linux/fs/xfs/scrub/repair.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (C) 2018 Oracle.  All Rights Reserved.
   4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_trans_resv.h"
  11#include "xfs_mount.h"
  12#include "xfs_btree.h"
  13#include "xfs_log_format.h"
  14#include "xfs_trans.h"
  15#include "xfs_sb.h"
  16#include "xfs_inode.h"
  17#include "xfs_alloc.h"
  18#include "xfs_alloc_btree.h"
  19#include "xfs_ialloc.h"
  20#include "xfs_ialloc_btree.h"
  21#include "xfs_rmap.h"
  22#include "xfs_rmap_btree.h"
  23#include "xfs_refcount_btree.h"
  24#include "xfs_extent_busy.h"
  25#include "xfs_ag.h"
  26#include "xfs_ag_resv.h"
  27#include "xfs_quota.h"
  28#include "scrub/scrub.h"
  29#include "scrub/common.h"
  30#include "scrub/trace.h"
  31#include "scrub/repair.h"
  32#include "scrub/bitmap.h"
  33
  34/*
  35 * Attempt to repair some metadata, if the metadata is corrupt and userspace
  36 * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
  37 * and will set *fixed to true if it thinks it repaired anything.
  38 */
  39int
  40xrep_attempt(
  41        struct xfs_scrub        *sc)
  42{
  43        int                     error = 0;
  44
  45        trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error);
  46
  47        xchk_ag_btcur_free(&sc->sa);
  48
  49        /* Repair whatever's broken. */
  50        ASSERT(sc->ops->repair);
  51        error = sc->ops->repair(sc);
  52        trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error);
  53        switch (error) {
  54        case 0:
  55                /*
  56                 * Repair succeeded.  Commit the fixes and perform a second
  57                 * scrub so that we can tell userspace if we fixed the problem.
  58                 */
  59                sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
  60                sc->flags |= XREP_ALREADY_FIXED;
  61                return -EAGAIN;
  62        case -EDEADLOCK:
  63        case -EAGAIN:
  64                /* Tell the caller to try again having grabbed all the locks. */
  65                if (!(sc->flags & XCHK_TRY_HARDER)) {
  66                        sc->flags |= XCHK_TRY_HARDER;
  67                        return -EAGAIN;
  68                }
  69                /*
  70                 * We tried harder but still couldn't grab all the resources
  71                 * we needed to fix it.  The corruption has not been fixed,
  72                 * so report back to userspace.
  73                 */
  74                return -EFSCORRUPTED;
  75        default:
  76                return error;
  77        }
  78}
  79
  80/*
  81 * Complain about unfixable problems in the filesystem.  We don't log
  82 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
  83 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
  84 * administrator isn't running xfs_scrub in no-repairs mode.
  85 *
  86 * Use this helper function because _ratelimited silently declares a static
  87 * structure to track rate limiting information.
  88 */
  89void
  90xrep_failure(
  91        struct xfs_mount        *mp)
  92{
  93        xfs_alert_ratelimited(mp,
  94"Corruption not fixed during online repair.  Unmount and run xfs_repair.");
  95}
  96
  97/*
  98 * Repair probe -- userspace uses this to probe if we're willing to repair a
  99 * given mountpoint.
 100 */
 101int
 102xrep_probe(
 103        struct xfs_scrub        *sc)
 104{
 105        int                     error = 0;
 106
 107        if (xchk_should_terminate(sc, &error))
 108                return error;
 109
 110        return 0;
 111}
 112
 113/*
 114 * Roll a transaction, keeping the AG headers locked and reinitializing
 115 * the btree cursors.
 116 */
 117int
 118xrep_roll_ag_trans(
 119        struct xfs_scrub        *sc)
 120{
 121        int                     error;
 122
 123        /* Keep the AG header buffers locked so we can keep going. */
 124        if (sc->sa.agi_bp)
 125                xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
 126        if (sc->sa.agf_bp)
 127                xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
 128        if (sc->sa.agfl_bp)
 129                xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
 130
 131        /*
 132         * Roll the transaction.  We still own the buffer and the buffer lock
 133         * regardless of whether or not the roll succeeds.  If the roll fails,
 134         * the buffers will be released during teardown on our way out of the
 135         * kernel.  If it succeeds, we join them to the new transaction and
 136         * move on.
