes in filesystem block size
 710                 * pieces, so don't need alignment anyway.
 711                 */
 712                isaligned = 0;
 713                if (igeo->ialloc_align) {
 714                        ASSERT(!xfs_has_noalign(args.mp));
 715                        args.alignment = args.mp->m_dalign;
 716                        isaligned = 1;
 717                } else
 718                        args.alignment = igeo->cluster_align;
 719                /*
 720                 * Need to figure out where to allocate the inode blocks.
 721                 * Ideally they should be spaced out through the a.g.
 722                 * For now, just allocate blocks up front.
 723                 */
 724                args.agbno = be32_to_cpu(agi->agi_root);
 725                args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
 726                /*
 727                 * Allocate a fixed-size extent of inodes.
 728                 */
 729                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 730                args.prod = 1;
 731                /*
 732                 * Allow space for the inode btree to split.
 733                 */
 734                args.minleft = igeo->inobt_maxlevels;
 735                if ((error = xfs_alloc_vextent(&args)))
 736                        return error;
 737        }
 738
 739        /*
 740         * If stripe alignment is turned on, then try again with cluster
 741         * alignment.
 742         */
 743        if (isaligned && args.fsbno == NULLFSBLOCK) {
 744                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 745                args.agbno = be32_to_cpu(agi->agi_root);
 746                args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
 747                args.alignment = igeo->cluster_align;
 748                if ((error = xfs_alloc_vextent(&args)))
 749                        return error;
 750        }
 751
 752        /*
 753         * Finally, try a sparse allocation if the filesystem supports it and
 754         * the sparse allocation length is smaller than a full chunk.
 755         */
 756        if (xfs_has_sparseinodes(args.mp) &&
 757            igeo->ialloc_min_blks < igeo->ialloc_blks &&
 758            args.fsbno == NULLFSBLOCK) {
 759sparse_alloc:
 760                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 761                args.agbno = be32_to_cpu(agi->agi_root);
 762                args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
 763                args.alignment = args.mp->m_sb.sb_spino_align;
 764                args.prod = 1;
 765
 766                args.minlen = igeo->ialloc_min_blks;
 767                args.maxlen = args.minlen;
 768
 769                /*
 770                 * The inode record will be aligned to full chunk size. We must
 771                 * prevent sparse allocation from AG boundaries that result in
 772                 * invalid inode records, such as records that start at agbno 0
 773                 * or extend beyond the AG.
 774                 *
 775                 * Set min agbno to the first aligned, non-zero agbno and max to
 776                 * the last aligned agbno that is at least one full chunk from
 777                 * the end of the AG.
 778                 */
 779                args.min_agbno = args.mp->m_sb.sb_inoalignmt;
 780                args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
 781                                            args.mp->m_sb.sb_inoalignmt) -
 782                                 igeo->ialloc_blks;
 783
 784                error = xfs_alloc_vextent(&args);
 785                if (error)
 786                        return error;
 787
 788                newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
 789                ASSERT(newlen <= XFS_INODES_PER_CHUNK);
 790                allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
 791        }
 792
 793        if (args.fsbno == NULLFSBLOCK)
 794                return -EAGAIN;
 795
 796        ASSERT(args.len == args.minlen);
 797
 798        /*
 799         * Stamp and write the inode buffers.
 800         *
 801         * Seed the new inode cluster with a random generation number. This
 802         * prevents short-term reuse of generation numbers if a chunk is
 803         * freed and then immediately reallocated. We use random numbers
 804         * rather than a linear progression to prevent the next generation
 805         * number from being easily guessable.
 806         */
 807        error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
 808                        args.agbno, args.len, prandom_u32());
 809
 810        if (error)
 811                return error;
 812        /*
 813         * Convert the results.
 814         */
 815        newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
 816
 817        if (xfs_inobt_issparse(~allocmask)) {
 818                /*
 819                 * We've allocated a sparse chunk. Align the startino and mask.
 820                 */
 821                xfs_align_sparse_ino(args.mp, &newino, &allocmask);
 822
 823                rec.ir_startino = newino;
 824                rec.ir_holemask = ~allocmask;
 825                rec.ir_count = newlen;
 826                rec.ir_freecount = newlen;
 827                rec.ir_free = XFS_INOBT_ALL_FREE;
 828
 829                /*
 830                 * Insert the sparse record into the inobt and allow for a merge
 831                 * if necessary. If a merge does occur, rec is updated to the
 832                 * merged record.
 833                 */
 834                error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
 835                                XFS_BTNUM_INO, &rec, true);
 836                if (error == -EFSCORRUPTED) {
 837                        xfs_alert(args.mp,
 838        "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
 839                                  XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
 840                                                   rec.ir_startino),
 841                                  rec.ir_holemask, rec.ir_count);
 842                        xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
 843                }
 844                if (error)
 845                        return error;
 846
 847                /*
 848                 * We can't merge the part we've just allocated as for the inobt
 849                 * due to finobt semantics. The original record may or may not
 850                 * exist independent of whether physical inodes exist in this
 851                 * sparse chunk.
 852                 *
 853                 * We must update the finobt record based on the inobt record.
 854                 * rec contains the fully merged and up to date inobt record
 855                 * from the previous call. Set merge false to replace any
 856                 * existing record with this one.
 857                 */
 858                if (xfs_has_finobt(args.mp)) {
 859                        error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
 860                                       XFS_BTNUM_FINO, &rec, false);
 861                        if (error)
 862                                return error;
 863                }
 864        } else {
 865                /* full chunk - insert new records to both btrees */
 866                error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino, newlen,
 867                                         XFS_BTNUM_INO);
 868                if (error)
 869                        return error;
 870
 871                if (xfs_has_finobt(args.mp)) {
 872                        error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino,
 873                                                 newlen, XFS_BTNUM_FINO);
 874                        if (error)
 875                                return error;
 876                }
 877        }
 878
 879        /*
 880         * Update AGI counts and newino.
 881         */
 882        be32_add_cpu(&agi->agi_count, newlen);
 883        be32_add_cpu(&agi->agi_freecount, newlen);
 884        pag->pagi_freecount += newlen;
 885        pag->pagi_count += newlen;
 886        agi->agi_newino = cpu_to_be32(newino);
 887
 888        /*
 889         * Log allocation group header fields
 890         */
 891        xfs_ialloc_log_agi(tp, agbp,
 892                XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
 893        /*
 894         * Modify/log superblock values for inode count and inode free count.
 895         */
 896        xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
 897        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
 898        return 0;
 899}
 900
 901/*
 902 * Try to retrieve the next record to the left/right from the current one.
 903 */
 904STATIC int
 905xfs_ialloc_next_rec(
 906        struct xfs_btree_cur    *cur,
 907        xfs_inobt_rec_incore_t  *rec,
 908        int                     *done,
 909        int                     left)
 910{
 911        int                     error;
 912        int                     i;
 913
 914        if (left)
 915                error = xfs_btree_decrement(cur, 0, &i);
 916        else
 917                error = xfs_btree_increment(cur, 0, &i);
 918
 919        if (error)
 920                return error;
 921        *done = !i;
 922        if (i) {
 923                error = xfs_inobt_get_rec(cur, rec, &i);
 924                if (error)
 925                        return error;
 926                if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
 927                        return -EFSCORRUPTED;
 928        }
 929
 930        return 0;
 931}
 932
 933STATIC int
 934xfs_ialloc_get_rec(
 935        struct xfs_btree_cur    *cur,
 936        xfs_agino_t             agino,
 937        xfs_inobt_rec_incore_t  *rec,
 938        int                     *done)
 939{
 940        int                     error;
 941        int                     i;
 942
 943        error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
 944        if (error)
 945                return error;
 946        *done = !i;
 947        if (i) {
 948                error = xfs_inobt_get_rec(cur, rec, &i);
 949                if (error)
 950                        return error;
 951                if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
 952                        return -EFSCORRUPTED;
 953        }
 954
 955        return 0;
 956}
 957
 958/*
 959 * Return the offset of the first free inode in the record. If the inode chunk
 960 * is sparsely allocated, we convert the record holemask to inode granularity
 961 * and mask off the unallocated regions from the inode free mask.
 962 */
 963STATIC int
 964xfs_inobt_first_free_inode(
 965        struct xfs_inobt_rec_incore     *rec)
 966{
 967        xfs_inofree_t                   realfree;
 968
 969        /* if there are no holes, return the first available offset */
 970        if (!xfs_inobt_issparse(rec->ir_holemask))
 971                return xfs_lowbit64(rec->ir_free);
 972
 973        realfree = xfs_inobt_irec_to_allocmask(rec);
 974        realfree &= rec->ir_free;
 975
 976        return xfs_lowbit64(realfree);
 977}
 978
 979/*
 980 * Allocate an inode using the inobt-only algorithm.
 981 */
 982STATIC int
 983xfs_dialloc_ag_inobt(
 984        struct xfs_trans        *tp,
 985        struct xfs_buf          *agbp,
 986        struct xfs_perag        *pag,
 987        xfs_ino_t               parent,
 988        xfs_ino_t               *inop)
 989{
 990        struct xfs_mount        *mp = tp->t_mountp;
 991        struct xfs_agi          *agi = agbp->b_addr;
 992        xfs_agnumber_t          pagno = XFS_INO_TO_AGNO(mp, parent);
 993        xfs_agino_t             pagino = XFS_INO_TO_AGINO(mp, parent);
 994        struct xfs_btree_cur    *cur, *tcur;
 995        struct xfs_inobt_rec_incore rec, trec;
 996        xfs_ino_t               ino;
 997        int                     error;
 998        int                     offset;
 999        int                     i, j;
1000        int                     searchdistance = 10;
1001
1002        ASSERT(pag->pagi_init);
1003        ASSERT(pag->pagi_inodeok);
1004        ASSERT(pag->pagi_freecount > 0);
1005
1006 restart_pagno:
1007        cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1008        /*
1009         * If pagino is 0 (this is the root inode allocation) use newino.
1010         * This must work because we've just allocated some.
1011         */
1012        if (!pagino)
1013                pagino = be32_to_cpu(agi->agi_newino);
1014
1015        error = xfs_check_agi_freecount(cur);
1016        if (error)
1017                goto error0;
1018
1019        /*
1020         * If in the same AG as the parent, try to get near the parent.
1021         */
1022        if (pagno == pag->pag_agno) {
1023                int             doneleft;       /* done, to the left */
1024                int             doneright;      /* done, to the right */
1025
1026                error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1027                if (error)
1028                        goto error0;
1029                if (XFS_IS_CORRUPT(mp, i != 1)) {
1030                        error = -EFSCORRUPTED;
1031                        goto error0;
1032                }
1033
1034                error = xfs_inobt_get_rec(cur, &rec, &j);
1035                if (error)
1036                        goto error0;
1037                if (XFS_IS_CORRUPT(mp, j != 1)) {
1038                        error = -EFSCORRUPTED;
1039                        goto error0;
1040                }
1041
1042                if (rec.ir_freecount > 0) {
1043                        /*
1044                         * Found a free inode in the same chunk
1045                         * as the parent, done.
1046                         */
1047                        goto alloc_inode;
1048                }
1049
1050
1051                /*
1052                 * In the same AG as parent, but parent's chunk is full.
1053                 */
1054
1055                /* duplicate the cursor, search left & right simultaneously */
1056                error = xfs_btree_dup_cursor(cur, &tcur);
1057                if (error)
1058                        goto error0;
1059
1060                /*
1061                 * Skip to last blocks looked up if same parent inode.
1062                 */
1063                if (pagino != NULLAGINO &&
1064                    pag->pagl_pagino == pagino &&
1065                    pag->pagl_leftrec != NULLAGINO &&
1066                    pag->pagl_rightrec != NULLAGINO) {
1067                        error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1068                                                   &trec, &doneleft);
1069                        if (error)
1070                                goto error1;
1071
1072                        error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1073                                                   &rec, &doneright);
1074                        if (error)
1075                                goto error1;
1076                } else {
1077                        /* search left with tcur, back up 1 record */
1078                        error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1079                        if (error)
1080                                goto error1;
1081
1082                        /* search right with cur, go forward 1 record. */
1083                        error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1084                        if (error)
1085                                goto error1;
1086                }
1087
1088                /*
1089                 * Loop until we find an inode chunk with a free inode.
1090                 */
1091                while (--searchdistance > 0 && (!doneleft || !doneright)) {
1092                        int     useleft;  /* using left inode chunk this time */
1093
1094                        /* figure out the closer block if both are valid. */
1095                        if (!doneleft && !doneright) {
1096                                useleft = pagino -
1097                                 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1098                                  rec.ir_startino - pagino;
1099                        } else {
1100                                useleft = !doneleft;
1101                        }
1102
1103                        /* free inodes to the left? */
1104                        if (useleft && trec.ir_freecount) {
1105                                xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1106                                cur = tcur;
1107
1108                                pag->pagl_leftrec = trec.ir_startino;
1109                                pag->pagl_rightrec = rec.ir_startino;
1110                                pag->pagl_pagino = pagino;
1111                                rec = trec;
1112                                goto alloc_inode;
1113                        }
1114
1115                        /* free inodes to the right? */
1116                        if (!useleft && rec.ir_freecount) {
1117                                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1118
1119                                pag->pagl_leftrec = trec.ir_startino;
1120                                pag->pagl_rightrec = rec.ir_startino;
1121                                pag->pagl_pagino = pagino;
1122                                goto alloc_inode;
1123                        }
1124
1125                        /* get next record to check */
1126                        if (useleft) {
1127                                error = xfs_ialloc_next_rec(tcur, &trec,
1128                                                                 &doneleft, 1);
1129                        } else {
1130                                error = xfs_ialloc_next_rec(cur, &rec,
1131                                                                 &doneright, 0);
1132                        }
1133                        if (error)
1134                                goto error1;
1135                }
1136
1137                if (searchdistance <= 0) {
1138                        /*
1139                         * Not in range - save last search
1140                         * location and allocate a new inode
1141                         */
1142                        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1143                        pag->pagl_leftrec = trec.ir_startino;
1144                        pag->pagl_rightrec = rec.ir_startino;
1145                        pag->pagl_pagino = pagino;
1146
1147                } else {
1148                        /*
1149                         * We've reached the end of the btree. because
1150                         * we are only searching a small chunk of the
1151                         * btree each search, there is obviously free
1152                         * inodes closer to the parent inode than we
1153                         * are now. restart the search again.
1154                         */
1155                        pag->pagl_pagino = NULLAGINO;
1156                        pag->pagl_leftrec = NULLAGINO;
1157                        pag->pagl_rightrec = NULLAGINO;
1158                        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1159                        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1160                        goto restart_pagno;
1161                }
1162        }
1163
1164        /*
1165         * In a different AG from the parent.
1166         * See if the most recently allocated block has any free.
1167         */
1168        if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1169                error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1170                                         XFS_LOOKUP_EQ, &i);
1171                if (error)
1172                        goto error0;
1173
1174                if (i == 1) {
1175                        error = xfs_inobt_get_rec(cur, &rec, &j);
1176                        if (error)
1177                                goto error0;
1178
1179                        if (j == 1 && rec.ir_freecount > 0) {
1180                                /*
1181                                 * The last chunk allocated in the group
1182                                 * still has a free inode.
1183                                 */
1184                                goto alloc_inode;
1185                        }
1186                }
1187        }
1188
1189        /*
1190         * None left in the last group, search the whole AG
1191         */
1192        error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1193        if (error)
1194                goto error0;
1195        if (XFS_IS_CORRUPT(mp, i != 1)) {
1196                error = -EFSCORRUPTED;
1197                goto error0;
1198        }
1199
1200        for (;;) {
1201                error = xfs_inobt_get_rec(cur, &rec, &i);
1202                if (error)
1203                        goto error0;
1204                if (XFS_IS_CORRUPT(mp, i != 1)) {
1205                        error = -EFSCORRUPTED;
1206                        goto error0;
1207                }
1208                if (rec.ir_freecount > 0)
1209                        break;
1210                error = xfs_btree_increment(cur, 0, &i);
1211                if (error)
1212                        goto error0;
1213                if (XFS_IS_CORRUPT(mp, i != 1)) {
1214                        error = -EFSCORRUPTED;
1215                        goto error0;
1216                }
1217        }
1218
1219alloc_inode:
1220        offset = xfs_inobt_first_free_inode(&rec);
1221        ASSERT(offset >= 0);
1222        ASSERT(offset < XFS_INODES_PER_CHUNK);
1223        ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1224                                   XFS_INODES_PER_CHUNK) == 0);
1225        ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1226        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1227        rec.ir_freecount--;
1228        error = xfs_inobt_update(cur, &rec);
1229        if (error)
1230                goto error0;
1231        be32_add_cpu(&agi->agi_freecount, -1);
1232        xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1233        pag->pagi_freecount--;
1234
1235        error = xfs_check_agi_freecount(cur);
1236        if (error)
1237                goto error0;
1238
1239        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1240        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1241        *inop = ino;
1242        return 0;
1243error1:
1244        xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1245error0:
1246        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1247        return error;
1248}
1249
1250/*
1251 * Use the free inode btree to allocate an inode based on distance from the
1252 * parent. Note that the provided cursor may be deleted and replaced.
1253 */
1254STATIC int
1255xfs_dialloc_ag_finobt_near(
1256        xfs_agino_t                     pagino,
1257        struct xfs_btree_cur            **ocur,
1258        struct xfs_inobt_rec_incore     *rec)
1259{
1260        struct xfs_btree_cur            *lcur = *ocur;  /* left search cursor */
1261        struct xfs_btree_cur            *rcur;  /* right search cursor */
1262        struct xfs_inobt_rec_incore     rrec;
1263        int                             error;
1264        int                             i, j;
1265
1266        error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1267        if (error)
1268                return error;
1269
1270        if (i == 1) {
1271                error = xfs_inobt_get_rec(lcur, rec, &i);
1272                if (error)
1273                        return error;
1274                if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1275                        return -EFSCORRUPTED;
1276
1277                /*
1278                 * See if we've landed in the parent inode record. The finobt
1279                 * only tracks chunks with at least one free inode, so record
1280                 * existence is enough.