 137         */
 138        error = xfs_trans_roll(&sc->tp);
 139        if (error)
 140                return error;
 141
 142        /* Join AG headers to the new transaction. */
 143        if (sc->sa.agi_bp)
 144                xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
 145        if (sc->sa.agf_bp)
 146                xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
 147        if (sc->sa.agfl_bp)
 148                xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
 149
 150        return 0;
 151}
 152
 153/*
 154 * Does the given AG have enough space to rebuild a btree?  Neither AG
 155 * reservation can be critical, and we must have enough space (factoring
 156 * in AG reservations) to construct a whole btree.
 157 */
 158bool
 159xrep_ag_has_space(
 160        struct xfs_perag        *pag,
 161        xfs_extlen_t            nr_blocks,
 162        enum xfs_ag_resv_type   type)
 163{
 164        return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
 165                !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
 166                pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
 167}
 168
 169/*
 170 * Figure out how many blocks to reserve for an AG repair.  We calculate the
 171 * worst case estimate for the number of blocks we'd need to rebuild one of
 172 * any type of per-AG btree.
 173 */
 174xfs_extlen_t
 175xrep_calc_ag_resblks(
 176        struct xfs_scrub                *sc)
 177{
 178        struct xfs_mount                *mp = sc->mp;
 179        struct xfs_scrub_metadata       *sm = sc->sm;
 180        struct xfs_perag                *pag;
 181        struct xfs_buf                  *bp;
 182        xfs_agino_t                     icount = NULLAGINO;
 183        xfs_extlen_t                    aglen = NULLAGBLOCK;
 184        xfs_extlen_t                    usedlen;
 185        xfs_extlen_t                    freelen;
 186        xfs_extlen_t                    bnobt_sz;
 187        xfs_extlen_t                    inobt_sz;
 188        xfs_extlen_t                    rmapbt_sz;
 189        xfs_extlen_t                    refcbt_sz;
 190        int                             error;
 191
 192        if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
 193                return 0;
 194
 195        pag = xfs_perag_get(mp, sm->sm_agno);
 196        if (pag->pagi_init) {
 197                /* Use in-core icount if possible. */
 198                icount = pag->pagi_count;
 199        } else {
 200                /* Try to get the actual counters from disk. */
 201                error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
 202                if (!error) {
 203                        icount = pag->pagi_count;
 204                        xfs_buf_relse(bp);
 205                }
 206        }
 207
 208        /* Now grab the block counters from the AGF. */
 209        error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
 210        if (error) {
 211                aglen = xfs_ag_block_count(mp, sm->sm_agno);
 212                freelen = aglen;
 213                usedlen = aglen;
 214        } else {
 215                struct xfs_agf  *agf = bp->b_addr;
 216
 217                aglen = be32_to_cpu(agf->agf_length);
 218                freelen = be32_to_cpu(agf->agf_freeblks);
 219                usedlen = aglen - freelen;
 220                xfs_buf_relse(bp);
 221        }
 222        xfs_perag_put(pag);
 223
 224        /* If the icount is impossible, make some worst-case assumptions. */
 225        if (icount == NULLAGINO ||
 226            !xfs_verify_agino(mp, sm->sm_agno, icount)) {
 227                xfs_agino_t     first, last;
 228
 229                xfs_agino_range(mp, sm->sm_agno, &first, &last);
 230                icount = last - first + 1;
 231        }
 232
 233        /* If the block counts are impossible, make worst-case assumptions. */
 234        if (aglen == NULLAGBLOCK ||
 235            aglen != xfs_ag_block_count(mp, sm->sm_agno) ||
 236            freelen >= aglen) {
 237                aglen = xfs_ag_block_count(mp, sm->sm_agno);
 238                freelen = aglen;
 239                usedlen = aglen;
 240        }
 241
 242        trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
 243                        freelen, usedlen);
 244
 245        /*
 246         * Figure out how many blocks we'd need worst case to rebuild
 247         * each type of btree.  Note that we can only rebuild the
 248         * bnobt/cntbt or inobt/finobt as pairs.
 249         */
 250        bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
 251        if (xfs_has_sparseinodes(mp))
 252                inobt_sz = xfs_iallocbt_calc_size(mp, icount /
 253                                XFS_INODES_PER_HOLEMASK_BIT);
 254        else
 255                inobt_sz = xfs_iallocbt_calc_size(mp, icount /
 256                                XFS_INODES_PER_CHUNK);
 257        if (xfs_has_finobt(mp))
 258                inobt_sz *= 2;
 259        if (xfs_has_reflink(mp))
 260                refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
 261        else
 262                refcbt_sz = 0;
 263        if (xfs_has_rmapbt(mp)) {
 264                /*
 265                 * Guess how many blocks we need to rebuild the rmapbt.