1281                 */
1282                if (pagino >= rec->ir_startino &&
1283                    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1284                        return 0;
1285        }
1286
1287        error = xfs_btree_dup_cursor(lcur, &rcur);
1288        if (error)
1289                return error;
1290
1291        error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1292        if (error)
1293                goto error_rcur;
1294        if (j == 1) {
1295                error = xfs_inobt_get_rec(rcur, &rrec, &j);
1296                if (error)
1297                        goto error_rcur;
1298                if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1299                        error = -EFSCORRUPTED;
1300                        goto error_rcur;
1301                }
1302        }
1303
1304        if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1305                error = -EFSCORRUPTED;
1306                goto error_rcur;
1307        }
1308        if (i == 1 && j == 1) {
1309                /*
1310                 * Both the left and right records are valid. Choose the closer
1311                 * inode chunk to the target.
1312                 */
1313                if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1314                    (rrec.ir_startino - pagino)) {
1315                        *rec = rrec;
1316                        xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1317                        *ocur = rcur;
1318                } else {
1319                        xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1320                }
1321        } else if (j == 1) {
1322                /* only the right record is valid */
1323                *rec = rrec;
1324                xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1325                *ocur = rcur;
1326        } else if (i == 1) {
1327                /* only the left record is valid */
1328                xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1329        }
1330
1331        return 0;
1332
1333error_rcur:
1334        xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1335        return error;
1336}
1337
1338/*
1339 * Use the free inode btree to find a free inode based on a newino hint. If
1340 * the hint is NULL, find the first free inode in the AG.
1341 */
1342STATIC int
1343xfs_dialloc_ag_finobt_newino(
1344        struct xfs_agi                  *agi,
1345        struct xfs_btree_cur            *cur,
1346        struct xfs_inobt_rec_incore     *rec)
1347{
1348        int error;
1349        int i;
1350
1351        if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1352                error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1353                                         XFS_LOOKUP_EQ, &i);
1354                if (error)
1355                        return error;
1356                if (i == 1) {
1357                        error = xfs_inobt_get_rec(cur, rec, &i);
1358                        if (error)
1359                                return error;
1360                        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1361                                return -EFSCORRUPTED;
1362                        return 0;
1363                }
1364        }
1365
1366        /*
1367         * Find the first inode available in the AG.
1368         */
1369        error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1370        if (error)
1371                return error;
1372        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1373                return -EFSCORRUPTED;
1374
1375        error = xfs_inobt_get_rec(cur, rec, &i);
1376        if (error)
1377                return error;
1378        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1379                return -EFSCORRUPTED;
1380
1381        return 0;
1382}
1383
1384/*
1385 * Update the inobt based on a modification made to the finobt. Also ensure that
1386 * the records from both trees are equivalent post-modification.
1387 */
1388STATIC int
1389xfs_dialloc_ag_update_inobt(
1390        struct xfs_btree_cur            *cur,   /* inobt cursor */
1391        struct xfs_inobt_rec_incore     *frec,  /* finobt record */
1392        int                             offset) /* inode offset */
1393{
1394        struct xfs_inobt_rec_incore     rec;
1395        int                             error;
1396        int                             i;
1397
1398        error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1399        if (error)
1400                return error;
1401        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1402                return -EFSCORRUPTED;
1403
1404        error = xfs_inobt_get_rec(cur, &rec, &i);
1405        if (error)
1406                return error;
1407        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1408                return -EFSCORRUPTED;
1409        ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1410                                   XFS_INODES_PER_CHUNK) == 0);
1411
1412        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1413        rec.ir_freecount--;
1414
1415        if (XFS_IS_CORRUPT(cur->bc_mp,
1416                           rec.ir_free != frec->ir_free ||
1417                           rec.ir_freecount != frec->ir_freecount))
1418                return -EFSCORRUPTED;
1419
1420        return xfs_inobt_update(cur, &rec);
1421}
1422
1423/*
1424 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1425 * back to the inobt search algorithm.
1426 *
1427 * The caller selected an AG for us, and made sure that free inodes are
1428 * available.
1429 */
1430static int
1431xfs_dialloc_ag(
1432        struct xfs_trans        *tp,
1433        struct xfs_buf          *agbp,
1434        struct xfs_perag        *pag,
1435        xfs_ino_t               parent,
1436        xfs_ino_t               *inop)
1437{
1438        struct xfs_mount                *mp = tp->t_mountp;
1439        struct xfs_agi                  *agi = agbp->b_addr;
1440        xfs_agnumber_t                  pagno = XFS_INO_TO_AGNO(mp, parent);
1441        xfs_agino_t                     pagino = XFS_INO_TO_AGINO(mp, parent);
1442        struct xfs_btree_cur            *cur;   /* finobt cursor */
1443        struct xfs_btree_cur            *icur;  /* inobt cursor */
1444        struct xfs_inobt_rec_incore     rec;
1445        xfs_ino_t                       ino;
1446        int                             error;
1447        int                             offset;
1448        int                             i;
1449
1450        if (!xfs_has_finobt(mp))
1451                return xfs_dialloc_ag_inobt(tp, agbp, pag, parent, inop);
1452
1453        /*
1454         * If pagino is 0 (this is the root inode allocation) use newino.
1455         * This must work because we've just allocated some.
1456         */
1457        if (!pagino)
1458                pagino = be32_to_cpu(agi->agi_newino);
1459
1460        cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
1461
1462        error = xfs_check_agi_freecount(cur);
1463        if (error)
1464                goto error_cur;
1465
1466        /*
1467         * The search algorithm depends on whether we're in the same AG as the
1468         * parent. If so, find the closest available inode to the parent. If
1469         * not, consider the agi hint or find the first free inode in the AG.
1470         */
1471        if (pag->pag_agno == pagno)
1472                error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1473        else
1474                error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1475        if (error)
1476                goto error_cur;
1477
1478        offset = xfs_inobt_first_free_inode(&rec);
1479        ASSERT(offset >= 0);
1480        ASSERT(offset < XFS_INODES_PER_CHUNK);
1481        ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1482                                   XFS_INODES_PER_CHUNK) == 0);
1483        ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1484
1485        /*
1486         * Modify or remove the finobt record.
1487         */
1488        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1489        rec.ir_freecount--;
1490        if (rec.ir_freecount)
1491                error = xfs_inobt_update(cur, &rec);
1492        else
1493                error = xfs_btree_delete(cur, &i);
1494        if (error)
1495                goto error_cur;
1496
1497        /*
1498         * The finobt has now been updated appropriately. We haven't updated the
1499         * agi and superblock yet, so we can create an inobt cursor and validate
1500         * the original freecount. If all is well, make the equivalent update to
1501         * the inobt using the finobt record and offset information.
1502         */
1503        icur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1504
1505        error = xfs_check_agi_freecount(icur);
1506        if (error)
1507                goto error_icur;
1508
1509        error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1510        if (error)
1511                goto error_icur;
1512
1513        /*
1514         * Both trees have now been updated. We must update the perag and
1515         * superblock before we can check the freecount for each btree.
1516         */
1517        be32_add_cpu(&agi->agi_freecount, -1);
1518        xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1519        pag->pagi_freecount--;
1520
1521        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1522
1523        error = xfs_check_agi_freecount(icur);
1524        if (error)
1525                goto error_icur;
1526        error = xfs_check_agi_freecount(cur);
1527        if (error)
1528                goto error_icur;
1529
1530        xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1531        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1532        *inop = ino;
1533        return 0;
1534
1535error_icur:
1536        xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1537error_cur:
1538        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1539        return error;
1540}
1541
1542static int
1543xfs_dialloc_roll(
1544        struct xfs_trans        **tpp,
1545        struct xfs_buf          *agibp)
1546{
1547        struct xfs_trans        *tp = *tpp;
1548        struct xfs_dquot_acct   *dqinfo;
1549        int                     error;
1550
1551        /*
1552         * Hold to on to the agibp across the commit so no other allocation can
1553         * come in and take the free inodes we just allocated for our caller.
1554         */
1555        xfs_trans_bhold(tp, agibp);
1556
1557        /*
1558         * We want the quota changes to be associated with the next transaction,
1559         * NOT this one. So, detach the dqinfo from this and attach it to the
1560         * next transaction.
1561         */
1562        dqinfo = tp->t_dqinfo;
1563        tp->t_dqinfo = NULL;
1564
1565        error = xfs_trans_roll(&tp);
1566
1567        /* Re-attach the quota info that we detached from prev trx. */
1568        tp->t_dqinfo = dqinfo;
1569
1570        /*
1571         * Join the buffer even on commit error so that the buffer is released
1572         * when the caller cancels the transaction and doesn't have to handle
1573         * this error case specially.
1574         */
1575        xfs_trans_bjoin(tp, agibp);
1576        *tpp = tp;
1577        return error;
1578}
1579
1580static xfs_agnumber_t
1581xfs_ialloc_next_ag(
1582        xfs_mount_t     *mp)
1583{
1584        xfs_agnumber_t  agno;
1585
1586        spin_lock(&mp->m_agirotor_lock);
1587        agno = mp->m_agirotor;
1588        if (++mp->m_agirotor >= mp->m_maxagi)
1589                mp->m_agirotor = 0;
1590        spin_unlock(&mp->m_agirotor_lock);
1591
1592        return agno;
1593}
1594
1595static bool
1596xfs_dialloc_good_ag(
1597        struct xfs_trans        *tp,
1598        struct xfs_perag        *pag,
1599        umode_t                 mode,
1600        int                     flags,
1601        bool                    ok_alloc)
1602{
1603        struct xfs_mount        *mp = tp->t_mountp;
1604        xfs_extlen_t            ineed;
1605        xfs_extlen_t            longest = 0;
1606        int                     needspace;
1607        int                     error;
1608
1609        if (!pag->pagi_inodeok)
1610                return false;
1611
1612        if (!pag->pagi_init) {
1613                error = xfs_ialloc_pagi_init(mp, tp, pag->pag_agno);
1614                if (error)
1615                        return false;
1616        }
1617
1618        if (pag->pagi_freecount)
1619                return true;
1620        if (!ok_alloc)
1621                return false;
1622
1623        if (!pag->pagf_init) {
1624                error = xfs_alloc_pagf_init(mp, tp, pag->pag_agno, flags);
1625                if (error)
1626                        return false;
1627        }
1628
1629        /*
1630         * Check that there is enough free space for the file plus a chunk of
1631         * inodes if we need to allocate some. If this is the first pass across
1632         * the AGs, take into account the potential space needed for alignment
1633         * of inode chunks when checking the longest contiguous free space in
1634         * the AG - this prevents us from getting ENOSPC because we have free
1635         * space larger than ialloc_blks but alignment constraints prevent us
1636         * from using it.
1637         *
1638         * If we can't find an AG with space for full alignment slack to be
1639         * taken into account, we must be near ENOSPC in all AGs.  Hence we
1640         * don't include alignment for the second pass and so if we fail
1641         * allocation due to alignment issues then it is most likely a real
1642         * ENOSPC condition.
1643         *
1644         * XXX(dgc): this calculation is now bogus thanks to the per-ag
1645         * reservations that xfs_alloc_fix_freelist() now does via
1646         * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1647         * be more than large enough for the check below to succeed, but
1648         * xfs_alloc_space_available() will fail because of the non-zero
1649         * metadata reservation and hence we won't actually be able to allocate
1650         * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1651         * because of this.
1652         */
1653        ineed = M_IGEO(mp)->ialloc_min_blks;
1654        if (flags && ineed > 1)
1655                ineed += M_IGEO(mp)->cluster_align;
1656        longest = pag->pagf_longest;
1657        if (!longest)
1658                longest = pag->pagf_flcount > 0;
1659        needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1660
1661        if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1662                return false;
1663        return true;
1664}
1665
1666static int
1667xfs_dialloc_try_ag(
1668        struct xfs_trans        **tpp,
1669        struct xfs_perag        *pag,
1670        xfs_ino_t               parent,
1671        xfs_ino_t               *new_ino,
1672        bool                    ok_alloc)
1673{
1674        struct xfs_buf          *agbp;
1675        xfs_ino_t               ino;
1676        int                     error;
1677
1678        /*
1679         * Then read in the AGI buffer and recheck with the AGI buffer
1680         * lock held.
1681         */
1682        error = xfs_ialloc_read_agi(pag->pag_mount, *tpp, pag->pag_agno, &agbp);
1683        if (error)
1684                return error;
1685
1686        if (!pag->pagi_freecount) {
1687                if (!ok_alloc) {
1688                        error = -EAGAIN;
1689                        goto out_release;
1690                }
1691
1692                error = xfs_ialloc_ag_alloc(*tpp, agbp, pag);
1693                if (error < 0)
1694                        goto out_release;
1695
1696                /*
1697                 * We successfully allocated space for an inode cluster in this
1698                 * AG.  Roll the transaction so that we can allocate one of the
1699                 * new inodes.
1700                 */
1701                ASSERT(pag->pagi_freecount > 0);
1702                error = xfs_dialloc_roll(tpp, agbp);
1703                if (error)
1704                        goto out_release;
1705        }
1706
1707        /* Allocate an inode in the found AG */
1708        error = xfs_dialloc_ag(*tpp, agbp, pag, parent, &ino);
1709        if (!error)
1710                *new_ino = ino;
1711        return error;
1712
1713out_release:
1714        xfs_trans_brelse(*tpp, agbp);
1715        return error;
1716}
1717
1718/*
1719 * Allocate an on-disk inode.
1720 *
1721 * Mode is used to tell whether the new inode is a directory and hence where to
1722 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1723 * on success, otherwise an error will be set to indicate the failure (e.g.
1724 * -ENOSPC).
1725 */
1726int
1727xfs_dialloc(
1728        struct xfs_trans        **tpp,
1729        xfs_ino_t               parent,
1730        umode_t                 mode,
1731        xfs_ino_t               *new_ino)
1732{
1733        struct xfs_mount        *mp = (*tpp)->t_mountp;
1734        xfs_agnumber_t          agno;
1735        int                     error = 0;
1736        xfs_agnumber_t          start_agno;
1737        struct xfs_perag        *pag;
1738        struct xfs_ino_geometry *igeo = M_IGEO(mp);
1739        bool                    ok_alloc = true;
1740        int                     flags;
1741        xfs_ino_t               ino;
1742
1743        /*
1744         * Directories, symlinks, and regular files frequently allocate at least
1745         * one block, so factor that potential expansion when we examine whether
1746         * an AG has enough space for file creation.
1747         */
1748        if (S_ISDIR(mode))
1749                start_agno = xfs_ialloc_next_ag(mp);
1750        else {
1751                start_agno = XFS_INO_TO_AGNO(mp, parent);
1752                if (start_agno >= mp->m_maxagi)
1753                        start_agno = 0;
1754        }
1755
1756        /*
1757         * If we have already hit the ceiling of inode blocks then clear
1758         * ok_alloc so we scan all available agi structures for a free
1759         * inode.
1760         *
1761         * Read rough value of mp->m_icount by percpu_counter_read_positive,
1762         * which will sacrifice the preciseness but improve the performance.
1763         */
1764        if (igeo->maxicount &&
1765            percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1766                                                        > igeo->maxicount) {
1767                ok_alloc = false;
1768        }
1769
1770        /*
1771         * Loop until we find an allocation group that either has free inodes
1772         * or in which we can allocate some inodes.  Iterate through the
1773         * allocation groups upward, wrapping at the end.
1774         */
1775        agno = start_agno;
1776        flags = XFS_ALLOC_FLAG_TRYLOCK;
1777        for (;;) {
1778                pag = xfs_perag_get(mp, agno);
1779                if (xfs_dialloc_good_ag(*tpp, pag, mode, flags, ok_alloc)) {
1780                        error = xfs_dialloc_try_ag(tpp, pag, parent,
1781                                        &ino, ok_alloc);
1782                        if (error != -EAGAIN)
1783                                break;
1784                }
1785
1786                if (xfs_is_shutdown(mp)) {
1787                        error = -EFSCORRUPTED;
1788                        break;
1789                }
1790                if (++agno == mp->m_maxagi)
1791                        agno = 0;
1792                if (agno == start_agno) {
1793                        if (!flags) {
1794                                error = -ENOSPC;
1795                                break;
1796                        }
1797                        flags = 0;
1798                }
1799                xfs_perag_put(pag);
1800        }
1801
1802        if (!error)
1803                *new_ino = ino;
1804        xfs_perag_put(pag);
1805        return error;
1806}
1807
1808/*
1809 * Free the blocks of an inode chunk. We must consider that the inode chunk
1810 * might be sparse and only free the regions that are allocated as part of the
1811 * chunk.
1812 */
1813STATIC void
1814xfs_difree_inode_chunk(
1815        struct xfs_trans                *tp,
1816        xfs_agnumber_t                  agno,
1817        struct xfs_inobt_rec_incore     *rec)
1818{
1819        struct xfs_mount                *mp = tp->t_mountp;
1820        xfs_agblock_t                   sagbno = XFS_AGINO_TO_AGBNO(mp,
1821                                                        rec->ir_startino);
1822        int                             startidx, endidx;
1823        int                             nextbit;
1824        xfs_agblock_t                   agbno;
1825        int                             contigblk;
1826        DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1827
1828        if (!xfs_inobt_issparse(rec->ir_holemask)) {
1829                /* not sparse, calculate extent info directly */
1830                xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1831                                  M_IGEO(mp)->ialloc_blks,
1832                                  &XFS_RMAP_OINFO_INODES);
1833                return;
1834        }
1835
1836        /* holemask is only 16-bits (fits in an unsigned long) */
1837        ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1838        holemask[0] = rec->ir_holemask;
1839
1840        /*
1841         * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1842         * holemask and convert the start/end index of each range to an extent.