 266                 * For non-reflink filesystems we can't have more records than
 267                 * used blocks.  However, with reflink it's possible to have
 268                 * more than one rmap record per AG block.  We don't know how
 269                 * many rmaps there could be in the AG, so we start off with
 270                 * what we hope is an generous over-estimation.
 271                 */
 272                if (xfs_has_reflink(mp))
 273                        rmapbt_sz = xfs_rmapbt_calc_size(mp,
 274                                        (unsigned long long)aglen * 2);
 275                else
 276                        rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
 277        } else {
 278                rmapbt_sz = 0;
 279        }
 280
 281        trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
 282                        inobt_sz, rmapbt_sz, refcbt_sz);
 283
 284        return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
 285}
 286
 287/* Allocate a block in an AG. */
 288int
 289xrep_alloc_ag_block(
 290        struct xfs_scrub                *sc,
 291        const struct xfs_owner_info     *oinfo,
 292        xfs_fsblock_t                   *fsbno,
 293        enum xfs_ag_resv_type           resv)
 294{
 295        struct xfs_alloc_arg            args = {0};
 296        xfs_agblock_t                   bno;
 297        int                             error;
 298
 299        switch (resv) {
 300        case XFS_AG_RESV_AGFL:
 301        case XFS_AG_RESV_RMAPBT:
 302                error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
 303                if (error)
 304                        return error;
 305                if (bno == NULLAGBLOCK)
 306                        return -ENOSPC;
 307                xfs_extent_busy_reuse(sc->mp, sc->sa.pag, bno,
 308                                1, false);
 309                *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno, bno);
 310                if (resv == XFS_AG_RESV_RMAPBT)
 311                        xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.pag->pag_agno);
 312                return 0;
 313        default:
 314                break;
 315        }
 316
 317        args.tp = sc->tp;
 318        args.mp = sc->mp;
 319        args.oinfo = *oinfo;
 320        args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.pag->pag_agno, 0);
 321        args.minlen = 1;
 322        args.maxlen = 1;
 323        args.prod = 1;
 324        args.type = XFS_ALLOCTYPE_THIS_AG;
 325        args.resv = resv;
 326
 327        error = xfs_alloc_vextent(&args);
 328        if (error)
 329                return error;
 330        if (args.fsbno == NULLFSBLOCK)
 331                return -ENOSPC;
 332        ASSERT(args.len == 1);
 333        *fsbno = args.fsbno;
 334
 335        return 0;
 336}
 337
 338/* Initialize a new AG btree root block with zero entries. */
 339int
 340xrep_init_btblock(
 341        struct xfs_scrub                *sc,
 342        xfs_fsblock_t                   fsb,
 343        struct xfs_buf                  **bpp,
 344        xfs_btnum_t                     btnum,
 345        const struct xfs_buf_ops        *ops)
 346{
 347        struct xfs_trans                *tp = sc->tp;
 348        struct xfs_mount                *mp = sc->mp;
 349        struct xfs_buf                  *bp;
 350        int                             error;
 351
 352        trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
 353                        XFS_FSB_TO_AGBNO(mp, fsb), btnum);
 354
 355        ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.pag->pag_agno);
 356        error = xfs_trans_get_buf(tp, mp->m_ddev_targp,
 357                        XFS_FSB_TO_DADDR(mp, fsb), XFS_FSB_TO_BB(mp, 1), 0,
 358                        &bp);
 359        if (error)
 360                return error;
 361        xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
 362        xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.pag->pag_agno);
 363        xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
 364        xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1);
 365        bp->b_ops = ops;
 366        *bpp = bp;
 367
 368        return 0;
 369}
 370
 371/*
 372 * Reconstructing per-AG Btrees
 373 *
 374 * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
 375 * we scan secondary space metadata to derive the records that should be in
 376 * the damaged btree, initialize a fresh btree root, and insert the records.
 377 * Note that for rebuilding the rmapbt we scan all the primary data to
 378 * generate the new records.