1843         * We start with the start and end index both pointing at the first 0 in
1844         * the mask.
1845         */
1846        startidx = endidx = find_first_zero_bit(holemask,
1847                                                XFS_INOBT_HOLEMASK_BITS);
1848        nextbit = startidx + 1;
1849        while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1850                nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1851                                             nextbit);
1852                /*
1853                 * If the next zero bit is contiguous, update the end index of
1854                 * the current range and continue.
1855                 */
1856                if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1857                    nextbit == endidx + 1) {
1858                        endidx = nextbit;
1859                        goto next;
1860                }
1861
1862                /*
1863                 * nextbit is not contiguous with the current end index. Convert
1864                 * the current start/end to an extent and add it to the free
1865                 * list.
1866                 */
1867                agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1868                                  mp->m_sb.sb_inopblock;
1869                contigblk = ((endidx - startidx + 1) *
1870                             XFS_INODES_PER_HOLEMASK_BIT) /
1871                            mp->m_sb.sb_inopblock;
1872
1873                ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1874                ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1875                xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1876                                  contigblk, &XFS_RMAP_OINFO_INODES);
1877
1878                /* reset range to current bit and carry on... */
1879                startidx = endidx = nextbit;
1880
1881next:
1882                nextbit++;
1883        }
1884}
1885
1886STATIC int
1887xfs_difree_inobt(
1888        struct xfs_mount                *mp,
1889        struct xfs_trans                *tp,
1890        struct xfs_buf                  *agbp,
1891        struct xfs_perag                *pag,
1892        xfs_agino_t                     agino,
1893        struct xfs_icluster             *xic,
1894        struct xfs_inobt_rec_incore     *orec)
1895{
1896        struct xfs_agi                  *agi = agbp->b_addr;
1897        struct xfs_btree_cur            *cur;
1898        struct xfs_inobt_rec_incore     rec;
1899        int                             ilen;
1900        int                             error;
1901        int                             i;
1902        int                             off;
1903
1904        ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1905        ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1906
1907        /*
1908         * Initialize the cursor.
1909         */
1910        cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1911
1912        error = xfs_check_agi_freecount(cur);
1913        if (error)
1914                goto error0;
1915
1916        /*
1917         * Look for the entry describing this inode.
1918         */
1919        if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1920                xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1921                        __func__, error);
1922                goto error0;
1923        }
1924        if (XFS_IS_CORRUPT(mp, i != 1)) {
1925                error = -EFSCORRUPTED;
1926                goto error0;
1927        }
1928        error = xfs_inobt_get_rec(cur, &rec, &i);
1929        if (error) {
1930                xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1931                        __func__, error);
1932                goto error0;
1933        }
1934        if (XFS_IS_CORRUPT(mp, i != 1)) {
1935                error = -EFSCORRUPTED;
1936                goto error0;
1937        }
1938        /*
1939         * Get the offset in the inode chunk.
1940         */
1941        off = agino - rec.ir_startino;
1942        ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1943        ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1944        /*
1945         * Mark the inode free & increment the count.
1946         */
1947        rec.ir_free |= XFS_INOBT_MASK(off);
1948        rec.ir_freecount++;
1949
1950        /*
1951         * When an inode chunk is free, it becomes eligible for removal. Don't
1952         * remove the chunk if the block size is large enough for multiple inode
1953         * chunks (that might not be free).
1954         */
1955        if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
1956            mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1957                struct xfs_perag        *pag = agbp->b_pag;
1958
1959                xic->deleted = true;
1960                xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
1961                                rec.ir_startino);
1962                xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1963
1964                /*
1965                 * Remove the inode cluster from the AGI B+Tree, adjust the
1966                 * AGI and Superblock inode counts, and mark the disk space
1967                 * to be freed when the transaction is committed.
1968                 */
1969                ilen = rec.ir_freecount;
1970                be32_add_cpu(&agi->agi_count, -ilen);
1971                be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1972                xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1973                pag->pagi_freecount -= ilen - 1;
1974                pag->pagi_count -= ilen;
1975                xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1976                xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1977
1978                if ((error = xfs_btree_delete(cur, &i))) {
1979                        xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1980                                __func__, error);
1981                        goto error0;
1982                }
1983
1984                xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
1985        } else {
1986                xic->deleted = false;
1987
1988                error = xfs_inobt_update(cur, &rec);
1989                if (error) {
1990                        xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1991                                __func__, error);
1992                        goto error0;
1993                }
1994
1995                /*
1996                 * Change the inode free counts and log the ag/sb changes.
1997                 */
1998                be32_add_cpu(&agi->agi_freecount, 1);
1999                xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2000                pag->pagi_freecount++;
2001                xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2002        }
2003
2004        error = xfs_check_agi_freecount(cur);
2005        if (error)
2006                goto error0;
2007
2008        *orec = rec;
2009        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2010        return 0;
2011
2012error0:
2013        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2014        return error;
2015}
2016
2017/*
2018 * Free an inode in the free inode btree.
2019 */
2020STATIC int
2021xfs_difree_finobt(
2022        struct xfs_mount                *mp,
2023        struct xfs_trans                *tp,
2024        struct xfs_buf                  *agbp,
2025        struct xfs_perag                *pag,
2026        xfs_agino_t                     agino,
2027        struct xfs_inobt_rec_incore     *ibtrec) /* inobt record */
2028{
2029        struct xfs_btree_cur            *cur;
2030        struct xfs_inobt_rec_incore     rec;
2031        int                             offset = agino - ibtrec->ir_startino;
2032        int                             error;
2033        int                             i;
2034
2035        cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
2036
2037        error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2038        if (error)
2039                goto error;
2040        if (i == 0) {
2041                /*
2042                 * If the record does not exist in the finobt, we must have just
2043                 * freed an inode in a previously fully allocated chunk. If not,
2044                 * something is out of sync.
2045                 */
2046                if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2047                        error = -EFSCORRUPTED;
2048                        goto error;
2049                }
2050
2051                error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2052                                             ibtrec->ir_count,
2053                                             ibtrec->ir_freecount,
2054                                             ibtrec->ir_free, &i);
2055                if (error)
2056                        goto error;
2057                ASSERT(i == 1);
2058
2059                goto out;
2060        }
2061
2062        /*
2063         * Read and update the existing record. We could just copy the ibtrec
2064         * across here, but that would defeat the purpose of having redundant
2065         * metadata. By making the modifications independently, we can catch
2066         * corruptions that we wouldn't see if we just copied from one record
2067         * to another.
2068         */
2069        error = xfs_inobt_get_rec(cur, &rec, &i);
2070        if (error)
2071                goto error;
2072        if (XFS_IS_CORRUPT(mp, i != 1)) {
2073                error = -EFSCORRUPTED;
2074                goto error;
2075        }
2076
2077        rec.ir_free |= XFS_INOBT_MASK(offset);
2078        rec.ir_freecount++;
2079
2080        if (XFS_IS_CORRUPT(mp,
2081                           rec.ir_free != ibtrec->ir_free ||
2082                           rec.ir_freecount != ibtrec->ir_freecount)) {
2083                error = -EFSCORRUPTED;
2084                goto error;
2085        }
2086
2087        /*
2088         * The content of inobt records should always match between the inobt
2089         * and finobt. The lifecycle of records in the finobt is different from
2090         * the inobt in that the finobt only tracks records with at least one
2091         * free inode. Hence, if all of the inodes are free and we aren't
2092         * keeping inode chunks permanently on disk, remove the record.
2093         * Otherwise, update the record with the new information.
2094         *
2095         * Note that we currently can't free chunks when the block size is large
2096         * enough for multiple chunks. Leave the finobt record to remain in sync
2097         * with the inobt.
2098         */
2099        if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2100            mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2101                error = xfs_btree_delete(cur, &i);
2102                if (error)
2103                        goto error;
2104                ASSERT(i == 1);
2105        } else {
2106                error = xfs_inobt_update(cur, &rec);
2107                if (error)
2108                        goto error;
2109        }
2110
2111out:
2112        error = xfs_check_agi_freecount(cur);
2113        if (error)
2114                goto error;
2115
2116        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2117        return 0;
2118
2119error:
2120        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2121        return error;
2122}
2123
2124/*
2125 * Free disk inode.  Carefully avoids touching the incore inode, all
2126 * manipulations incore are the caller's responsibility.
2127 * The on-disk inode is not changed by this operation, only the
2128 * btree (free inode mask) is changed.
2129 */
2130int
2131xfs_difree(
2132        struct xfs_trans        *tp,
2133        struct xfs_perag        *pag,
2134        xfs_ino_t               inode,
2135        struct xfs_icluster     *xic)
2136{
2137        /* REFERENCED */
2138        xfs_agblock_t           agbno;  /* block number containing inode */
2139        struct xfs_buf          *agbp;  /* buffer for allocation group header */
2140        xfs_agino_t             agino;  /* allocation group inode number */
2141        int                     error;  /* error return value */
2142        struct xfs_mount        *mp = tp->t_mountp;
2143        struct xfs_inobt_rec_incore rec;/* btree record */
2144
2145        /*
2146         * Break up inode number into its components.
2147         */
2148        if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2149                xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2150                        __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2151                ASSERT(0);
2152                return -EINVAL;
2153        }
2154        agino = XFS_INO_TO_AGINO(mp, inode);
2155        if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino))  {
2156                xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2157                        __func__, (unsigned long long)inode,
2158                        (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2159                ASSERT(0);
2160                return -EINVAL;
2161        }
2162        agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2163        if (agbno >= mp->m_sb.sb_agblocks)  {
2164                xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2165                        __func__, agbno, mp->m_sb.sb_agblocks);
2166                ASSERT(0);
2167                return -EINVAL;
2168        }
2169        /*
2170         * Get the allocation group header.
2171         */
2172        error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, &agbp);
2173        if (error) {
2174                xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2175                        __func__, error);
2176                return error;
2177        }
2178
2179        /*
2180         * Fix up the inode allocation btree.
2181         */
2182        error = xfs_difree_inobt(mp, tp, agbp, pag, agino, xic, &rec);
2183        if (error)
2184                goto error0;
2185
2186        /*
2187         * Fix up the free inode btree.
2188         */
2189        if (xfs_has_finobt(mp)) {
2190                error = xfs_difree_finobt(mp, tp, agbp, pag, agino, &rec);
2191                if (error)
2192                        goto error0;
2193        }
2194
2195        return 0;
2196
2197error0:
2198        return error;
2199}
2200
2201STATIC int
2202xfs_imap_lookup(
2203        struct xfs_mount        *mp,
2204        struct xfs_trans        *tp,
2205        struct xfs_perag        *pag,
2206        xfs_agino_t             agino,
2207        xfs_agblock_t           agbno,
2208        xfs_agblock_t           *chunk_agbno,
2209        xfs_agblock_t           *offset_agbno,
2210        int                     flags)
2211{
2212        struct xfs_inobt_rec_incore rec;
2213        struct xfs_btree_cur    *cur;
2214        struct xfs_buf          *agbp;
2215        int                     error;
2216        int                     i;
2217
2218        error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, &agbp);
2219        if (error) {
2220                xfs_alert(mp,
2221                        "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2222                        __func__, error, pag->pag_agno);
2223                return error;
2224        }
2225
2226        /*
2227         * Lookup the inode record for the given agino. If the record cannot be
2228         * found, then it's an invalid inode number and we should abort. Once
2229         * we have a record, we need to ensure it contains the inode number
2230         * we are looking up.
2231         */
2232        cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
2233        error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2234        if (!error) {
2235                if (i)
2236                        error = xfs_inobt_get_rec(cur, &rec, &i);
2237                if (!error && i == 0)
2238                        error = -EINVAL;
2239        }
2240
2241        xfs_trans_brelse(tp, agbp);
2242        xfs_btree_del_cursor(cur, error);
2243        if (error)
2244                return error;
2245
2246        /* check that the returned record contains the required inode */
2247        if (rec.ir_startino > agino ||
2248            rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2249                return -EINVAL;
2250
2251        /* for untrusted inodes check it is allocated first */
2252        if ((flags & XFS_IGET_UNTRUSTED) &&
2253            (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2254                return -EINVAL;
2255
2256        *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2257        *offset_agbno = agbno - *chunk_agbno;
2258        return 0;
2259}
2260
2261/*
2262 * Return the location of the inode in imap, for mapping it into a buffer.
2263 */
2264int
2265xfs_imap(
2266        struct xfs_mount         *mp,   /* file system mount structure */
2267        struct xfs_trans         *tp,   /* transaction pointer */
2268        xfs_ino_t               ino,    /* inode to locate */
2269        struct xfs_imap         *imap,  /* location map structure */
2270        uint                    flags)  /* flags for inode btree lookup */
2271{
2272        xfs_agblock_t           agbno;  /* block number of inode in the alloc group */
2273        xfs_agino_t             agino;  /* inode number within alloc group */
2274        xfs_agblock_t           chunk_agbno;    /* first block in inode chunk */
2275        xfs_agblock_t           cluster_agbno;  /* first block in inode cluster */
2276        int                     error;  /* error code */
2277        int                     offset; /* index of inode in its buffer */
2278        xfs_agblock_t           offset_agbno;   /* blks from chunk start to inode */
2279        struct xfs_perag        *pag;
2280
2281        ASSERT(ino != NULLFSINO);
2282
2283        /*
2284         * Split up the inode number into its parts.
2285         */
2286        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
2287        agino = XFS_INO_TO_AGINO(mp, ino);
2288        agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2289        if (!pag || agbno >= mp->m_sb.sb_agblocks ||
2290            ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2291                error = -EINVAL;
2292#ifdef DEBUG
2293                /*
2294                 * Don't output diagnostic information for untrusted inodes
2295                 * as they can be invalid without implying corruption.
2296                 */
2297                if (flags & XFS_IGET_UNTRUSTED)
2298                        goto out_drop;
2299                if (!pag) {
2300                        xfs_alert(mp,
2301                                "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2302                                __func__, XFS_INO_TO_AGNO(mp, ino),
2303                                mp->m_sb.sb_agcount);
2304                }
2305                if (agbno >= mp->m_sb.sb_agblocks) {
2306                        xfs_alert(mp,
2307                "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2308                                __func__, (unsigned long long)agbno,
2309                                (unsigned long)mp->m_sb.sb_agblocks);
2310                }
2311                if (pag && ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2312                        xfs_alert(mp,
2313                "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2314                                __func__, ino,
2315                                XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2316                }
2317                xfs_stack_trace();
2318#endif /* DEBUG */
2319                goto out_drop;
2320        }
2321
2322        /*
2323         * For bulkstat and handle lookups, we have an untrusted inode number
2324         * that we have to verify is valid. We cannot do this just by reading
2325         * the inode buffer as it may have been unlinked and removed leaving
2326         * inodes in stale state on disk. Hence we have to do a btree lookup
2327         * in all cases where an untrusted inode number is passed.
2328         */
2329        if (flags & XFS_IGET_UNTRUSTED) {
2330                error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
2331                                        &chunk_agbno, &offset_agbno, flags);
2332                if (error)
2333                        goto out_drop;
2334                goto out_map;
2335        }
2336
2337        /*
2338         * If the inode cluster size is the same as the blocksize or
2339         * smaller we get to the buffer by simple arithmetics.
2340         */
2341        if (M_IGEO(mp)->blocks_per_cluster == 1) {
2342                offset = XFS_INO_TO_OFFSET(mp, ino);
2343                ASSERT(offset < mp->m_sb.sb_inopblock);
2344
2345                imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2346                imap->im_len = XFS_FSB_TO_BB(mp, 1);
2347                imap->im_boffset = (unsigned short)(offset <<
2348                                                        mp->m_sb.sb_inodelog);
2349                error = 0;
2350                goto out_drop;
2351        }
2352
2353        /*
2354         * If the inode chunks are aligned then use simple maths to
2355         * find the location. Otherwise we have to do a btree
2356         * lookup to find the location.
2357         */
2358        if (M_IGEO(mp)->inoalign_mask) {
2359                offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2360                chunk_agbno = agbno - offset_agbno;
2361        } else {
2362                error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
2363                                        &chunk_agbno, &offset_agbno, flags);
2364                if (error)
2365                        goto out_drop;
2366        }
2367
2368out_map:
2369        ASSERT(agbno >= chunk_agbno);
2370        cluster_agbno = chunk_agbno +
2371                ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2372                 M_IGEO(mp)->blocks_per_cluster);
2373        offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2374                XFS_INO_TO_OFFSET(mp, ino);
2375
2376        imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2377        imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2378        imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2379
2380        /*
2381         * If the inode number maps to a block outside the bounds
2382         * of the file system then return NULL rather than calling
2383         * read_buf and panicing when we get an error from the
2384         * driver.
2385         */
2386        if ((imap->im_blkno + imap->im_len) >
2387            XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2388                xfs_alert(mp,
2389        "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2390                        __func__, (unsigned long long) imap->im_blkno,
2391                        (unsigned long long) imap->im_len,
2392                        XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2393                error = -EINVAL;
2394                goto out_drop;
2395        }
2396        error = 0;
2397out_drop:
2398        if (pag)
2399                xfs_perag_put(pag);
2400        return error;
2401}
2402
2403/*
2404 * Log specified fields for the ag hdr (inode section). The growth of the agi
2405 * structure over time requires that we interpret the buffer as two logical
2406 * regions delineated by the end of the unlinked list. This is due to the size
2407 * of the hash table and its location in the middle of the agi.
2408 *
2409 * For example, a request to log a field before agi_unlinked and a field after
2410 * agi_unlinked could cause us to log the entire hash table and use an excessive
2411 * amount of log space. To avoid this behavior, log the region up through
2412 * agi_unlinked in one call and the region after agi_unlinked through the end of
2413 * the structure in another.