 379 *
 380 * However, that leaves the matter of removing all the metadata describing the
 381 * old broken structure.  For primary metadata we use the rmap data to collect
 382 * every extent with a matching rmap owner (bitmap); we then iterate all other
 383 * metadata structures with the same rmap owner to collect the extents that
 384 * cannot be removed (sublist).  We then subtract sublist from bitmap to
 385 * derive the blocks that were used by the old btree.  These blocks can be
 386 * reaped.
 387 *
 388 * For rmapbt reconstructions we must use different tactics for extent
 389 * collection.  First we iterate all primary metadata (this excludes the old
 390 * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
 391 * records are collected as bitmap.  The bnobt records are collected as
 392 * sublist.  As with the other btrees we subtract sublist from bitmap, and the
 393 * result (since the rmapbt lives in the free space) are the blocks from the
 394 * old rmapbt.
 395 *
 396 * Disposal of Blocks from Old per-AG Btrees
 397 *
 398 * Now that we've constructed a new btree to replace the damaged one, we want
 399 * to dispose of the blocks that (we think) the old btree was using.
 400 * Previously, we used the rmapbt to collect the extents (bitmap) with the
 401 * rmap owner corresponding to the tree we rebuilt, collected extents for any
 402 * blocks with the same rmap owner that are owned by another data structure
 403 * (sublist), and subtracted sublist from bitmap.  In theory the extents
 404 * remaining in bitmap are the old btree's blocks.
 405 *
 406 * Unfortunately, it's possible that the btree was crosslinked with other
 407 * blocks on disk.  The rmap data can tell us if there are multiple owners, so
 408 * if the rmapbt says there is an owner of this block other than @oinfo, then
 409 * the block is crosslinked.  Remove the reverse mapping and continue.
 410 *
 411 * If there is one rmap record, we can free the block, which removes the
 412 * reverse mapping but doesn't add the block to the free space.  Our repair
 413 * strategy is to hope the other metadata objects crosslinked on this block
 414 * will be rebuilt (atop different blocks), thereby removing all the cross
 415 * links.
 416 *
 417 * If there are no rmap records at all, we also free the block.  If the btree
 418 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
 419 * supposed to be a rmap record and everything is ok.  For other btrees there
 420 * had to have been an rmap entry for the block to have ended up on @bitmap,
 421 * so if it's gone now there's something wrong and the fs will shut down.
 422 *
 423 * Note: If there are multiple rmap records with only the same rmap owner as
 424 * the btree we're trying to rebuild and the block is indeed owned by another
 425 * data structure with the same rmap owner, then the block will be in sublist
 426 * and therefore doesn't need disposal.  If there are multiple rmap records
 427 * with only the same rmap owner but the block is not owned by something with
 428 * the same rmap owner, the block will be freed.
 429 *
 430 * The caller is responsible for locking the AG headers for the entire rebuild
 431 * operation so that nothing else can sneak in and change the AG state while
 432 * we're not looking.  We also assume that the caller already invalidated any
 433 * buffers associated with @bitmap.
 434 */
 435
 436/*
 437 * Invalidate buffers for per-AG btree blocks we're dumping.  This function
 438 * is not intended for use with file data repairs; we have bunmapi for that.
 439 */
 440int
 441xrep_invalidate_blocks(
 442        struct xfs_scrub        *sc,
 443        struct xbitmap          *bitmap)
 444{
 445        struct xbitmap_range    *bmr;
 446        struct xbitmap_range    *n;
 447        struct xfs_buf          *bp;
 448        xfs_fsblock_t           fsbno;
 449
 450        /*
 451         * For each block in each extent, see if there's an incore buffer for
 452         * exactly that block; if so, invalidate it.  The buffer cache only
 453         * lets us look for one buffer at a time, so we have to look one block
 454         * at a time.  Avoid invalidating AG headers and post-EOFS blocks
 455         * because we never own those; and if we can't TRYLOCK the buffer we
 456         * assume it's owned by someone else.
 457         */
 458        for_each_xbitmap_block(fsbno, bmr, n, bitmap) {
 459                /* Skip AG headers and post-EOFS blocks */
 460                if (!xfs_verify_fsbno(sc->mp, fsbno))
 461                        continue;
 462                bp = xfs_buf_incore(sc->mp->m_ddev_targp,
 463                                XFS_FSB_TO_DADDR(sc->mp, fsbno),
 464                                XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
 465                if (bp) {
 466                        xfs_trans_bjoin(sc->tp, bp);
 467                        xfs_trans_binval(sc->tp, bp);
 468                }
 469        }
 470
 471        return 0;
 472}
 473
 474/* Ensure the freelist is the correct size. */
 475int
 476xrep_fix_freelist(
 477        struct xfs_scrub        *sc,
 478        bool                    can_shrink)
 479{
 480        struct xfs_alloc_arg    args = {0};
 481
 482        args.mp = sc->mp;
 483        args.tp = sc->tp;
 484        args.agno = sc->sa.pag->pag_agno;
 485        args.alignment = 1;
 486        args.pag = sc->sa.pag;
 487
 488        return xfs_alloc_fix_freelist(&args,
 489                        can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
 490}
 491
 492/*
 493 * Put a block back on the AGFL.
 494 */
 495STATIC int
 496xrep_put_freelist(
 497        struct xfs_scrub        *sc,
 498        xfs_agblock_t           agbno)
 499{
 500        int                     error;
 501
 502        /* Make sure there's space on the freelist. */
 503        error = xrep_fix_freelist(sc, true);
 504        if (error)
 505                return error;
 506
 507        /*
 508         * Since we're "freeing" a lost block onto the AGFL, we have to
 509         * create an rmap for the block prior to merging it or else other
 510         * parts will break.
 511         */
 512        error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno, 1,
 513                        &XFS_RMAP_OINFO_AG);
 514        if (error)
 515                return error;
 516
 517        /* Put the block on the AGFL. */
 518        error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
 519                        agbno, 0);
 520        if (error)
 521                return error;
 522        xfs_extent_busy_insert(sc->tp, sc->sa.pag, agbno, 1,
 523                        XFS_EXTENT_BUSY_SKIP_DISCARD);
 524
 525        return 0;
 526}
 527
 528/* Dispose of a single block. */
 529STATIC int
 530xrep_reap_block(
 531        struct xfs_scrub                *sc,
 532        xfs_fsblock_t                   fsbno,
 533        const struct xfs_owner_info     *oinfo,
 534        enum xfs_ag_resv_type           resv)
 535{
 536        struct xfs_btree_cur            *cur;
 537        struct xfs_buf                  *agf_bp = NULL;
 538        xfs_agnumber_t                  agno;
 539        xfs_agblock_t                   agbno;
 540        bool                            has_other_rmap;
 541        int                             error;
 542
 543        agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
 544        agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
 545
 546        /*
 547         * If we are repairing per-inode metadata, we need to read in the AGF
 548         * buffer.  Otherwise, we're repairing a per-AG structure, so reuse
 549         * the AGF buffer that the setup functions already grabbed.
 550         */
 551        if (sc->ip) {
 552                error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
 553                if (error)
 554                        return error;
 555        } else {
 556                agf_bp = sc->sa.agf_bp;
 557        }
 558        cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, sc->sa.pag);
 559
 560        /* Can we find any other rmappings? */
 561        error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
 562        xfs_btree_del_cursor(cur, error);
 563        if (error)
 564                goto out_free;
 565
 566        /*
 567         * If there are other rmappings, this block is cross linked and must
 568         * not be freed.  Remove the reverse mapping and move on.  Otherwise,
 569         * we were the only owner of the block, so free the extent, which will
 570         * also remove the rmap.
 571         *
 572         * XXX: XFS doesn't support detecting the case where a single block
 573         * metadata structure is crosslinked with a multi-block structure
 574         * because the buffer cache doesn't detect aliasing problems, so we
 575         * can't fix 100% of crosslinking problems (yet).  The verifiers will
 576         * blow on writeout, the filesystem will shut down, and the admin gets
 577         * to run xfs_repair.