2414 */
2415void
2416xfs_ialloc_log_agi(
2417        xfs_trans_t     *tp,            /* transaction pointer */
2418        struct xfs_buf  *bp,            /* allocation group header buffer */
2419        int             fields)         /* bitmask of fields to log */
2420{
2421        int                     first;          /* first byte number */
2422        int                     last;           /* last byte number */
2423        static const short      offsets[] = {   /* field starting offsets */
2424                                        /* keep in sync with bit definitions */
2425                offsetof(xfs_agi_t, agi_magicnum),
2426                offsetof(xfs_agi_t, agi_versionnum),
2427                offsetof(xfs_agi_t, agi_seqno),
2428                offsetof(xfs_agi_t, agi_length),
2429                offsetof(xfs_agi_t, agi_count),
2430                offsetof(xfs_agi_t, agi_root),
2431                offsetof(xfs_agi_t, agi_level),
2432                offsetof(xfs_agi_t, agi_freecount),
2433                offsetof(xfs_agi_t, agi_newino),
2434                offsetof(xfs_agi_t, agi_dirino),
2435                offsetof(xfs_agi_t, agi_unlinked),
2436                offsetof(xfs_agi_t, agi_free_root),
2437                offsetof(xfs_agi_t, agi_free_level),
2438                offsetof(xfs_agi_t, agi_iblocks),
2439                sizeof(xfs_agi_t)
2440        };
2441#ifdef DEBUG
2442        struct xfs_agi          *agi = bp->b_addr;
2443
2444        ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2445#endif
2446
2447        /*
2448         * Compute byte offsets for the first and last fields in the first
2449         * region and log the agi buffer. This only logs up through
2450         * agi_unlinked.
2451         */
2452        if (fields & XFS_AGI_ALL_BITS_R1) {
2453                xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2454                                  &first, &last);
2455                xfs_trans_log_buf(tp, bp, first, last);
2456        }
2457
2458        /*
2459         * Mask off the bits in the first region and calculate the first and
2460         * last field offsets for any bits in the second region.
2461         */
2462        fields &= ~XFS_AGI_ALL_BITS_R1;
2463        if (fields) {
2464                xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2465                                  &first, &last);
2466                xfs_trans_log_buf(tp, bp, first, last);
2467        }
2468}
2469
2470static xfs_failaddr_t
2471xfs_agi_verify(
2472        struct xfs_buf  *bp)
2473{
2474        struct xfs_mount *mp = bp->b_mount;
2475        struct xfs_agi  *agi = bp->b_addr;
2476        int             i;
2477
2478        if (xfs_has_crc(mp)) {
2479                if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2480                        return __this_address;
2481                if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2482                        return __this_address;
2483        }
2484
2485        /*
2486         * Validate the magic number of the agi block.
2487         */
2488        if (!xfs_verify_magic(bp, agi->agi_magicnum))
2489                return __this_address;
2490        if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2491                return __this_address;
2492
2493        if (be32_to_cpu(agi->agi_level) < 1 ||
2494            be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2495                return __this_address;
2496
2497        if (xfs_has_finobt(mp) &&
2498            (be32_to_cpu(agi->agi_free_level) < 1 ||
2499             be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2500                return __this_address;
2501
2502        /*
2503         * during growfs operations, the perag is not fully initialised,
2504         * so we can't use it for any useful checking. growfs ensures we can't
2505         * use it by using uncached buffers that don't have the perag attached
2506         * so we can detect and avoid this problem.
2507         */
2508        if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2509                return __this_address;
2510
2511        for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2512                if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2513                        continue;
2514                if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2515                        return __this_address;
2516        }
2517
2518        return NULL;
2519}
2520
2521static void
2522xfs_agi_read_verify(
2523        struct xfs_buf  *bp)
2524{
2525        struct xfs_mount *mp = bp->b_mount;
2526        xfs_failaddr_t  fa;
2527
2528        if (xfs_has_crc(mp) &&
2529            !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2530                xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2531        else {
2532                fa = xfs_agi_verify(bp);
2533                if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2534                        xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2535        }
2536}
2537
2538static void
2539xfs_agi_write_verify(
2540        struct xfs_buf  *bp)
2541{
2542        struct xfs_mount        *mp = bp->b_mount;
2543        struct xfs_buf_log_item *bip = bp->b_log_item;
2544        struct xfs_agi          *agi = bp->b_addr;
2545        xfs_failaddr_t          fa;
2546
2547        fa = xfs_agi_verify(bp);
2548        if (fa) {
2549                xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2550                return;
2551        }
2552
2553        if (!xfs_has_crc(mp))
2554                return;
2555
2556        if (bip)
2557                agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2558        xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2559}
2560
2561const struct xfs_buf_ops xfs_agi_buf_ops = {
2562        .name = "xfs_agi",
2563        .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2564        .verify_read = xfs_agi_read_verify,
2565        .verify_write = xfs_agi_write_verify,
2566        .verify_struct = xfs_agi_verify,
2567};
2568
2569/*
2570 * Read in the allocation group header (inode allocation section)
2571 */
2572int
2573xfs_read_agi(
2574        struct xfs_mount        *mp,    /* file system mount structure */
2575        struct xfs_trans        *tp,    /* transaction pointer */
2576        xfs_agnumber_t          agno,   /* allocation group number */
2577        struct xfs_buf          **bpp)  /* allocation group hdr buf */
2578{
2579        int                     error;
2580
2581        trace_xfs_read_agi(mp, agno);
2582
2583        ASSERT(agno != NULLAGNUMBER);
2584        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2585                        XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2586                        XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2587        if (error)
2588                return error;
2589        if (tp)
2590                xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2591
2592        xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2593        return 0;
2594}
2595
2596int
2597xfs_ialloc_read_agi(
2598        struct xfs_mount        *mp,    /* file system mount structure */
2599        struct xfs_trans        *tp,    /* transaction pointer */
2600        xfs_agnumber_t          agno,   /* allocation group number */
2601        struct xfs_buf          **bpp)  /* allocation group hdr buf */
2602{
2603        struct xfs_agi          *agi;   /* allocation group header */
2604        struct xfs_perag        *pag;   /* per allocation group data */
2605        int                     error;
2606
2607        trace_xfs_ialloc_read_agi(mp, agno);
2608
2609        error = xfs_read_agi(mp, tp, agno, bpp);
2610        if (error)
2611                return error;
2612
2613        agi = (*bpp)->b_addr;
2614        pag = (*bpp)->b_pag;
2615        if (!pag->pagi_init) {
2616                pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2617                pag->pagi_count = be32_to_cpu(agi->agi_count);
2618                pag->pagi_init = 1;
2619        }
2620
2621        /*
2622         * It's possible for these to be out of sync if
2623         * we are in the middle of a forced shutdown.
2624         */
2625        ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2626                xfs_is_shutdown(mp));
2627        return 0;
2628}
2629
2630/*
2631 * Read in the agi to initialise the per-ag data in the mount structure
2632 */
2633int
2634xfs_ialloc_pagi_init(
2635        xfs_mount_t     *mp,            /* file system mount structure */
2636        xfs_trans_t     *tp,            /* transaction pointer */
2637        xfs_agnumber_t  agno)           /* allocation group number */
2638{
2639        struct xfs_buf  *bp = NULL;
2640        int             error;
2641
2642        error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2643        if (error)
2644                return error;
2645        if (bp)
2646                xfs_trans_brelse(tp, bp);
2647        return 0;
2648}
2649
2650/* Is there an inode record covering a given range of inode numbers? */
2651int
2652xfs_ialloc_has_inode_record(
2653        struct xfs_btree_cur    *cur,
2654        xfs_agino_t             low,
2655        xfs_agino_t             high,
2656        bool                    *exists)
2657{
2658        struct xfs_inobt_rec_incore     irec;
2659        xfs_agino_t             agino;
2660        uint16_t                holemask;
2661        int                     has_record;
2662        int                     i;
2663        int                     error;
2664
2665        *exists = false;
2666        error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2667        while (error == 0 && has_record) {
2668                error = xfs_inobt_get_rec(cur, &irec, &has_record);
2669                if (error || irec.ir_startino > high)
2670                        break;
2671
2672                agino = irec.ir_startino;
2673                holemask = irec.ir_holemask;
2674                for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2675                                i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2676                        if (holemask & 1)
2677                                continue;
2678                        if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2679                                        agino <= high) {
2680                                *exists = true;
2681                                return 0;
2682                        }
2683                }
2684
2685                error = xfs_btree_increment(cur, 0, &has_record);
2686        }
2687        return error;
2688}
2689
2690/* Is there an inode record covering a given extent? */
2691int
2692xfs_ialloc_has_inodes_at_extent(
2693        struct xfs_btree_cur    *cur,
2694        xfs_agblock_t           bno,
2695        xfs_extlen_t            len,
2696        bool                    *exists)
2697{
2698        xfs_agino_t             low;
2699        xfs_agino_t             high;
2700
2701        low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2702        high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2703
2704        return xfs_ialloc_has_inode_record(cur, low, high, exists);
2705}
2706
2707struct xfs_ialloc_count_inodes {
2708        xfs_agino_t                     count;
2709        xfs_agino_t                     freecount;
2710};
2711
2712/* Record inode counts across all inobt records. */
2713STATIC int
2714xfs_ialloc_count_inodes_rec(
2715        struct xfs_btree_cur            *cur,
2716        const union xfs_btree_rec       *rec,
2717        void                            *priv)
2718{
2719        struct xfs_inobt_rec_incore     irec;
2720        struct xfs_ialloc_count_inodes  *ci = priv;
2721
2722        xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2723        ci->count += irec.ir_count;
2724        ci->freecount += irec.ir_freecount;
2725
2726        return 0;
2727}
2728
2729/* Count allocated and free inodes under an inobt. */
2730int
2731xfs_ialloc_count_inodes(
2732        struct xfs_btree_cur            *cur,
2733        xfs_agino_t                     *count,
2734        xfs_agino_t                     *freecount)
2735{
2736        struct xfs_ialloc_count_inodes  ci = {0};
2737        int                             error;
2738
2739        ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2740        error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2741        if (error)
2742                return error;
2743
2744        *count = ci.count;
2745        *freecount = ci.freecount;
2746        return 0;
2747}
2748
2749/*
2750 * Initialize inode-related geometry information.