 578         */
 579        if (has_other_rmap)
 580                error = xfs_rmap_free(sc->tp, agf_bp, sc->sa.pag, agbno,
 581                                        1, oinfo);
 582        else if (resv == XFS_AG_RESV_AGFL)
 583                error = xrep_put_freelist(sc, agbno);
 584        else
 585                error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
 586        if (agf_bp != sc->sa.agf_bp)
 587                xfs_trans_brelse(sc->tp, agf_bp);
 588        if (error)
 589                return error;
 590
 591        if (sc->ip)
 592                return xfs_trans_roll_inode(&sc->tp, sc->ip);
 593        return xrep_roll_ag_trans(sc);
 594
 595out_free:
 596        if (agf_bp != sc->sa.agf_bp)
 597                xfs_trans_brelse(sc->tp, agf_bp);
 598        return error;
 599}
 600
 601/* Dispose of every block of every extent in the bitmap. */
 602int
 603xrep_reap_extents(
 604        struct xfs_scrub                *sc,
 605        struct xbitmap                  *bitmap,
 606        const struct xfs_owner_info     *oinfo,
 607        enum xfs_ag_resv_type           type)
 608{
 609        struct xbitmap_range            *bmr;
 610        struct xbitmap_range            *n;
 611        xfs_fsblock_t                   fsbno;
 612        int                             error = 0;
 613
 614        ASSERT(xfs_has_rmapbt(sc->mp));
 615
 616        for_each_xbitmap_block(fsbno, bmr, n, bitmap) {
 617                ASSERT(sc->ip != NULL ||
 618                       XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.pag->pag_agno);
 619                trace_xrep_dispose_btree_extent(sc->mp,
 620                                XFS_FSB_TO_AGNO(sc->mp, fsbno),
 621                                XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);
 622
 623                error = xrep_reap_block(sc, fsbno, oinfo, type);
 624                if (error)
 625                        break;
 626        }
 627
 628        return error;
 629}
 630
 631/*
 632 * Finding per-AG Btree Roots for AGF/AGI Reconstruction
 633 *
 634 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
 635 * the AG headers by using the rmap data to rummage through the AG looking for
 636 * btree roots.  This is not guaranteed to work if the AG is heavily damaged
 637 * or the rmap data are corrupt.
 638 *
 639 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
 640 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
 641 * AGI is being rebuilt.  It must maintain these locks until it's safe for
 642 * other threads to change the btrees' shapes.  The caller provides
 643 * information about the btrees to look for by passing in an array of
 644 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
 645 * The (root, height) fields will be set on return if anything is found.  The
 646 * last element of the array should have a NULL buf_ops to mark the end of the
 647 * array.
 648 *
 649 * For every rmapbt record matching any of the rmap owners in btree_info,
 650 * read each block referenced by the rmap record.  If the block is a btree
 651 * block from this filesystem matching any of the magic numbers and has a
 652 * level higher than what we've already seen, remember the block and the
 653 * height of the tree required to have such a block.  When the call completes,
 654 * we return the highest block we've found for each btree description; those
 655 * should be the roots.
 656 */
 657
 658struct xrep_findroot {
 659        struct xfs_scrub                *sc;
 660        struct xfs_buf                  *agfl_bp;
 661        struct xfs_agf                  *agf;
 662        struct xrep_find_ag_btree       *btree_info;
 663};
 664
 665/* See if our block is in the AGFL. */
 666STATIC int
 667xrep_findroot_agfl_walk(
 668        struct xfs_mount        *mp,
 669        xfs_agblock_t           bno,
 670        void                    *priv)
 671{
 672        xfs_agblock_t           *agbno = priv;
 673
 674        return (*agbno == bno) ? -ECANCELED : 0;
 675}
 676
 677/* Does this block match the btree information passed in? */
 678STATIC int
 679xrep_findroot_block(
 680        struct xrep_findroot            *ri,
 681        struct xrep_find_ag_btree       *fab,
 682        uint64_t                        owner,
 683        xfs_agblock_t                   agbno,
 684        bool                            *done_with_block)
 685{
 686        struct xfs_mount                *mp = ri->sc->mp;
 687        struct xfs_buf                  *bp;
 688        struct xfs_btree_block          *btblock;
 689        xfs_daddr_t                     daddr;
 690        int                             block_level;
 691        int                             error = 0;
 692
 693        daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno);
 694
 695        /*
 696         * Blocks in the AGFL have stale contents that might just happen to
 697         * have a matching magic and uuid.  We don't want to pull these blocks
 698         * in as part of a tree root, so we have to filter out the AGFL stuff
 699         * here.  If the AGFL looks insane we'll just refuse to repair.
 700         */
 701        if (owner == XFS_RMAP_OWN_AG) {
 702                error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
 703                                xrep_findroot_agfl_walk, &agbno);
 704                if (error == -ECANCELED)
 705                        return 0;
 706                if (error)
 707                        return error;
 708        }
 709
 710        /*
 711         * Read the buffer into memory so that we can see if it's a match for
 712         * our btree type.  We have no clue if it is beforehand, and we want to
 713         * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
 714         * will cause needless disk reads in subsequent calls to this function)
 715         * and logging metadata verifier failures.