2751 *
2752 * Compute the inode btree min and max levels and set maxicount.
2753 *
2754 * Set the inode cluster size.  This may still be overridden by the file
2755 * system block size if it is larger than the chosen cluster size.
2756 *
2757 * For v5 filesystems, scale the cluster size with the inode size to keep a
2758 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2759 * inode alignment value appropriately for larger cluster sizes.
2760 *
2761 * Then compute the inode cluster alignment information.
2762 */
2763void
2764xfs_ialloc_setup_geometry(
2765        struct xfs_mount        *mp)
2766{
2767        struct xfs_sb           *sbp = &mp->m_sb;
2768        struct xfs_ino_geometry *igeo = M_IGEO(mp);
2769        uint64_t                icount;
2770        uint                    inodes;
2771
2772        igeo->new_diflags2 = 0;
2773        if (xfs_has_bigtime(mp))
2774                igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2775
2776        /* Compute inode btree geometry. */
2777        igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2778        igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2779        igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2780        igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2781        igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2782
2783        igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2784                        sbp->sb_inopblock);
2785        igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2786
2787        if (sbp->sb_spino_align)
2788                igeo->ialloc_min_blks = sbp->sb_spino_align;
2789        else
2790                igeo->ialloc_min_blks = igeo->ialloc_blks;
2791
2792        /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2793        inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2794        igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2795                        inodes);
2796
2797        /*
2798         * Set the maximum inode count for this filesystem, being careful not
2799         * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2800         * users should never get here due to failing sb verification, but
2801         * certain users (xfs_db) need to be usable even with corrupt metadata.
2802         */
2803        if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2804                /*
2805                 * Make sure the maximum inode count is a multiple
2806                 * of the units we allocate inodes in.
2807                 */
2808                icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2809                do_div(icount, 100);
2810                do_div(icount, igeo->ialloc_blks);
2811                igeo->maxicount = XFS_FSB_TO_INO(mp,
2812                                icount * igeo->ialloc_blks);
2813        } else {
2814                igeo->maxicount = 0;
2815        }
2816
2817        /*
2818         * Compute the desired size of an inode cluster buffer size, which
2819         * starts at 8K and (on v5 filesystems) scales up with larger inode
2820         * sizes.
2821         *
2822         * Preserve the desired inode cluster size because the sparse inodes
2823         * feature uses that desired size (not the actual size) to compute the
2824         * sparse inode alignment.  The mount code validates this value, so we
2825         * cannot change the behavior.
2826         */
2827        igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2828        if (xfs_has_v3inodes(mp)) {
2829                int     new_size = igeo->inode_cluster_size_raw;
2830
2831                new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2832                if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2833                        igeo->inode_cluster_size_raw = new_size;
2834        }
2835
2836        /* Calculate inode cluster ratios. */
2837        if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2838                igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2839                                igeo->inode_cluster_size_raw);
2840        else
2841                igeo->blocks_per_cluster = 1;
2842        igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2843        igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2844
2845        /* Calculate inode cluster alignment. */
2846        if (xfs_has_align(mp) &&
2847            mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2848                igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2849        else
2850                igeo->cluster_align = 1;
2851        igeo->inoalign_mask = igeo->cluster_align - 1;
2852        igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2853
2854        /*
2855         * If we are using stripe alignment, check whether
2856         * the stripe unit is a multiple of the inode alignment
2857         */
2858        if (mp->m_dalign && igeo->inoalign_mask &&
2859            !(mp->m_dalign & igeo->inoalign_mask))
2860                igeo->ialloc_align = mp->m_dalign;
2861        else
2862                igeo->ialloc_align = 0;
2863}
2864
2865/* Compute the location of the root directory inode that is laid out by mkfs. */
2866xfs_ino_t
2867xfs_ialloc_calc_rootino(
2868        struct xfs_mount        *mp,
2869        int                     sunit)
2870{
2871        struct xfs_ino_geometry *igeo = M_IGEO(mp);
2872        xfs_agblock_t           first_bno;
2873
2874        /*
2875         * Pre-calculate the geometry of AG 0.  We know what it looks like
2876         * because libxfs knows how to create allocation groups now.
2877         *
2878         * first_bno is the first block in which mkfs could possibly have
2879         * allocated the root directory inode, once we factor in the metadata
2880         * that mkfs formats before it.  Namely, the four AG headers...
2881         */
2882        first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2883
2884        /* ...the two free space btree roots... */
2885        first_bno += 2;
2886
2887        /* ...the inode btree root... */
2888        first_bno += 1;
2889
2890        /* ...the initial AGFL... */
2891        first_bno += xfs_alloc_min_freelist(mp, NULL);
2892
2893        /* ...the free inode btree root... */
2894        if (xfs_has_finobt(mp))
2895                first_bno++;
2896
2897        /* ...the reverse mapping btree root... */
2898        if (xfs_has_rmapbt(mp))
2899                first_bno++;
2900
2901        /* ...the reference count btree... */
2902        if (xfs_has_reflink(mp))
2903                first_bno++;
2904
2905        /*
2906         * ...and the log, if it is allocated in the first allocation group.
2907         *
2908         * This can happen with filesystems that only have a single
2909         * allocation group, or very odd geometries created by old mkfs
2910         * versions on very small filesystems.
2911         */
2912        if (mp->m_sb.sb_logstart &&
2913            XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0)
2914                 first_bno += mp->m_sb.sb_logblocks;
2915
2916        /*
2917         * Now round first_bno up to whatever allocation alignment is given
2918         * by the filesystem or was passed in.
2919         */
2920        if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
2921                first_bno = roundup(first_bno, sunit);
2922        else if (xfs_has_align(mp) &&
2923                        mp->m_sb.sb_inoalignmt > 1)
2924                first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2925
2926        return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2927}
2928
2929/*
2930 * Ensure there are not sparse inode clusters that cross the new EOAG.
2931 *
2932 * This is a no-op for non-spinode filesystems since clusters are always fully
2933 * allocated and checking the bnobt suffices.  However, a spinode filesystem
2934 * could have a record where the upper inodes are free blocks.  If those blocks
2935 * were removed from the filesystem, the inode record would extend beyond EOAG,
2936 * which will be flagged as corruption.
2937 */
2938int
2939xfs_ialloc_check_shrink(
2940        struct xfs_trans        *tp,
2941        xfs_agnumber_t          agno,
2942        struct xfs_buf          *agibp,
2943        xfs_agblock_t           new_length)
2944{
2945        struct xfs_inobt_rec_incore rec;
2946        struct xfs_btree_cur    *cur;
2947        struct xfs_mount        *mp = tp->t_mountp;
2948        struct xfs_perag        *pag;
2949        xfs_agino_t             agino = XFS_AGB_TO_AGINO(mp, new_length);
2950        int                     has;
2951        int                     error;
2952
2953        if (!xfs_has_sparseinodes(mp))
2954                return 0;
2955
2956        pag = xfs_perag_get(mp, agno);
2957        cur = xfs_inobt_init_cursor(mp, tp, agibp, pag, XFS_BTNUM_INO);
2958
2959        /* Look up the inobt record that would correspond to the new EOFS. */
2960        error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
2961        if (error || !has)
2962                goto out;
2963
2964        error = xfs_inobt_get_rec(cur, &rec, &has);
2965        if (error)
2966                goto out;
2967
2968        if (!has) {
2969                error = -EFSCORRUPTED;
2970                goto out;
2971        }
2972
2973        /* If the record covers inodes that would be beyond EOFS, bail out. */
2974        if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
2975                error = -ENOSPC;
2976                goto out;
2977        }
2978out:
2979        xfs_btree_del_cursor(cur, error);
2980        xfs_perag_put(pag);
2981        return error;
2982}
2983