 716         *
 717         * Therefore, pass in NULL buffer ops.  If the buffer was already in
 718         * memory from some other caller it will already have b_ops assigned.
 719         * If it was in memory from a previous unsuccessful findroot_block
 720         * call, the buffer won't have b_ops but it should be clean and ready
 721         * for us to try to verify if the read call succeeds.  The same applies
 722         * if the buffer wasn't in memory at all.
 723         *
 724         * Note: If we never match a btree type with this buffer, it will be
 725         * left in memory with NULL b_ops.  This shouldn't be a problem unless
 726         * the buffer gets written.
 727         */
 728        error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
 729                        mp->m_bsize, 0, &bp, NULL);
 730        if (error)
 731                return error;
 732
 733        /* Ensure the block magic matches the btree type we're looking for. */
 734        btblock = XFS_BUF_TO_BLOCK(bp);
 735        ASSERT(fab->buf_ops->magic[1] != 0);
 736        if (btblock->bb_magic != fab->buf_ops->magic[1])
 737                goto out;
 738
 739        /*
 740         * If the buffer already has ops applied and they're not the ones for
 741         * this btree type, we know this block doesn't match the btree and we
 742         * can bail out.
 743         *
 744         * If the buffer ops match ours, someone else has already validated
 745         * the block for us, so we can move on to checking if this is a root
 746         * block candidate.
 747         *
 748         * If the buffer does not have ops, nobody has successfully validated
 749         * the contents and the buffer cannot be dirty.  If the magic, uuid,
 750         * and structure match this btree type then we'll move on to checking
 751         * if it's a root block candidate.  If there is no match, bail out.
 752         */
 753        if (bp->b_ops) {
 754                if (bp->b_ops != fab->buf_ops)
 755                        goto out;
 756        } else {
 757                ASSERT(!xfs_trans_buf_is_dirty(bp));
 758                if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
 759                                &mp->m_sb.sb_meta_uuid))
 760                        goto out;
 761                /*
 762                 * Read verifiers can reference b_ops, so we set the pointer
 763                 * here.  If the verifier fails we'll reset the buffer state
 764                 * to what it was before we touched the buffer.
 765                 */
 766                bp->b_ops = fab->buf_ops;
 767                fab->buf_ops->verify_read(bp);
 768                if (bp->b_error) {
 769                        bp->b_ops = NULL;
 770                        bp->b_error = 0;
 771                        goto out;
 772                }
 773
 774                /*
 775                 * Some read verifiers will (re)set b_ops, so we must be
 776                 * careful not to change b_ops after running the verifier.
 777                 */
 778        }
 779
 780        /*
 781         * This block passes the magic/uuid and verifier tests for this btree
 782         * type.  We don't need the caller to try the other tree types.
 783         */
 784        *done_with_block = true;
 785
 786        /*
 787         * Compare this btree block's level to the height of the current
 788         * candidate root block.
 789         *
 790         * If the level matches the root we found previously, throw away both
 791         * blocks because there can't be two candidate roots.
 792         *
 793         * If level is lower in the tree than the root we found previously,
 794         * ignore this block.
 795         */
 796        block_level = xfs_btree_get_level(btblock);
 797        if (block_level + 1 == fab->height) {
 798                fab->root = NULLAGBLOCK;
 799                goto out;
 800        } else if (block_level < fab->height) {
 801                goto out;
 802        }
 803
 804        /*
 805         * This is the highest block in the tree that we've found so far.
 806         * Update the btree height to reflect what we've learned from this
 807         * block.
 808         */
 809        fab->height = block_level + 1;
 810
 811        /*
 812         * If this block doesn't have sibling pointers, then it's the new root
 813         * block candidate.  Otherwise, the root will be found farther up the
 814         * tree.
 815         */
 816        if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
 817            btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
 818                fab->root = agbno;
 819        else
 820                fab->root = NULLAGBLOCK;
 821
 822        trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno,
 823                        be32_to_cpu(btblock->bb_magic), fab->height - 1);
 824out:
 825        xfs_trans_brelse(ri->sc->tp, bp);
 826        return error;
 827}
 828
 829/*
 830 * Do any of the blocks in this rmap record match one of the btrees we're
 831 * looking for?
 832 */
 833STATIC int
 834xrep_findroot_rmap(
 835        struct xfs_btree_cur            *cur,
 836        const struct xfs_rmap_irec      *rec,
 837        void                            *priv)
 838{
 839        struct xrep_findroot            *ri = priv;
 840        struct xrep_find_ag_btree       *fab;
 841        xfs_agblock_t                   b;
 842        bool                            done;
 843        int                             error = 0;
 844
 845        /* Ignore anything that isn't AG metadata. */
 846        if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
 847                return 0;
 848
 849        /* Otherwise scan each block + btree type. */
 850        for (b = 0; b < rec->rm_blockcount; b++) {
 851                done = false;
 852                for (fab = ri->btree_info; fab->buf_ops; fab++) {
 853                        if (rec->rm_owner != fab->rmap_owner)
 854                                continue;
 855                        error = xrep_findroot_block(ri, fab,
 856                                        rec->rm_owner, rec->rm_startblock + b,
 857                                        &done);
 858                        if (error)
 859                                return error;
 860                        if (done)
 861                                break;
 862                }
 863        }
 864
 865        return 0;
 866}
 867
 868/* Find the roots of the per-AG btrees described in btree_info. */
 869int
 870xrep_find_ag_btree_roots(
 871        struct xfs_scrub                *sc,
 872        struct xfs_buf                  *agf_bp,
 873        struct xrep_find_ag_btree       *btree_info,
 874        struct xfs_buf                  *agfl_bp)
 875{
 876        struct xfs_mount                *mp = sc->mp;
 877        struct xrep_findroot            ri;
 878        struct xrep_find_ag_btree       *fab;
 879        struct xfs_btree_cur            *cur;
 880        int                             error;
 881
 882        ASSERT(xfs_buf_islocked(agf_bp));
 883        ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
 884
 885        ri.sc = sc;
 886        ri.btree_info = btree_info;
 887        ri.agf = agf_bp->b_addr;
 888        ri.agfl_bp = agfl_bp;
 889        for (fab = btree_info; fab->buf_ops; fab++) {
 890                ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
 891                ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
 892                fab->root = NULLAGBLOCK;
 893                fab->height = 0;
 894        }
 895
 896        cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
 897        error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
 898        xfs_btree_del_cursor(cur, error);
 899
 900        return error;
 901}
 902
 903/* Force a quotacheck the next time we mount. */
 904void
 905xrep_force_quotacheck(
 906        struct xfs_scrub        *sc,
 907        xfs_dqtype_t            type)
 908{
 909        uint                    flag;
 910
 911        flag = xfs_quota_chkd_flag(type);
 912        if (!(flag & sc->mp->m_qflags))
 913                return;
 914
 915        sc->mp->m_qflags &= ~flag;
 916        spin_lock(&sc->mp->m_sb_lock);
 917        sc->mp->m_sb.sb_qflags &= ~flag;
 918        spin_unlock(&sc->mp->m_sb_lock);
 919        xfs_log_sb(sc->tp);
 920}
 921
 922/*
 923 * Attach dquots to this inode, or schedule quotacheck to fix them.
 924 *
 925 * This function ensures that the appropriate dquots are attached to an inode.
 926 * We cannot allow the dquot code to allocate an on-disk dquot block here
 927 * because we're already in transaction context with the inode locked.  The
 928 * on-disk dquot should already exist anyway.  If the quota code signals
 929 * corruption or missing quota information, schedule quotacheck, which will
 930 * repair corruptions in the quota metadata.
 931 */
 932int
 933xrep_ino_dqattach(
 934        struct xfs_scrub        *sc)
 935{
 936        int                     error;
 937
 938        error = xfs_qm_dqattach_locked(sc->ip, false);
 939        switch (error) {
 940        case -EFSBADCRC:
 941        case -EFSCORRUPTED:
 942        case -ENOENT:
 943                xfs_err_ratelimited(sc->mp,
 944"inode %llu repair encountered quota error %d, quotacheck forced.",
 945                                (unsigned long long)sc->ip->i_ino, error);
 946                if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
 947                        xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
 948                if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
 949                        xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
 950                if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
 951                        xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
 952                fallthrough;
 953        case -ESRCH:
 954                error = 0;
 955                break;
 956        default:
 957                break;
 958        }
 959
 960        return error;
 961}
 962